Deep TPS-PSO: Hybrid Deep Feature Extraction and Global Optimization for Precise 3D MRI Registration

This article presents TPS-PSO, a hybrid deformable image registration framework integrating deep learning, non-linear transformation modeling, and global optimization for accurate inter-subject, intra-modality 3D brain MRI alignment. The method combines a 3D ResNet encoder to extract volumetric feat...

Full description

Saved in:
Bibliographic Details
Published inIEEE open journal of the Computer Society Vol. 6; pp. 1090 - 1099
Main Authors Ramasamy, Gayathri, Singh, Tripty, Yuan, Xiaohui, Naik, Ganesh R
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article presents TPS-PSO, a hybrid deformable image registration framework integrating deep learning, non-linear transformation modeling, and global optimization for accurate inter-subject, intra-modality 3D brain MRI alignment. The method combines a 3D ResNet encoder to extract volumetric features, a Thin Plate Spline (TPS) model to capture smooth anatomical deformations, and Particle Swarm Optimization (PSO) to estimate transformation parameters efficiently without relying on gradients. Evaluated on the BraTS 2022 dataset, TPS-PSO achieved state-of-the-art performance with a Dice Similarity Coefficient (DSC) of 85.7%, Mutual Information (MI) of 1.23, Target Registration Error (TRE) of 3.8 mm, HD95 of 6.7 mm, and SSIM of 0.92. Comparative experiments against five recent baselines confirmed consistent improvements. Ablation studies and convergence analysis further validated the contribution of each module and the optimization strategy. The proposed framework generates topologically plausible deformation fields and shows strong potential for clinical and research applications in neuroimaging.
AbstractList This article presents TPS-PSO, a hybrid deformable image registration framework integrating deep learning, non-linear transformation modeling, and global optimization for accurate inter-subject, intra-modality 3D brain MRI alignment. The method combines a 3D ResNet encoder to extract volumetric features, a Thin Plate Spline (TPS) model to capture smooth anatomical deformations, and Particle Swarm Optimization (PSO) to estimate transformation parameters efficiently without relying on gradients. Evaluated on the BraTS 2022 dataset, TPS-PSO achieved state-of-the-art performance with a Dice Similarity Coefficient (DSC) of 85.7%, Mutual Information (MI) of 1.23, Target Registration Error (TRE) of 3.8 mm, HD95 of 6.7 mm, and SSIM of 0.92. Comparative experiments against five recent baselines confirmed consistent improvements. Ablation studies and convergence analysis further validated the contribution of each module and the optimization strategy. The proposed framework generates topologically plausible deformation fields and shows strong potential for clinical and research applications in neuroimaging.
Author Ramasamy, Gayathri
Yuan, Xiaohui
Naik, Ganesh R
Singh, Tripty
Author_xml – sequence: 1
  givenname: Gayathri
  orcidid: 0000-0003-4451-3003
  surname: Ramasamy
  fullname: Ramasamy, Gayathri
  email: bl.en.r4cse21009@bl.students.amrita.edu
  organization: Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Bengaluru, India
– sequence: 2
  givenname: Tripty
  orcidid: 0000-0002-3688-4392
  surname: Singh
  fullname: Singh, Tripty
  organization: Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Bengaluru, India
– sequence: 3
  givenname: Xiaohui
  orcidid: 0000-0001-6897-4563
  surname: Yuan
  fullname: Yuan, Xiaohui
  organization: University of North Texas, Denton, TX, USA
– sequence: 4
  givenname: Ganesh R
  orcidid: 0000-0003-1790-9838
  surname: Naik
  fullname: Naik, Ganesh R
  email: bl.en.r4cse21009@bl.students.amrita.edu
  organization: Centre for Artificial Intelligence Research and Optimization (AIRO), Design and Creative Technology Vertical, Torrens University, Ultimo, NSW, Australia
BookMark eNpNkN1KAzEQhYNUsGofQPAiL7A1k-xP4p3Un1YqLW29DtlkIim1W7IrWJ_e3VbUqxnOnPMxnHPS21ZbJOQK2BCAqZvZ82g55IxnQ5HJXGX5CenzPE0T4Lns_dvPyKCu14y1VgAQWZ-4e8QdXc2XyXw5u6XjfRmDowfxEU3zEZE-fDbR2CZUW2q2jj5tqtJs6GzXhPfwZQ66ryKdR7ShRiru6ctiQhf4Fuo22N0vyak3mxoHP_OCvD4-rEbjZDp7mozupokVXDVJmanUuyy1BlLPCicl575AFMKClSUXhW8_R8lMaiBHq7AQKnXSKFAmy0txQSZHrqvMWu9ieDdxrysT9EGo4ps2sQl2g9qDLZ0quPAeUiZcKTl4xZ3ysiyY5S0Ljiwbq7qO6H95wHTXuu5a113r-qf1NnN9zARE_PMDK7jkTHwD3zJ-rA
CODEN IOJCB2
Cites_doi 10.1109/isbi.2018.8363756
10.1007/s11517-023-02941-9
10.1007/978-3-319-66182-7_27
10.1109/ICCV51070.2023.01145
10.1002/mp.17235
10.1016/j.cmpb.2020.105431
10.1016/j.imu.2024.101540
10.1109/tnnls.2023.3332003
10.1007/s11831-024-10139-x
10.1007/978-3-030-59716-0_21
10.1016/j.media.2019.07.006
10.1109/ssci.2016.7850261
10.1109/tmi.2024.3362968
10.2174/1573405617666210806125526
10.1007/s00259-022-06053-8
10.1016/j.ijleo.2020.165742
10.1007/s11276-023-03264-1
10.1117/12.2292443
10.1007/978-3-031-44153-0_1
10.1007/978-3-031-16446-0_9
10.1038/s41698-020-0115-0
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/OJCS.2025.3586956
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2644-1268
EndPage 1099
ExternalDocumentID oai_doaj_org_article_f1cbd9723ff1403db821f92d9f8b70c2
10_1109_OJCS_2025_3586956
11072820
Genre orig-research
GroupedDBID 0R~
97E
AAJGR
ABAZT
ABVLG
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IEDLZ
JAVBF
M~E
OCL
OK1
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c329t-b594fd54ca14f07d8822f7ee33c1c8b237f002e80a4a16ec9e7394d8a919a56b3
IEDL.DBID RIE
ISSN 2644-1268
IngestDate Wed Aug 27 01:02:47 EDT 2025
Thu Jul 24 02:09:27 EDT 2025
Wed Jul 23 05:50:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-b594fd54ca14f07d8822f7ee33c1c8b237f002e80a4a16ec9e7394d8a919a56b3
ORCID 0000-0003-1790-9838
0000-0002-3688-4392
0000-0003-4451-3003
0000-0001-6897-4563
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/11072820
PageCount 10
ParticipantIDs ieee_primary_11072820
crossref_primary_10_1109_OJCS_2025_3586956
doaj_primary_oai_doaj_org_article_f1cbd9723ff1403db821f92d9f8b70c2
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE open journal of the Computer Society
PublicationTitleAbbrev OJCS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref19
Bozorgtabar (ref23) 2022
Gokulan (ref18) 2024
ref24
ref25
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Baheti (ref13) 2021
Zhang (ref16) 2024
References_xml – ident: ref3
  doi: 10.1109/isbi.2018.8363756
– ident: ref6
  doi: 10.1007/s11517-023-02941-9
– ident: ref5
  doi: 10.1007/978-3-319-66182-7_27
– ident: ref25
  doi: 10.1109/ICCV51070.2023.01145
– ident: ref1
  doi: 10.1002/mp.17235
– ident: ref17
  doi: 10.1016/j.cmpb.2020.105431
– ident: ref8
  doi: 10.1016/j.imu.2024.101540
– start-page: 1
  volume-title: Proc. IEEE Recent Adv. Intell. Comput. Syst.
  year: 2024
  ident: ref18
  article-title: Enhanced image registration for precise alignment of brain and liver CT images
– ident: ref7
  doi: 10.1109/tnnls.2023.3332003
– ident: ref12
  doi: 10.1007/s11831-024-10139-x
– year: 2021
  ident: ref13
  article-title: The brain tumor sequence registration challenge
– ident: ref4
  doi: 10.1007/978-3-030-59716-0_21
– ident: ref2
  doi: 10.1016/j.media.2019.07.006
– ident: ref11
  doi: 10.1109/ssci.2016.7850261
– ident: ref22
  doi: 10.1109/tmi.2024.3362968
– ident: ref9
  doi: 10.2174/1573405617666210806125526
– ident: ref15
  doi: 10.1007/s00259-022-06053-8
– ident: ref20
  doi: 10.1016/j.ijleo.2020.165742
– ident: ref19
  doi: 10.1007/s11276-023-03264-1
– ident: ref10
  doi: 10.1117/12.2292443
– ident: ref24
  doi: 10.1007/978-3-031-44153-0_1
– start-page: 586
  volume-title: Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervention
  year: 2024
  ident: ref16
  article-title: Deep-learning-based groupwise registration for motion correction of cardiac T1 mapping
– ident: ref21
  doi: 10.1007/978-3-031-16446-0_9
– ident: ref14
  doi: 10.1038/s41698-020-0115-0
– year: 2022
  ident: ref23
  article-title: Self-supervised iRegNet: Unsupervised learning for longitudinal brain MRI registration in glioma patients
SSID ssj0002511135
Score 2.2788267
Snippet This article presents TPS-PSO, a hybrid deformable image registration framework integrating deep learning, non-linear transformation modeling, and global...
SourceID doaj
crossref
ieee
SourceType Open Website
Index Database
Publisher
StartPage 1090
SubjectTerms 3D MRI registration
ablation study
Accuracy
brats 2022
deep learning
Deformable models
Deformation
dice similarity coefficient
Feature extraction
Image registration
Magnetic resonance imaging
mutual information
non-linear deformation
Optimization
Particle swarm optimization
ROC analysis
Splines (mathematics)
thin plate spline
Three-dimensional displays
voxel-based registration
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELVQT1xYiyibfOCEFBrHS2xu0EWlUmnVReotimObE6EqrQR_jydJSzlx4WpFifUmGb-JPe8hdMtiySJNWCBibQPmjAik0CIAF2nBQODMwo7u4EX0Zqw_5_Mdqy84E1bKA5fANR3JtAFrLOdAWs5oGRGnIqOc1HGYFdnXr3k7xRTkYCDOhPJqG5OEqjnstya-HIz4PeVSKDCs3lmICr3-XwYrxfrSPUIHFTHEj-WEjtGezU_Q4cZ0AVff4CkybWsXeDqaBKPJ8AH3vqDlCheDQOfWS4s7n6tl2a-A09zgUtYfD31yeKu6LrGnqngEwhYfFtM2Hoyf8di-bkV062jW7UxbvaCySggyGqlVoLnyOHOWpYS5MDaeN0cutpbSjGRSRzR2HhQrw5SlRNhM2ZgqZmSqiEq50PQM1fL33J4jrATnjlGZOV9qUKeUdTpkTphUAFcwDXS3wS1ZlIoYSVFJhCoBkBMAOalAbqAnQHZ7IYhZFwM-xEkV4uSvEDdQHeLy8zRfsvpKMbz4j5tfon2YcPlX5QrVVsu1vfY8Y6VvilfqG-2wzDA
  priority: 102
  providerName: Directory of Open Access Journals
Title Deep TPS-PSO: Hybrid Deep Feature Extraction and Global Optimization for Precise 3D MRI Registration
URI https://ieeexplore.ieee.org/document/11072820
https://doaj.org/article/f1cbd9723ff1403db821f92d9f8b70c2
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PaxQxGA22Jy9Wa6VbteTgSZjtZPJjEm_ablkL2126LfQ2TJIvPZRuyzoL6sG_3XyZ7GoFoZdhCIEJecnkvSTf-wj5IGotKstEoWoLhQheFVpZVWAWaSXQ4AzwRHdyrsZX4uxaXudg9RQLAwDp8hkM8TWd5ft7t8KtsiPUKlEiRIW-FZVbH6y12VBBrsy4zCeXrDRH07PjeVSAlRxyqZXBHNV_rT3Jov9RTpW0pJzukPN1Y_qbJLfDVWeH7uc_Po1Pbu1L8iKTS_q5Hw2vyDNY7JKddeIGmufxa-JPAB7o5WxezObTT3T8A8O2aCpESrhaAh1975Z9zANtF572qQHoNP5g7nLkJo10l87QHOMbUH5CJxdf6QXcbIx498jV6ejyeFzkdAuF45XpCitNxEoK1zIRytpH7l2FGoBzx5y2Fa9D7GXQZStapsAZqLkRXreGmVYqy9-Q7cX9AvYJNUrKILh2IcoVHoyBYEsRlG8V8g0_IB_XQDQPvatGk9RIaRpErUHUmozagHxBqDYV0RA7FcTebvL8agJz1mMGtRDQgdBbXbFgKm-CtnXpqgHZQ4T-fC2Dc_Cf8rfkObah32x5R7a75QreR_rR2cMk2-Nz8mt0mIbgb4F_18s
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLZQOcCFshQxZfOBE1KmcbzE5gZdNC2dRZ2p1FsU2889IKbVNCMBvx4_xzMsEhK3yIqUJ392_D3b7_sIeSdqLSrLRKFqC4UIXhVaWVWgi7QSKHAGeKI7nqjRpTi7kle5WD3VwgBAunwGQ3xMZ_n-xq1xq-wAc5WYIsQM_X5c-CXry7W2WyrIlhmX-eySleZgenY4jzlgJYdcamXQpfq31SeJ9P_hqpIWlZNdMtmE098l-TJcd3bofvyl1Pjf8T4mjzK9pB_78fCE3IPlU7K7sW6geSY_I_4I4JYuZvNiNp9-oKPvWLhFUyOSwvUK6PG3btVXPdB26WlvDkCn8RfzNddu0kh46QzlMe6A8iM6vjilF3C9leLdI5cnx4vDUZENFwrHK9MVVpqIlhSuZSKUtY_suwo1AOeOOW0rXofYy6DLVrRMgTNQcyO8bg0zrVSWPyc7y5slvCDUKCmD4NqFmLDwYAwEW4qgfKuQcfgBeb8BorntdTWalI-UpkHUGkStyagNyCeEavsiSmKnhtjbTZ5hTWDOevRQCwE1CL3VFQum8iZoW5euGpA9ROjX1zI4-_9of0sejBbj8-b8dPL5JXmI8fRbL6_ITrdaw-tIRjr7Jg3Bn7_K2O4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+TPS-PSO%3A+Hybrid+Deep+Feature+Extraction+and+Global+Optimization+for+Precise+3D+MRI+Registration&rft.jtitle=IEEE+open+journal+of+the+Computer+Society&rft.au=Ramasamy%2C+Gayathri&rft.au=Singh%2C+Tripty&rft.au=Yuan%2C+Xiaohui&rft.au=Naik%2C+Ganesh+R&rft.date=2025&rft.pub=IEEE&rft.eissn=2644-1268&rft.volume=6&rft.spage=1090&rft.epage=1099&rft_id=info:doi/10.1109%2FOJCS.2025.3586956&rft.externalDocID=11072820
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2644-1268&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2644-1268&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2644-1268&client=summon