Comprehensive SHAP Values and Single-Cell Sequencing Technology Reveal Key Cell Clusters in Bovine Skeletal Muscle

The skeletal muscle of cattle is the main component of their muscular system, responsible for supporting and movement functions. However, there are still many unknown areas regarding the ranking of the importance of different types of cell populations within it. This study conducted in-depth researc...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 26; no. 5; p. 2054
Main Authors Guo, Yaqiang, Ma, Fengying, Li, Peipei, Guo, Lili, Liu, Zaixia, Huo, Chenxi, Shi, Caixia, Zhu, Lin, Gu, Mingjuan, Zhang, Wenguang
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.03.2025
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The skeletal muscle of cattle is the main component of their muscular system, responsible for supporting and movement functions. However, there are still many unknown areas regarding the ranking of the importance of different types of cell populations within it. This study conducted in-depth research and made a series of significant findings. First, we trained 15 bovine skeletal muscle models and selected the best-performing model as the initial model. Based on the SHAP (Shapley Additive exPlanations) analysis of this initial model, we obtained the SHAP values of 476 important genes. Using the contributions of these 476 genes, we reconstructed a 476-gene SHAP value matrix, and relying solely on the interactions among these 476 genes, successfully mapped the single-cell atlas of bovine skeletal muscle. After retraining the model and further interpretation, we found that Myofiber cells are the most representative cell type in bovine skeletal muscle, followed by neutrophils. By determining the key genes of each cell type through SHAP values, we conducted analyses on the correlations among key genes and between cells for Myofiber cells, revealing the critical role these genes play in muscle growth and development. Further, by using protein language models, we performed cross-species comparisons between cattle and pigs, deepening our understanding of Myofiber cells as key cells in skeletal muscle, and exploring the common regulatory mechanisms of muscle development across species.
AbstractList The skeletal muscle of cattle is the main component of their muscular system, responsible for supporting and movement functions. However, there are still many unknown areas regarding the ranking of the importance of different types of cell populations within it. This study conducted in-depth research and made a series of significant findings. First, we trained 15 bovine skeletal muscle models and selected the best-performing model as the initial model. Based on the SHAP (Shapley Additive exPlanations) analysis of this initial model, we obtained the SHAP values of 476 important genes. Using the contributions of these 476 genes, we reconstructed a 476-gene SHAP value matrix, and relying solely on the interactions among these 476 genes, successfully mapped the single-cell atlas of bovine skeletal muscle. After retraining the model and further interpretation, we found that Myofiber cells are the most representative cell type in bovine skeletal muscle, followed by neutrophils. By determining the key genes of each cell type through SHAP values, we conducted analyses on the correlations among key genes and between cells for Myofiber cells, revealing the critical role these genes play in muscle growth and development. Further, by using protein language models, we performed cross-species comparisons between cattle and pigs, deepening our understanding of Myofiber cells as key cells in skeletal muscle, and exploring the common regulatory mechanisms of muscle development across species.
The skeletal muscle of cattle is the main component of their muscular system, responsible for supporting and movement functions. However, there are still many unknown areas regarding the ranking of the importance of different types of cell populations within it. This study conducted in-depth research and made a series of significant findings. First, we trained 15 bovine skeletal muscle models and selected the best-performing model as the initial model. Based on the SHAP (Shapley Additive exPlanations) analysis of this initial model, we obtained the SHAP values of 476 important genes. Using the contributions of these 476 genes, we reconstructed a 476-gene SHAP value matrix, and relying solely on the interactions among these 476 genes, successfully mapped the single-cell atlas of bovine skeletal muscle. After retraining the model and further interpretation, we found that Myofiber cells are the most representative cell type in bovine skeletal muscle, followed by neutrophils. By determining the key genes of each cell type through SHAP values, we conducted analyses on the correlations among key genes and between cells for Myofiber cells, revealing the critical role these genes play in muscle growth and development. Further, by using protein language models, we performed cross-species comparisons between cattle and pigs, deepening our understanding of Myofiber cells as key cells in skeletal muscle, and exploring the common regulatory mechanisms of muscle development across species.
The skeletal muscle of cattle is the main component of their muscular system, responsible for supporting and movement functions. However, there are still many unknown areas regarding the ranking of the importance of different types of cell populations within it. This study conducted in-depth research and made a series of significant findings. First, we trained 15 bovine skeletal muscle models and selected the best-performing model as the initial model. Based on the SHAP (Shapley Additive exPlanations) analysis of this initial model, we obtained the SHAP values of 476 important genes. Using the contributions of these 476 genes, we reconstructed a 476-gene SHAP value matrix, and relying solely on the interactions among these 476 genes, successfully mapped the single-cell atlas of bovine skeletal muscle. After retraining the model and further interpretation, we found that Myofiber cells are the most representative cell type in bovine skeletal muscle, followed by neutrophils. By determining the key genes of each cell type through SHAP values, we conducted analyses on the correlations among key genes and between cells for Myofiber cells, revealing the critical role these genes play in muscle growth and development. Further, by using protein language models, we performed cross-species comparisons between cattle and pigs, deepening our understanding of Myofiber cells as key cells in skeletal muscle, and exploring the common regulatory mechanisms of muscle development across species.The skeletal muscle of cattle is the main component of their muscular system, responsible for supporting and movement functions. However, there are still many unknown areas regarding the ranking of the importance of different types of cell populations within it. This study conducted in-depth research and made a series of significant findings. First, we trained 15 bovine skeletal muscle models and selected the best-performing model as the initial model. Based on the SHAP (Shapley Additive exPlanations) analysis of this initial model, we obtained the SHAP values of 476 important genes. Using the contributions of these 476 genes, we reconstructed a 476-gene SHAP value matrix, and relying solely on the interactions among these 476 genes, successfully mapped the single-cell atlas of bovine skeletal muscle. After retraining the model and further interpretation, we found that Myofiber cells are the most representative cell type in bovine skeletal muscle, followed by neutrophils. By determining the key genes of each cell type through SHAP values, we conducted analyses on the correlations among key genes and between cells for Myofiber cells, revealing the critical role these genes play in muscle growth and development. Further, by using protein language models, we performed cross-species comparisons between cattle and pigs, deepening our understanding of Myofiber cells as key cells in skeletal muscle, and exploring the common regulatory mechanisms of muscle development across species.
The skeletal muscle of cattle is the main component of their muscular system, responsible for supporting and movement functions. However, there are still many unknown areas regarding the ranking of the importance of different types of cell populations within it. This study conducted in-depth research and made a series of significant findings. First, we trained 15 skeletal muscle models and selected the best-performing model as the initial model. Based on the SHAP (Shapley Additive exPlanations) analysis of this initial model, we obtained the SHAP values of 476 important genes. Using the contributions of these 476 genes, we reconstructed a 476-gene SHAP value matrix, and relying solely on the interactions among these 476 genes, successfully mapped the single-cell atlas of skeletal muscle. After retraining the model and further interpretation, we found that Myofiber cells are the most representative cell type in skeletal muscle, followed by neutrophils. By determining the key genes of each cell type through SHAP values, we conducted analyses on the correlations among key genes and between cells for Myofiber cells, revealing the critical role these genes play in muscle growth and development. Further, by using protein language models, we performed cross-species comparisons between cattle and pigs, deepening our understanding of Myofiber cells as key cells in skeletal muscle, and exploring the common regulatory mechanisms of muscle development across species.
Audience Academic
Author Guo, Yaqiang
Zhu, Lin
Zhang, Wenguang
Liu, Zaixia
Shi, Caixia
Guo, Lili
Gu, Mingjuan
Ma, Fengying
Huo, Chenxi
Li, Peipei
AuthorAffiliation 1 College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010010, China; gggyaqiang@163.com (Y.G.); fengyingma1997@163.com (F.M.); 13474912747@163.com (L.G.); 15660097986@163.com (C.H.); shicx98@163.com (C.S.); zhulinynacxhs@163.com (L.Z.); gmj0119@yeah.net (M.G.)
2 Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
3 College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; 111992071@imu.edu.cn
AuthorAffiliation_xml – name: 3 College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; 111992071@imu.edu.cn
– name: 1 College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010010, China; gggyaqiang@163.com (Y.G.); fengyingma1997@163.com (F.M.); 13474912747@163.com (L.G.); 15660097986@163.com (C.H.); shicx98@163.com (C.S.); zhulinynacxhs@163.com (L.Z.); gmj0119@yeah.net (M.G.)
– name: 2 Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
Author_xml – sequence: 1
  givenname: Yaqiang
  orcidid: 0009-0004-9892-6158
  surname: Guo
  fullname: Guo, Yaqiang
– sequence: 2
  givenname: Fengying
  surname: Ma
  fullname: Ma, Fengying
– sequence: 3
  givenname: Peipei
  surname: Li
  fullname: Li, Peipei
– sequence: 4
  givenname: Lili
  orcidid: 0000-0002-0387-2045
  surname: Guo
  fullname: Guo, Lili
– sequence: 5
  givenname: Zaixia
  surname: Liu
  fullname: Liu, Zaixia
– sequence: 6
  givenname: Chenxi
  orcidid: 0009-0004-8988-4638
  surname: Huo
  fullname: Huo, Chenxi
– sequence: 7
  givenname: Caixia
  surname: Shi
  fullname: Shi, Caixia
– sequence: 8
  givenname: Lin
  surname: Zhu
  fullname: Zhu, Lin
– sequence: 9
  givenname: Mingjuan
  orcidid: 0000-0002-8244-9519
  surname: Gu
  fullname: Gu, Mingjuan
– sequence: 11
  givenname: Wenguang
  surname: Zhang
  fullname: Zhang, Wenguang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40076676$$D View this record in MEDLINE/PubMed
BookMark eNptkktv1DAUhSNURB-wY40ssWFBih-JM16hIQKKKAIxha3lONczHhx7aicjzb_H05YyRcgLW8efj3XuvafFkQ8eiuI5weeMCfzGrodEOa4prqtHxQmpKC0x5s3Rwfm4OE1pjTFltBZPiuMK44bzhp8UsQ3DJsIKfLJbQIuL-Tf0U7kJElK-Rwvrlw7KFpxDC7iewOusoCvQKx9cWO7Qd9iCcugz7NAN1bopjRATsh69C1vrs-kvcDBm6MuUtIOnxWOjXIJnd_tZ8ePD-6v2orz8-vFTO78sNaNiLDumBebEYMarTlDM-r7TSjBRK4PrrDYz01WEQUNoozgXhvdVZbTp8Ew1nWZnxdtb383UDdBr8GNUTm6iHVTcyaCsfHjj7Uouw1YSIvC-QNnh1Z1DDDl7GuVgk84plYcwJclIruKMN6zJ6Mt_0HWYos_5bqgK19nvL7VUDqT1JuSP9d5UzmeMsFpwWmfq_D9UXj0MVufuG5v1Bw9eHCa9j_inzRl4fQvoGFKKYO4RguV-iuThFLHfBki4sQ
Cites_doi 10.2527/jas1984.593684x
10.1038/gt.2010.124
10.1127/zma/83/2002/161
10.3389/fvets.2021.773514
10.1177/08830738040190021201
10.7717/peerj.15093
10.1109/TNNLS.2024.3372641
10.1093/bib/bbad002
10.1016/j.meatsci.2022.108871
10.1021/acs.jafc.0c02086
10.5713/ajas.18.0310
10.1093/nar/gkad1049
10.1083/jcb.200812132
10.1016/j.chroma.2019.460823
10.1016/j.cmpb.2007.08.005
10.1016/j.csbj.2022.07.049
10.1016/j.meatsci.2017.09.006
10.1177/0300985815624495
10.1109/JBHI.2024.3365176
10.5851/kosfa.2016.36.6.819
10.3389/fgene.2020.565085
10.1111/jpn.13479
10.1093/nar/gkac947
10.1016/j.vas.2021.100219
10.1093/nar/gkad965
10.1152/physrev.00012.2018
10.1093/bioinformatics/btae382
10.1126/science.abm4470
10.1038/s41598-021-87842-3
10.3390/ijms23031402
10.1177/10406387221120816
10.1109/TNNLS.2021.3136503
10.3389/fcell.2022.840513
10.1016/j.watres.2023.120876
10.1038/s41592-024-02191-z
10.3389/fonc.2021.711020
10.1007/s00330-022-08830-3
10.1086/320605
10.3390/ijms241210227
10.1016/j.jacc.2018.03.521
10.1109/JBHI.2017.2767063
10.1016/j.jacr.2018.02.026
10.1126/sciadv.adl5270
10.1016/j.jhep.2023.01.006
10.1016/j.mjafi.2022.08.006
10.1186/s12889-023-17193-3
10.1186/s13059-021-02584-9
10.1080/15476286.2016.1201618
10.1093/nar/gky1131
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
K9.
M0S
M1P
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.3390/ijms26052054
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1422-0067
ExternalDocumentID PMC11900076
A831359625
40076676
10_3390_ijms26052054
Genre Journal Article
GrantInformation_xml – fundername: Tongliao City Open Competition Projects
  grantid: TL2024TW002
– fundername: Natural Science Foundation of Inner Mongolia
  grantid: No.2024QN03051
– fundername: the Inner Mongolia Open Competition Projects
  grantid: 2022JBGS0025
– fundername: the Inner Mongolia Science and Technology Plan
  grantid: 2023YFHH0058
– fundername: College of Animal Science, Inner Mongolia Agricultural University, Special project of high-level achievement cultivation
  grantid: QF202202
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8G5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
ESX
F5P
FRP
FYUFA
GNUQQ
GUQSH
GX1
HH5
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M2O
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
K9.
MBDVC
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c329t-b3c9061f0364b9203ddbca9395af0503678fb413e7127a669f6d44fcfb08a7bc3
IEDL.DBID M48
ISSN 1422-0067
1661-6596
IngestDate Thu Aug 21 18:34:31 EDT 2025
Fri Jul 11 06:43:53 EDT 2025
Fri Jul 25 21:25:54 EDT 2025
Tue Jun 17 21:58:02 EDT 2025
Tue Jun 10 20:58:25 EDT 2025
Thu May 15 23:16:26 EDT 2025
Tue Jul 01 05:26:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords single-cell RNA-sequencing
SHAP
cattle
machine learning
skeletal muscles
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-b3c9061f0364b9203ddbca9395af0503678fb413e7127a669f6d44fcfb08a7bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0387-2045
0009-0004-9892-6158
0000-0002-8244-9519
0009-0004-8988-4638
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijms26052054
PMID 40076676
PQID 3176405763
PQPubID 2032341
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11900076
proquest_miscellaneous_3176686737
proquest_journals_3176405763
gale_infotracmisc_A831359625
gale_infotracacademiconefile_A831359625
pubmed_primary_40076676
crossref_primary_10_3390_ijms26052054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of molecular sciences
PublicationTitleAlternate Int J Mol Sci
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Picelli (ref_26) 2017; 5
Misra (ref_27) 2022; 78
Szklarczyk (ref_48) 2019; 47
Harvey (ref_34) 2018; 6
ref_18
Nowak (ref_44) 2009; 5
Rocheta (ref_50) 2007; 3
Vallejo (ref_32) 2021; 13
Hu (ref_24) 2023; 51
Lim (ref_22) 2022; 20
Kim (ref_7) 2016; 6
Johnson (ref_15) 2018; 23
Costagliola (ref_12) 2016; 2
Isles (ref_17) 2024; 248
Kurtaliaj (ref_46) 2024; 26
ref_20
ref_29
Suzuki (ref_36) 2002; 83
Zhang (ref_10) 2023; 11
ref_28
Dablain (ref_30) 2023; 9
Marino (ref_11) 2011; 2
Harrison (ref_47) 2024; 52
Ilkovski (ref_42) 2001; 6
Cruz (ref_38) 2021; 3
Zheng (ref_16) 2022; 10
Wright (ref_37) 2018; 135
Mousavi (ref_23) 2022; 6607
Bjercke (ref_6) 1984; 3
ref_35
Park (ref_4) 2018; 7
ref_33
Liew (ref_41) 2019; 2
Goebel (ref_43) 2004; 2
ref_31
Shickel (ref_21) 2018; 5
Rosen (ref_25) 2024; 8
ref_39
Picard (ref_1) 2020; 22
Nguyen (ref_13) 2021; 14
Zisi (ref_49) 2020; 1617
Bhat (ref_14) 2023; 6
ref_3
Clough (ref_45) 2024; 52
ref_9
ref_8
Salim (ref_2) 2022; 192
ref_5
Pfeifer (ref_19) 2024; 2
Morrell (ref_40) 2022; 6
References_xml – volume: 3
  start-page: 684
  year: 1984
  ident: ref_6
  article-title: Relative roles of polysomes and cytoplasmic enzymes in regulating bovine skeletal muscle protein synthesis
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas1984.593684x
– volume: 2
  start-page: 109
  year: 2011
  ident: ref_11
  article-title: Skeletal muscle cells: From local inflammatory response to active immunity
  publication-title: Gene Ther.
  doi: 10.1038/gt.2010.124
– volume: 83
  start-page: 161
  year: 2002
  ident: ref_36
  article-title: Composition of myofiber types in the vocalis muscles involved in rapid closure of the glottis in Japanese macaques
  publication-title: Z. Morphol. Anthropol.
  doi: 10.1127/zma/83/2002/161
– ident: ref_39
  doi: 10.3389/fvets.2021.773514
– volume: 2
  start-page: 149
  year: 2004
  ident: ref_43
  article-title: Actin-related myopathy without any missense mutation in the ACTA1 gene
  publication-title: J. Child. Neurol.
  doi: 10.1177/08830738040190021201
– volume: 11
  start-page: e15093
  year: 2023
  ident: ref_10
  article-title: Identification of key genes in bovine muscle development by co-expression analysis
  publication-title: PeerJ.
  doi: 10.7717/peerj.15093
– ident: ref_35
  doi: 10.1109/TNNLS.2024.3372641
– ident: ref_18
  doi: 10.1093/bib/bbad002
– volume: 192
  start-page: 108871
  year: 2022
  ident: ref_2
  article-title: Effect of different feeding systems on color of longissimus muscle from Bos cattle: A systematic review and meta-analysis
  publication-title: Meat Sci.
  doi: 10.1016/j.meatsci.2022.108871
– volume: 22
  start-page: 6021
  year: 2020
  ident: ref_1
  article-title: Muscle Fiber Properties in Cattle and Their Relationships with Meat Qualities: An Overview
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.0c02086
– volume: 7
  start-page: 1043
  year: 2018
  ident: ref_4
  article-title: Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle—A review
  publication-title: Asian-Australas. J. Anim. Sci.
  doi: 10.5713/ajas.18.0310
– volume: 52
  start-page: D891
  year: 2024
  ident: ref_47
  article-title: Ensembl 2024
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkad1049
– volume: 5
  start-page: 903
  year: 2009
  ident: ref_44
  article-title: Rescue of skeletal muscle alpha-actin-null mice by cardiac (fetal) alpha-actin
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200812132
– volume: 1617
  start-page: 460823
  year: 2020
  ident: ref_49
  article-title: Separation optimization in HPLC analysis implemented in R programming language
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2019.460823
– volume: 3
  start-page: 234
  year: 2007
  ident: ref_50
  article-title: Paternity analysis in Excel
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2007.08.005
– volume: 20
  start-page: 4288
  year: 2022
  ident: ref_22
  article-title: On modeling and utilizing chemical compound information with deep learning technologies: A task-oriented approach
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2022.07.049
– volume: 135
  start-page: 84
  year: 2018
  ident: ref_37
  article-title: Brahman genetics influence muscle fiber properties, protein degradation, and tenderness in an Angus-Brahman multibreed herd
  publication-title: Meat Sci.
  doi: 10.1016/j.meatsci.2017.09.006
– volume: 2
  start-page: 436
  year: 2016
  ident: ref_12
  article-title: Age-Related Changes in Skeletal Muscle of Cattle
  publication-title: Vet. Pathol.
  doi: 10.1177/0300985815624495
– ident: ref_29
  doi: 10.1109/JBHI.2024.3365176
– volume: 6
  start-page: 819
  year: 2016
  ident: ref_7
  article-title: Comparison of Characteristics of Myosin Heavy Chain-based Fiber and Meat Quality among Four Bovine Skeletal Muscles
  publication-title: Korean J. Food Sci. Anim. Resour.
  doi: 10.5851/kosfa.2016.36.6.819
– ident: ref_9
  doi: 10.3389/fgene.2020.565085
– volume: 3
  start-page: 442
  year: 2021
  ident: ref_38
  article-title: Relationship between beta-adrenergic agonists, calpain system activity and beef texture: A systematic review
  publication-title: J. Anim. Physiol. Anim. Nutr.
  doi: 10.1111/jpn.13479
– volume: 51
  start-page: D870
  year: 2023
  ident: ref_24
  article-title: CellMarker 2.0: An updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac947
– volume: 14
  start-page: 100219
  year: 2021
  ident: ref_13
  article-title: Main regulatory factors of marbling level in beef cattle
  publication-title: Vet. Anim. Sci.
  doi: 10.1016/j.vas.2021.100219
– volume: 52
  start-page: D138
  year: 2024
  ident: ref_45
  article-title: NCBI GEO: Archive for gene expression and epigenomics data sets: 23-year update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkad965
– volume: 2
  start-page: 1223
  year: 2019
  ident: ref_41
  article-title: The Neutrophil’s Role During Health and Disease
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00012.2018
– volume: 2
  start-page: ii198
  year: 2024
  ident: ref_19
  article-title: Federated unsupervised random forest for privacy-preserving patient stratification
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btae382
– volume: 6607
  start-page: eabm4470
  year: 2022
  ident: ref_23
  article-title: Deep-learning seismology
  publication-title: Science
  doi: 10.1126/science.abm4470
– ident: ref_8
  doi: 10.1038/s41598-021-87842-3
– ident: ref_28
  doi: 10.3390/ijms23031402
– volume: 6
  start-page: 929
  year: 2022
  ident: ref_40
  article-title: A review of cardiac blackleg in cattle, and report of 2 cases without skeletal muscle involvement in Argentina
  publication-title: J. Vet. Diagn. Investig.
  doi: 10.1177/10406387221120816
– volume: 9
  start-page: 6390
  year: 2023
  ident: ref_30
  article-title: DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data
  publication-title: IEEE Trans. Neural. Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3136503
– ident: ref_5
  doi: 10.3389/fcell.2022.840513
– volume: 248
  start-page: 120876
  year: 2024
  ident: ref_17
  article-title: A random forest approach to improve estimates of tributary nutrient loading
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.120876
– volume: 8
  start-page: 1492
  year: 2024
  ident: ref_25
  article-title: Toward universal cell embeddings: Integrating single-cell RNA-seq datasets across species with SATURN
  publication-title: Nat. Methods
  doi: 10.1038/s41592-024-02191-z
– volume: 13
  start-page: 2537
  year: 2021
  ident: ref_32
  article-title: Heterogeneity of immune cells in human atherosclerosis revealed by scRNA-Seq
  publication-title: Cardiovasc. Res.
– ident: ref_33
  doi: 10.3389/fonc.2021.711020
– volume: 10
  start-page: 6953
  year: 2022
  ident: ref_16
  article-title: CT-based radiomics analysis of different machine learning models for differentiating benign and malignant parotid tumors
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-022-08830-3
– volume: 6
  start-page: 1333
  year: 2001
  ident: ref_42
  article-title: Nemaline myopathy caused by mutations in the muscle alpha-skeletal-actin gene
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/320605
– ident: ref_3
  doi: 10.3390/ijms241210227
– volume: 23
  start-page: 2668
  year: 2018
  ident: ref_15
  article-title: Artificial Intelligence in Cardiology
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2018.03.521
– volume: 5
  start-page: 1589
  year: 2018
  ident: ref_21
  article-title: Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2767063
– volume: 6
  start-page: 931
  year: 2018
  ident: ref_34
  article-title: The Pareto Principle
  publication-title: J. Am. Coll. Radiol.
  doi: 10.1016/j.jacr.2018.02.026
– volume: 26
  start-page: 5270
  year: 2024
  ident: ref_46
  article-title: Python tooth-inspired fixation device for enhanced rotator cuff repair
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adl5270
– volume: 6
  start-page: 1216
  year: 2023
  ident: ref_14
  article-title: Artificial intelligence, machine learning, and deep learning in liver transplantation
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2023.01.006
– volume: 78
  start-page: S7
  year: 2022
  ident: ref_27
  article-title: Single-cell sequencing: A cutting edge tool in molecular medical research
  publication-title: Med. J. Armed Forces India
  doi: 10.1016/j.mjafi.2022.08.006
– ident: ref_20
  doi: 10.1186/s12889-023-17193-3
– ident: ref_31
  doi: 10.1186/s13059-021-02584-9
– volume: 5
  start-page: 637
  year: 2017
  ident: ref_26
  article-title: Single-cell RNA-sequencing: The future of genome biology is now
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2016.1201618
– volume: 47
  start-page: D607
  year: 2019
  ident: ref_48
  article-title: STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1131
SSID ssj0023259
Score 2.4320524
Snippet The skeletal muscle of cattle is the main component of their muscular system, responsible for supporting and movement functions. However, there are still many...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 2054
SubjectTerms Accuracy
Animals
B cells
Cattle
Cells
Data models
Deep learning
Gene Expression Profiling
Genes
Machine learning
Muscle, Skeletal - cytology
Muscle, Skeletal - metabolism
Muscles
Musculoskeletal system
Neutrophils
Rankings
Single-Cell Analysis - methods
Swine
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFL2CISRe0PgObMhIIJ6sJXHixk-oqygVCIQoQ3uL_KkVQjqadtL-PfcmadfwwGvtJpav7XNsn9wD8DpHFqGRyPOgTcozmSmunIw5UnFZqBA7E1qB7Bc5O8s-nufn_YFb08sqt2tiu1C7paUz8hPEOUnkQop3l384uUbR7WpvoXEb7iSINCTpKqYfdhsukbZmaQliEJe5kp3wXeA2_2Tx83dDVD6N82wASf8uzHvINFRN7sHQ9BDu9_yRjbuAP4Bbvn4IdztHyetHsKL5vfIXnSydzWfjr-yHrvAVTNeOzRGoKs8nvqrYvBNR4y_s5nydffNXSB3ZJ3_N2lqTakOpFBq2qNkpnT7gQ38hVCFnZ583DbbhMZxN33-fzHhvq8CtSNWaG2EVonigG0ij0lg4Z6xWQuU6UHYYhK9gENv8KElHWkoVpMuyYIOJCz0yVjyBg3pZ-2fARj4XNtYm8Tk-i-iFC4UTGSVxL6wLEbzZ9mx52WXPKHHXQREo9yMQwVvq9pImFfat1f23AfgWSk9VjguRCPIJyiM4GtTEyWCHxdvAlf1kbMqboRPBq10x_ZMEZrVfbro6siDTngiednHetZis40kKHEExGAG7CpSie1hSLy7aVN1JotrLzuf_b9cLuJeSr3CrbTuCg_Vq44-R7KzNy3ZE_wUorf2U
  priority: 102
  providerName: ProQuest
Title Comprehensive SHAP Values and Single-Cell Sequencing Technology Reveal Key Cell Clusters in Bovine Skeletal Muscle
URI https://www.ncbi.nlm.nih.gov/pubmed/40076676
https://www.proquest.com/docview/3176405763
https://www.proquest.com/docview/3176686737
https://pubmed.ncbi.nlm.nih.gov/PMC11900076
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFD7aRUi8TNzJGJWRQDwFkjhx4geEumqlAm2aVor6FtmxrZVlGfQyrf-ec5K2NIB4yUPs2NY5dr7P8cn5AF4nyCIUEnnfKR35sYilL40IfKTiIpMuMNrVAbJnYjCKP4-T8Q6s1UZXBpz9c2tHelKjafnu7ufyIy74D7TjxC37-8n36xnR8gjpxy7sIyalpGVwGm_OE5A21LJpIaKRLxIpmhD4v55ugdOfr-gtjGrHT24BUv8BHKyYJOs2rn8IO7Z6BPcabcnlY5jSSp_ayyZAnQ0H3XP2TZXYBVOVYUOErNL6PVuWbNiEU-Md9vtLO7uwt0gi2Re7ZHWtXrmgpAozNqnYMX2HwEavELTQcOx0McMxPIFR_-Rrb-CvBBb8gkdy7mteSMRzR2eRWkYBN0YXSnKZKEd5YhDInEaUs2kYpUoI6YSJY1c4HWQq1QV_CnvVTWWfA0ttwotA6dAm2BYRDeMyw2NK554VxnnwZm3Z_EeTRyPH_Qd5IN_2gAdvyew5ORxtW6jVXwLYCyWqyrsZDzkpBiUeHLVq4rIo2sVrx-XrWZUjWRLEUAX34NWmmJ6kULPK3iyaOiIj-R4PnjV-3oyYROQpKNiDrDUDNhUoWXe7pJpc1km7w1DWx56H_x_XC7gfkcJwHeV2BHvz6cK-RNoz1x3YTccpXrP-pw7sH5-cnV90CIiSTj3XfwHHeASY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgQXxBtDgUWi4mTV9tob7wGhEAgpfQiRFvXmrvehBoxT4gTUP8VvZMaO05gDt16zk_VqZna-md3ZGYBXCXoRCh1536k88mMRS18aEfjoiotUusDkrk6QPRSj4_jTSXKyAX_atzCUVtnaxNpQm6mmM_IdxDlBzoXgb89_-tQ1im5X2xYajVrs2YvfGLJVb3bfo3y3o2j44Wgw8pddBXzNIzn3c64lgpijC7hcRgE3JtdKcpkoR8VR0Hq7HE277YVRTwkhnTBx7LTLg1T1cs1x3mtwPeaI5PQyffhxFeDxqG7OFiLm-SKRokm0R8JgZ_LtR0WhQxQkcQcC_wWCNSTsZmmuwd7wDtxe-qus3yjYXdiw5T240XSwvLgPM7InM3vWpMGz8aj_mX1VBX6CqdKwMQJjYf2BLQo2bpK28Rd2eZ7Pvthf6Koy5CmrqQbFgko3VGxSsnd02oGTfkdoxBiBHSwqXMMDOL4Shj-EzXJa2sfAejbhOlB5aBOci9wZ41LDYyoan2rjPNhuOZudN9U6MoxySALZugQ8eE1sz2gTI2-1Wr5FwK9QOaysn_KQU1-ixIOtDiVuPt0dbgWXLTd_lV2qqgcvV8P0T0poK-100dCIlJoEefCokfNqxdSqnlKPPUg7GrAioJLg3ZFyclaXBg9DWV-uPvn_ul7AzdHRwX62v3u49xRuRdTTuM6r24LN-Wxhn6GjNc-f19rN4PSqt9NfmpA6Sw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYxExSnaJE6c-IDQdtvVlsJq1aWotzRxbHVpmi37APWv8euYyWO74cCt19ixrZnxPOzPMwDvA_QiEnTkbZOknu0LX9oyE46NrriIpHGy1JQA2ZEYnvifT4PTLfjTvIUhWGWjE0tFnc0UnZF30c4Jci4E75oaFjHeH3y6-mlTBSm6aW3KaVQicqSvf2P4tvh4uI-83vW8wcG3_tCuKwzYintyaadcSTRohi7jUuk5PMtSlUgug8RQohTU5CZFNa9D1wsTIaQRme8bZVInSsJUcRz3DmyHFBV1YHvvYDQ-Xod73CtLtbloAW0RSFHB7jmXTnf643JBgYTnBH7LIP5rFjbsYhuzuWEEBw_hQe29sl4lbo9gSxeP4W5Vz_L6CcxJu8z1eQWKZ5Nhb8y-JzlOwZIiYxM0k7m2-zrP2aSCcOMXdnO6z471L3RcGVKVlb36-YoSOSzYtGB7dPaBg16gocSIgX1dLXANT-HkVkj-DDrFrNAvgIU64MpJUlcHOBY5N5mJMu5TCvlIZcaC3Yay8VWVuyPGmIc4EG9ywIIPRPaYtjTSViX1ywSchZJjxb2Iu5yqFAUW7LR64lZU7eaGcXGtChbxjeBa8G7dTH8SvK3Qs1XVR0RUMsiC5xWf1yumwvUERLYgaknAugMlCG-3FNPzMlG468ryqvXl_9f1Fu7hVoq_HI6OXsF9jwoclyC7Hegs5yv9Gr2uZfqmFm8GZ7e9o_4Cb1I_3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+SHAP+Values+and+Single-Cell+Sequencing+Technology+Reveal+Key+Cell+Clusters+in+Bovine+Skeletal+Muscle&rft.jtitle=International+journal+of+molecular+sciences&rft.au=Guo%2C+Yaqiang&rft.au=Ma%2C+Fengying&rft.au=Li%2C+Peipei&rft.au=Guo%2C+Lili&rft.date=2025-03-01&rft.pub=MDPI+AG&rft.issn=1661-6596&rft.eissn=1422-0067&rft.volume=26&rft.issue=5&rft.spage=2054&rft_id=info:doi/10.3390%2Fijms26052054&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-0067&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-0067&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-0067&client=summon