Label-free and sensitive detection of uracil-DNA glycosylase using exponential real-time rolling circle amplification
Sensitive evaluation of the uracil-DNA glycosylase (UDG) activity is greatly significant in both fundamental biochemical process studies and disease prognosis. In this study, a simple but sensitive UDG activity-sensing strategy was designed on the basis of UDG-triggered rolling circle amplification...
Saved in:
Published in | Analytical methods Vol. 10; no. 20; pp. 2405 - 2410 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sensitive evaluation of the uracil-DNA glycosylase (UDG) activity is greatly significant in both fundamental biochemical process studies and disease prognosis. In this study, a simple but sensitive UDG activity-sensing strategy was designed on the basis of UDG-triggered rolling circle amplification (RCA) reaction. In this strategy, two oligonucleotides were used. The hairpin-like structure of the oligonucleotide containing a uracil nucleotide is destroyed in the presence of UDG, and then can be employed to form the circular template of RCA and initiate the subsequent RCA reaction. The participation of a nicking endonuclease makes the RCA reaction proceed in an exponential amplification mode. The amplification product may fold into a G-quadruplex structure, which can be specifically combined with thioflavin T to generate a fluorescence signal without any extra label. This UDG activity-sensing strategy was demonstrated to work well in both end-point and real-time detection modes with high sensitivity and excellent specificity. As low as 5.5 × 10
−5
U mL
−1
UDG could be detected. The advantages of simple operation, short RCA time and automatic measurement using commercial instruments make the real-time detection mode suitable for high-throughput detection with reduced risk of amplification product carryover contamination, and its application feasibility in real samples was demonstrated by UDG activity analysis of cell lysate. |
---|---|
AbstractList | Sensitive evaluation of the uracil-DNA glycosylase (UDG) activity is greatly significant in both fundamental biochemical process studies and disease prognosis. In this study, a simple but sensitive UDG activity-sensing strategy was designed on the basis of UDG-triggered rolling circle amplification (RCA) reaction. In this strategy, two oligonucleotides were used. The hairpin-like structure of the oligonucleotide containing a uracil nucleotide is destroyed in the presence of UDG, and then can be employed to form the circular template of RCA and initiate the subsequent RCA reaction. The participation of a nicking endonuclease makes the RCA reaction proceed in an exponential amplification mode. The amplification product may fold into a G-quadruplex structure, which can be specifically combined with thioflavin T to generate a fluorescence signal without any extra label. This UDG activity-sensing strategy was demonstrated to work well in both end-point and real-time detection modes with high sensitivity and excellent specificity. As low as 5.5 × 10⁻⁵ U mL⁻¹ UDG could be detected. The advantages of simple operation, short RCA time and automatic measurement using commercial instruments make the real-time detection mode suitable for high-throughput detection with reduced risk of amplification product carryover contamination, and its application feasibility in real samples was demonstrated by UDG activity analysis of cell lysate. Sensitive evaluation of the uracil-DNA glycosylase (UDG) activity is greatly significant in both fundamental biochemical process studies and disease prognosis. In this study, a simple but sensitive UDG activity-sensing strategy was designed on the basis of UDG-triggered rolling circle amplification (RCA) reaction. In this strategy, two oligonucleotides were used. The hairpin-like structure of the oligonucleotide containing a uracil nucleotide is destroyed in the presence of UDG, and then can be employed to form the circular template of RCA and initiate the subsequent RCA reaction. The participation of a nicking endonuclease makes the RCA reaction proceed in an exponential amplification mode. The amplification product may fold into a G-quadruplex structure, which can be specifically combined with thioflavin T to generate a fluorescence signal without any extra label. This UDG activity-sensing strategy was demonstrated to work well in both end-point and real-time detection modes with high sensitivity and excellent specificity. As low as 5.5 × 10 −5 U mL −1 UDG could be detected. The advantages of simple operation, short RCA time and automatic measurement using commercial instruments make the real-time detection mode suitable for high-throughput detection with reduced risk of amplification product carryover contamination, and its application feasibility in real samples was demonstrated by UDG activity analysis of cell lysate. Sensitive evaluation of the uracil-DNA glycosylase (UDG) activity is greatly significant in both fundamental biochemical process studies and disease prognosis. In this study, a simple but sensitive UDG activity-sensing strategy was designed on the basis of UDG-triggered rolling circle amplification (RCA) reaction. In this strategy, two oligonucleotides were used. The hairpin-like structure of the oligonucleotide containing a uracil nucleotide is destroyed in the presence of UDG, and then can be employed to form the circular template of RCA and initiate the subsequent RCA reaction. The participation of a nicking endonuclease makes the RCA reaction proceed in an exponential amplification mode. The amplification product may fold into a G-quadruplex structure, which can be specifically combined with thioflavin T to generate a fluorescence signal without any extra label. This UDG activity-sensing strategy was demonstrated to work well in both end-point and real-time detection modes with high sensitivity and excellent specificity. As low as 5.5 × 10−5 U mL−1 UDG could be detected. The advantages of simple operation, short RCA time and automatic measurement using commercial instruments make the real-time detection mode suitable for high-throughput detection with reduced risk of amplification product carryover contamination, and its application feasibility in real samples was demonstrated by UDG activity analysis of cell lysate. |
Author | Xu, Yuan Tang, An-Na Zhao, Qiu-Ge Kong, De-Ming Cui, Yun-Xi |
Author_xml | – sequence: 1 givenname: Yuan surname: Xu fullname: Xu, Yuan organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University – sequence: 2 givenname: Yun-Xi surname: Cui fullname: Cui, Yun-Xi organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University – sequence: 3 givenname: Qiu-Ge surname: Zhao fullname: Zhao, Qiu-Ge organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University – sequence: 4 givenname: An-Na orcidid: 0000-0001-5411-9216 surname: Tang fullname: Tang, An-Na organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University – sequence: 5 givenname: De-Ming orcidid: 0000-0002-9216-8040 surname: Kong fullname: Kong, De-Ming organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University |
BookMark | eNptkU9LAzEQxYNUsFUvfoKAFxFWk012NzmW-p-iFz14WrLZ2ZKSJjXJiv32blUUiqeZYX7zeMOboJHzDhA6oeSCEiYvZ2L6SkjF84c9NKZVITNZVnL025fkAE1iXBJSSlbSMernqgGbdQEAK9fiCC6aZN4Bt5BAJ-Md9h3ug9LGZlePU7ywG-3jxqoIuI_GLTB8rAcXLhllcQBls2RWgIO3drvVJmg7iK_W1nRGq63kEdrvlI1w_FMP0cvN9fPsLps_3d7PpvNMs1ymTJSkrbjSraRMdEAZFcNACiU60em2zUE0oCpaCSlbzhpRlgXlDRRS6oZRYIfo7Ft3HfxbDzHVKxM1WKsc-D7WeZ5TwgvB2YCe7qBL3wc3uKtzwhnnkvJqoM6_KR18jAG6eh3MSoVNTUm9TaD-S2CAyQ6sTfr6PwVl7H8nn28Vi8o |
CitedBy_id | crossref_primary_10_1039_C9DT00427K crossref_primary_10_1016_j_talanta_2021_123144 crossref_primary_10_1021_acsomega_8b03376 crossref_primary_10_1007_s00216_020_02997_8 crossref_primary_10_1016_j_foodcont_2019_106806 |
Cites_doi | 10.1016/S0921-8777(00)00025-2 10.1039/C5AN01158B 10.1126/science.7801120 10.1074/jbc.M207107200 10.1021/acs.analchem.6b04673 10.1039/C5CC05010C 10.1016/j.ab.2007.04.049 10.1016/j.bios.2016.12.061 10.1021/acs.analchem.7b01655 10.1073/pnas.1305624110 10.1039/C4CC06170E 10.1002/anie.201108135 10.1093/nar/9.11.2599 10.1074/jbc.274.26.18470 10.1016/j.bios.2016.07.083 10.1146/annurev.bi.65.070196.000355 10.1039/C4AN02339K 10.1016/j.aca.2014.02.002 10.2144/04361BM04 10.1016/j.bios.2015.10.080 10.1021/ac401715k 10.1038/s41598-017-06455-x 10.1016/j.mam.2007.04.006 10.1016/j.bios.2013.11.062 10.1039/C5AN02483H 10.1039/c2cc34531e 10.1038/362709a0 10.1016/j.aca.2016.09.019 10.1146/annurev.bi.51.070182.000425 10.1093/nar/gku111 10.1021/ja309588h 10.1016/j.bios.2013.11.034 10.1016/S0079-6603(08)60800-4 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SE 7SR 7U5 8BQ 8FD FR3 H8G JG9 L7M P64 7S9 L.6 |
DOI | 10.1039/C8AY00742J |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Corrosion Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Copper Technical Reference Library Materials Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Aluminium Industry Abstracts Technology Research Database Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1759-9679 |
EndPage | 2410 |
ExternalDocumentID | 10_1039_C8AY00742J |
GroupedDBID | 0-7 0R~ 23M 4.4 53G 6J9 705 7~J AAEMU AAHBH AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABIQK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACPRK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BLAPV BSQNT C6K CAG CITATION COF EBS ECGLT EE0 EF- EJD F5P FEDTE GGIMP H13 HVGLF HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 R56 R7E RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY SLF 7QF 7QO 7QQ 7SE 7SR 7U5 8BQ 8FD FR3 H8G JG9 L7M P64 7S9 L.6 |
ID | FETCH-LOGICAL-c329t-860d74acd9138fe1318acd05a8f8fcdd2e8bea717899d43b866514be599cb31e3 |
ISSN | 1759-9660 1759-9679 |
IngestDate | Thu Jul 10 19:21:46 EDT 2025 Mon Jun 30 12:01:26 EDT 2025 Tue Jul 01 03:36:13 EDT 2025 Thu Apr 24 23:05:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c329t-860d74acd9138fe1318acd05a8f8fcdd2e8bea717899d43b866514be599cb31e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9216-8040 0000-0001-5411-9216 |
PQID | 2043449147 |
PQPubID | 2047493 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2221045843 proquest_journals_2043449147 crossref_primary_10_1039_C8AY00742J crossref_citationtrail_10_1039_C8AY00742J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 20180101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Analytical methods |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Wu (C8AY00742J-(cit23)/*[position()=1]) 2016; 141 Zhang (C8AY00742J-(cit17)/*[position()=1]) 2017; 89 Kavli (C8AY00742J-(cit2)/*[position()=1]) 2002; 277 Liu (C8AY00742J-(cit20)/*[position()=1]) 2007; 366 Du (C8AY00742J-(cit26)/*[position()=1]) 2016; 77 Renaud de la Faverie (C8AY00742J-(cit29)/*[position()=1]) 2014; 42 Lindahl (C8AY00742J-(cit5)/*[position()=1]) 1982; 51 Sousa (C8AY00742J-(cit9)/*[position()=1]) 2007; 28 Prorok (C8AY00742J-(cit10)/*[position()=1]) 2013; 110 Mohanty (C8AY00742J-(cit28)/*[position()=1]) 2013; 135 Huang (C8AY00742J-(cit33)/*[position()=1]) 2017; 91 Lu (C8AY00742J-(cit14)/*[position()=1]) 2015; 140 Krokan (C8AY00742J-(cit11)/*[position()=1]) 1981; 9 Lindahl (C8AY00742J-(cit1)/*[position()=1]) 1993; 362 Muramatsu (C8AY00742J-(cit3)/*[position()=1]) 1999; 274 Sancar (C8AY00742J-(cit7)/*[position()=1]) 1994; 266 Laurence (C8AY00742J-(cit4)/*[position()=1]) 2000; 460 Tao (C8AY00742J-(cit18)/*[position()=1]) 2015; 51 Liu (C8AY00742J-(cit27)/*[position()=1]) 2013; 85 Ono (C8AY00742J-(cit32)/*[position()=1]) 2012; 51 Liu (C8AY00742J-(cit13)/*[position()=1]) 2014; 54 Jiang (C8AY00742J-(cit31)/*[position()=1]) 2016; 943 Lindahl (C8AY00742J-(cit6)/*[position()=1]) 1979; 22 McWilliams (C8AY00742J-(cit15)/*[position()=1]) 2014; 54 Lee (C8AY00742J-(cit19)/*[position()=1]) 2015; 51 Li (C8AY00742J-(cit21)/*[position()=1]) 2014; 819 Li (C8AY00742J-(cit30)/*[position()=1]) 2017; 7 Nie (C8AY00742J-(cit12)/*[position()=1]) 2015; 140 Zhang (C8AY00742J-(cit24)/*[position()=1]) 2012; 48 Du (C8AY00742J-(cit25)/*[position()=1]) 2016; 86 Wang (C8AY00742J-(cit16)/*[position()=1]) 2017; 89 Sancar (C8AY00742J-(cit8)/*[position()=1]) 1996; 65 Pierce (C8AY00742J-(cit22)/*[position()=1]) 2004; 36 |
References_xml | – volume: 460 start-page: 165 year: 2000 ident: C8AY00742J-(cit4)/*[position()=1] publication-title: Mutat. Res. doi: 10.1016/S0921-8777(00)00025-2 – volume: 140 start-page: 5998 year: 2015 ident: C8AY00742J-(cit14)/*[position()=1] publication-title: Analyst doi: 10.1039/C5AN01158B – volume: 266 start-page: 1954 year: 1994 ident: C8AY00742J-(cit7)/*[position()=1] publication-title: Science doi: 10.1126/science.7801120 – volume: 277 start-page: 39926 year: 2002 ident: C8AY00742J-(cit2)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.M207107200 – volume: 89 start-page: 4488 year: 2017 ident: C8AY00742J-(cit16)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b04673 – volume: 51 start-page: 13744 year: 2015 ident: C8AY00742J-(cit19)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC05010C – volume: 366 start-page: 237 year: 2007 ident: C8AY00742J-(cit20)/*[position()=1] publication-title: Anal. Biochem. doi: 10.1016/j.ab.2007.04.049 – volume: 91 start-page: 417 year: 2017 ident: C8AY00742J-(cit33)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.12.061 – volume: 89 start-page: 7684 year: 2017 ident: C8AY00742J-(cit17)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b01655 – volume: 110 start-page: 3695 year: 2013 ident: C8AY00742J-(cit10)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1305624110 – volume: 51 start-page: 929 year: 2015 ident: C8AY00742J-(cit18)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC06170E – volume: 51 start-page: 1689 year: 2012 ident: C8AY00742J-(cit32)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201108135 – volume: 9 start-page: 2599 year: 1981 ident: C8AY00742J-(cit11)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/9.11.2599 – volume: 274 start-page: 18470 year: 1999 ident: C8AY00742J-(cit3)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.26.18470 – volume: 86 start-page: 811 year: 2016 ident: C8AY00742J-(cit25)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.07.083 – volume: 65 start-page: 41 year: 1996 ident: C8AY00742J-(cit8)/*[position()=1] publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.65.070196.000355 – volume: 140 start-page: 2771 year: 2015 ident: C8AY00742J-(cit12)/*[position()=1] publication-title: Analyst doi: 10.1039/C4AN02339K – volume: 819 start-page: 71 year: 2014 ident: C8AY00742J-(cit21)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2014.02.002 – volume: 36 start-page: 44 year: 2004 ident: C8AY00742J-(cit22)/*[position()=1] publication-title: BioTechniques doi: 10.2144/04361BM04 – volume: 77 start-page: 971 year: 2016 ident: C8AY00742J-(cit26)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.10.080 – volume: 85 start-page: 7941 year: 2013 ident: C8AY00742J-(cit27)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac401715k – volume: 7 start-page: 6367 year: 2017 ident: C8AY00742J-(cit30)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-017-06455-x – volume: 28 start-page: 276 year: 2007 ident: C8AY00742J-(cit9)/*[position()=1] publication-title: Mol. Aspects Med. doi: 10.1016/j.mam.2007.04.006 – volume: 54 start-page: 598 year: 2014 ident: C8AY00742J-(cit13)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.11.062 – volume: 141 start-page: 1789 year: 2016 ident: C8AY00742J-(cit23)/*[position()=1] publication-title: Analyst doi: 10.1039/C5AN02483H – volume: 48 start-page: 8820 year: 2012 ident: C8AY00742J-(cit24)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc34531e – volume: 362 start-page: 709 year: 1993 ident: C8AY00742J-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/362709a0 – volume: 943 start-page: 114 year: 2016 ident: C8AY00742J-(cit31)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2016.09.019 – volume: 51 start-page: 61 year: 1982 ident: C8AY00742J-(cit5)/*[position()=1] publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.51.070182.000425 – volume: 42 start-page: e65 year: 2014 ident: C8AY00742J-(cit29)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku111 – volume: 135 start-page: 367 year: 2013 ident: C8AY00742J-(cit28)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja309588h – volume: 54 start-page: 541 year: 2014 ident: C8AY00742J-(cit15)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.11.034 – volume: 22 start-page: 135 year: 1979 ident: C8AY00742J-(cit6)/*[position()=1] publication-title: Prog. Nucleic Acid Res. Mol. Biol. doi: 10.1016/S0079-6603(08)60800-4 |
SSID | ssj0069361 |
Score | 2.1547568 |
Snippet | Sensitive evaluation of the uracil-DNA glycosylase (UDG) activity is greatly significant in both fundamental biochemical process studies and disease prognosis.... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 2405 |
SubjectTerms | Amplification analytical methods biochemical pathways Contamination Deoxyribonucleic acid DNA DNA glycosylase Endonuclease Feasibility studies Fluorescence Nicking endonuclease Oligonucleotides prognosis Real time risk reduction Strategy Uracil Uracil-DNA glycosidase uracil-DNA glycosylase |
Title | Label-free and sensitive detection of uracil-DNA glycosylase using exponential real-time rolling circle amplification |
URI | https://www.proquest.com/docview/2043449147 https://www.proquest.com/docview/2221045843 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVK98IFsXyIwoKM4MCqMiSx0yTHUmBXC1RC6opyimzHQZGqdNU2Ess_4F8zthPHhR4WLlHrOE2TeZ55Hs-MEXpZyomkxSQgQNYVYXpI8SQRRAqAdCxpyjKdO_x5Pjm_ZBfLeDkY_PKilpqdeC1_Hswr-R-pQhvIVWfJ_oNk3Y9CA3wG-cIRJAzHG8n4ExdqRcqNsmsAWx2MbkKBCrVTsuOCzYbLakXezafj76trud5eA2NW48Z4CdSPq3WtI4ZMgX--InqzeR1zaNLUZbWBW465DjsvW--eT2dNSRPrDbdbUTuGvmyMcm968M2ayjbVZFl5_mrjq_1SNeTMYWzROrGnNZlz3y8Rpp5fwqrSJLa1P62l8dvs9jFO_wYezqLA16YsiD3LDGQjOKj1A6qLps7S6TfNiKKL3rZ16_l_mDwXiGiW4GmW99feQkcRzDiiITqafnx79rUz65OM2uK73WN1tW5p9qa_ep_d7Bt3w1gWd9GddqqBpxY3x2ig6nvouFXmW_yqrTh-eh81PZAwAAk7IGEHJLwucQ8k7AEJGyBhD0jYAQm3QMIWSHgPSA_Q5Yf3i9k5affjIJJG2Y6kk6BIGJdFFtK0VCGYA_gSxDwt01IWRaRSoXgSJjCHLxgVupRiyISKs0wKGir6EA1r-CuPEOaipEJSeI9JxMDopFTGXCYhVyJOgrIYodPuPeayLVav90xZ5X9LbIReuL5XtkTLwV4nnTjydghvc50YzlgWsmSEnrvToGD1qhmv1bqBPlEUmmgC-vhGN3qCbvfD4QQNd5tGPQXiuhPPWkj9Bnexmr0 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Label-free+and+sensitive+detection+of+uracil-DNA+glycosylase+using+exponential+real-time+rolling+circle+amplification&rft.jtitle=Analytical+methods&rft.au=Xu%2C+Yuan&rft.au=Cui%2C+Yun-Xi&rft.au=Zhao%2C+Qiu-Ge&rft.au=Tang%2C+An-Na&rft.date=2018-01-01&rft.issn=1759-9660&rft.eissn=1759-9679&rft.volume=10&rft.issue=20&rft.spage=2405&rft.epage=2410&rft_id=info:doi/10.1039%2FC8AY00742J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8AY00742J |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-9660&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-9660&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-9660&client=summon |