Single-atom tungsten doping induced chemical–electrochemical coupled pathway on Ni(OH) 2 enables efficient urea electrooxidation

The electrocatalytic urea oxidation reaction (UOR) has emerged as a promising alternative to the oxygen evolution reaction (OER) for wastewater recycling and energy recovery. However, the traditional UOR pathway on NiOOH surface is hindered by the rate-limiting desorption of *COO and the competition...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 18; no. 5; pp. 2415 - 2425
Main Authors Cai, Lebin, Bai, Haoyun, Li, Jilong, Xie, Feng, Jiang, Kang, Lu, Ying-Rui, Pan, Hui, Tan, Yongwen
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 04.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The electrocatalytic urea oxidation reaction (UOR) has emerged as a promising alternative to the oxygen evolution reaction (OER) for wastewater recycling and energy recovery. However, the traditional UOR pathway on NiOOH surface is hindered by the rate-limiting desorption of *COO and the competition between the UOR and OER. In this study, we propose a chemical–electrochemical coupled pathway for the direct UOR, achieved through the construction of a single-atom W-doped nanoporous P–Ni(OH) 2 catalyst (np/W–P–Ni(OH) 2 ). Specifically, the np/W–P–Ni(OH) 2 catalyst exhibits exceptional UOR performance with an ultralow potential of 1.28 V vs. RHE to reach 10 mA cm −2 and a high UOR selectivity exceeding 90% across the entire potential range. A collection of in situ spectroscopies and theoretical calculations reveal that single-atom W dopants not only accelerate the formation of Ni(OH)O active intermediates by modulating the O charge in the lattice hydroxyl, but also lower the energy barrier of the proton-coupled electron transfer step and the cleavage of the C–N bond, thus realizing the highly efficient UOR.
AbstractList The electrocatalytic urea oxidation reaction (UOR) has emerged as a promising alternative to the oxygen evolution reaction (OER) for wastewater recycling and energy recovery. However, the traditional UOR pathway on NiOOH surface is hindered by the rate-limiting desorption of *COO and the competition between the UOR and OER. In this study, we propose a chemical–electrochemical coupled pathway for the direct UOR, achieved through the construction of a single-atom W-doped nanoporous P–Ni(OH) 2 catalyst (np/W–P–Ni(OH) 2 ). Specifically, the np/W–P–Ni(OH) 2 catalyst exhibits exceptional UOR performance with an ultralow potential of 1.28 V vs. RHE to reach 10 mA cm −2 and a high UOR selectivity exceeding 90% across the entire potential range. A collection of in situ spectroscopies and theoretical calculations reveal that single-atom W dopants not only accelerate the formation of Ni(OH)O active intermediates by modulating the O charge in the lattice hydroxyl, but also lower the energy barrier of the proton-coupled electron transfer step and the cleavage of the C–N bond, thus realizing the highly efficient UOR.
The electrocatalytic urea oxidation reaction (UOR) has emerged as a promising alternative to the oxygen evolution reaction (OER) for wastewater recycling and energy recovery. However, the traditional UOR pathway on NiOOH surface is hindered by the rate-limiting desorption of *COO and the competition between the UOR and OER. In this study, we propose a chemical–electrochemical coupled pathway for the direct UOR, achieved through the construction of a single-atom W-doped nanoporous P–Ni(OH)2 catalyst (np/W–P–Ni(OH)2). Specifically, the np/W–P–Ni(OH)2 catalyst exhibits exceptional UOR performance with an ultralow potential of 1.28 V vs. RHE to reach 10 mA cm−2 and a high UOR selectivity exceeding 90% across the entire potential range. A collection of in situ spectroscopies and theoretical calculations reveal that single-atom W dopants not only accelerate the formation of Ni(OH)O active intermediates by modulating the O charge in the lattice hydroxyl, but also lower the energy barrier of the proton-coupled electron transfer step and the cleavage of the C–N bond, thus realizing the highly efficient UOR.
Author Xie, Feng
Pan, Hui
Tan, Yongwen
Cai, Lebin
Lu, Ying-Rui
Bai, Haoyun
Li, Jilong
Jiang, Kang
Author_xml – sequence: 1
  givenname: Lebin
  surname: Cai
  fullname: Cai, Lebin
  organization: College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
– sequence: 2
  givenname: Haoyun
  surname: Bai
  fullname: Bai, Haoyun
  organization: Institute of Applied Physics and Materials Engineering, University of Macau, Macao S. A. R, China
– sequence: 3
  givenname: Jilong
  surname: Li
  fullname: Li, Jilong
  organization: College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
– sequence: 4
  givenname: Feng
  surname: Xie
  fullname: Xie, Feng
  organization: College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
– sequence: 5
  givenname: Kang
  surname: Jiang
  fullname: Jiang, Kang
  organization: College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
– sequence: 6
  givenname: Ying-Rui
  surname: Lu
  fullname: Lu, Ying-Rui
  organization: National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
– sequence: 7
  givenname: Hui
  surname: Pan
  fullname: Pan, Hui
  organization: Institute of Applied Physics and Materials Engineering, University of Macau, Macao S. A. R, China
– sequence: 8
  givenname: Yongwen
  orcidid: 0000-0003-1486-4048
  surname: Tan
  fullname: Tan, Yongwen
  organization: College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
BookMark eNptkM1KxDAUhYMoOI5ufIKAGxWqSdM07VJ0_EFxFuq6pMmNZugkNU3R2Ymv4Bv6JFZHEcTVvRy-ey7nbKBV5x0gtE3JASWsPDzJJhPCWUYuV9CICp4lXJB89WfPy3QdbXTdjJA8JaIcodcb6-4bSGT0cxx7d99FcFj7dpCxdbpXoLF6gLlVsnl_eYMGVAz-R8HK920zIK2MD09ygb3D13Z3er6HUwxO1g10GIyxyoKLuA8g8beFf7ZaRuvdJlozsulg63uO0d3p5Pb4PLmanl0cH10liqVlTAoqOYi8JISrWpu6YCwTueFCFypVhhqtuVS6pinkjBSSMSJqxlLGuaYm1WyMdpa-bfCPPXSxmvk-uOFlxagY8FLkYqD2l5QKvusCmKoNdi7DoqKk-uy4-u14gMkfWNn4FSoGaZv_Tj4A4cqDAA
CitedBy_id crossref_primary_10_1039_D5CY00008D
Cites_doi 10.1016/j.apcatb.2019.118020
10.1002/adfm.202313309
10.1002/smll.202302151
10.1039/D3EE03258B
10.1002/anie.202217449
10.1002/adma.202207850
10.1002/adma.202301549
10.1016/j.chempr.2022.07.010
10.1039/D1EE03522C
10.1038/s41560-021-00899-2
10.1103/PhysRevLett.77.3865
10.1021/acscatal.1c05190
10.1073/pnas.2308828120
10.1038/s41467-020-16558-1
10.1016/j.esci.2024.100272
10.1002/adfm.202210656
10.1002/smll.202005769
10.1002/adma.202209338
10.1002/adma.202311766
10.1021/jacs.1c04682
10.1002/anie.202210958
10.1103/PhysRev.140.A1133
10.1002/celc.202300249
10.1038/s41467-019-09845-z
10.1002/jcc.20495
10.1002/aenm.202102292
10.1002/advs.202204800
10.1002/sstr.202300212
10.1002/anie.202100610
10.1038/s41467-018-03380-z
10.1039/C8EE00521D
10.1038/s41467-023-41588-w
10.1002/adfm.202209698
10.1021/acsnano.2c01956
10.1021/cs401245q
10.1103/PhysRevB.54.11169
10.1002/anie.201909832
10.1039/D3EE02714G
10.1103/PhysRev.136.B864
10.1002/anie.202108666
10.1038/s41893-021-00741-3
10.1021/acsnano.2c01177
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: Copyright Royal Society of Chemistry 2025
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/D4EE05340K
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 2425
ExternalDocumentID 10_1039_D4EE05340K
GroupedDBID 0-7
0R~
29G
4.4
5GY
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
CS3
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
M4U
N9A
O-G
O9-
P2P
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SKA
SLH
TOV
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c329t-81a5e769005cbdfb833476f57d8c2cf1fdd5acdb12e6308a3307b332355d1f2d3
ISSN 1754-5692
IngestDate Wed Jul 23 08:40:49 EDT 2025
Tue Aug 05 12:05:53 EDT 2025
Thu Apr 24 23:09:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c329t-81a5e769005cbdfb833476f57d8c2cf1fdd5acdb12e6308a3307b332355d1f2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1486-4048
PQID 3173309767
PQPubID 2047494
PageCount 11
ParticipantIDs proquest_journals_3173309767
crossref_primary_10_1039_D4EE05340K
crossref_citationtrail_10_1039_D4EE05340K
PublicationCentury 2000
PublicationDate 2025-03-04
PublicationDateYYYYMMDD 2025-03-04
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-04
  day: 04
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Geng (D4EE05340K/cit6/1) 2021; 6
Cai (D4EE05340K/cit24/1) 2023; 35
Zhang (D4EE05340K/cit8/1) 2023; 16
Sun (D4EE05340K/cit25/1) 2022; 9
Meng (D4EE05340K/cit35/1) 2022; 16
Lv (D4EE05340K/cit34/1) 2021; 4
Kresse (D4EE05340K/cit39/1) 1996; 54
Yan (D4EE05340K/cit20/1) 2019; 10
Hohenberg (D4EE05340K/cit38/1) 1964; 136
Ji (D4EE05340K/cit21/1) 2022; 12
Zhang (D4EE05340K/cit28/1) 2021; 17
Qin (D4EE05340K/cit22/1) 2023; 33
Guo (D4EE05340K/cit14/1) 2024; 36
Grimme (D4EE05340K/cit42/1) 2006; 27
Wang (D4EE05340K/cit3/1) 2023; 10
Zhang (D4EE05340K/cit30/1) 2019; 58
Chong (D4EE05340K/cit32/1) 2021; 60
Zhang (D4EE05340K/cit31/1) 2018; 9
Zhao (D4EE05340K/cit7/1) 2023; 120
Zheng (D4EE05340K/cit13/1) 2024; 17
Wang (D4EE05340K/cit10/1) 2021; 60
Li (D4EE05340K/cit27/1) 2023; 19
Zhu (D4EE05340K/cit12/1) 2023; 35
Lin (D4EE05340K/cit9/1) 2022; 15
Wang (D4EE05340K/cit19/1) 2021; 143
Zhou (D4EE05340K/cit23/1) 2023; 33
Lv (D4EE05340K/cit36/1) 2022; 16
Jiang (D4EE05340K/cit18/1) 2022; 35
Zheng (D4EE05340K/cit15/1) 2023; 62
Li (D4EE05340K/cit1/1) 2021; 11
Wu (D4EE05340K/cit4/1) 2022; 8
Perdew (D4EE05340K/cit40/1) 1996; 77
Gao (D4EE05340K/cit16/1) 2023; 14
Yang (D4EE05340K/cit26/1) 2019; 259
Geng (D4EE05340K/cit33/1) 2023; 62
Jiang (D4EE05340K/cit17/1) 2020; 11
Teng (D4EE05340K/cit5/1) 2024; 4
Kohn (D4EE05340K/cit37/1) 1965; 140
Xu (D4EE05340K/cit2/1) 2024; 34
Yu (D4EE05340K/cit11/1) 2018; 11
Maheskumar (D4EE05340K/cit29/1) 2023; 4
Li (D4EE05340K/cit41/1) 2014; 4
References_xml – volume: 259
  start-page: 118020
  year: 2019
  ident: D4EE05340K/cit26/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118020
– volume: 34
  start-page: 2313309
  year: 2024
  ident: D4EE05340K/cit2/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202313309
– volume: 19
  start-page: 2302151
  year: 2023
  ident: D4EE05340K/cit27/1
  publication-title: Small
  doi: 10.1002/smll.202302151
– volume: 16
  start-page: 6015
  year: 2023
  ident: D4EE05340K/cit8/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE03258B
– volume: 62
  start-page: e202217449
  year: 2023
  ident: D4EE05340K/cit15/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202217449
– volume: 35
  start-page: 2207850
  year: 2022
  ident: D4EE05340K/cit18/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202207850
– volume: 35
  start-page: 2301549
  year: 2023
  ident: D4EE05340K/cit12/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202301549
– volume: 8
  start-page: 2594
  year: 2022
  ident: D4EE05340K/cit4/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2022.07.010
– volume: 15
  start-page: 2386
  year: 2022
  ident: D4EE05340K/cit9/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE03522C
– volume: 6
  start-page: 904
  year: 2021
  ident: D4EE05340K/cit6/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00899-2
– volume: 77
  start-page: 3865
  year: 1996
  ident: D4EE05340K/cit40/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 12
  start-page: 569
  year: 2022
  ident: D4EE05340K/cit21/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c05190
– volume: 120
  start-page: e2308828120
  year: 2023
  ident: D4EE05340K/cit7/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2308828120
– volume: 11
  start-page: 2701
  year: 2020
  ident: D4EE05340K/cit17/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16558-1
– volume: 4
  start-page: 100272
  year: 2024
  ident: D4EE05340K/cit5/1
  publication-title: eScience
  doi: 10.1016/j.esci.2024.100272
– volume: 33
  start-page: 2210656
  year: 2023
  ident: D4EE05340K/cit23/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202210656
– volume: 17
  start-page: 2005769
  year: 2021
  ident: D4EE05340K/cit28/1
  publication-title: Small
  doi: 10.1002/smll.202005769
– volume: 35
  start-page: 2209338
  year: 2023
  ident: D4EE05340K/cit24/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202209338
– volume: 36
  start-page: 2311766
  year: 2024
  ident: D4EE05340K/cit14/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202311766
– volume: 143
  start-page: 13605
  year: 2021
  ident: D4EE05340K/cit19/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c04682
– volume: 62
  start-page: e202210958
  year: 2023
  ident: D4EE05340K/cit33/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202210958
– volume: 140
  start-page: A1133
  year: 1965
  ident: D4EE05340K/cit37/1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 10
  start-page: e202300249
  year: 2023
  ident: D4EE05340K/cit3/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202300249
– volume: 10
  start-page: 2149
  year: 2019
  ident: D4EE05340K/cit20/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09845-z
– volume: 27
  start-page: 1787
  year: 2006
  ident: D4EE05340K/cit42/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 11
  start-page: 2102292
  year: 2021
  ident: D4EE05340K/cit1/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102292
– volume: 9
  start-page: 2204800
  year: 2022
  ident: D4EE05340K/cit25/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202204800
– volume: 4
  start-page: 2300212
  year: 2023
  ident: D4EE05340K/cit29/1
  publication-title: Small Struct.
  doi: 10.1002/sstr.202300212
– volume: 60
  start-page: 10577
  year: 2021
  ident: D4EE05340K/cit10/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202100610
– volume: 9
  start-page: 1002
  year: 2018
  ident: D4EE05340K/cit31/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03380-z
– volume: 11
  start-page: 1890
  year: 2018
  ident: D4EE05340K/cit11/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00521D
– volume: 14
  start-page: 5842
  year: 2023
  ident: D4EE05340K/cit16/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-41588-w
– volume: 33
  start-page: 2209698
  year: 2023
  ident: D4EE05340K/cit22/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202209698
– volume: 16
  start-page: 8213
  year: 2022
  ident: D4EE05340K/cit36/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c01956
– volume: 4
  start-page: 1148
  year: 2014
  ident: D4EE05340K/cit41/1
  publication-title: ACS Catal.
  doi: 10.1021/cs401245q
– volume: 54
  start-page: 11169
  year: 1996
  ident: D4EE05340K/cit39/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.54.11169
– volume: 58
  start-page: 16820
  year: 2019
  ident: D4EE05340K/cit30/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201909832
– volume: 17
  start-page: 748
  year: 2024
  ident: D4EE05340K/cit13/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE02714G
– volume: 136
  start-page: B864
  year: 1964
  ident: D4EE05340K/cit38/1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 60
  start-page: 22010
  year: 2021
  ident: D4EE05340K/cit32/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202108666
– volume: 4
  start-page: 868
  year: 2021
  ident: D4EE05340K/cit34/1
  publication-title: Nat. Sustainability
  doi: 10.1038/s41893-021-00741-3
– volume: 16
  start-page: 9095
  year: 2022
  ident: D4EE05340K/cit35/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c01177
SSID ssj0062079
Score 2.5215588
Snippet The electrocatalytic urea oxidation reaction (UOR) has emerged as a promising alternative to the oxygen evolution reaction (OER) for wastewater recycling and...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2415
SubjectTerms Catalysts
Electrochemistry
Electron transfer
Energy recovery
Evolution
Intermediates
Nickel compounds
Oxidation
Oxygen evolution reactions
Tungsten
Urea
Title Single-atom tungsten doping induced chemical–electrochemical coupled pathway on Ni(OH) 2 enables efficient urea electrooxidation
URI https://www.proquest.com/docview/3173309767
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F9AIHxK8oFLQSIFFZLs7u2o6PbUmx2pAeSERulvfHyCLYFU0E5QTPwIPwTjwJs97d2K0iBFycaLyyLM-3OzO738wg9IxBICtkzH1BZOSzhAo_5wLmlS5WxiMJEYjOd34zidIZO56H817vZ4e1tFryPfF1Y17J_2gVZKBXnSX7D5pdPxQE8B_0C1fQMFz_Ssdvwe4slA9x80dvCbMWNFZ50qRAQay90mf7wlYEcKwGahvfOLkn6tXZAgbq3sSf8wt9ejApdRHS9DlJiKea5KpzTfwom-RJT_PYPfuU-kspW926HX6TT6hB1cmjc9mXLZQOTSvsseLlGqIHRpbm9cWqZQs1suNyUVs7C7K5OVgBfbzv7lyQsKFutTuXZn_EkVMb8oltcddZj-OQ-WFk2uXtqY4sDqLNi3h7TG5WZGbSRa111xHWRssRUF14VTKle2Ww4ENrHx0nYHKaHc3G42w6mk-voS0CcQnpo639k4PX75zxj0jQlHdcv7eriEuTl-2zL_tAl12Axq-Z3kI3bUCC9w26bqOequ6gG50ylXfR9w7OsMMZNjjDFmfY4enXtx9XEIYtwrBFGK4rPClfnKa7BFt04TW6sEYXvoque2h2NJoepr5t3eELSpKlPxzkoYqjBNZ4wWXBh5SyOCrCWA4FEcWgkDLMheQDoiIaDHMKpoZTSsD7lYOCSHof9au6Ug8QDgIOZoJBYDGkLCcFD-MYnOiCFRx-Ar6Ndt3HzISta6_bqyyyhl9Bk-wVG42aD3-yjZ6ux56Zai4bR-04nWR2tp9n4GfDS4LzHj_88-1H6HoL9h3UX35aqcfguC75EwuW3wSSnvQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-atom+tungsten+doping+induced+chemical%E2%80%93electrochemical+coupled+pathway+on+Ni%28OH%292+enables+efficient+urea+electrooxidation&rft.jtitle=Energy+%26+environmental+science&rft.au=Cai%2C+Lebin&rft.au=Bai%2C+Haoyun&rft.au=Li%2C+Jilong&rft.au=Xie%2C+Feng&rft.date=2025-03-04&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=18&rft.issue=5&rft.spage=2415&rft.epage=2425&rft_id=info:doi/10.1039%2Fd4ee05340k&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon