Label-free and sensitive detection of uracil-DNA glycosylase using exponential real-time rolling circle amplification

Sensitive evaluation of the uracil-DNA glycosylase (UDG) activity is greatly significant in both fundamental biochemical process studies and disease prognosis. In this study, a simple but sensitive UDG activity-sensing strategy was designed on the basis of UDG-triggered rolling circle amplification...

Full description

Saved in:
Bibliographic Details
Published inAnalytical methods Vol. 10; no. 20; pp. 2405 - 2410
Main Authors Xu, Yuan, Cui, Yun-Xi, Zhao, Qiu-Ge, Tang, An-Na, Kong, De-Ming
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sensitive evaluation of the uracil-DNA glycosylase (UDG) activity is greatly significant in both fundamental biochemical process studies and disease prognosis. In this study, a simple but sensitive UDG activity-sensing strategy was designed on the basis of UDG-triggered rolling circle amplification (RCA) reaction. In this strategy, two oligonucleotides were used. The hairpin-like structure of the oligonucleotide containing a uracil nucleotide is destroyed in the presence of UDG, and then can be employed to form the circular template of RCA and initiate the subsequent RCA reaction. The participation of a nicking endonuclease makes the RCA reaction proceed in an exponential amplification mode. The amplification product may fold into a G-quadruplex structure, which can be specifically combined with thioflavin T to generate a fluorescence signal without any extra label. This UDG activity-sensing strategy was demonstrated to work well in both end-point and real-time detection modes with high sensitivity and excellent specificity. As low as 5.5 × 10 −5 U mL −1 UDG could be detected. The advantages of simple operation, short RCA time and automatic measurement using commercial instruments make the real-time detection mode suitable for high-throughput detection with reduced risk of amplification product carryover contamination, and its application feasibility in real samples was demonstrated by UDG activity analysis of cell lysate.
AbstractList Sensitive evaluation of the uracil-DNA glycosylase (UDG) activity is greatly significant in both fundamental biochemical process studies and disease prognosis. In this study, a simple but sensitive UDG activity-sensing strategy was designed on the basis of UDG-triggered rolling circle amplification (RCA) reaction. In this strategy, two oligonucleotides were used. The hairpin-like structure of the oligonucleotide containing a uracil nucleotide is destroyed in the presence of UDG, and then can be employed to form the circular template of RCA and initiate the subsequent RCA reaction. The participation of a nicking endonuclease makes the RCA reaction proceed in an exponential amplification mode. The amplification product may fold into a G-quadruplex structure, which can be specifically combined with thioflavin T to generate a fluorescence signal without any extra label. This UDG activity-sensing strategy was demonstrated to work well in both end-point and real-time detection modes with high sensitivity and excellent specificity. As low as 5.5 × 10⁻⁵ U mL⁻¹ UDG could be detected. The advantages of simple operation, short RCA time and automatic measurement using commercial instruments make the real-time detection mode suitable for high-throughput detection with reduced risk of amplification product carryover contamination, and its application feasibility in real samples was demonstrated by UDG activity analysis of cell lysate.
Sensitive evaluation of the uracil-DNA glycosylase (UDG) activity is greatly significant in both fundamental biochemical process studies and disease prognosis. In this study, a simple but sensitive UDG activity-sensing strategy was designed on the basis of UDG-triggered rolling circle amplification (RCA) reaction. In this strategy, two oligonucleotides were used. The hairpin-like structure of the oligonucleotide containing a uracil nucleotide is destroyed in the presence of UDG, and then can be employed to form the circular template of RCA and initiate the subsequent RCA reaction. The participation of a nicking endonuclease makes the RCA reaction proceed in an exponential amplification mode. The amplification product may fold into a G-quadruplex structure, which can be specifically combined with thioflavin T to generate a fluorescence signal without any extra label. This UDG activity-sensing strategy was demonstrated to work well in both end-point and real-time detection modes with high sensitivity and excellent specificity. As low as 5.5 × 10 −5 U mL −1 UDG could be detected. The advantages of simple operation, short RCA time and automatic measurement using commercial instruments make the real-time detection mode suitable for high-throughput detection with reduced risk of amplification product carryover contamination, and its application feasibility in real samples was demonstrated by UDG activity analysis of cell lysate.
Sensitive evaluation of the uracil-DNA glycosylase (UDG) activity is greatly significant in both fundamental biochemical process studies and disease prognosis. In this study, a simple but sensitive UDG activity-sensing strategy was designed on the basis of UDG-triggered rolling circle amplification (RCA) reaction. In this strategy, two oligonucleotides were used. The hairpin-like structure of the oligonucleotide containing a uracil nucleotide is destroyed in the presence of UDG, and then can be employed to form the circular template of RCA and initiate the subsequent RCA reaction. The participation of a nicking endonuclease makes the RCA reaction proceed in an exponential amplification mode. The amplification product may fold into a G-quadruplex structure, which can be specifically combined with thioflavin T to generate a fluorescence signal without any extra label. This UDG activity-sensing strategy was demonstrated to work well in both end-point and real-time detection modes with high sensitivity and excellent specificity. As low as 5.5 × 10−5 U mL−1 UDG could be detected. The advantages of simple operation, short RCA time and automatic measurement using commercial instruments make the real-time detection mode suitable for high-throughput detection with reduced risk of amplification product carryover contamination, and its application feasibility in real samples was demonstrated by UDG activity analysis of cell lysate.
Author Xu, Yuan
Tang, An-Na
Zhao, Qiu-Ge
Kong, De-Ming
Cui, Yun-Xi
Author_xml – sequence: 1
  givenname: Yuan
  surname: Xu
  fullname: Xu, Yuan
  organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University
– sequence: 2
  givenname: Yun-Xi
  surname: Cui
  fullname: Cui, Yun-Xi
  organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University
– sequence: 3
  givenname: Qiu-Ge
  surname: Zhao
  fullname: Zhao, Qiu-Ge
  organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University
– sequence: 4
  givenname: An-Na
  orcidid: 0000-0001-5411-9216
  surname: Tang
  fullname: Tang, An-Na
  organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University
– sequence: 5
  givenname: De-Ming
  orcidid: 0000-0002-9216-8040
  surname: Kong
  fullname: Kong, De-Ming
  organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University
BookMark eNptkU9LAzEQxYNUsFUvfoKAFxFWk012NzmW-p-iFz14WrLZ2ZKSJjXJiv32blUUiqeZYX7zeMOboJHzDhA6oeSCEiYvZ2L6SkjF84c9NKZVITNZVnL025fkAE1iXBJSSlbSMernqgGbdQEAK9fiCC6aZN4Bt5BAJ-Md9h3ug9LGZlePU7ywG-3jxqoIuI_GLTB8rAcXLhllcQBls2RWgIO3drvVJmg7iK_W1nRGq63kEdrvlI1w_FMP0cvN9fPsLps_3d7PpvNMs1ymTJSkrbjSraRMdEAZFcNACiU60em2zUE0oCpaCSlbzhpRlgXlDRRS6oZRYIfo7Ft3HfxbDzHVKxM1WKsc-D7WeZ5TwgvB2YCe7qBL3wc3uKtzwhnnkvJqoM6_KR18jAG6eh3MSoVNTUm9TaD-S2CAyQ6sTfr6PwVl7H8nn28Vi8o
CitedBy_id crossref_primary_10_1039_C9DT00427K
crossref_primary_10_1016_j_talanta_2021_123144
crossref_primary_10_1021_acsomega_8b03376
crossref_primary_10_1007_s00216_020_02997_8
crossref_primary_10_1016_j_foodcont_2019_106806
Cites_doi 10.1016/S0921-8777(00)00025-2
10.1039/C5AN01158B
10.1126/science.7801120
10.1074/jbc.M207107200
10.1021/acs.analchem.6b04673
10.1039/C5CC05010C
10.1016/j.ab.2007.04.049
10.1016/j.bios.2016.12.061
10.1021/acs.analchem.7b01655
10.1073/pnas.1305624110
10.1039/C4CC06170E
10.1002/anie.201108135
10.1093/nar/9.11.2599
10.1074/jbc.274.26.18470
10.1016/j.bios.2016.07.083
10.1146/annurev.bi.65.070196.000355
10.1039/C4AN02339K
10.1016/j.aca.2014.02.002
10.2144/04361BM04
10.1016/j.bios.2015.10.080
10.1021/ac401715k
10.1038/s41598-017-06455-x
10.1016/j.mam.2007.04.006
10.1016/j.bios.2013.11.062
10.1039/C5AN02483H
10.1039/c2cc34531e
10.1038/362709a0
10.1016/j.aca.2016.09.019
10.1146/annurev.bi.51.070182.000425
10.1093/nar/gku111
10.1021/ja309588h
10.1016/j.bios.2013.11.034
10.1016/S0079-6603(08)60800-4
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SE
7SR
7U5
8BQ
8FD
FR3
H8G
JG9
L7M
P64
7S9
L.6
DOI 10.1039/C8AY00742J
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Copper Technical Reference Library
Materials Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Aluminium Industry Abstracts
Technology Research Database
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1759-9679
EndPage 2410
ExternalDocumentID 10_1039_C8AY00742J
GroupedDBID 0-7
0R~
23M
4.4
53G
6J9
705
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABIQK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACPRK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BLAPV
BSQNT
C6K
CAG
CITATION
COF
EBS
ECGLT
EE0
EF-
EJD
F5P
FEDTE
GGIMP
H13
HVGLF
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
OK1
R56
R7E
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
SLF
7QF
7QO
7QQ
7SE
7SR
7U5
8BQ
8FD
FR3
H8G
JG9
L7M
P64
7S9
L.6
ID FETCH-LOGICAL-c329t-860d74acd9138fe1318acd05a8f8fcdd2e8bea717899d43b866514be599cb31e3
ISSN 1759-9660
1759-9679
IngestDate Thu Jul 10 19:21:46 EDT 2025
Mon Jun 30 12:01:26 EDT 2025
Tue Jul 01 03:36:13 EDT 2025
Thu Apr 24 23:05:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c329t-860d74acd9138fe1318acd05a8f8fcdd2e8bea717899d43b866514be599cb31e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9216-8040
0000-0001-5411-9216
PQID 2043449147
PQPubID 2047493
PageCount 6
ParticipantIDs proquest_miscellaneous_2221045843
proquest_journals_2043449147
crossref_primary_10_1039_C8AY00742J
crossref_citationtrail_10_1039_C8AY00742J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 20180101
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Analytical methods
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Wu (C8AY00742J-(cit23)/*[position()=1]) 2016; 141
Zhang (C8AY00742J-(cit17)/*[position()=1]) 2017; 89
Kavli (C8AY00742J-(cit2)/*[position()=1]) 2002; 277
Liu (C8AY00742J-(cit20)/*[position()=1]) 2007; 366
Du (C8AY00742J-(cit26)/*[position()=1]) 2016; 77
Renaud de la Faverie (C8AY00742J-(cit29)/*[position()=1]) 2014; 42
Lindahl (C8AY00742J-(cit5)/*[position()=1]) 1982; 51
Sousa (C8AY00742J-(cit9)/*[position()=1]) 2007; 28
Prorok (C8AY00742J-(cit10)/*[position()=1]) 2013; 110
Mohanty (C8AY00742J-(cit28)/*[position()=1]) 2013; 135
Huang (C8AY00742J-(cit33)/*[position()=1]) 2017; 91
Lu (C8AY00742J-(cit14)/*[position()=1]) 2015; 140
Krokan (C8AY00742J-(cit11)/*[position()=1]) 1981; 9
Lindahl (C8AY00742J-(cit1)/*[position()=1]) 1993; 362
Muramatsu (C8AY00742J-(cit3)/*[position()=1]) 1999; 274
Sancar (C8AY00742J-(cit7)/*[position()=1]) 1994; 266
Laurence (C8AY00742J-(cit4)/*[position()=1]) 2000; 460
Tao (C8AY00742J-(cit18)/*[position()=1]) 2015; 51
Liu (C8AY00742J-(cit27)/*[position()=1]) 2013; 85
Ono (C8AY00742J-(cit32)/*[position()=1]) 2012; 51
Liu (C8AY00742J-(cit13)/*[position()=1]) 2014; 54
Jiang (C8AY00742J-(cit31)/*[position()=1]) 2016; 943
Lindahl (C8AY00742J-(cit6)/*[position()=1]) 1979; 22
McWilliams (C8AY00742J-(cit15)/*[position()=1]) 2014; 54
Lee (C8AY00742J-(cit19)/*[position()=1]) 2015; 51
Li (C8AY00742J-(cit21)/*[position()=1]) 2014; 819
Li (C8AY00742J-(cit30)/*[position()=1]) 2017; 7
Nie (C8AY00742J-(cit12)/*[position()=1]) 2015; 140
Zhang (C8AY00742J-(cit24)/*[position()=1]) 2012; 48
Du (C8AY00742J-(cit25)/*[position()=1]) 2016; 86
Wang (C8AY00742J-(cit16)/*[position()=1]) 2017; 89
Sancar (C8AY00742J-(cit8)/*[position()=1]) 1996; 65
Pierce (C8AY00742J-(cit22)/*[position()=1]) 2004; 36
References_xml – volume: 460
  start-page: 165
  year: 2000
  ident: C8AY00742J-(cit4)/*[position()=1]
  publication-title: Mutat. Res.
  doi: 10.1016/S0921-8777(00)00025-2
– volume: 140
  start-page: 5998
  year: 2015
  ident: C8AY00742J-(cit14)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/C5AN01158B
– volume: 266
  start-page: 1954
  year: 1994
  ident: C8AY00742J-(cit7)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.7801120
– volume: 277
  start-page: 39926
  year: 2002
  ident: C8AY00742J-(cit2)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M207107200
– volume: 89
  start-page: 4488
  year: 2017
  ident: C8AY00742J-(cit16)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b04673
– volume: 51
  start-page: 13744
  year: 2015
  ident: C8AY00742J-(cit19)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC05010C
– volume: 366
  start-page: 237
  year: 2007
  ident: C8AY00742J-(cit20)/*[position()=1]
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2007.04.049
– volume: 91
  start-page: 417
  year: 2017
  ident: C8AY00742J-(cit33)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.12.061
– volume: 89
  start-page: 7684
  year: 2017
  ident: C8AY00742J-(cit17)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b01655
– volume: 110
  start-page: 3695
  year: 2013
  ident: C8AY00742J-(cit10)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1305624110
– volume: 51
  start-page: 929
  year: 2015
  ident: C8AY00742J-(cit18)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC06170E
– volume: 51
  start-page: 1689
  year: 2012
  ident: C8AY00742J-(cit32)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201108135
– volume: 9
  start-page: 2599
  year: 1981
  ident: C8AY00742J-(cit11)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/9.11.2599
– volume: 274
  start-page: 18470
  year: 1999
  ident: C8AY00742J-(cit3)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.26.18470
– volume: 86
  start-page: 811
  year: 2016
  ident: C8AY00742J-(cit25)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.07.083
– volume: 65
  start-page: 41
  year: 1996
  ident: C8AY00742J-(cit8)/*[position()=1]
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.65.070196.000355
– volume: 140
  start-page: 2771
  year: 2015
  ident: C8AY00742J-(cit12)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/C4AN02339K
– volume: 819
  start-page: 71
  year: 2014
  ident: C8AY00742J-(cit21)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2014.02.002
– volume: 36
  start-page: 44
  year: 2004
  ident: C8AY00742J-(cit22)/*[position()=1]
  publication-title: BioTechniques
  doi: 10.2144/04361BM04
– volume: 77
  start-page: 971
  year: 2016
  ident: C8AY00742J-(cit26)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.10.080
– volume: 85
  start-page: 7941
  year: 2013
  ident: C8AY00742J-(cit27)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac401715k
– volume: 7
  start-page: 6367
  year: 2017
  ident: C8AY00742J-(cit30)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06455-x
– volume: 28
  start-page: 276
  year: 2007
  ident: C8AY00742J-(cit9)/*[position()=1]
  publication-title: Mol. Aspects Med.
  doi: 10.1016/j.mam.2007.04.006
– volume: 54
  start-page: 598
  year: 2014
  ident: C8AY00742J-(cit13)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.11.062
– volume: 141
  start-page: 1789
  year: 2016
  ident: C8AY00742J-(cit23)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/C5AN02483H
– volume: 48
  start-page: 8820
  year: 2012
  ident: C8AY00742J-(cit24)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc34531e
– volume: 362
  start-page: 709
  year: 1993
  ident: C8AY00742J-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/362709a0
– volume: 943
  start-page: 114
  year: 2016
  ident: C8AY00742J-(cit31)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2016.09.019
– volume: 51
  start-page: 61
  year: 1982
  ident: C8AY00742J-(cit5)/*[position()=1]
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.51.070182.000425
– volume: 42
  start-page: e65
  year: 2014
  ident: C8AY00742J-(cit29)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku111
– volume: 135
  start-page: 367
  year: 2013
  ident: C8AY00742J-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja309588h
– volume: 54
  start-page: 541
  year: 2014
  ident: C8AY00742J-(cit15)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.11.034
– volume: 22
  start-page: 135
  year: 1979
  ident: C8AY00742J-(cit6)/*[position()=1]
  publication-title: Prog. Nucleic Acid Res. Mol. Biol.
  doi: 10.1016/S0079-6603(08)60800-4
SSID ssj0069361
Score 2.1547568
Snippet Sensitive evaluation of the uracil-DNA glycosylase (UDG) activity is greatly significant in both fundamental biochemical process studies and disease prognosis....
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2405
SubjectTerms Amplification
analytical methods
biochemical pathways
Contamination
Deoxyribonucleic acid
DNA
DNA glycosylase
Endonuclease
Feasibility studies
Fluorescence
Nicking endonuclease
Oligonucleotides
prognosis
Real time
risk reduction
Strategy
Uracil
Uracil-DNA glycosidase
uracil-DNA glycosylase
Title Label-free and sensitive detection of uracil-DNA glycosylase using exponential real-time rolling circle amplification
URI https://www.proquest.com/docview/2043449147
https://www.proquest.com/docview/2221045843
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVK98IFsXyIwoKM4MCqMiSx0yTHUmBXC1RC6opyimzHQZGqdNU2Ess_4F8zthPHhR4WLlHrOE2TeZ55Hs-MEXpZyomkxSQgQNYVYXpI8SQRRAqAdCxpyjKdO_x5Pjm_ZBfLeDkY_PKilpqdeC1_Hswr-R-pQhvIVWfJ_oNk3Y9CA3wG-cIRJAzHG8n4ExdqRcqNsmsAWx2MbkKBCrVTsuOCzYbLakXezafj76trud5eA2NW48Z4CdSPq3WtI4ZMgX--InqzeR1zaNLUZbWBW465DjsvW--eT2dNSRPrDbdbUTuGvmyMcm968M2ayjbVZFl5_mrjq_1SNeTMYWzROrGnNZlz3y8Rpp5fwqrSJLa1P62l8dvs9jFO_wYezqLA16YsiD3LDGQjOKj1A6qLps7S6TfNiKKL3rZ16_l_mDwXiGiW4GmW99feQkcRzDiiITqafnx79rUz65OM2uK73WN1tW5p9qa_ep_d7Bt3w1gWd9GddqqBpxY3x2ig6nvouFXmW_yqrTh-eh81PZAwAAk7IGEHJLwucQ8k7AEJGyBhD0jYAQm3QMIWSHgPSA_Q5Yf3i9k5affjIJJG2Y6kk6BIGJdFFtK0VCGYA_gSxDwt01IWRaRSoXgSJjCHLxgVupRiyISKs0wKGir6EA1r-CuPEOaipEJSeI9JxMDopFTGXCYhVyJOgrIYodPuPeayLVav90xZ5X9LbIReuL5XtkTLwV4nnTjydghvc50YzlgWsmSEnrvToGD1qhmv1bqBPlEUmmgC-vhGN3qCbvfD4QQNd5tGPQXiuhPPWkj9Bnexmr0
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Label-free+and+sensitive+detection+of+uracil-DNA+glycosylase+using+exponential+real-time+rolling+circle+amplification&rft.jtitle=Analytical+methods&rft.au=Xu%2C+Yuan&rft.au=Cui%2C+Yun-Xi&rft.au=Zhao%2C+Qiu-Ge&rft.au=Tang%2C+An-Na&rft.date=2018-01-01&rft.issn=1759-9660&rft.eissn=1759-9679&rft.volume=10&rft.issue=20&rft.spage=2405&rft.epage=2410&rft_id=info:doi/10.1039%2FC8AY00742J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C8AY00742J
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-9660&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-9660&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-9660&client=summon