Response functions in linear viscoelastic constitutive equations and related fractional operators

This study addresses the stress–strain relaxation functions of solid polymers in the framework of the linear viscoelasticity with aim to establish the adequate fractional operators emerging from the hereditary integrals. The analysis encompasses power-law and non-power-law materials, thus allowing t...

Full description

Saved in:
Bibliographic Details
Published inMathematical modelling of natural phenomena Vol. 14; no. 3; p. 305
Main Author Hristov, Jordan
Format Journal Article
LanguageEnglish
Published Les Ulis EDP Sciences 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study addresses the stress–strain relaxation functions of solid polymers in the framework of the linear viscoelasticity with aim to establish the adequate fractional operators emerging from the hereditary integrals. The analysis encompasses power-law and non-power-law materials, thus allowing to see the origins of application of the tools of the classical fractional calculus with singular memory kernels and the ideas leading towards fractional operators with non-singular (regular) kernels. A step ahead in modelling with hereditary integrals is the decomposition of non-power-law relaxation curves by Prony series, thus obtaining discrete relaxation kernels with a finite number of terms. This approach allows for seeing the physical background of the newly defined Caputo–Fabrizio time fractional derivative and demonstrates how other constitutive equations could be modified with non-singular fading memories. The non-power-law relaxation curves also allow for approximations by the Mittag–Leffler function of one parameter that leads reasonably into stress–strain hereditary integrals in terms of Atangana–Baleanu fractional derivative of Caputo sense. The main outcomes of the analysis done are the demonstrated distinguishes between the relaxation curve behaviours of different materials and are therefore the adequate modelling with suitable fractional operators.
AbstractList This study addresses the stress–strain relaxation functions of solid polymers in the framework of the linear viscoelasticity with aim to establish the adequate fractional operators emerging from the hereditary integrals. The analysis encompasses power-law and non-power-law materials, thus allowing to see the origins of application of the tools of the classical fractional calculus with singular memory kernels and the ideas leading towards fractional operators with non-singular (regular) kernels. A step ahead in modelling with hereditary integrals is the decomposition of non-power-law relaxation curves by Prony series, thus obtaining discrete relaxation kernels with a finite number of terms. This approach allows for seeing the physical background of the newly defined Caputo–Fabrizio time fractional derivative and demonstrates how other constitutive equations could be modified with non-singular fading memories. The non-power-law relaxation curves also allow for approximations by the Mittag–Leffler function of one parameter that leads reasonably into stress–strain hereditary integrals in terms of Atangana–Baleanu fractional derivative of Caputo sense. The main outcomes of the analysis done are the demonstrated distinguishes between the relaxation curve behaviours of different materials and are therefore the adequate modelling with suitable fractional operators.
Author Hristov, Jordan
Author_xml – sequence: 1
  givenname: Jordan
  surname: Hristov
  fullname: Hristov, Jordan
  email: jordan.hristov@mail.bg
  organization: Department of Chemical Engineering, University of Chemical Technology and Metallurgy, 8 Kl. Ohridsky Blvd., 1756 Sofia, Bulgaria
BookMark eNp9kE9r3DAQxUVJoZt0b_0AglzjZiTZkvYYlmzSNrRQWnoUY1kCbby2V5KX5NvH-4ccAs1cZuD93szwzslZ13eOkC8MvjKo2PVm0w3XHJgGqT6QGVMSCsmAnZEZLJQoKlHqT2Se0hqmEqwUADOCv10a-i456sfO5jCNNHS0DZ3DSHch2d61mHKw1E5aDnnMYeeo2454pLFraJyY7BrqIx52YEv7wUXMfUyfyUePbXLzU78gf1e3f5b3xcOvu2_Lm4fCCr7IBaq6snUltQcU3C_A6lrWTVM32jNfee81VugYlFrXCwtlzV0twSNvGoFSigtyedw7xH47upTNuh_j9EoynGvBNQNQ71NSlcArtaeujpSNfUrReTPEsMH4bBiYfdpmn7Y5pT3h_A1uQz7EkyOG9n-m4mgKKbun1wMYH82kqspo-Gfu1I9V-fP7ytyLFyVYlu0
CitedBy_id crossref_primary_10_1007_s10973_020_09835_0
crossref_primary_10_1016_j_cam_2022_114840
crossref_primary_10_1016_j_chaos_2021_111078
crossref_primary_10_1177_14644207211062497
crossref_primary_10_3390_fractalfract3020014
crossref_primary_10_1080_09720502_2020_1800225
crossref_primary_10_1155_2021_5572823
crossref_primary_10_1186_s13662_020_02671_4
crossref_primary_10_3390_fractalfract3020016
crossref_primary_10_3390_fractalfract6080434
crossref_primary_10_1007_s40819_023_01564_w
crossref_primary_10_1016_j_polymer_2023_126565
crossref_primary_10_1016_j_joes_2020_10_004
crossref_primary_10_29105_ingenierias23_88_3
crossref_primary_10_1016_j_matlet_2021_130238
crossref_primary_10_3390_fractalfract3010012
crossref_primary_10_1155_2021_8817794
crossref_primary_10_1016_j_cnsns_2020_105490
crossref_primary_10_1016_j_ijheatmasstransfer_2019_04_094
crossref_primary_10_3390_math12020357
crossref_primary_10_1051_mmnp_2021030
crossref_primary_10_3390_sym11070879
crossref_primary_10_1002_mma_5949
crossref_primary_10_3389_fphy_2019_00189
crossref_primary_10_3390_app13053065
crossref_primary_10_1155_2023_6401067
crossref_primary_10_3390_fractalfract3020027
crossref_primary_10_1007_s11253_022_02000_w
crossref_primary_10_1080_25765299_2024_2423467
crossref_primary_10_3389_fphy_2018_00135
crossref_primary_10_1016_j_cnsns_2020_105186
crossref_primary_10_2298_TSCI221219223H
crossref_primary_10_1186_s13662_019_2082_8
crossref_primary_10_3390_axioms13020099
crossref_primary_10_2478_jamsi_2021_0003
crossref_primary_10_3390_sym12061034
crossref_primary_10_1002_mma_6343
crossref_primary_10_3390_math7090766
crossref_primary_10_1515_geo_2022_0446
crossref_primary_10_1155_2020_3842946
crossref_primary_10_1140_epjp_i2019_12697_7
crossref_primary_10_1002_num_22476
crossref_primary_10_37863_umzh_v73i9_805
crossref_primary_10_1016_j_chaos_2019_109454
crossref_primary_10_1111_jfpe_14060
crossref_primary_10_1142_S0217984924500866
crossref_primary_10_1016_j_chaos_2019_109530
crossref_primary_10_1155_2020_1727358
Cites_doi 10.1016/S0020-7683(96)00178-3
10.1016/j.mechmat.2008.11.008
10.1186/s13662-018-1680-1
10.1016/j.matdes.2015.03.063
10.1016/0021-9290(93)90088-V
10.1016/0377-0257(93)85052-C
10.1016/0022-5096(95)00004-3
10.18576/pfda/030402
10.1016/j.tecto.2017.10.021
10.1016/j.biomaterials.2005.10.034
10.1016/j.mechmat.2017.11.003
10.1142/p614
10.3390/math6020015
10.1002/pen.760320206
10.1122/1.4892114
10.1016/j.mechmat.2010.07.007
10.1007/BF01993026
10.1016/j.cpc.2018.04.015
10.1002/(SICI)1097-0207(19961130)39:22<3903::AID-NME34>3.0.CO;2-C
10.1016/j.ijsolstr.2015.04.018
10.1016/S0093-6413(01)00185-9
10.1007/978-3-642-88210-4
10.1007/BF00411984
10.1016/j.amc.2015.10.021
10.1103/RevModPhys.61.41
10.1007/s11043-011-9162-9
10.1016/j.mechmat.2018.07.012
10.3390/e17064439
10.1016/j.triboint.2016.06.003
10.1007/978-3-642-73602-5
10.1088/0266-5611/8/6/005
10.9734/ajr2p/2018/v1i324617
10.1007/s11012-003-6437-5
10.1016/S0020-7683(98)00194-2
10.1016/j.jbiomech.2015.02.001
10.1016/j.ijmecsci.2017.06.032
10.1016/j.ijrmms.2010.11.004
10.1090/qam/295683
10.1016/j.physa.2017.10.002
10.1016/j.jbiomech.2011.12.023
10.1088/0305-4470/28/23/012
10.1088/0953-8984/21/34/345802
10.1016/j.jmbbm.2015.03.011
10.1016/j.cnsns.2018.02.019
10.3389/fphy.2018.00135
10.1002/(SICI)1099-0488(199706)35:8<1225::AID-POLB8>3.0.CO;2-S
10.1007/s11071-018-4289-8
10.1016/j.mechmat.2016.04.002
10.1016/j.taml.2015.11.002
10.1016/j.actbio.2011.07.035
10.1016/j.ultras.2015.09.003
10.1016/j.foodhyd.2016.05.020
10.1016/j.cnsns.2014.03.014
10.1111/j.1365-246X.1967.tb02303.x
10.1016/j.dental.2007.08.008
10.1007/BF00281562
10.1016/j.cnsns.2017.12.001
10.1016/0045-7949(90)90096-K
10.1115/1.2812256
10.1122/1.549887
10.1007/BF00366673
10.1007/s11012-016-0456-5
10.3389/fphy.2017.00052
10.1007/BF00366960
10.1061/(ASCE)0733-9399(1999)125:8(914)
10.1016/S0016-0032(21)90171-6
10.1016/j.physa.2016.10.066
10.1007/s00397-005-0443-6
10.1016/j.jfoodeng.2014.05.019
10.1007/s00033-017-0808-6
10.1016/0016-0032(46)90636-9
10.1016/0021-9290(94)00130-V
10.1007/s11043-005-3442-1
10.18576/pfda/020101
10.1007/s11012-003-9400-6
10.1007/s11012-016-0376-4
10.1016/S0041-624X(00)00024-X
10.1371/journal.pone.0143090
10.1002/app.31093
10.1016/j.jpowsour.2010.08.075
10.1007/BF02124750
10.1016/j.amc.2017.08.048
10.1016/j.tsf.2016.03.064
10.5772/64251
10.1016/j.tws.2017.06.030
10.1061/(ASCE)ST.1943-541X.0000822
10.1016/S0895-7177(01)00137-6
10.1007/978-1-4615-9970-8
10.1016/0013-7944(93)90041-P
10.1016/j.cnsns.2009.05.004
10.1016/j.jmbbm.2014.05.031
10.1137/1.9781611971484
10.1016/j.eswa.2011.12.033
10.3390/fractalfract2030020
10.1016/j.chaos.2018.07.033
10.1016/j.cjph.2018.02.007
10.1016/0032-3861(95)90680-Z
10.1016/j.actamat.2008.07.030
10.2298/TSCI160229115H
10.1007/BF01515713
10.1007/BF01976435
10.1016/j.polymer.2013.08.062
10.1111/j.1475-1305.2008.00502.x
10.1016/j.cnsns.2017.08.002
10.1002/andp.19314030608
10.1177/058310249903100201
10.1016/S0030-4018(96)00384-7
10.1016/j.oceaneng.2015.06.023
10.1142/2905
10.1016/j.jmbbm.2015.10.008
10.1016/j.matpr.2016.03.037
10.2298/TSCI160111018A
10.1007/978-0-387-73861-1
10.1007/s11043-007-9035-4
10.1016/j.physa.2018.04.047
10.1016/j.conbuildmat.2015.09.016
10.1016/j.cnsns.2017.12.003
10.1002/cta.2564
10.1103/RevModPhys.33.239
10.1016/j.compstruc.2007.01.024
10.1016/0377-0257(92)80043-W
10.1016/j.camwa.2016.05.002
10.3233/BIR-1997-34603
10.1016/j.chaos.2018.07.022
10.1063/1.1700076
10.1016/0022-247X(78)90234-2
10.1016/j.engstruct.2016.04.024
10.1063/1.470346
ContentType Journal Article
Copyright 2019. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.mmnp-journal.org/articles/mmnp/abs/2019/03/mmnp180121/mmnp180121.html .
Copyright_xml – notice: 2019. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.mmnp-journal.org/articles/mmnp/abs/2019/03/mmnp180121/mmnp180121.html .
DBID BSCLL
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1051/mmnp/2018067
DatabaseName Istex
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Materials Research Database
Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1760-6101
ExternalDocumentID 10_1051_mmnp_2018067
ark_67375_80W_G7KF4NJF_H
GroupedDBID -E.
.FH
0E1
169
3V.
4.4
5GY
5VS
7~V
8FE
8FG
8FH
AADXX
AAFWJ
AAOTM
ABDBF
ABJCF
ABJNI
ABKKG
ABUBZ
ABZDU
ACACO
ACGFS
ACIMK
ACIWK
ACPRK
ACQPF
ADBBV
AEMTW
AENEX
AFAYI
AFHSK
AFKRA
AFRAH
AFUTZ
AJPFC
ALMA_UNASSIGNED_HOLDINGS
ARABE
ARAPS
AZPVJ
BENPR
BHPHI
BPHCQ
BSCLL
C0O
CS3
DC4
EBS
EJD
ESX
F5P
FRP
GFF
GI~
HCIFZ
HG-
HST
HZ~
I-F
I.6
IL9
I~P
J36
J38
J9A
K6V
K7-
L6V
LK8
LO0
M-V
M0N
M7P
M7S
O9-
OK1
P2P
P62
PQQKQ
PROAC
RCA
RED
RR0
S6-
TUS
WQ3
WXU
WXY
~8M
AAOGA
AAYXX
ABGDZ
ABNSH
ACRPL
ACUHS
ADNMO
AGQPQ
AMVHM
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c329t-a7b5cb568f0a32f90c8b6bddbd8f1f5fff8a5ae10488b9c04b2eb60fa2dd3a663
ISSN 0973-5348
IngestDate Mon Jun 30 10:18:56 EDT 2025
Mon Jun 30 10:10:41 EDT 2025
Tue Jul 01 01:22:53 EDT 2025
Thu Apr 24 23:05:15 EDT 2025
Wed Oct 30 09:24:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://www.edpsciences.org/en/authors/copyright-and-licensing
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c329t-a7b5cb568f0a32f90c8b6bddbd8f1f5fff8a5ae10488b9c04b2eb60fa2dd3a663
Notes href:https://www.mmnp-journal.org/articles/mmnp/abs/2019/03/mmnp180121/mmnp180121.html
ark:/67375/80W-G7KF4NJF-H
publisher-ID:mmnp180121
istex:4A53D21D7E070F2E07BC98191F2DE70B5B28B02C
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2267402577
PQPubID 626347
ParticipantIDs proquest_journals_2283281007
proquest_journals_2267402577
crossref_primary_10_1051_mmnp_2018067
crossref_citationtrail_10_1051_mmnp_2018067
istex_primary_ark_67375_80W_G7KF4NJF_H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle Mathematical modelling of natural phenomena
PublicationYear 2019
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Schneider (R129) 2016; 122
Boltzmann (R23) 1874; 70
de Prony (R120) 1975; 1
Guisti (R64) 2018; 56
O’Down (R112) 1995; 43
Enderlein (R50) 1997; 134
Hristov (R72) 2017; 21
Holzapfel (R70) 1996; 39
Caputo (R26) 1967; 13
Vandenberghe (R149) 2014; 142
Berry (R19) 1997; 36
Phillips (R116) 2006; 27
Zhou (R155) 2016; 48
Atangana (R12) 2018; 114
R22
R24
R29
Shou (R134) 2018; 117
Sliker (R137) 2016; 2012
R1
Czyz (R44) 1990; 37
Ciambella (R34) 2014; 37
Andrews (R5) 2015; 48
Ravikumar (R122) 2015; 47
Lin (R92) 2001; 28
Huang (R76) 2016; 618
Wintner (R150) 1959; IX
Ikeno (R77) 2018; 230
R31
Adolfsson (R2) 2005; 9
Caputo (R28) 2016; 2
Prieto-Munoz (R119) 2013; 140
Ortigueira (R113) 2018; 59
Valerio (R148) 2014; 19
Hanyga (R68) 2005; 44
Singh (R135) 2018; 316
Jaloha (R79) 2015; 67–68
R102
Schiessel (R128) 1995; 28
DeHoff (R46) 2008; 24
Babaei (R14) 2016; 55
R41
Scott-Blair (R130) 1951; A2
Ciambella (R33) 2010; 42
Coleman (R35) 1961; 33
Colombaro (R38) 2017; 68
Londono (R95) 2016; 98
Long (R96) 2018; 127
R48
Glockle (R60) 1994; 33
Kneser (R86) 1931; 6
Mauro (R101) 2018; 506
Johnson (R80) 1999; 31
Baumgaertel (R17) 1992; 44
Bagley (R15) 1986; 30
Cui (R43) 2011; 196
Guisti (R63) 2018; 93
Trzmiel (R146) 2009; 21
Caputo (R27) 2015; 1
Choi (R32) 2008; 56
R56
Renardy (R123) 1982; 21
R58
Ahmed (R3) 2018; 56
Bhattarcharjee (R20) 2012; 16
Enelund (R51) 1999; 36
Friedrich (R57) 1993; 46
Knaus (R85) 2007; 11
Mitra (R106) 2012; 39
Storm (R139) 1951; 22
R127
Drozdov (R49) 1997; 34
Tayeb (R144) 2017; 130
R124
Bilston (R21) 1997; 34
Atangana (R8) 2016; 20
Colombaro (R39) 2018; 3
R69
Fernandez (R55) 2011; 47
Lai (R89) 1995; 36
Gurtin (R65) 1968; 28
Hansen (R66) 1992; 8
Zanzotto (R153) 1997; 35
Hristov (R75) 2018; 6
R118
Tarasov (R142) 2018; 62
Johnson (R81) 1997; 119
R117
Atangan (R7) 2016; 273
Sasaki (R125) 1993; 26
Guisti (R62) 2016; 51
Nutting (R111) 1946; 242
Joseph (R82) 1989; 61
Gomez-Aguilar (R61) 2005; 17
Wyatt (R151) 2010; 114
Atangana (R10) 2015; 7
Scott-Blair (R131) 1965; 6
Troyer (R145) 2012; 8
Colombaro (R37) 2017; 52
Zhang (R154) 2016; 64
Atangana (R11) 2015; 114
R73
Fabrzio (R53) 2004; 39
Hristov (R71) 2016; 20
Kim (R84) 2013; 54
Liu (R94) 2012; 5
Morales Delgado (R107) 2018; 46
Mun (R108) 2009; 41
R121
Allison (R4) 2018; 733
Hanyga (R67) 2001; 34
Carre (R30) 1999; 125
dos Santos (R47) 2018; 2
Fajman (R54) 2007; 85
Kosa (R87) 2016; 3
Laksari (R90) 2012; 45
Tateishi (R143) 2017; 5
R147
Nutting (R110) 1921; 191
Araujo (R6) 2000; 24
Singh (R136) 2018; 2018
Canestrati (R25) 2015; 76
Crook (R42) 1993; 44
Kumar (R88) 2018; 492
Corless (R40) 1996; 5
Markovitz (R100) 1977; 21
Fabrzio (R52) 2004; 39
Jaishankar (R78) 2014; 58
Jozwiak (R83) 2015; 10
Scott-Blair (R132) 1972; 11
Sheng (R133) 2015; 105
Papagiannnopoulos (R114) 2016; 61
Nunciato (R109) 1971; 29
Sun (R141) 2017; 468
Das (R45) 2018; 1
Garbarski (R59) 1992; 32
Baleanu (R16) 2018; 59
Sasaki (R126) 1995; 28
Atangana (R13) 2015; 7
Xu (R152) 2017; 73
Song (R138) 2006; 18
R91
Pelayo (R115) 2017; 119
Meral (R103) 2010; 15
Miller (R105) 1978; 66
Colombaro (R36) 2018; 6
R98
Sun (R140) 2015; 99
R99
Atangana (R9) 2016; 17
R18
Hristov (R74) 2017; 3
Losada (R97) 2015; 1
Linde (R93) 2000; 38
Metzler (R104) 1995; 103
References_xml – volume: 34
  start-page: 2685
  year: 1997
  ident: R49
  publication-title: Int. J. Solids Struct
  doi: 10.1016/S0020-7683(96)00178-3
– volume: 41
  start-page: 339
  year: 2009
  ident: R108
  publication-title: Mech. Mater
  doi: 10.1016/j.mechmat.2008.11.008
– volume: 2018
  start-page: 231
  issue: 2018
  year: 2018
  ident: R136
  publication-title: Adv. Differ. Equ
  doi: 10.1186/s13662-018-1680-1
– volume: 76
  start-page: 141
  year: 2015
  ident: R25
  publication-title: Mater. Des
  doi: 10.1016/j.matdes.2015.03.063
– volume: 26
  start-page: 1369
  year: 1993
  ident: R125
  publication-title: J. Biomech
  doi: 10.1016/0021-9290(93)90088-V
– volume: 1
  start-page: 73
  year: 2015
  ident: R27
  publication-title: Progr. Fract. Differ. Appl
– volume: 46
  start-page: 307
  year: 1993
  ident: R57
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/0377-0257(93)85052-C
– ident: R127
– volume: 43
  start-page: 771
  year: 1995
  ident: R112
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(95)00004-3
– volume: 3
  start-page: 255
  year: 2017
  ident: R74
  publication-title: Progr. Fract. Differ. Appl
  doi: 10.18576/pfda/030402
– volume: 733
  start-page: 232
  year: 2018
  ident: R4
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2017.10.021
– volume: 27
  start-page: 2162
  year: 2006
  ident: R116
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.10.034
– volume: 117
  start-page: 116
  year: 2018
  ident: R134
  publication-title: Mech. Mater
  doi: 10.1016/j.mechmat.2017.11.003
– ident: R98
  doi: 10.1142/p614
– ident: R56
– volume: 6
  start-page: 15
  year: 2018
  ident: R36
  publication-title: Mathematics
  doi: 10.3390/math6020015
– volume: 32
  start-page: 107
  year: 1992
  ident: R59
  publication-title: Polym. Eng. Sci
  doi: 10.1002/pen.760320206
– volume: 58
  start-page: 1751
  year: 2014
  ident: R78
  publication-title: J. Rheol
  doi: 10.1122/1.4892114
– ident: R1
– volume: 42
  start-page: 932
  year: 2010
  ident: R33
  publication-title: Mech. Mater
  doi: 10.1016/j.mechmat.2010.07.007
– volume: 11
  start-page: 237
  year: 1972
  ident: R132
  publication-title: Rheol. Acta
  doi: 10.1007/BF01993026
– volume: 230
  start-page: 135
  year: 2018
  ident: R77
  publication-title: Comput. Phys. Commun
  doi: 10.1016/j.cpc.2018.04.015
– volume: 39
  start-page: 3903
  year: 1996
  ident: R70
  publication-title: Int. J. Numer. Methods Eng
  doi: 10.1002/(SICI)1097-0207(19961130)39:22<3903::AID-NME34>3.0.CO;2-C
– volume: 67–68
  start-page: 169
  year: 2015
  ident: R79
  publication-title: Int. J. Solids Struct
  doi: 10.1016/j.ijsolstr.2015.04.018
– volume: 28
  start-page: 365
  year: 2001
  ident: R92
  publication-title: Mech. Res. Commun
  doi: 10.1016/S0093-6413(01)00185-9
– ident: R91
  doi: 10.1007/978-3-642-88210-4
– volume: A2
  start-page: 225
  year: 1951
  ident: R130
  publication-title: Appl. Sci. Res
  doi: 10.1007/BF00411984
– volume: 273
  start-page: 948
  year: 2016
  ident: R7
  publication-title: Appl. Math. Comput
  doi: 10.1016/j.amc.2015.10.021
– volume: 61
  start-page: 41
  year: 1989
  ident: R82
  publication-title: Rev. Mod. Phys
  doi: 10.1103/RevModPhys.61.41
– volume: 16
  start-page: 287
  year: 2012
  ident: R20
  publication-title: Mech. Time-Depend. Mater
  doi: 10.1007/s11043-011-9162-9
– volume: 127
  start-page: 55
  year: 2018
  ident: R96
  publication-title: Mech. Mater
  doi: 10.1016/j.mechmat.2018.07.012
– volume: 17
  start-page: 4439
  year: 2016
  ident: R9
  publication-title: Entropy
  doi: 10.3390/e17064439
– volume: 2012
  start-page: 472
  year: 2016
  ident: R137
  publication-title: Tribol. Int
  doi: 10.1016/j.triboint.2016.06.003
– ident: R147
  doi: 10.1007/978-3-642-73602-5
– volume: 8
  start-page: 849
  year: 1992
  ident: R66
  publication-title: Inverse Probl
  doi: 10.1088/0266-5611/8/6/005
– ident: R99
– volume: 1
  start-page: 1
  year: 2018
  ident: R45
  publication-title: Asian J. Res. Rev. Phys
  doi: 10.9734/ajr2p/2018/v1i324617
– volume: 24
  start-page: 91
  year: 2000
  ident: R6
  publication-title: J. Comput. Math
– volume: 39
  start-page: 531
  year: 2004
  ident: R52
  publication-title: Meccanica
  doi: 10.1007/s11012-003-6437-5
– volume: 36
  start-page: 4447
  year: 1999
  ident: R51
  publication-title: Int. J. Solids Struct
  doi: 10.1016/S0020-7683(98)00194-2
– volume: 48
  start-page: 1485
  year: 2015
  ident: R5
  publication-title: J. Biomech
  doi: 10.1016/j.jbiomech.2015.02.001
– volume: 130
  start-page: 437
  year: 2017
  ident: R144
  publication-title: Int. J. Mech. Sci
  doi: 10.1016/j.ijmecsci.2017.06.032
– volume: 1
  start-page: 87
  year: 2015
  ident: R97
  publication-title: Progr. Fract. Differ. Appl
– volume: 48
  start-page: 116
  year: 2016
  ident: R155
  publication-title: Int. J. Rock Mech. Min. Sci
  doi: 10.1016/j.ijrmms.2010.11.004
– volume: 29
  start-page: 187
  year: 1971
  ident: R109
  publication-title: Q. Appl. Math
  doi: 10.1090/qam/295683
– volume: 492
  start-page: 155
  year: 2018
  ident: R88
  publication-title: Physica A
  doi: 10.1016/j.physa.2017.10.002
– volume: 45
  start-page: 642
  year: 2012
  ident: R90
  publication-title: J. Biomech
  doi: 10.1016/j.jbiomech.2011.12.023
– volume: 28
  start-page: 6567
  year: 1995
  ident: R128
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/28/23/012
– volume: 21
  start-page: 345802
  year: 2009
  ident: R146
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/34/345802
– volume: 47
  start-page: 87
  year: 2015
  ident: R122
  publication-title: J. Mech. Behav. Biomed. Mater
  doi: 10.1016/j.jmbbm.2015.03.011
– volume: 62
  start-page: 157
  year: 2018
  ident: R142
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2018.02.019
– volume: 6
  start-page: 135
  year: 2018
  ident: R75
  publication-title: Front. Phys
  doi: 10.3389/fphy.2018.00135
– volume: 35
  start-page: 1225
  year: 1997
  ident: R153
  publication-title: J. Polym. Sci. B
  doi: 10.1002/(SICI)1099-0488(199706)35:8<1225::AID-POLB8>3.0.CO;2-S
– volume: 93
  start-page: 1757
  year: 2018
  ident: R63
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-018-4289-8
– volume: 98
  start-page: 81
  year: 2016
  ident: R95
  publication-title: Mech. Mater
  doi: 10.1016/j.mechmat.2016.04.002
– ident: R73
– volume: 5
  start-page: 222
  year: 2012
  ident: R94
  publication-title: Theoret. Appl. Mech. Lett
  doi: 10.1016/j.taml.2015.11.002
– volume: 8
  start-page: 240
  year: 2012
  ident: R145
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2011.07.035
– volume: 64
  start-page: 170
  year: 2016
  ident: R154
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2015.09.003
– volume: 20
  start-page: 765
  year: 2016
  ident: R71
  publication-title: Therm. Sci
– volume: 61
  start-page: 201
  year: 2016
  ident: R114
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2016.05.020
– volume: 19
  start-page: 3419
  year: 2014
  ident: R148
  publication-title: Commun. Nonlinear Sci. Numer. Simul
  doi: 10.1016/j.cnsns.2014.03.014
– volume: 13
  start-page: 529
  year: 1967
  ident: R26
  publication-title: Geophys. J. R. Astron. Soc
  doi: 10.1111/j.1365-246X.1967.tb02303.x
– ident: R31
– volume: 24
  start-page: 744
  year: 2008
  ident: R46
  publication-title: Dent. Mater
  doi: 10.1016/j.dental.2007.08.008
– volume: 28
  start-page: 40
  year: 1968
  ident: R65
  publication-title: Arch. Ration. Mech. Anal
  doi: 10.1007/BF00281562
– volume: 59
  start-page: 608
  year: 2018
  ident: R113
  publication-title: Commun. Nonlinear Sci. Numer. Simul
  doi: 10.1016/j.cnsns.2017.12.001
– volume: 37
  start-page: 637
  year: 1990
  ident: R44
  publication-title: Comput. Struct
  doi: 10.1016/0045-7949(90)90096-K
– volume: 119
  start-page: 273
  year: 1997
  ident: R81
  publication-title: ASME J. Eng. Mater. Technol
  doi: 10.1115/1.2812256
– volume: 30
  start-page: 133
  year: 1986
  ident: R15
  publication-title: J. Rheol
  doi: 10.1122/1.549887
– volume: 36
  start-page: 320
  year: 1997
  ident: R19
  publication-title: Rheol. Acta
  doi: 10.1007/BF00366673
– volume: 52
  start-page: 825
  year: 2017
  ident: R37
  publication-title: Meccanica
  doi: 10.1007/s11012-016-0456-5
– volume: 5
  start-page: 52
  year: 2017
  ident: R143
  publication-title: Front. Phys
  doi: 10.3389/fphy.2017.00052
– volume: 33
  start-page: 337
  year: 1994
  ident: R60
  publication-title: Rheol. Acta
  doi: 10.1007/BF00366960
– volume: 125
  start-page: 914
  year: 1999
  ident: R30
  publication-title: J. Eng. Mech
  doi: 10.1061/(ASCE)0733-9399(1999)125:8(914)
– volume: 191
  start-page: 679
  year: 1921
  ident: R110
  publication-title: J. Franklin Inst.
  doi: 10.1016/S0016-0032(21)90171-6
– volume: 468
  start-page: 590
  year: 2017
  ident: R141
  publication-title: Physica A
  doi: 10.1016/j.physa.2016.10.066
– volume: 44
  start-page: 614
  year: 2005
  ident: R68
  publication-title: Rheol. Acta
  doi: 10.1007/s00397-005-0443-6
– volume: 18
  start-page: 18
  year: 2006
  ident: R138
  publication-title: Korea-Aust. Rheol. J
– volume: 7
  start-page: 1
  year: 2015
  ident: R10
  publication-title: Adv. Mech. Eng
– volume: 142
  start-page: 31
  year: 2014
  ident: R149
  publication-title: J. Food. Eng
  doi: 10.1016/j.jfoodeng.2014.05.019
– volume: 68
  start-page: 62
  year: 2017
  ident: R38
  publication-title: Z. Angew. Math. Phys
  doi: 10.1007/s00033-017-0808-6
– volume: 242
  start-page: 449
  year: 1946
  ident: R111
  publication-title: J Franklin Inst
  doi: 10.1016/0016-0032(46)90636-9
– volume: 28
  start-page: 809
  year: 1995
  ident: R126
  publication-title: J. Biomech
  doi: 10.1016/0021-9290(94)00130-V
– volume: 9
  start-page: 15
  year: 2005
  ident: R2
  publication-title: Mech. Time-Depend Mater
  doi: 10.1007/s11043-005-3442-1
– volume: 2
  start-page: 1
  year: 2016
  ident: R28
  publication-title: Progr. Fract. Differ. Appl
  doi: 10.18576/pfda/020101
– volume: 39
  start-page: 547
  year: 2004
  ident: R53
  publication-title: Meccanica
  doi: 10.1007/s11012-003-9400-6
– volume: 51
  start-page: 2321
  year: 2016
  ident: R62
  publication-title: Meccanica
  doi: 10.1007/s11012-016-0376-4
– volume: 38
  start-page: 945
  year: 2000
  ident: R93
  publication-title: Ultrasonics
  doi: 10.1016/S0041-624X(00)00024-X
– volume: 10
  start-page: e0143090
  year: 2015
  ident: R83
  publication-title: PloS One
  doi: 10.1371/journal.pone.0143090
– volume: 114
  start-page: 4076
  year: 2010
  ident: R151
  publication-title: J. Appl. Polym. Sci
  doi: 10.1002/app.31093
– volume: 196
  start-page: 1216
  year: 2011
  ident: R43
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.08.075
– ident: R69
– volume: 5
  start-page: 329
  year: 1996
  ident: R40
  publication-title: Adv. Comput. Math
  doi: 10.1007/BF02124750
– volume: 316
  start-page: 504
  year: 2018
  ident: R135
  publication-title: Appl. Math. Comput
  doi: 10.1016/j.amc.2017.08.048
– volume: 618
  start-page: 2
  year: 2016
  ident: R76
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2016.03.064
– ident: R29
  doi: 10.5772/64251
– volume: 119
  start-page: 324
  year: 2017
  ident: R115
  publication-title: Thin-Walled Struct
  doi: 10.1016/j.tws.2017.06.030
– volume: IX
  start-page: 165
  issue: 38
  year: 1959
  ident: R150
  publication-title: Math. Pure Appl
– volume: 21
  start-page: 384
  year: 1977
  ident: R100
  publication-title: Trans. Soc. Rheol
– volume: 140
  start-page: 04013053
  year: 2013
  ident: R119
  publication-title: J. Struct. Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0000822
– volume: 34
  start-page: 1399
  year: 2001
  ident: R67
  publication-title: Math. Comput. Model
  doi: 10.1016/S0895-7177(01)00137-6
– ident: R117
  doi: 10.1007/978-1-4615-9970-8
– volume: 44
  start-page: 167
  year: 1993
  ident: R42
  publication-title: Eng. Fract. Mech
  doi: 10.1016/0013-7944(93)90041-P
– volume: 15
  start-page: 939
  year: 2010
  ident: R103
  publication-title: Commun. Nonlinear Sci. Numer. Simul
  doi: 10.1016/j.cnsns.2009.05.004
– volume: 37
  start-page: 286
  year: 2014
  ident: R34
  publication-title: J. Mech. Behav. Biomed. Mater
  doi: 10.1016/j.jmbbm.2014.05.031
– volume: 3
  start-page: 26
  year: 2018
  ident: R39
  publication-title: Int. J. Theor. Appl. Mech
– ident: R22
  doi: 10.1137/1.9781611971484
– volume: 7
  start-page: 1
  year: 2015
  ident: R13
  publication-title: Adv. Mech. Eng
– volume: 39
  start-page: 6370
  year: 2012
  ident: R106
  publication-title: Expert Syst. Appl
  doi: 10.1016/j.eswa.2011.12.033
– volume: 2
  start-page: 20
  year: 2018
  ident: R47
  publication-title: Fractal Fract
  doi: 10.3390/fractalfract2030020
– volume: 114
  start-page: 516
  year: 2018
  ident: R12
  publication-title: Chaos Soliton. Fract
  doi: 10.1016/j.chaos.2018.07.033
– volume: 56
  start-page: 630
  year: 2018
  ident: R3
  publication-title: Chin. J. Phys
  doi: 10.1016/j.cjph.2018.02.007
– volume: 36
  start-page: 93
  year: 1995
  ident: R89
  publication-title: Polymer
  doi: 10.1016/0032-3861(95)90680-Z
– volume: 56
  start-page: 5377
  year: 2008
  ident: R32
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2008.07.030
– volume: 21
  start-page: 827
  year: 2017
  ident: R72
  publication-title: Therm. Sci
  doi: 10.2298/TSCI160229115H
– volume: 21
  start-page: 251
  year: 1982
  ident: R123
  publication-title: Rheol. Acta
  doi: 10.1007/BF01515713
– volume: 6
  start-page: 201
  year: 1965
  ident: R131
  publication-title: Rheol. Acta
  doi: 10.1007/BF01976435
– volume: 54
  start-page: 5993
  year: 2013
  ident: R84
  publication-title: Polymer
  doi: 10.1016/j.polymer.2013.08.062
– ident: R121
– volume: 47
  start-page: 188
  year: 2011
  ident: R55
  publication-title: Strain
  doi: 10.1111/j.1475-1305.2008.00502.x
– volume: 56
  start-page: 138
  year: 2018
  ident: R64
  publication-title: Commun. Nonlinear Sci Numer. Simul
  doi: 10.1016/j.cnsns.2017.08.002
– volume: 6
  start-page: 761
  year: 1931
  ident: R86
  publication-title: Ann. Phys
  doi: 10.1002/andp.19314030608
– volume: 31
  start-page: 91
  year: 1999
  ident: R80
  publication-title: Shock Vib. Digest
  doi: 10.1177/058310249903100201
– volume: 134
  start-page: 371
  year: 1997
  ident: R50
  publication-title: Opt. Commun
  doi: 10.1016/S0030-4018(96)00384-7
– volume: 105
  start-page: 43
  year: 2015
  ident: R133
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2015.06.023
– ident: R48
  doi: 10.1142/2905
– volume: 55
  start-page: 32
  year: 2016
  ident: R14
  publication-title: J. Mech. Behav. Biomed. Mater
  doi: 10.1016/j.jmbbm.2015.10.008
– volume: 3
  start-page: 1003
  year: 2016
  ident: R87
  publication-title: Mater. Today Proc
  doi: 10.1016/j.matpr.2016.03.037
– volume: 20
  start-page: 763
  year: 2016
  ident: R8
  publication-title: Therm. Sci
  doi: 10.2298/TSCI160111018A
– ident: R24
  doi: 10.1007/978-0-387-73861-1
– volume: 70
  start-page: 275
  year: 1874
  ident: R23
  publication-title: Akad. Wiss. Wien. Mathem.- Naturwiss
– ident: R58
– ident: R102
– ident: R18
– volume: 11
  start-page: 199
  year: 2007
  ident: R85
  publication-title: Mech. Time-Depend. Mater
  doi: 10.1007/s11043-007-9035-4
– volume: 506
  start-page: 75
  year: 2018
  ident: R101
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.04.047
– ident: R124
– ident: R118
– volume: 99
  start-page: 226
  year: 2015
  ident: R140
  publication-title: Constr. Build. Mater
  doi: 10.1016/j.conbuildmat.2015.09.016
– volume: 59
  start-page: 444
  year: 2018
  ident: R16
  publication-title: Commun. Nonlinear Sci. Numer. Simul
  doi: 10.1016/j.cnsns.2017.12.003
– volume: 1
  start-page: 24
  year: 1975
  ident: R120
  publication-title: J. Ecole Polytech
– volume: 46
  start-page: 1
  year: 2018
  ident: R107
  publication-title: Int. J. Circ. Theor. Appl
  doi: 10.1002/cta.2564
– ident: R41
– volume: 33
  start-page: 239
  year: 1961
  ident: R35
  publication-title: Rev. Mod. Phys
  doi: 10.1103/RevModPhys.33.239
– volume: 17
  start-page: 6239
  year: 2005
  ident: R61
  publication-title: Entropy
– volume: 85
  start-page: 1514
  year: 2007
  ident: R54
  publication-title: Comput. Struct
  doi: 10.1016/j.compstruc.2007.01.024
– volume: 44
  start-page: 15
  year: 1992
  ident: R17
  publication-title: J. Non-Newton. Fluid Mech
  doi: 10.1016/0377-0257(92)80043-W
– volume: 73
  start-page: 1377
  year: 2017
  ident: R152
  publication-title: Comput. Math. Appl
  doi: 10.1016/j.camwa.2016.05.002
– volume: 34
  start-page: 377
  year: 1997
  ident: R21
  publication-title: Bioreology
  doi: 10.3233/BIR-1997-34603
– volume: 114
  start-page: 347
  year: 2015
  ident: R11
  publication-title: Chaos Soliton. Fract
  doi: 10.1016/j.chaos.2018.07.022
– volume: 22
  start-page: 940
  year: 1951
  ident: R139
  publication-title: J. Appl. Phys
  doi: 10.1063/1.1700076
– volume: 66
  start-page: 313
  year: 1978
  ident: R105
  publication-title: J. Math. Anal. Appl
  doi: 10.1016/0022-247X(78)90234-2
– volume: 122
  start-page: 42
  year: 2016
  ident: R129
  publication-title: Eng. Struct
  doi: 10.1016/j.engstruct.2016.04.024
– volume: 103
  start-page: 7180
  year: 1995
  ident: R104
  publication-title: J. Chem. Phys
  doi: 10.1063/1.470346
SSID ssj0000314300
Score 2.3641598
SecondaryResourceType review_article
Snippet This study addresses the stress–strain relaxation functions of solid polymers in the framework of the linear viscoelasticity with aim to establish the adequate...
SourceID proquest
crossref
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 305
SubjectTerms 26A33
35K05
40C10
Caputo–Fabrizio operator
Constitutive equations
Constitutive relationships
Fractional calculus
Integrals
Kernels
Mathematical models
Mittag–Leffler relaxation kernel
Modelling
non-singular fading memory
nonlinear relaxation
Operators (mathematics)
Polymers
Power law
Prony series
Response functions
Solid polymer rheology
Strain relaxation
Stress relaxation
Viscoelasticity
Title Response functions in linear viscoelastic constitutive equations and related fractional operators
URI https://api.istex.fr/ark:/67375/80W-G7KF4NJF-H/fulltext.pdf
https://www.proquest.com/docview/2267402577
https://www.proquest.com/docview/2283281007
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXY9sILYnyIjjH5ARCoypYPO04eEbQrYxSEWtE3K3ZsMbGlpe0mxAO_nXsdJ23FhoCXqEodp_Kxr6_dc44JeZowHZpYZ4FSURowESsYUiIK8oQpXuZpYbUjyA7TwZidTPhkdXChU5cs1aH-ca2u5H9QhXuAK6pk_wHZtlK4AZ8BX7gCwnD9K4w_1QRX08XZqSWFY-JYzLtXZws9NZAcoyWrnnpSABKFzLdLT4Bz5HKkw0Haaee1xgGz05lx_74v1lPX963BKwpO8ACdc8-YduagqOj6Yio0dGgj_cAZF1zVu_Tz0ndEv8eAsqaNPYbem49NqNnYQRRJwJPaKPPQ1PFTpLga9c82AZatdaTk2rgNoQEa--KimqFCBU3F6kM6Ng2yhx9kf3x6Kke9yWiL7MSwMnD67rc_2201dONPauFR8_O83AFecYQvOPLVbyQiOzimvv82H7skY3SX3PGrA_qqhnqX3DLVPbLbNAp94U3CX94nRYM9bbGnZxWtsafr2NN17GmLPQXsqceerrCnLfYPyLjfG70eBP64jEAncb4MCqG4VjzNbFgksc1DnalUlaUqMxtZbq3NCl6YCGO2ynXIVGxUGtoiLsukgMzzIdmuppV5RKhiIsmzohSWp8xapqASy2zO4xINGEWHdJu2k9p7yeORJufScRp4JLGlpW_pDnnWlp7VHio3lHvuYGgLFfOvyDsUXGbhZ3ks3vXZ8KQvBx2y3-Ak_XBcSFhHCAYZvBA3fA1zV4acoL0_P_2Y3F4NgX2yvZxfmieQeC7VAdnK-scHrsP9AqvKjKo
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+functions+in+linear+viscoelastic+constitutive+equations+and+related+fractional+operators&rft.jtitle=Mathematical+modelling+of+natural+phenomena&rft.au=Hristov%2C+Jordan&rft.date=2019-01-01&rft.pub=EDP+Sciences&rft.issn=0973-5348&rft.eissn=1760-6101&rft.volume=14&rft.issue=3&rft_id=info:doi/10.1051%2Fmmnp%2F2018067&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0973-5348&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0973-5348&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0973-5348&client=summon