Mental illness detection through harvesting social media: a comprehensive literature review
Mental illness is a common disease that at its extremes leads to personal and societal suffering. A complicated multi-factorial disease, mental illness is influenced by a number of socioeconomic and clinical factors, including individual risk factors. Traditionally, approaches relying on personal in...
Saved in:
Published in | PeerJ. Computer science Vol. 10; p. e2296 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
PeerJ. Ltd
07.10.2024
PeerJ Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mental illness is a common disease that at its extremes leads to personal and societal suffering. A complicated multi-factorial disease, mental illness is influenced by a number of socioeconomic and clinical factors, including individual risk factors. Traditionally, approaches relying on personal interviews and filling out questionnaires have been employed to diagnose mental illness; however, these manual procedures have been found to be frequently prone to errors and unable to reliably identify individuals with mental illness. Fortunately, people with mental illnesses frequently express their ailments on social media, making it possible to more precisely identify mental disease by harvesting their social media posts. This study offers a thorough analysis of how to identify mental illnesses (more specifically, depression) from users’ social media data. Along with the explanation of data acquisition, preprocessing, feature extraction, and classification techniques, the most recent published literature is presented to give the readers a thorough understanding of the subject. Since, in the recent past, the majority of the relevant scientific community has focused on using machine learning (ML) and deep learning (DL) models to identify mental illness, so the review also focuses on these techniques and along with their detail, their critical analysis is presented. More than 100 DL, ML, and natural language processing (NLP) based models developed for mental illness in the recent past have been reviewed, and their technical contributions and strengths are discussed. There exist multiple review studies, however, discussing extensive recent literature along with the complete road map on how to design a mental illness detection system using social media data and ML and DL classification methods is limited. The review also includes detail on how a dataset may be acquired from social media platforms, how it is preprocessed, and features are extracted from it to employ for mental illness detection. Hence, we anticipate that this review will help readers learn more and give them a comprehensive road map for identifying mental illnesses using users’ social media data. |
---|---|
AbstractList | Mental illness is a common disease that at its extremes leads to personal and societal suffering. A complicated multi-factorial disease, mental illness is influenced by a number of socioeconomic and clinical factors, including individual risk factors. Traditionally, approaches relying on personal interviews and filling out questionnaires have been employed to diagnose mental illness; however, these manual procedures have been found to be frequently prone to errors and unable to reliably identify individuals with mental illness. Fortunately, people with mental illnesses frequently express their ailments on social media, making it possible to more precisely identify mental disease by harvesting their social media posts. This study offers a thorough analysis of how to identify mental illnesses (more specifically, depression) from users’ social media data. Along with the explanation of data acquisition, preprocessing, feature extraction, and classification techniques, the most recent published literature is presented to give the readers a thorough understanding of the subject. Since, in the recent past, the majority of the relevant scientific community has focused on using machine learning (ML) and deep learning (DL) models to identify mental illness, so the review also focuses on these techniques and along with their detail, their critical analysis is presented. More than 100 DL, ML, and natural language processing (NLP) based models developed for mental illness in the recent past have been reviewed, and their technical contributions and strengths are discussed. There exist multiple review studies, however, discussing extensive recent literature along with the complete road map on how to design a mental illness detection system using social media data and ML and DL classification methods is limited. The review also includes detail on how a dataset may be acquired from social media platforms, how it is preprocessed, and features are extracted from it to employ for mental illness detection. Hence, we anticipate that this review will help readers learn more and give them a comprehensive road map for identifying mental illnesses using users’ social media data. |
ArticleNumber | e2296 |
Audience | Academic |
Author | Saleem, Muhammad Aamer Jawarneh, Mahmoud Saleh Aljawarneh, Mahmoud Mohammad Shah, Shahid Munir |
Author_xml | – sequence: 1 fullname: Shah, Shahid Munir – sequence: 2 fullname: Aljawarneh, Mahmoud Mohammad – sequence: 3 fullname: Saleem, Muhammad Aamer – sequence: 4 fullname: Jawarneh, Mahmoud Saleh |
BookMark | eNptkU1rGzEQhkVJoWmaY--CnnpYVx8r76q3ENrGkFLox6kHMZZGa5ndlZFkp_33keNSaujMYYbhmXcY3pfkYo4zEvKas0XX8e7dDjFtG5sXQujlM3IpZLdslNbi4p_-BbnOecsY44rX0Jfk52ecC4w0jOOMOVOHBW0JcaZlk-J-2NANpAPmEuaB5mhDZSd0Ad5ToDZOu4QbnHM4IB1DwQRln5AmPAR8eEWeexgzXv-pV-THxw_fb--a-y-fVrc3942VQpfGiSWo3jHVOsl8L6RQUnWddqCYUuAZ79D2oFA5dMpay13vuHYMgEkHWl6R1UnXRdiaXQoTpN8mQjBPg5gGA6kEO6JpBbDWrz1ve962a6_RurU9HkfnO8mq1puT1gAVD7OPJYGdQrbmpudSLbXgbaUW_6FqOpyCrcb4UOdnC2_PFipT8FcZYJ-zWX37es42J9ammHNC__clzszRa_PktbHZHL2Wj6vCn9k |
Cites_doi | 10.1038/s41746-020-0233-7 10.3390/healthcare11030285 10.1007/s13534-024-00360-9 10.1177/0165551517740835 10.1038/s41398-020-0780-3 10.1016/j.ijforecast.2020.06.008 10.1007/978-3-031-28183-9_22 10.1007/s10844-020-00599-5 10.1007/978-981-15-5199-4_3 10.1016/j.inffus.2022.11.031 10.3390/s24020348 10.1126/science.aay0214 10.1007/s11227-021-04040-8 10.1371/journal.pone.0269855 10.1007/s41060-017-0073-y 10.1016/j.compbiomed.2022.105221 10.32604/cmc.2022.022609 10.1016/B978-0-443-19096-4.00012-2 10.1504/IJAPR.2017.089398 10.2139/ssrn.3383359 10.1038/s41598-019-56847-4 10.1109/TNNLS.2015.2424995 10.1007/s41347-020-00134-x 10.1109/ACCESS.2020.2982416 10.1007/s11280-021-00992-2 10.1016/j.health.2023.100185 10.1038/nbt1206-1565 10.1007/s13278-024-01206-z 10.1016/j.bspc.2023.105353 10.1016/S2215-0366(20)30262-5 10.32604/csse.2023.031048 10.3390/s21175924 10.3390/computers12080151 10.3390/electronics11050676 10.1109/ACCESS.2023.3293857 10.1145/3422824 10.1007/978-3-030-22354-0_43 10.1080/12460125.2020.1859745 10.1162/tacl_a_00051 10.1109/TMM.2020.3046867 10.1145/3437259 10.1007/s00127-020-01851-7 10.1145/3329710 10.1109/TCSS.2022.3200213 10.11591/eei.v12i2.4182 10.1145/3572406 10.7717/peerj-cs.1070 10.1111/exsy.12933 10.1177/0261927X09351676 10.1007/s12559-021-09828-7 10.1109/TKDE.2017.2686382 10.1145/3569580 10.14569/IJACSA.2020.0111271 10.1007/s00521-021-06208-y 10.1109/ACCESS.2021.3112102 10.1186/s40345-019-0160-1 10.3389/frai.2020.00042 10.1016/j.jadohealth.2022.03.022 10.1007/s11042-023-17395-2 10.1016/B978-0-443-19413-9.00014-X 10.1007/s12652-020-01726-4 10.1016/j.comppsych.2012.06.006 10.18201/ijisae.2019252786 10.1109/TAFFC.2022.3145634 10.1007/s11920-019-0988-1 10.1007/978-3-642-24797-2_4 10.3390/jpm11030199 10.1007/s11063-023-11176-6 10.1016/j.artmed.2019.07.004 10.1007/s10826-019-01399-4 10.1007/s13042-010-0001-0 10.1016/j.procs.2018.08.153 10.1016/j.copsyc.2020.04.005 10.4018/IJSSCI.2021070101 10.3390/su14063569 10.1007/s00521-024-09642-w 10.1093/qjmed/hcaa110 10.1001/jamapsychiatry.2023.5051 10.31887/DCNS.2008.10.3/espaykel 10.1007/978-3-319-19369-4_2 10.1007/978-3-030-01437-7_1 10.1016/j.inffus.2022.12.019 10.1016/j.osnem.2022.100225 10.1109/TNNLS.2021.3084827 10.1186/s13033-020-00371-w 10.1177/0165551519860469 10.22219/kinetik.v9i1.1849 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 PeerJ. Ltd. |
Copyright_xml | – notice: COPYRIGHT 2024 PeerJ. Ltd. |
DBID | AAYXX CITATION ISR DOA |
DOI | 10.7717/peerj-cs.2296 |
DatabaseName | CrossRef Gale In Context: Science Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2376-5992 |
ExternalDocumentID | oai_doaj_org_article_42a04fbf148144bf9ecdbc8d05edf730 A813569214 10_7717_peerj_cs_2296 |
GroupedDBID | 3V. 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ HCIFZ IAO ICD IEA ISR ITC K6V K7- M0N M~E OK1 P62 PIMPY PQQKQ PROAC RPM |
ID | FETCH-LOGICAL-c329t-d26a58d054d30f8232535779da5055af017ec8a5e5ded5ccc1d8d19d0aa03da93 |
IEDL.DBID | DOA |
ISSN | 2376-5992 |
IngestDate | Mon Oct 14 19:39:03 EDT 2024 Thu Oct 31 02:22:34 EDT 2024 Tue Oct 29 04:07:10 EDT 2024 Tue Oct 29 03:38:35 EDT 2024 Wed Oct 09 16:53:54 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c329t-d26a58d054d30f8232535779da5055af017ec8a5e5ded5ccc1d8d19d0aa03da93 |
OpenAccessLink | https://doaj.org/article/42a04fbf148144bf9ecdbc8d05edf730 |
PageCount | e2296 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_42a04fbf148144bf9ecdbc8d05edf730 gale_infotracmisc_A813569214 gale_infotracacademiconefile_A813569214 gale_incontextgauss_ISR_A813569214 crossref_primary_10_7717_peerj_cs_2296 |
PublicationCentury | 2000 |
PublicationDate | 2024-10-07 |
PublicationDateYYYYMMDD | 2024-10-07 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-07 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | PeerJ. Computer science |
PublicationYear | 2024 |
Publisher | PeerJ. Ltd PeerJ Inc |
Publisher_xml | – name: PeerJ. Ltd – name: PeerJ Inc |
References | Hussain (10.7717/peerj-cs.2296/ref-51) 2020; 46 Ahmed (10.7717/peerj-cs.2296/ref-2) 2023; 17 Shams (10.7717/peerj-cs.2296/ref-111) 2024; 14 Gamaarachchige (10.7717/peerj-cs.2296/ref-39) 2019 Noble (10.7717/peerj-cs.2296/ref-79) 2006; 24 Lakhotia (10.7717/peerj-cs.2296/ref-70) 2018 Akhtar (10.7717/peerj-cs.2296/ref-3) 2018; 18 Otu (10.7717/peerj-cs.2296/ref-82) 2020; 14 Ladani (10.7717/peerj-cs.2296/ref-69) 2020 Lamichhane (10.7717/peerj-cs.2296/ref-71) 2023 Safa (10.7717/peerj-cs.2296/ref-97) 2022; 78 Bojanowski (10.7717/peerj-cs.2296/ref-17) 2017; 5 Khyani (10.7717/peerj-cs.2296/ref-63) 2021; 22 Figuerêdo (10.7717/peerj-cs.2296/ref-37) 2022; 31 Ranganathan (10.7717/peerj-cs.2296/ref-90) 2019 Skaik (10.7717/peerj-cs.2296/ref-115) 2020; 53 Vázquez-Abad (10.7717/peerj-cs.2296/ref-125) 2020 O’Shea (10.7717/peerj-cs.2296/ref-81) 2015 Amanat (10.7717/peerj-cs.2296/ref-8) 2022; 11 Jakkula (10.7717/peerj-cs.2296/ref-54) 2006 Shah (10.7717/peerj-cs.2296/ref-107) 2021 Banna (10.7717/peerj-cs.2296/ref-14) 2023; 11 Graham (10.7717/peerj-cs.2296/ref-46) 2019; 21 Li (10.7717/peerj-cs.2296/ref-72) 2021; 33 Safa (10.7717/peerj-cs.2296/ref-98) 2023 Ramírez-Cifuentes (10.7717/peerj-cs.2296/ref-88) 2021; 9 Shah (10.7717/peerj-cs.2296/ref-110) 2017; 4 Smith (10.7717/peerj-cs.2296/ref-116) 2013; 54 Meshram (10.7717/peerj-cs.2296/ref-75) 2023; 40 Ji (10.7717/peerj-cs.2296/ref-56) 2022; 34 Park (10.7717/peerj-cs.2296/ref-84) 2022; 14 Tejaswini (10.7717/peerj-cs.2296/ref-120) 2024; 23 D’Alfonso (10.7717/peerj-cs.2296/ref-30) 2020; 36 Rong (10.7717/peerj-cs.2296/ref-96) 2014 Ríssola (10.7717/peerj-cs.2296/ref-95) 2021; 2 Iyortsuun (10.7717/peerj-cs.2296/ref-53) 2023; 11 Cao (10.7717/peerj-cs.2296/ref-19) 2022; 24 Chiu (10.7717/peerj-cs.2296/ref-23) 2021; 56 Zhang (10.7717/peerj-cs.2296/ref-134) 2020 Katte (10.7717/peerj-cs.2296/ref-60) 2018; 5 Favril (10.7717/peerj-cs.2296/ref-36) 2020; 55 Wang (10.7717/peerj-cs.2296/ref-127) 2006 Zhang (10.7717/peerj-cs.2296/ref-135) 2023; 92 Geetha (10.7717/peerj-cs.2296/ref-40) 2020 Hassan (10.7717/peerj-cs.2296/ref-48) 2023; 92 Ricardo Baeza-Yates (10.7717/peerj-cs.2296/ref-93) 1999; Vol. 463 Alabdulkreem (10.7717/peerj-cs.2296/ref-4) 2021; 30 Kotenko (10.7717/peerj-cs.2296/ref-66) 2021 Graves (10.7717/peerj-cs.2296/ref-47) 2012 Kumar (10.7717/peerj-cs.2296/ref-68) 2019 Javed (10.7717/peerj-cs.2296/ref-55) 2021; 11 Saranya (10.7717/peerj-cs.2296/ref-102) 2022; 100 Blei (10.7717/peerj-cs.2296/ref-16) 2003; 3 Whiting (10.7717/peerj-cs.2296/ref-129) 2021; 8 Almars (10.7717/peerj-cs.2296/ref-6) 2022; 71 Cullen (10.7717/peerj-cs.2296/ref-27) 2020; 113 Fudholi (10.7717/peerj-cs.2296/ref-38) 2024; 9 Govindasamy (10.7717/peerj-cs.2296/ref-45) 2021 Horecki (10.7717/peerj-cs.2296/ref-50) 2015 Sajid (10.7717/peerj-cs.2296/ref-99) 2023; 86 Mikolov (10.7717/peerj-cs.2296/ref-76) 2013 Tommasel (10.7717/peerj-cs.2296/ref-121) 2021 Gorai (10.7717/peerj-cs.2296/ref-44) 2024; 36 Chen (10.7717/peerj-cs.2296/ref-22) 2023; 55 Tausczik (10.7717/peerj-cs.2296/ref-119) 2010; 29 Bae (10.7717/peerj-cs.2296/ref-11) 2021; 21 Kancharapu (10.7717/peerj-cs.2296/ref-58) 2023; 11 Dao (10.7717/peerj-cs.2296/ref-29) 2017; 4 Samanvitha (10.7717/peerj-cs.2296/ref-101) 2021 Simms (10.7717/peerj-cs.2296/ref-113) 2017 Hewamalage (10.7717/peerj-cs.2296/ref-49) 2021; 37 Naslund (10.7717/peerj-cs.2296/ref-78) 2020; 5 Ramírez-Cifuentes (10.7717/peerj-cs.2296/ref-89) 2018 Blanchflower (10.7717/peerj-cs.2296/ref-15) 2022; 17 Hussain (10.7717/peerj-cs.2296/ref-52) 2020; 11 Zhang (10.7717/peerj-cs.2296/ref-133) 2010; 1 Yazdavar (10.7717/peerj-cs.2296/ref-132) 2017 Shah (10.7717/peerj-cs.2296/ref-106) 2020 Salman (10.7717/peerj-cs.2296/ref-100) 2018; 135 Deshpande (10.7717/peerj-cs.2296/ref-33) 2017 Kanahuati-Ceballos (10.7717/peerj-cs.2296/ref-57) 2024; 14 Saritas (10.7717/peerj-cs.2296/ref-104) 2019; 7 Yang (10.7717/peerj-cs.2296/ref-131) 2016 Shah (10.7717/peerj-cs.2296/ref-109) 2020; 15 Wang (10.7717/peerj-cs.2296/ref-126) 2017 Baghdadi (10.7717/peerj-cs.2296/ref-12) 2022; 8 Su (10.7717/peerj-cs.2296/ref-117) 2020; 10 Singh (10.7717/peerj-cs.2296/ref-114) 2020 Chancellor (10.7717/peerj-cs.2296/ref-21) 2020; 3 Khan (10.7717/peerj-cs.2296/ref-61) 2021 Tong (10.7717/peerj-cs.2296/ref-122) 2022; 14 Kanwal (10.7717/peerj-cs.2296/ref-59) 2019; 19 Krichen (10.7717/peerj-cs.2296/ref-67) 2023; 12 Özçelik (10.7717/peerj-cs.2296/ref-83) 2023 Paykel (10.7717/peerj-cs.2296/ref-85) 2022; 10 Pennington (10.7717/peerj-cs.2296/ref-87) 2014 Wani (10.7717/peerj-cs.2296/ref-128) 2022; 10 Cong (10.7717/peerj-cs.2296/ref-25) 2018 Vasha (10.7717/peerj-cs.2296/ref-124) 2023; 12 De Castro (10.7717/peerj-cs.2296/ref-31) 2023; 72 Mohamed (10.7717/peerj-cs.2296/ref-77) 2023; 3 Du (10.7717/peerj-cs.2296/ref-34) 2019 Kieling (10.7717/peerj-cs.2296/ref-64) 2024; 81 Lin (10.7717/peerj-cs.2296/ref-74) 2017; 29 Rezk (10.7717/peerj-cs.2296/ref-92) 2020; 8 Agarwal (10.7717/peerj-cs.2296/ref-1) 2023; 83 Alqazzaz (10.7717/peerj-cs.2296/ref-7) 2023; 46 Choudhary (10.7717/peerj-cs.2296/ref-24) 2024 Ghosh (10.7717/peerj-cs.2296/ref-41) 2022; 14 Li (10.7717/peerj-cs.2296/ref-73) 2019; 99 Fatima (10.7717/peerj-cs.2296/ref-35) 2018; 44 De Choudhury (10.7717/peerj-cs.2296/ref-32) 2013 Coppersmith (10.7717/peerj-cs.2296/ref-26) 2015 Shen (10.7717/peerj-cs.2296/ref-112) 2017 Resnik (10.7717/peerj-cs.2296/ref-91) 2015 Cavnar (10.7717/peerj-cs.2296/ref-20) 1994 Dalal (10.7717/peerj-cs.2296/ref-28) 2023 Oliveira (10.7717/peerj-cs.2296/ref-80) 2024 Shah (10.7717/peerj-cs.2296/ref-108) 2022; 142 Selva Birunda (10.7717/peerj-cs.2296/ref-105) 2021 Ridley (10.7717/peerj-cs.2296/ref-94) 2020; 370 Albalawi (10.7717/peerj-cs.2296/ref-5) 2020; 3 Tang (10.7717/peerj-cs.2296/ref-118) 2015; 27 Khoo (10.7717/peerj-cs.2296/ref-62) 2024; 24 Pedersen (10.7717/peerj-cs.2296/ref-86) 2019; 28 Tsugawa (10.7717/peerj-cs.2296/ref-123) 2015 Apoorva (10.7717/peerj-cs.2296/ref-10) 2022 Giuntini (10.7717/peerj-cs.2296/ref-42) 2020; 11 Ameer (10.7717/peerj-cs.2296/ref-9) 2022 World Health Organization (10.7717/peerj-cs.2296/ref-130) 2019 Zogan (10.7717/peerj-cs.2296/ref-136) 2022; 25 Baldessarini (10.7717/peerj-cs.2296/ref-13) 2020; 8 Go (10.7717/peerj-cs.2296/ref-43) 2009 Bouarara (10.7717/peerj-cs.2296/ref-18) 2021; 13 Saravia (10.7717/peerj-cs.2296/ref-103) 2016 Kim (10.7717/peerj-cs.2296/ref-65) 2020; 10 |
References_xml | – start-page: 960 year: 2021 ident: 10.7717/peerj-cs.2296/ref-45 article-title: Depression detection using machine learning techniques on twitter data contributor: fullname: Govindasamy – volume: 3 start-page: 43 issue: 1 year: 2020 ident: 10.7717/peerj-cs.2296/ref-21 article-title: Methods in predictive techniques for mental health status on social media: a critical review publication-title: NPJ Digital Medicine doi: 10.1038/s41746-020-0233-7 contributor: fullname: Chancellor – start-page: 344 year: 2020 ident: 10.7717/peerj-cs.2296/ref-134 article-title: Multimodal deep learning framework for mental disorder recognition contributor: fullname: Zhang – volume: 11 start-page: 285 issue: 3 year: 2023 ident: 10.7717/peerj-cs.2296/ref-53 article-title: A review of machine learning and deep learning approaches on mental health diagnosis publication-title: Healthcare doi: 10.3390/healthcare11030285 contributor: fullname: Iyortsuun – volume: 14 start-page: 663 year: 2024 ident: 10.7717/peerj-cs.2296/ref-111 article-title: A deep learning approach for diagnosis of schizophrenia disorder via data augmentation based on convolutional neural network and long short-term memory publication-title: Biomedical Engineering Letters doi: 10.1007/s13534-024-00360-9 contributor: fullname: Shams – volume: 44 start-page: 683 issue: 5 year: 2018 ident: 10.7717/peerj-cs.2296/ref-35 article-title: Analysis of user-generated content from online social communities to characterise and predict depression degree publication-title: Journal of Information Science doi: 10.1177/0165551517740835 contributor: fullname: Fatima – volume: 10 start-page: 116 issue: 1 year: 2020 ident: 10.7717/peerj-cs.2296/ref-117 article-title: Deep learning in mental health outcome research: a scoping review publication-title: Translational Psychiatry doi: 10.1038/s41398-020-0780-3 contributor: fullname: Su – volume: 37 start-page: 388 issue: 1 year: 2021 ident: 10.7717/peerj-cs.2296/ref-49 article-title: Recurrent neural networks for time series forecasting: current status and future directions publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2020.06.008 contributor: fullname: Hewamalage – start-page: 305 year: 2022 ident: 10.7717/peerj-cs.2296/ref-10 article-title: Depression detection on Twitter using RNN and LSTM models doi: 10.1007/978-3-031-28183-9_22 contributor: fullname: Apoorva – volume: 56 start-page: 25 year: 2021 ident: 10.7717/peerj-cs.2296/ref-23 article-title: Multimodal depression detection on instagram considering time interval of posts publication-title: Journal of Intelligent Information Systems doi: 10.1007/s10844-020-00599-5 contributor: fullname: Chiu – start-page: 17 year: 2020 ident: 10.7717/peerj-cs.2296/ref-125 article-title: Deep learning for mental illness detection using brain SPECT imaging doi: 10.1007/978-981-15-5199-4_3 contributor: fullname: Vázquez-Abad – volume: 92 start-page: 231 year: 2023 ident: 10.7717/peerj-cs.2296/ref-135 article-title: Emotion fusion for mental illness detection from social media: a survey publication-title: Information Fusion doi: 10.1016/j.inffus.2022.11.031 contributor: fullname: Zhang – volume: 24 start-page: 348 issue: 2 year: 2024 ident: 10.7717/peerj-cs.2296/ref-62 article-title: Machine learning for multimodal mental health detection: a systematic review of passive sensing approaches publication-title: Sensors doi: 10.3390/s24020348 contributor: fullname: Khoo – volume: 370 start-page: eaay0214 issue: 6522 year: 2020 ident: 10.7717/peerj-cs.2296/ref-94 article-title: Poverty, depression, and anxiety: causal evidence and mechanisms publication-title: Science doi: 10.1126/science.aay0214 contributor: fullname: Ridley – volume: 78 start-page: 4709 issue: 4 year: 2022 ident: 10.7717/peerj-cs.2296/ref-97 article-title: Automatic detection of depression symptoms in twitter using multimodal analysis publication-title: The Journal of Supercomputing doi: 10.1007/s11227-021-04040-8 contributor: fullname: Safa – volume: 17 start-page: e0269855 issue: 7 year: 2022 ident: 10.7717/peerj-cs.2296/ref-15 article-title: Covid and mental health in America publication-title: PLOS ONE doi: 10.1371/journal.pone.0269855 contributor: fullname: Blanchflower – volume: 4 start-page: 209 year: 2017 ident: 10.7717/peerj-cs.2296/ref-29 article-title: Latent sentiment topic modelling and nonparametric discovery of online mental health-related communities publication-title: International Journal of Data Science and Analytics doi: 10.1007/s41060-017-0073-y contributor: fullname: Dao – volume: 142 start-page: 105221 year: 2022 ident: 10.7717/peerj-cs.2296/ref-108 article-title: Artificial intelligence for breast cancer analysis: trends & directions publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2022.105221 contributor: fullname: Shah – volume: 71 start-page: 3091 issue: 2 year: 2022 ident: 10.7717/peerj-cs.2296/ref-6 article-title: Attention-based Bi-LSTM model for arabic depression classification publication-title: Computers, Materials & Continua doi: 10.32604/cmc.2022.022609 contributor: fullname: Almars – start-page: 41 volume-title: Emotional AI and human-AI interactions in social networking year: 2024 ident: 10.7717/peerj-cs.2296/ref-24 article-title: Detection of social mental disorder using convolution neural network doi: 10.1016/B978-0-443-19096-4.00012-2 contributor: fullname: Choudhary – volume: 4 start-page: 358 issue: 4 year: 2017 ident: 10.7717/peerj-cs.2296/ref-110 article-title: A pashtu speakers database using accent and dialect approach publication-title: International Journal of Applied Pattern Recognition doi: 10.1504/IJAPR.2017.089398 contributor: fullname: Shah – start-page: 1532 year: 2014 ident: 10.7717/peerj-cs.2296/ref-87 article-title: Glove: global vectors for word representation contributor: fullname: Pennington – year: 2019 ident: 10.7717/peerj-cs.2296/ref-68 article-title: Anxious depression prediction in real-time social data doi: 10.2139/ssrn.3383359 contributor: fullname: Kumar – volume: 10 start-page: 1 year: 2020 ident: 10.7717/peerj-cs.2296/ref-65 article-title: A deep learning model for detecting mental illness from user content on social media publication-title: Scientific Reports doi: 10.1038/s41598-019-56847-4 contributor: fullname: Kim – volume: 27 start-page: 809 issue: 4 year: 2015 ident: 10.7717/peerj-cs.2296/ref-118 article-title: Extreme learning machine for multilayer perceptron publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2015.2424995 contributor: fullname: Tang – volume: 5 start-page: 245 year: 2020 ident: 10.7717/peerj-cs.2296/ref-78 article-title: Social media and mental health: benefits, risks, and opportunities for research and practice publication-title: Journal of Technology in Behavioral Science doi: 10.1007/s41347-020-00134-x contributor: fullname: Naslund – start-page: 99 year: 2015 ident: 10.7717/peerj-cs.2296/ref-91 article-title: Beyond LDA: exploring supervised topic modeling for depression-related language in Twitter contributor: fullname: Resnik – volume: 8 start-page: 57967 year: 2020 ident: 10.7717/peerj-cs.2296/ref-92 article-title: Recurrent neural networks: an embedded computing perspective publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982416 contributor: fullname: Rezk – volume: 25 start-page: 281 issue: 1 year: 2022 ident: 10.7717/peerj-cs.2296/ref-136 article-title: Explainable depression detection with multi-aspect features using a hybrid deep learning model on social media publication-title: World Wide Web doi: 10.1007/s11280-021-00992-2 contributor: fullname: Zogan – volume: 3 start-page: 100185 year: 2023 ident: 10.7717/peerj-cs.2296/ref-77 article-title: A hybrid mental health prediction model using support vector machine, multilayer perceptron, and random forest algorithms publication-title: Healthcare Analytics doi: 10.1016/j.health.2023.100185 contributor: fullname: Mohamed – start-page: 31 year: 2015 ident: 10.7717/peerj-cs.2296/ref-26 article-title: CLPsych 2015 shared task: depression and PTSD on Twitter contributor: fullname: Coppersmith – volume: 24 start-page: 1565 issue: 12 year: 2006 ident: 10.7717/peerj-cs.2296/ref-79 article-title: What is a support vector machine? publication-title: Nature Biotechnology doi: 10.1038/nbt1206-1565 contributor: fullname: Noble – start-page: 1191 year: 2017 ident: 10.7717/peerj-cs.2296/ref-132 article-title: Semi-supervised approach to monitoring clinical depressive symptoms in social media contributor: fullname: Yazdavar – start-page: 1 year: 2023 ident: 10.7717/peerj-cs.2296/ref-83 article-title: A comparative analysis of artificial intelligence optimization algorithms for the selection of entropy-based features in the early detection of epileptic seizures contributor: fullname: Özçelik – volume: 14 start-page: 44 year: 2024 ident: 10.7717/peerj-cs.2296/ref-57 article-title: Detection of depressive comments on social media using RNN, LSTM, and random forest: comparison and optimization publication-title: Social Network Analysis and Mining doi: 10.1007/s13278-024-01206-z contributor: fullname: Kanahuati-Ceballos – volume: 5 start-page: 124 issue: 3 year: 2018 ident: 10.7717/peerj-cs.2296/ref-60 article-title: Recurrent neural network and its various architecture types publication-title: International Journal of Research and Scientific Innovation contributor: fullname: Katte – volume: 86 start-page: 105353 year: 2023 ident: 10.7717/peerj-cs.2296/ref-99 article-title: Breast cancer classification using deep learned features boosted with handcrafted features publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2023.105353 contributor: fullname: Sajid – start-page: 823 year: 2020 ident: 10.7717/peerj-cs.2296/ref-106 article-title: Early depression detection from social network using deep learning techniques contributor: fullname: Shah – year: 2006 ident: 10.7717/peerj-cs.2296/ref-127 article-title: N-gram and LSTM based language models contributor: fullname: Wang – start-page: 91 year: 2017 ident: 10.7717/peerj-cs.2296/ref-126 article-title: Detecting and characterizing eating-disorder communities on social media contributor: fullname: Wang – year: 1994 ident: 10.7717/peerj-cs.2296/ref-20 article-title: N-gram-based text categorization contributor: fullname: Cavnar – volume: 8 start-page: 150 issue: 2 year: 2021 ident: 10.7717/peerj-cs.2296/ref-129 article-title: Violence and mental disorders: a structured review of associations by individual diagnoses, risk factors, and risk assessment publication-title: The Lancet Psychiatry doi: 10.1016/S2215-0366(20)30262-5 contributor: fullname: Whiting – volume: 46 start-page: 551 issue: 1 year: 2023 ident: 10.7717/peerj-cs.2296/ref-7 article-title: A deep learning model to analyse social-cyber psychological problems in youth publication-title: Computer Systems Science and Engineering doi: 10.32604/csse.2023.031048 contributor: fullname: Alqazzaz – volume: 21 start-page: 5924 issue: 17 year: 2021 ident: 10.7717/peerj-cs.2296/ref-11 article-title: Schizophrenia detection using machine learning approach from social media content publication-title: Sensors doi: 10.3390/s21175924 contributor: fullname: Bae – start-page: 128 year: 2013 ident: 10.7717/peerj-cs.2296/ref-32 article-title: Predicting depression via social media contributor: fullname: De Choudhury – volume: 12 start-page: 151 issue: 8 year: 2023 ident: 10.7717/peerj-cs.2296/ref-67 article-title: Convolutional neural networks: a survey publication-title: Computers doi: 10.3390/computers12080151 contributor: fullname: Krichen – start-page: 1418 year: 2016 ident: 10.7717/peerj-cs.2296/ref-103 article-title: MIDAS: mental illness detection and analysis via social media contributor: fullname: Saravia – year: 2021 ident: 10.7717/peerj-cs.2296/ref-107 article-title: Artificial intelligence for breast cancer detection: trends & directions contributor: fullname: Shah – volume: 11 start-page: 676 issue: 5 year: 2022 ident: 10.7717/peerj-cs.2296/ref-8 article-title: Deep learning for depression detection from textual data publication-title: Electronics doi: 10.3390/electronics11050676 contributor: fullname: Amanat – start-page: 58 year: 2018 ident: 10.7717/peerj-cs.2296/ref-70 article-title: An experimental comparison of text classification techniques contributor: fullname: Lakhotia – volume: 11 start-page: 77009 year: 2023 ident: 10.7717/peerj-cs.2296/ref-14 article-title: A hybrid deep learning model to predict the impact of COVID-19 on mental health from social media big data publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3293857 contributor: fullname: Banna – start-page: 508 year: 2017 ident: 10.7717/peerj-cs.2296/ref-113 article-title: Detecting cognitive distortions through machine learning text analytics contributor: fullname: Simms – start-page: 858 year: 2017 ident: 10.7717/peerj-cs.2296/ref-33 article-title: Depression detection using emotion artificial intelligence contributor: fullname: Deshpande – year: 2006 ident: 10.7717/peerj-cs.2296/ref-54 article-title: Tutorial on support vector machine (SVM) contributor: fullname: Jakkula – volume: 15 start-page: 2190 issue: 4 year: 2020 ident: 10.7717/peerj-cs.2296/ref-109 article-title: Speaker recognition for pashto speakers based on isolated digits recognition using accent and dialect approach publication-title: Journal of Engineering Science and Technology (JESTEC) contributor: fullname: Shah – volume: 53 start-page: 129 issue: 6 year: 2020 ident: 10.7717/peerj-cs.2296/ref-115 article-title: Using social media for mental health surveillance: a review publication-title: ACM Computing Surveys (CSUR) doi: 10.1145/3422824 contributor: fullname: Skaik – start-page: 703 year: 2021 ident: 10.7717/peerj-cs.2296/ref-61 article-title: Comparing ANN and SVM algorithms for predicting exercise routines of diabetic patients contributor: fullname: Khan – start-page: 267 year: 2021 ident: 10.7717/peerj-cs.2296/ref-105 article-title: A review on word embedding techniques for text classification contributor: fullname: Selva Birunda – start-page: 484 year: 2020 ident: 10.7717/peerj-cs.2296/ref-114 article-title: A framework for early detection of antisocial behavior on Twitter using natural language processing doi: 10.1007/978-3-030-22354-0_43 contributor: fullname: Singh – start-page: 1624 year: 2018 ident: 10.7717/peerj-cs.2296/ref-25 article-title: XA-BiLSTM: a deep learning approach for depression detection in imbalanced data contributor: fullname: Cong – volume: 11 start-page: 489 issue: 3 year: 2023 ident: 10.7717/peerj-cs.2296/ref-58 article-title: Unveiling the role of social media in mental health: a GAN-based deep learning framework for suicide prevention publication-title: International Journal of Intelligent Systems and Applications in Engineering contributor: fullname: Kancharapu – volume: 30 start-page: 102 issue: 2–3 year: 2021 ident: 10.7717/peerj-cs.2296/ref-4 article-title: Prediction of depressed Arab women using their tweets publication-title: Journal of Decision Systems doi: 10.1080/12460125.2020.1859745 contributor: fullname: Alabdulkreem – volume: 5 start-page: 135 year: 2017 ident: 10.7717/peerj-cs.2296/ref-17 article-title: Enriching word vectors with subword information publication-title: Transactions of the Association for Computational Linguistics doi: 10.1162/tacl_a_00051 contributor: fullname: Bojanowski – volume: 24 start-page: 87 issue: 2020 year: 2022 ident: 10.7717/peerj-cs.2296/ref-19 article-title: Building and using personal knowledge graph to improve suicidal ideation detection on social media publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2020.3046867 contributor: fullname: Cao – volume: 2 start-page: 17 issue: 2 year: 2021 ident: 10.7717/peerj-cs.2296/ref-95 article-title: A survey of computational methods for online mental state assessment on social media publication-title: ACM Transactions on Computing for Healthcare doi: 10.1145/3437259 contributor: fullname: Ríssola – start-page: 54 year: 2019 ident: 10.7717/peerj-cs.2296/ref-39 article-title: Multi-task, multi-channel, multi-input learning for mental illness detection using social media text contributor: fullname: Gamaarachchige – volume: 55 start-page: 1145 year: 2020 ident: 10.7717/peerj-cs.2296/ref-36 article-title: Mental disorders and risk of suicide attempt in prisoners publication-title: Social Psychiatry and Psychiatric Epidemiology doi: 10.1007/s00127-020-01851-7 contributor: fullname: Favril – start-page: 466 year: 2020 ident: 10.7717/peerj-cs.2296/ref-69 article-title: Stopword identification and removal techniques on tc and ir applications: a survey contributor: fullname: Ladani – volume: 19 start-page: 1 issue: 8 year: 2019 ident: 10.7717/peerj-cs.2296/ref-59 article-title: Urdu named entity recognition: corpus generation and deep learning applications publication-title: ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) doi: 10.1145/3329710 contributor: fullname: Kanwal – volume: 100 start-page: 3337 issue: 10 year: 2022 ident: 10.7717/peerj-cs.2296/ref-102 article-title: Robust feature selection with chicken swarm intelligence improved multilayer perceptron for early detection of mental illness disorder publication-title: Journal of Theoretical and Applied Information Technology contributor: fullname: Saranya – volume: 10 start-page: 2074 issue: 4 year: 2022 ident: 10.7717/peerj-cs.2296/ref-128 article-title: Depression screening in humans with AI and deep learning techniques publication-title: IEEE Transactions on Computational Social Systems doi: 10.1109/TCSS.2022.3200213 contributor: fullname: Wani – volume: 12 start-page: 987 issue: 2 year: 2023 ident: 10.7717/peerj-cs.2296/ref-124 article-title: Depression detection in social media comments data using machine learning algorithms publication-title: Bulletin of Electrical Engineering and Informatics doi: 10.11591/eei.v12i2.4182 contributor: fullname: Vasha – volume: 17 start-page: 1 issue: 3 year: 2023 ident: 10.7717/peerj-cs.2296/ref-2 article-title: Graph attention network for text classification and detection of mental disorder publication-title: ACM Transactions on the Web doi: 10.1145/3572406 contributor: fullname: Ahmed – volume: 8 start-page: e1070 year: 2022 ident: 10.7717/peerj-cs.2296/ref-12 article-title: An optimized deep learning approach for suicide detection through Arabic tweets publication-title: PeerJ Computer Science doi: 10.7717/peerj-cs.1070 contributor: fullname: Baghdadi – volume: 40 start-page: e12933 issue: 4 year: 2023 ident: 10.7717/peerj-cs.2296/ref-75 article-title: Diagnosis of depression level using multimodal approaches using deep learning techniques with multiple selective features publication-title: Expert Systems doi: 10.1111/exsy.12933 contributor: fullname: Meshram – volume: 29 start-page: 24 issue: 1 year: 2010 ident: 10.7717/peerj-cs.2296/ref-119 article-title: The psychological meaning of words: LIWC and computerized text analysis methods publication-title: Journal of Language and Social Psychology doi: 10.1177/0261927X09351676 contributor: fullname: Tausczik – year: 2022 ident: 10.7717/peerj-cs.2296/ref-9 article-title: Mental illness classification on social media texts using deep learning and transfer learning contributor: fullname: Ameer – start-page: 191 year: 2021 ident: 10.7717/peerj-cs.2296/ref-66 article-title: Predicting the mental state of the social network users based on the latent dirichlet allocation and fasttext contributor: fullname: Kotenko – volume: 14 start-page: 110 issue: 1 year: 2022 ident: 10.7717/peerj-cs.2296/ref-41 article-title: A multitask framework to detect depression, sentiment and multi-label emotion from suicide notes publication-title: Cognitive Computation doi: 10.1007/s12559-021-09828-7 contributor: fullname: Ghosh – volume: 29 start-page: 1820 issue: 9 year: 2017 ident: 10.7717/peerj-cs.2296/ref-74 article-title: Detecting stress based on social interactions in social networks publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2017.2686382 contributor: fullname: Lin – volume: 23 start-page: 4 issue: 1 year: 2024 ident: 10.7717/peerj-cs.2296/ref-120 article-title: Depression detection from social media text analysis using natural language processing techniques and hybrid deep learning model publication-title: ACM Transactions on Asian and Low-Resource Language Information Processing doi: 10.1145/3569580 contributor: fullname: Tejaswini – volume: 11 start-page: 2020 issue: 12 year: 2020 ident: 10.7717/peerj-cs.2296/ref-52 article-title: Predicting mental illness using social media posts and comments publication-title: International Journal of Advanced Computer Science and Applications doi: 10.14569/IJACSA.2020.0111271 contributor: fullname: Hussain – volume: 34 start-page: 10309 issue: 13 year: 2022 ident: 10.7717/peerj-cs.2296/ref-56 article-title: Suicidal ideation and mental disorder detection with attentive relation networks publication-title: Neural Computing and Applications doi: 10.1007/s00521-021-06208-y contributor: fullname: Ji – volume: 9 start-page: 130449 year: 2021 ident: 10.7717/peerj-cs.2296/ref-88 article-title: Enhanced word embedding variations for the detection of substance abuse and mental health issues on social media writings publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3112102 contributor: fullname: Ramírez-Cifuentes – volume: 8 start-page: 1 year: 2020 ident: 10.7717/peerj-cs.2296/ref-13 article-title: Bipolar depression: a major unsolved challenge publication-title: International Journal of Bipolar Disorders doi: 10.1186/s40345-019-0160-1 contributor: fullname: Baldessarini – start-page: 393 year: 2023 ident: 10.7717/peerj-cs.2296/ref-28 article-title: Early depression detection using textual cues from social data: a research agenda contributor: fullname: Dalal – volume: 3 start-page: 42 year: 2020 ident: 10.7717/peerj-cs.2296/ref-5 article-title: Using topic modeling methods for short-text data: a comparative analysis publication-title: Frontiers in Artificial Intelligence doi: 10.3389/frai.2020.00042 contributor: fullname: Albalawi – start-page: 418 year: 2021 ident: 10.7717/peerj-cs.2296/ref-101 article-title: Naïve Bayes classifier for depression detection using text data contributor: fullname: Samanvitha – volume: 72 start-page: S79 issue: 1 year: 2023 ident: 10.7717/peerj-cs.2296/ref-31 article-title: Anxiety and depression signs among adolescents in 26 low-and middle-income countries: prevalence and association with functional difficulties publication-title: Journal of Adolescent Health doi: 10.1016/j.jadohealth.2022.03.022 contributor: fullname: De Castro – year: 2015 ident: 10.7717/peerj-cs.2296/ref-81 article-title: An introduction to convolutional neural networks contributor: fullname: O’Shea – volume: 83 start-page: 53923 issue: 18 year: 2023 ident: 10.7717/peerj-cs.2296/ref-1 article-title: Stacked ensemble model for analyzing mental health disorder from social media data publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-023-17395-2 contributor: fullname: Agarwal – year: 2023 ident: 10.7717/peerj-cs.2296/ref-98 article-title: Predicting mental health using social media: a roadmap for future development doi: 10.1016/B978-0-443-19413-9.00014-X contributor: fullname: Safa – volume: 11 start-page: 4713 year: 2020 ident: 10.7717/peerj-cs.2296/ref-42 article-title: A review on recognizing depression in social networks: challenges and opportunities publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-020-01726-4 contributor: fullname: Giuntini – volume: Vol. 463 year: 1999 ident: 10.7717/peerj-cs.2296/ref-93 article-title: Modern information retrieval contributor: fullname: Ricardo Baeza-Yates – start-page: 89 year: 2016 ident: 10.7717/peerj-cs.2296/ref-131 article-title: Decision tree based depression classification from audio video and language information contributor: fullname: Yang – volume: 54 start-page: 1 issue: 1 year: 2013 ident: 10.7717/peerj-cs.2296/ref-116 article-title: The diagnosis of depression: current and emerging methods publication-title: Comprehensive Psychiatry doi: 10.1016/j.comppsych.2012.06.006 contributor: fullname: Smith – start-page: 1 year: 2020 ident: 10.7717/peerj-cs.2296/ref-40 article-title: Early detection of depression from social media data using machine learning algorithms contributor: fullname: Geetha – start-page: 509 year: 2024 ident: 10.7717/peerj-cs.2296/ref-80 article-title: A Bag-of-Users approach to mental health prediction from social media data contributor: fullname: Oliveira – volume: 7 start-page: 88 issue: 2 year: 2019 ident: 10.7717/peerj-cs.2296/ref-104 article-title: Performance analysis of ANN and Naive Bayes classification algorithm for data classification publication-title: International Journal of Intelligent Systems and Applications in Engineering doi: 10.18201/ijisae.2019252786 contributor: fullname: Saritas – volume: 14 start-page: 1898 issue: 3 year: 2022 ident: 10.7717/peerj-cs.2296/ref-122 article-title: Cost-sensitive boosting pruning trees for depression detection on Twitter publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2022.3145634 contributor: fullname: Tong – volume: 21 start-page: 1 year: 2019 ident: 10.7717/peerj-cs.2296/ref-46 article-title: Artificial intelligence for mental health and mental illnesses: an overview publication-title: Current Psychiatry Reports doi: 10.1007/s11920-019-0988-1 contributor: fullname: Graham – start-page: 37 volume-title: Supervised sequence labelling with recurrent neural networks. Studies in computational intelligence, vol. 385 year: 2012 ident: 10.7717/peerj-cs.2296/ref-47 article-title: Long short-term memory doi: 10.1007/978-3-642-24797-2_4 contributor: fullname: Graves – volume: 11 start-page: 199 issue: 3 year: 2021 ident: 10.7717/peerj-cs.2296/ref-55 article-title: Predicting risk of antenatal depression and anxiety using multi-layer perceptrons and support vector machines publication-title: Journal of Personalized Medicine doi: 10.3390/jpm11030199 contributor: fullname: Javed – volume: 22 start-page: 350 issue: 10 year: 2021 ident: 10.7717/peerj-cs.2296/ref-63 article-title: An interpretation of lemmatization and stemming in natural language processing publication-title: Journal of University of Shanghai for Science and Technology contributor: fullname: Khyani – volume: 55 start-page: 8755 year: 2023 ident: 10.7717/peerj-cs.2296/ref-22 article-title: Improved recurrent neural networks for text classification and dynamic Sylvester equation solving publication-title: Neural Processing Letters doi: 10.1007/s11063-023-11176-6 contributor: fullname: Chen – volume: 99 start-page: 101696 year: 2019 ident: 10.7717/peerj-cs.2296/ref-73 article-title: Depression recognition using machine learning methods with different feature generation strategies publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2019.07.004 contributor: fullname: Li – year: 2013 ident: 10.7717/peerj-cs.2296/ref-76 article-title: Efficient estimation of word representations in vector space contributor: fullname: Mikolov – start-page: 3187 year: 2015 ident: 10.7717/peerj-cs.2296/ref-123 article-title: Recognizing depression from twitter activity contributor: fullname: Tsugawa – volume: 28 start-page: 2036 year: 2019 ident: 10.7717/peerj-cs.2296/ref-86 article-title: A systematic review of the evidence for family and parenting interventions in low-and middle-income countries: child and youth mental health outcomes publication-title: Journal of Child and Family Studies doi: 10.1007/s10826-019-01399-4 contributor: fullname: Pedersen – volume: 1 start-page: 43 year: 2010 ident: 10.7717/peerj-cs.2296/ref-133 article-title: Understanding bag-of-words model: a statistical framework publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-010-0001-0 contributor: fullname: Zhang – volume: 135 start-page: 89 year: 2018 ident: 10.7717/peerj-cs.2296/ref-100 article-title: Single layer & multi-layer long short-term memory (LSTM) model with intermediate variables for weather forecasting publication-title: Procedia Computer Science doi: 10.1016/j.procs.2018.08.153 contributor: fullname: Salman – volume: 36 start-page: 112 year: 2020 ident: 10.7717/peerj-cs.2296/ref-30 article-title: AI in mental health publication-title: Current Opinion in Psychology doi: 10.1016/j.copsyc.2020.04.005 contributor: fullname: D’Alfonso – start-page: 54 year: 2019 ident: 10.7717/peerj-cs.2296/ref-34 article-title: An operational deep learning pipeline for classifying life events from individual tweets contributor: fullname: Du – volume: 13 start-page: 1 issue: 3 year: 2021 ident: 10.7717/peerj-cs.2296/ref-18 article-title: Recurrent neural network (RNN) to analyse mental behaviour in social media publication-title: International Journal of Software Science and Computational Intelligence (IJSSCI) doi: 10.4018/IJSSCI.2021070101 contributor: fullname: Bouarara – volume: 18 start-page: 1 issue: 2 year: 2018 ident: 10.7717/peerj-cs.2296/ref-3 article-title: Improving word embedding coverage in less-resourced languages through multi-linguality and cross-linguality: a case study with aspect-based sentiment analysis publication-title: ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) contributor: fullname: Akhtar – year: 2019 ident: 10.7717/peerj-cs.2296/ref-90 article-title: Early detection of anorexia using RNN-LSTM and SVM classifiers contributor: fullname: Ranganathan – volume: 14 start-page: 3569 issue: 6 year: 2022 ident: 10.7717/peerj-cs.2296/ref-84 article-title: Design and implementation of attention depression detection model based on multimodal analysis publication-title: Sustainability doi: 10.3390/su14063569 contributor: fullname: Park – volume: 36 start-page: 10955 year: 2024 ident: 10.7717/peerj-cs.2296/ref-44 article-title: A BERT-encoded ensembled CNN model for suicide risk identification in social media posts publication-title: Neural Computing and Applications doi: 10.1007/s00521-024-09642-w contributor: fullname: Gorai – year: 2014 ident: 10.7717/peerj-cs.2296/ref-96 article-title: word2vec parameter learning explained contributor: fullname: Rong – volume: 113 start-page: 311 issue: 5 year: 2020 ident: 10.7717/peerj-cs.2296/ref-27 article-title: Mental health in the COVID-19 pandemic publication-title: QJM: An International Journal of Medicine doi: 10.1093/qjmed/hcaa110 contributor: fullname: Cullen – volume: 81 start-page: 347 issue: 4 year: 2024 ident: 10.7717/peerj-cs.2296/ref-64 article-title: Worldwide prevalence and disability from mental disorders across childhood and adolescence: evidence from the global burden of disease study publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2023.5051 contributor: fullname: Kieling – volume: 3 start-page: 993 issue: Jan year: 2003 ident: 10.7717/peerj-cs.2296/ref-16 article-title: Latent dirichlet allocation publication-title: Journal of Machine Learning Research contributor: fullname: Blei – volume: 10 start-page: 279 issue: 3 year: 2022 ident: 10.7717/peerj-cs.2296/ref-85 article-title: Basic concepts of depression publication-title: Dialogues in Clinical Neuroscience doi: 10.31887/DCNS.2008.10.3/espaykel contributor: fullname: Paykel – start-page: 3838 year: 2017 ident: 10.7717/peerj-cs.2296/ref-112 article-title: Depression detection via harvesting social media: a multimodal dictionary learning solution contributor: fullname: Shen – year: 2015 ident: 10.7717/peerj-cs.2296/ref-50 article-title: Natural language processing methods used for automatic prediction mechanism of related phenomenon doi: 10.1007/978-3-319-19369-4_2 contributor: fullname: Horecki – year: 2019 ident: 10.7717/peerj-cs.2296/ref-130 article-title: About mental disorders publication-title: Technical report contributor: fullname: World Health Organization – start-page: 3 year: 2018 ident: 10.7717/peerj-cs.2296/ref-89 article-title: Early risk detection of anorexia on social media doi: 10.1007/978-3-030-01437-7_1 contributor: fullname: Ramírez-Cifuentes – volume: 92 start-page: 466 year: 2023 ident: 10.7717/peerj-cs.2296/ref-48 article-title: Fusion of multivariate EEG signals for schizophrenia detection using CNN and machine learning techniques publication-title: Information Fusion doi: 10.1016/j.inffus.2022.12.019 contributor: fullname: Hassan – volume: 31 start-page: 100225 year: 2022 ident: 10.7717/peerj-cs.2296/ref-37 article-title: Early depression detection in social media based on deep learning and underlying emotions publication-title: Online Social Networks and Media doi: 10.1016/j.osnem.2022.100225 contributor: fullname: Figuerêdo – year: 2009 ident: 10.7717/peerj-cs.2296/ref-43 article-title: Twitter sentiment classification using distant supervision publication-title: CS224N Project Report, Stanford contributor: fullname: Go – volume: 33 start-page: 6999 issue: 12 year: 2021 ident: 10.7717/peerj-cs.2296/ref-72 article-title: A survey of convolutional neural networks: analysis, applications, and prospects publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2021.3084827 contributor: fullname: Li – volume: 14 start-page: 1 year: 2020 ident: 10.7717/peerj-cs.2296/ref-82 article-title: Mental health and psychosocial well-being during the COVID-19 pandemic: the invisible elephant in the room publication-title: International Journal of Mental Health Systems doi: 10.1186/s13033-020-00371-w contributor: fullname: Otu – year: 2021 ident: 10.7717/peerj-cs.2296/ref-121 article-title: Capturing social media expressions during the COVID-19 pandemic in Argentina and forecasting mental health and emotions contributor: fullname: Tommasel – year: 2023 ident: 10.7717/peerj-cs.2296/ref-71 article-title: Evaluation of chatgpt for nlp-based mental health applications contributor: fullname: Lamichhane – volume: 46 start-page: 739 issue: 6 year: 2020 ident: 10.7717/peerj-cs.2296/ref-51 article-title: Exploring the dominant features of social media for depression detection publication-title: Journal of Information Science doi: 10.1177/0165551519860469 contributor: fullname: Hussain – volume: 9 start-page: 29 issue: 1 year: 2024 ident: 10.7717/peerj-cs.2296/ref-38 article-title: Mental health prediction model on social media data using CNN-BiLSTM publication-title: Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control doi: 10.22219/kinetik.v9i1.1849 contributor: fullname: Fudholi |
SSID | ssj0001511119 |
Score | 2.3184016 |
Snippet | Mental illness is a common disease that at its extremes leads to personal and societal suffering. A complicated multi-factorial disease, mental illness is... |
SourceID | doaj gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | e2296 |
SubjectTerms | Computational linguistics Data entry Data mining Depression detection Depression, Mental Detectors Disease detection Diseases Early depression detection Language processing Machine learning Mental illness detection Mental illness identification Mentally ill Natural language interfaces Social media Social networks Surveys Users sentiments |
Title | Mental illness detection through harvesting social media: a comprehensive literature review |
URI | https://doaj.org/article/42a04fbf148144bf9ecdbc8d05edf730 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYtvcX0RRPRUt02aNvGm4rJ68OADBA8hzWNVlird-v-dJF3pnrx4bYeQziSTL-WbbxA6MUVmcsddQipOEziPhScB0KQUuiw0KYVTgW1xX4yf87sX9tJr9eU5YVEeODpumBOV5q5yANsB-1dOWG0qzU3KrHGwPEP2TUXvMhXrg30qEFFUs4Qry_DL2uYj0bNzQrxAf-8QClr9XUbunS2jdbTagUJ8GSezgZZsvYnW5g0XcLf_ttBrVNzB79Opz1DY2DYwqWrctdvBb6oJuhn1BMe_4TiUhlxghT15vLFvkbCOp79yyjhWr2yj59HN0_U46bojJJoS0SaGFIp5P-SGpo4DMmKUlaUwCkANUw62mtVcMcuMNUxrnRluMmFSpVJqlKA7aLn-rO0uwhUMxJgtLNc8FzStKOQeWGKOAzrh1g7Q6dxd8iuKYEi4PHi_yuBXqWfS-3WArrwzf428dnV4ABGVXUTlXxEdoGMfCunVKWpPf5mo79lM3j4-yEueUVYIkuUDdNYZuc-2UVp11QTwQV7QasHyYMESto_uvd77jynvoxUCYCeQ_MoDtNw23_YQwEpbHYV1-QNdZesb |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mental+illness+detection+through+harvesting+social+media%3A+a+comprehensive+literature+review&rft.jtitle=PeerJ.+Computer+science&rft.au=Shah%2C+Shahid+Munir&rft.au=Aljawarneh%2C+Mahmoud+Mohammad&rft.au=Saleem%2C+Muhammad+Aamer&rft.au=Jawarneh%2C+Mahmoud+Saleh&rft.date=2024-10-07&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=10&rft.spage=e2296&rft_id=info:doi/10.7717%2Fpeerj-cs.2296&rft.externalDocID=A813569214 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |