Deep TPS-PSO: Hybrid Deep Feature Extraction and Global Optimization for Precise 3D MRI Registration
This article presents TPS-PSO, a hybrid deformable image registration framework integrating deep learning, non-linear transformation modeling, and global optimization for accurate inter-subject, intra-modality 3D brain MRI alignment. The method combines a 3D ResNet encoder to extract volumetric feat...
Saved in:
Published in | IEEE open journal of the Computer Society Vol. 6; pp. 1090 - 1099 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article presents TPS-PSO, a hybrid deformable image registration framework integrating deep learning, non-linear transformation modeling, and global optimization for accurate inter-subject, intra-modality 3D brain MRI alignment. The method combines a 3D ResNet encoder to extract volumetric features, a Thin Plate Spline (TPS) model to capture smooth anatomical deformations, and Particle Swarm Optimization (PSO) to estimate transformation parameters efficiently without relying on gradients. Evaluated on the BraTS 2022 dataset, TPS-PSO achieved state-of-the-art performance with a Dice Similarity Coefficient (DSC) of 85.7%, Mutual Information (MI) of 1.23, Target Registration Error (TRE) of 3.8 mm, HD95 of 6.7 mm, and SSIM of 0.92. Comparative experiments against five recent baselines confirmed consistent improvements. Ablation studies and convergence analysis further validated the contribution of each module and the optimization strategy. The proposed framework generates topologically plausible deformation fields and shows strong potential for clinical and research applications in neuroimaging. |
---|---|
AbstractList | This article presents TPS-PSO, a hybrid deformable image registration framework integrating deep learning, non-linear transformation modeling, and global optimization for accurate inter-subject, intra-modality 3D brain MRI alignment. The method combines a 3D ResNet encoder to extract volumetric features, a Thin Plate Spline (TPS) model to capture smooth anatomical deformations, and Particle Swarm Optimization (PSO) to estimate transformation parameters efficiently without relying on gradients. Evaluated on the BraTS 2022 dataset, TPS-PSO achieved state-of-the-art performance with a Dice Similarity Coefficient (DSC) of 85.7%, Mutual Information (MI) of 1.23, Target Registration Error (TRE) of 3.8 mm, HD95 of 6.7 mm, and SSIM of 0.92. Comparative experiments against five recent baselines confirmed consistent improvements. Ablation studies and convergence analysis further validated the contribution of each module and the optimization strategy. The proposed framework generates topologically plausible deformation fields and shows strong potential for clinical and research applications in neuroimaging. |
Author | Ramasamy, Gayathri Yuan, Xiaohui Naik, Ganesh R Singh, Tripty |
Author_xml | – sequence: 1 givenname: Gayathri orcidid: 0000-0003-4451-3003 surname: Ramasamy fullname: Ramasamy, Gayathri email: bl.en.r4cse21009@bl.students.amrita.edu organization: Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Bengaluru, India – sequence: 2 givenname: Tripty orcidid: 0000-0002-3688-4392 surname: Singh fullname: Singh, Tripty organization: Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Bengaluru, India – sequence: 3 givenname: Xiaohui orcidid: 0000-0001-6897-4563 surname: Yuan fullname: Yuan, Xiaohui organization: University of North Texas, Denton, TX, USA – sequence: 4 givenname: Ganesh R orcidid: 0000-0003-1790-9838 surname: Naik fullname: Naik, Ganesh R email: bl.en.r4cse21009@bl.students.amrita.edu organization: Centre for Artificial Intelligence Research and Optimization (AIRO), Design and Creative Technology Vertical, Torrens University, Ultimo, NSW, Australia |
BookMark | eNpNkN1KAzEQhYNUsGofQPAiL7A1k-xP4p3Un1YqLW29DtlkIim1W7IrWJ_e3VbUqxnOnPMxnHPS21ZbJOQK2BCAqZvZ82g55IxnQ5HJXGX5CenzPE0T4Lns_dvPyKCu14y1VgAQWZ-4e8QdXc2XyXw5u6XjfRmDowfxEU3zEZE-fDbR2CZUW2q2jj5tqtJs6GzXhPfwZQ66ryKdR7ShRiru6ctiQhf4Fuo22N0vyak3mxoHP_OCvD4-rEbjZDp7mozupokVXDVJmanUuyy1BlLPCicl575AFMKClSUXhW8_R8lMaiBHq7AQKnXSKFAmy0txQSZHrqvMWu9ieDdxrysT9EGo4ps2sQl2g9qDLZ0quPAeUiZcKTl4xZ3ysiyY5S0Ljiwbq7qO6H95wHTXuu5a113r-qf1NnN9zARE_PMDK7jkTHwD3zJ-rA |
CODEN | IOJCB2 |
Cites_doi | 10.1109/isbi.2018.8363756 10.1007/s11517-023-02941-9 10.1007/978-3-319-66182-7_27 10.1109/ICCV51070.2023.01145 10.1002/mp.17235 10.1016/j.cmpb.2020.105431 10.1016/j.imu.2024.101540 10.1109/tnnls.2023.3332003 10.1007/s11831-024-10139-x 10.1007/978-3-030-59716-0_21 10.1016/j.media.2019.07.006 10.1109/ssci.2016.7850261 10.1109/tmi.2024.3362968 10.2174/1573405617666210806125526 10.1007/s00259-022-06053-8 10.1016/j.ijleo.2020.165742 10.1007/s11276-023-03264-1 10.1117/12.2292443 10.1007/978-3-031-44153-0_1 10.1007/978-3-031-16446-0_9 10.1038/s41698-020-0115-0 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
DOI | 10.1109/OJCS.2025.3586956 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2644-1268 |
EndPage | 1099 |
ExternalDocumentID | oai_doaj_org_article_f1cbd9723ff1403db821f92d9f8b70c2 10_1109_OJCS_2025_3586956 11072820 |
Genre | orig-research |
GroupedDBID | 0R~ 97E AAJGR ABAZT ABVLG ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IEDLZ JAVBF M~E OCL OK1 RIA RIE AAYXX CITATION |
ID | FETCH-LOGICAL-c329t-b594fd54ca14f07d8822f7ee33c1c8b237f002e80a4a16ec9e7394d8a919a56b3 |
IEDL.DBID | RIE |
ISSN | 2644-1268 |
IngestDate | Wed Aug 27 01:02:47 EDT 2025 Thu Jul 24 02:09:27 EDT 2025 Wed Jul 23 05:50:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c329t-b594fd54ca14f07d8822f7ee33c1c8b237f002e80a4a16ec9e7394d8a919a56b3 |
ORCID | 0000-0003-1790-9838 0000-0002-3688-4392 0000-0003-4451-3003 0000-0001-6897-4563 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/11072820 |
PageCount | 10 |
ParticipantIDs | ieee_primary_11072820 crossref_primary_10_1109_OJCS_2025_3586956 doaj_primary_oai_doaj_org_article_f1cbd9723ff1403db821f92d9f8b70c2 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE open journal of the Computer Society |
PublicationTitleAbbrev | OJCS |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref19 Bozorgtabar (ref23) 2022 Gokulan (ref18) 2024 ref24 ref25 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Baheti (ref13) 2021 Zhang (ref16) 2024 |
References_xml | – ident: ref3 doi: 10.1109/isbi.2018.8363756 – ident: ref6 doi: 10.1007/s11517-023-02941-9 – ident: ref5 doi: 10.1007/978-3-319-66182-7_27 – ident: ref25 doi: 10.1109/ICCV51070.2023.01145 – ident: ref1 doi: 10.1002/mp.17235 – ident: ref17 doi: 10.1016/j.cmpb.2020.105431 – ident: ref8 doi: 10.1016/j.imu.2024.101540 – start-page: 1 volume-title: Proc. IEEE Recent Adv. Intell. Comput. Syst. year: 2024 ident: ref18 article-title: Enhanced image registration for precise alignment of brain and liver CT images – ident: ref7 doi: 10.1109/tnnls.2023.3332003 – ident: ref12 doi: 10.1007/s11831-024-10139-x – year: 2021 ident: ref13 article-title: The brain tumor sequence registration challenge – ident: ref4 doi: 10.1007/978-3-030-59716-0_21 – ident: ref2 doi: 10.1016/j.media.2019.07.006 – ident: ref11 doi: 10.1109/ssci.2016.7850261 – ident: ref22 doi: 10.1109/tmi.2024.3362968 – ident: ref9 doi: 10.2174/1573405617666210806125526 – ident: ref15 doi: 10.1007/s00259-022-06053-8 – ident: ref20 doi: 10.1016/j.ijleo.2020.165742 – ident: ref19 doi: 10.1007/s11276-023-03264-1 – ident: ref10 doi: 10.1117/12.2292443 – ident: ref24 doi: 10.1007/978-3-031-44153-0_1 – start-page: 586 volume-title: Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervention year: 2024 ident: ref16 article-title: Deep-learning-based groupwise registration for motion correction of cardiac T1 mapping – ident: ref21 doi: 10.1007/978-3-031-16446-0_9 – ident: ref14 doi: 10.1038/s41698-020-0115-0 – year: 2022 ident: ref23 article-title: Self-supervised iRegNet: Unsupervised learning for longitudinal brain MRI registration in glioma patients |
SSID | ssj0002511135 |
Score | 2.2788267 |
Snippet | This article presents TPS-PSO, a hybrid deformable image registration framework integrating deep learning, non-linear transformation modeling, and global... |
SourceID | doaj crossref ieee |
SourceType | Open Website Index Database Publisher |
StartPage | 1090 |
SubjectTerms | 3D MRI registration ablation study Accuracy brats 2022 deep learning Deformable models Deformation dice similarity coefficient Feature extraction Image registration Magnetic resonance imaging mutual information non-linear deformation Optimization Particle swarm optimization ROC analysis Splines (mathematics) thin plate spline Three-dimensional displays voxel-based registration |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELVQT1xYiyibfOCEFBrHS2xu0EWlUmnVReotimObE6EqrQR_jydJSzlx4WpFifUmGb-JPe8hdMtiySJNWCBibQPmjAik0CIAF2nBQODMwo7u4EX0Zqw_5_Mdqy84E1bKA5fANR3JtAFrLOdAWs5oGRGnIqOc1HGYFdnXr3k7xRTkYCDOhPJqG5OEqjnstya-HIz4PeVSKDCs3lmICr3-XwYrxfrSPUIHFTHEj-WEjtGezU_Q4cZ0AVff4CkybWsXeDqaBKPJ8AH3vqDlCheDQOfWS4s7n6tl2a-A09zgUtYfD31yeKu6LrGnqngEwhYfFtM2Hoyf8di-bkV062jW7UxbvaCySggyGqlVoLnyOHOWpYS5MDaeN0cutpbSjGRSRzR2HhQrw5SlRNhM2ZgqZmSqiEq50PQM1fL33J4jrATnjlGZOV9qUKeUdTpkTphUAFcwDXS3wS1ZlIoYSVFJhCoBkBMAOalAbqAnQHZ7IYhZFwM-xEkV4uSvEDdQHeLy8zRfsvpKMbz4j5tfon2YcPlX5QrVVsu1vfY8Y6VvilfqG-2wzDA priority: 102 providerName: Directory of Open Access Journals |
Title | Deep TPS-PSO: Hybrid Deep Feature Extraction and Global Optimization for Precise 3D MRI Registration |
URI | https://ieeexplore.ieee.org/document/11072820 https://doaj.org/article/f1cbd9723ff1403db821f92d9f8b70c2 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PaxQxGA22Jy9Wa6VbteTgSZjtZPJjEm_ablkL2126LfQ2TJIvPZRuyzoL6sG_3XyZ7GoFoZdhCIEJecnkvSTf-wj5IGotKstEoWoLhQheFVpZVWAWaSXQ4AzwRHdyrsZX4uxaXudg9RQLAwDp8hkM8TWd5ft7t8KtsiPUKlEiRIW-FZVbH6y12VBBrsy4zCeXrDRH07PjeVSAlRxyqZXBHNV_rT3Jov9RTpW0pJzukPN1Y_qbJLfDVWeH7uc_Po1Pbu1L8iKTS_q5Hw2vyDNY7JKddeIGmufxa-JPAB7o5WxezObTT3T8A8O2aCpESrhaAh1975Z9zANtF572qQHoNP5g7nLkJo10l87QHOMbUH5CJxdf6QXcbIx498jV6ejyeFzkdAuF45XpCitNxEoK1zIRytpH7l2FGoBzx5y2Fa9D7GXQZStapsAZqLkRXreGmVYqy9-Q7cX9AvYJNUrKILh2IcoVHoyBYEsRlG8V8g0_IB_XQDQPvatGk9RIaRpErUHUmozagHxBqDYV0RA7FcTebvL8agJz1mMGtRDQgdBbXbFgKm-CtnXpqgHZQ4T-fC2Dc_Cf8rfkObah32x5R7a75QreR_rR2cMk2-Nz8mt0mIbgb4F_18s |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLZQOcCFshQxZfOBE1KmcbzE5gZdNC2dRZ2p1FsU2889IKbVNCMBvx4_xzMsEhK3yIqUJ392_D3b7_sIeSdqLSrLRKFqC4UIXhVaWVWgi7QSKHAGeKI7nqjRpTi7kle5WD3VwgBAunwGQ3xMZ_n-xq1xq-wAc5WYIsQM_X5c-CXry7W2WyrIlhmX-eySleZgenY4jzlgJYdcamXQpfq31SeJ9P_hqpIWlZNdMtmE098l-TJcd3bofvyl1Pjf8T4mjzK9pB_78fCE3IPlU7K7sW6geSY_I_4I4JYuZvNiNp9-oKPvWLhFUyOSwvUK6PG3btVXPdB26WlvDkCn8RfzNddu0kh46QzlMe6A8iM6vjilF3C9leLdI5cnx4vDUZENFwrHK9MVVpqIlhSuZSKUtY_suwo1AOeOOW0rXofYy6DLVrRMgTNQcyO8bg0zrVSWPyc7y5slvCDUKCmD4NqFmLDwYAwEW4qgfKuQcfgBeb8BorntdTWalI-UpkHUGkStyagNyCeEavsiSmKnhtjbTZ5hTWDOevRQCwE1CL3VFQum8iZoW5euGpA9ROjX1zI4-_9of0sejBbj8-b8dPL5JXmI8fRbL6_ITrdaw-tIRjr7Jg3Bn7_K2O4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+TPS-PSO%3A+Hybrid+Deep+Feature+Extraction+and+Global+Optimization+for+Precise+3D+MRI+Registration&rft.jtitle=IEEE+open+journal+of+the+Computer+Society&rft.au=Ramasamy%2C+Gayathri&rft.au=Singh%2C+Tripty&rft.au=Yuan%2C+Xiaohui&rft.au=Naik%2C+Ganesh+R&rft.date=2025&rft.pub=IEEE&rft.eissn=2644-1268&rft.volume=6&rft.spage=1090&rft.epage=1099&rft_id=info:doi/10.1109%2FOJCS.2025.3586956&rft.externalDocID=11072820 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2644-1268&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2644-1268&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2644-1268&client=summon |