Single-atom tungsten doping induced chemical–electrochemical coupled pathway on Ni(OH) 2 enables efficient urea electrooxidation
The electrocatalytic urea oxidation reaction (UOR) has emerged as a promising alternative to the oxygen evolution reaction (OER) for wastewater recycling and energy recovery. However, the traditional UOR pathway on NiOOH surface is hindered by the rate-limiting desorption of *COO and the competition...
Saved in:
Published in | Energy & environmental science Vol. 18; no. 5; pp. 2415 - 2425 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
04.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The electrocatalytic urea oxidation reaction (UOR) has emerged as a promising alternative to the oxygen evolution reaction (OER) for wastewater recycling and energy recovery. However, the traditional UOR pathway on NiOOH surface is hindered by the rate-limiting desorption of *COO and the competition between the UOR and OER. In this study, we propose a chemical–electrochemical coupled pathway for the direct UOR, achieved through the construction of a single-atom W-doped nanoporous P–Ni(OH) 2 catalyst (np/W–P–Ni(OH) 2 ). Specifically, the np/W–P–Ni(OH) 2 catalyst exhibits exceptional UOR performance with an ultralow potential of 1.28 V vs. RHE to reach 10 mA cm −2 and a high UOR selectivity exceeding 90% across the entire potential range. A collection of in situ spectroscopies and theoretical calculations reveal that single-atom W dopants not only accelerate the formation of Ni(OH)O active intermediates by modulating the O charge in the lattice hydroxyl, but also lower the energy barrier of the proton-coupled electron transfer step and the cleavage of the C–N bond, thus realizing the highly efficient UOR. |
---|---|
AbstractList | The electrocatalytic urea oxidation reaction (UOR) has emerged as a promising alternative to the oxygen evolution reaction (OER) for wastewater recycling and energy recovery. However, the traditional UOR pathway on NiOOH surface is hindered by the rate-limiting desorption of *COO and the competition between the UOR and OER. In this study, we propose a chemical–electrochemical coupled pathway for the direct UOR, achieved through the construction of a single-atom W-doped nanoporous P–Ni(OH) 2 catalyst (np/W–P–Ni(OH) 2 ). Specifically, the np/W–P–Ni(OH) 2 catalyst exhibits exceptional UOR performance with an ultralow potential of 1.28 V vs. RHE to reach 10 mA cm −2 and a high UOR selectivity exceeding 90% across the entire potential range. A collection of in situ spectroscopies and theoretical calculations reveal that single-atom W dopants not only accelerate the formation of Ni(OH)O active intermediates by modulating the O charge in the lattice hydroxyl, but also lower the energy barrier of the proton-coupled electron transfer step and the cleavage of the C–N bond, thus realizing the highly efficient UOR. The electrocatalytic urea oxidation reaction (UOR) has emerged as a promising alternative to the oxygen evolution reaction (OER) for wastewater recycling and energy recovery. However, the traditional UOR pathway on NiOOH surface is hindered by the rate-limiting desorption of *COO and the competition between the UOR and OER. In this study, we propose a chemical–electrochemical coupled pathway for the direct UOR, achieved through the construction of a single-atom W-doped nanoporous P–Ni(OH)2 catalyst (np/W–P–Ni(OH)2). Specifically, the np/W–P–Ni(OH)2 catalyst exhibits exceptional UOR performance with an ultralow potential of 1.28 V vs. RHE to reach 10 mA cm−2 and a high UOR selectivity exceeding 90% across the entire potential range. A collection of in situ spectroscopies and theoretical calculations reveal that single-atom W dopants not only accelerate the formation of Ni(OH)O active intermediates by modulating the O charge in the lattice hydroxyl, but also lower the energy barrier of the proton-coupled electron transfer step and the cleavage of the C–N bond, thus realizing the highly efficient UOR. |
Author | Xie, Feng Pan, Hui Tan, Yongwen Cai, Lebin Lu, Ying-Rui Bai, Haoyun Li, Jilong Jiang, Kang |
Author_xml | – sequence: 1 givenname: Lebin surname: Cai fullname: Cai, Lebin organization: College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle Body, Hunan University, Changsha, Hunan 410082, China – sequence: 2 givenname: Haoyun surname: Bai fullname: Bai, Haoyun organization: Institute of Applied Physics and Materials Engineering, University of Macau, Macao S. A. R, China – sequence: 3 givenname: Jilong surname: Li fullname: Li, Jilong organization: College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle Body, Hunan University, Changsha, Hunan 410082, China – sequence: 4 givenname: Feng surname: Xie fullname: Xie, Feng organization: College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle Body, Hunan University, Changsha, Hunan 410082, China – sequence: 5 givenname: Kang surname: Jiang fullname: Jiang, Kang organization: College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle Body, Hunan University, Changsha, Hunan 410082, China – sequence: 6 givenname: Ying-Rui surname: Lu fullname: Lu, Ying-Rui organization: National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan – sequence: 7 givenname: Hui surname: Pan fullname: Pan, Hui organization: Institute of Applied Physics and Materials Engineering, University of Macau, Macao S. A. R, China – sequence: 8 givenname: Yongwen orcidid: 0000-0003-1486-4048 surname: Tan fullname: Tan, Yongwen organization: College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle Body, Hunan University, Changsha, Hunan 410082, China |
BookMark | eNptkM1KxDAUhYMoOI5ufIKAGxWqSdM07VJ0_EFxFuq6pMmNZugkNU3R2Ymv4Bv6JFZHEcTVvRy-ey7nbKBV5x0gtE3JASWsPDzJJhPCWUYuV9CICp4lXJB89WfPy3QdbXTdjJA8JaIcodcb6-4bSGT0cxx7d99FcFj7dpCxdbpXoLF6gLlVsnl_eYMGVAz-R8HK920zIK2MD09ygb3D13Z3er6HUwxO1g10GIyxyoKLuA8g8beFf7ZaRuvdJlozsulg63uO0d3p5Pb4PLmanl0cH10liqVlTAoqOYi8JISrWpu6YCwTueFCFypVhhqtuVS6pinkjBSSMSJqxlLGuaYm1WyMdpa-bfCPPXSxmvk-uOFlxagY8FLkYqD2l5QKvusCmKoNdi7DoqKk-uy4-u14gMkfWNn4FSoGaZv_Tj4A4cqDAA |
CitedBy_id | crossref_primary_10_1039_D5CY00008D |
Cites_doi | 10.1016/j.apcatb.2019.118020 10.1002/adfm.202313309 10.1002/smll.202302151 10.1039/D3EE03258B 10.1002/anie.202217449 10.1002/adma.202207850 10.1002/adma.202301549 10.1016/j.chempr.2022.07.010 10.1039/D1EE03522C 10.1038/s41560-021-00899-2 10.1103/PhysRevLett.77.3865 10.1021/acscatal.1c05190 10.1073/pnas.2308828120 10.1038/s41467-020-16558-1 10.1016/j.esci.2024.100272 10.1002/adfm.202210656 10.1002/smll.202005769 10.1002/adma.202209338 10.1002/adma.202311766 10.1021/jacs.1c04682 10.1002/anie.202210958 10.1103/PhysRev.140.A1133 10.1002/celc.202300249 10.1038/s41467-019-09845-z 10.1002/jcc.20495 10.1002/aenm.202102292 10.1002/advs.202204800 10.1002/sstr.202300212 10.1002/anie.202100610 10.1038/s41467-018-03380-z 10.1039/C8EE00521D 10.1038/s41467-023-41588-w 10.1002/adfm.202209698 10.1021/acsnano.2c01956 10.1021/cs401245q 10.1103/PhysRevB.54.11169 10.1002/anie.201909832 10.1039/D3EE02714G 10.1103/PhysRev.136.B864 10.1002/anie.202108666 10.1038/s41893-021-00741-3 10.1021/acsnano.2c01177 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2025 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2025 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/D4EE05340K |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 2425 |
ExternalDocumentID | 10_1039_D4EE05340K |
GroupedDBID | 0-7 0R~ 29G 4.4 5GY 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION CS3 EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I M4U N9A O-G O9- P2P RAOCF RCNCU RPMJG RRC RSCEA RVUXY SKA SLH TOV 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c329t-81a5e769005cbdfb833476f57d8c2cf1fdd5acdb12e6308a3307b332355d1f2d3 |
ISSN | 1754-5692 |
IngestDate | Wed Jul 23 08:40:49 EDT 2025 Tue Aug 05 12:05:53 EDT 2025 Thu Apr 24 23:09:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c329t-81a5e769005cbdfb833476f57d8c2cf1fdd5acdb12e6308a3307b332355d1f2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1486-4048 |
PQID | 3173309767 |
PQPubID | 2047494 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3173309767 crossref_primary_10_1039_D4EE05340K crossref_citationtrail_10_1039_D4EE05340K |
PublicationCentury | 2000 |
PublicationDate | 2025-03-04 |
PublicationDateYYYYMMDD | 2025-03-04 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2025 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Geng (D4EE05340K/cit6/1) 2021; 6 Cai (D4EE05340K/cit24/1) 2023; 35 Zhang (D4EE05340K/cit8/1) 2023; 16 Sun (D4EE05340K/cit25/1) 2022; 9 Meng (D4EE05340K/cit35/1) 2022; 16 Lv (D4EE05340K/cit34/1) 2021; 4 Kresse (D4EE05340K/cit39/1) 1996; 54 Yan (D4EE05340K/cit20/1) 2019; 10 Hohenberg (D4EE05340K/cit38/1) 1964; 136 Ji (D4EE05340K/cit21/1) 2022; 12 Zhang (D4EE05340K/cit28/1) 2021; 17 Qin (D4EE05340K/cit22/1) 2023; 33 Guo (D4EE05340K/cit14/1) 2024; 36 Grimme (D4EE05340K/cit42/1) 2006; 27 Wang (D4EE05340K/cit3/1) 2023; 10 Zhang (D4EE05340K/cit30/1) 2019; 58 Chong (D4EE05340K/cit32/1) 2021; 60 Zhang (D4EE05340K/cit31/1) 2018; 9 Zhao (D4EE05340K/cit7/1) 2023; 120 Zheng (D4EE05340K/cit13/1) 2024; 17 Wang (D4EE05340K/cit10/1) 2021; 60 Li (D4EE05340K/cit27/1) 2023; 19 Zhu (D4EE05340K/cit12/1) 2023; 35 Lin (D4EE05340K/cit9/1) 2022; 15 Wang (D4EE05340K/cit19/1) 2021; 143 Zhou (D4EE05340K/cit23/1) 2023; 33 Lv (D4EE05340K/cit36/1) 2022; 16 Jiang (D4EE05340K/cit18/1) 2022; 35 Zheng (D4EE05340K/cit15/1) 2023; 62 Li (D4EE05340K/cit1/1) 2021; 11 Wu (D4EE05340K/cit4/1) 2022; 8 Perdew (D4EE05340K/cit40/1) 1996; 77 Gao (D4EE05340K/cit16/1) 2023; 14 Yang (D4EE05340K/cit26/1) 2019; 259 Geng (D4EE05340K/cit33/1) 2023; 62 Jiang (D4EE05340K/cit17/1) 2020; 11 Teng (D4EE05340K/cit5/1) 2024; 4 Kohn (D4EE05340K/cit37/1) 1965; 140 Xu (D4EE05340K/cit2/1) 2024; 34 Yu (D4EE05340K/cit11/1) 2018; 11 Maheskumar (D4EE05340K/cit29/1) 2023; 4 Li (D4EE05340K/cit41/1) 2014; 4 |
References_xml | – volume: 259 start-page: 118020 year: 2019 ident: D4EE05340K/cit26/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118020 – volume: 34 start-page: 2313309 year: 2024 ident: D4EE05340K/cit2/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202313309 – volume: 19 start-page: 2302151 year: 2023 ident: D4EE05340K/cit27/1 publication-title: Small doi: 10.1002/smll.202302151 – volume: 16 start-page: 6015 year: 2023 ident: D4EE05340K/cit8/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE03258B – volume: 62 start-page: e202217449 year: 2023 ident: D4EE05340K/cit15/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202217449 – volume: 35 start-page: 2207850 year: 2022 ident: D4EE05340K/cit18/1 publication-title: Adv. Mater. doi: 10.1002/adma.202207850 – volume: 35 start-page: 2301549 year: 2023 ident: D4EE05340K/cit12/1 publication-title: Adv. Mater. doi: 10.1002/adma.202301549 – volume: 8 start-page: 2594 year: 2022 ident: D4EE05340K/cit4/1 publication-title: Chem doi: 10.1016/j.chempr.2022.07.010 – volume: 15 start-page: 2386 year: 2022 ident: D4EE05340K/cit9/1 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE03522C – volume: 6 start-page: 904 year: 2021 ident: D4EE05340K/cit6/1 publication-title: Nat. Energy doi: 10.1038/s41560-021-00899-2 – volume: 77 start-page: 3865 year: 1996 ident: D4EE05340K/cit40/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 12 start-page: 569 year: 2022 ident: D4EE05340K/cit21/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c05190 – volume: 120 start-page: e2308828120 year: 2023 ident: D4EE05340K/cit7/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2308828120 – volume: 11 start-page: 2701 year: 2020 ident: D4EE05340K/cit17/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16558-1 – volume: 4 start-page: 100272 year: 2024 ident: D4EE05340K/cit5/1 publication-title: eScience doi: 10.1016/j.esci.2024.100272 – volume: 33 start-page: 2210656 year: 2023 ident: D4EE05340K/cit23/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202210656 – volume: 17 start-page: 2005769 year: 2021 ident: D4EE05340K/cit28/1 publication-title: Small doi: 10.1002/smll.202005769 – volume: 35 start-page: 2209338 year: 2023 ident: D4EE05340K/cit24/1 publication-title: Adv. Mater. doi: 10.1002/adma.202209338 – volume: 36 start-page: 2311766 year: 2024 ident: D4EE05340K/cit14/1 publication-title: Adv. Mater. doi: 10.1002/adma.202311766 – volume: 143 start-page: 13605 year: 2021 ident: D4EE05340K/cit19/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c04682 – volume: 62 start-page: e202210958 year: 2023 ident: D4EE05340K/cit33/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202210958 – volume: 140 start-page: A1133 year: 1965 ident: D4EE05340K/cit37/1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 10 start-page: e202300249 year: 2023 ident: D4EE05340K/cit3/1 publication-title: ChemElectroChem doi: 10.1002/celc.202300249 – volume: 10 start-page: 2149 year: 2019 ident: D4EE05340K/cit20/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09845-z – volume: 27 start-page: 1787 year: 2006 ident: D4EE05340K/cit42/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 11 start-page: 2102292 year: 2021 ident: D4EE05340K/cit1/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102292 – volume: 9 start-page: 2204800 year: 2022 ident: D4EE05340K/cit25/1 publication-title: Adv. Sci. doi: 10.1002/advs.202204800 – volume: 4 start-page: 2300212 year: 2023 ident: D4EE05340K/cit29/1 publication-title: Small Struct. doi: 10.1002/sstr.202300212 – volume: 60 start-page: 10577 year: 2021 ident: D4EE05340K/cit10/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202100610 – volume: 9 start-page: 1002 year: 2018 ident: D4EE05340K/cit31/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03380-z – volume: 11 start-page: 1890 year: 2018 ident: D4EE05340K/cit11/1 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00521D – volume: 14 start-page: 5842 year: 2023 ident: D4EE05340K/cit16/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-41588-w – volume: 33 start-page: 2209698 year: 2023 ident: D4EE05340K/cit22/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202209698 – volume: 16 start-page: 8213 year: 2022 ident: D4EE05340K/cit36/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c01956 – volume: 4 start-page: 1148 year: 2014 ident: D4EE05340K/cit41/1 publication-title: ACS Catal. doi: 10.1021/cs401245q – volume: 54 start-page: 11169 year: 1996 ident: D4EE05340K/cit39/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.54.11169 – volume: 58 start-page: 16820 year: 2019 ident: D4EE05340K/cit30/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201909832 – volume: 17 start-page: 748 year: 2024 ident: D4EE05340K/cit13/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE02714G – volume: 136 start-page: B864 year: 1964 ident: D4EE05340K/cit38/1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 60 start-page: 22010 year: 2021 ident: D4EE05340K/cit32/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202108666 – volume: 4 start-page: 868 year: 2021 ident: D4EE05340K/cit34/1 publication-title: Nat. Sustainability doi: 10.1038/s41893-021-00741-3 – volume: 16 start-page: 9095 year: 2022 ident: D4EE05340K/cit35/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c01177 |
SSID | ssj0062079 |
Score | 2.5215588 |
Snippet | The electrocatalytic urea oxidation reaction (UOR) has emerged as a promising alternative to the oxygen evolution reaction (OER) for wastewater recycling and... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 2415 |
SubjectTerms | Catalysts Electrochemistry Electron transfer Energy recovery Evolution Intermediates Nickel compounds Oxidation Oxygen evolution reactions Tungsten Urea |
Title | Single-atom tungsten doping induced chemical–electrochemical coupled pathway on Ni(OH) 2 enables efficient urea electrooxidation |
URI | https://www.proquest.com/docview/3173309767 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F9AIHxK8oFLQSIFFZLs7u2o6PbUmx2pAeSERulvfHyCLYFU0E5QTPwIPwTjwJs97d2K0iBFycaLyyLM-3OzO738wg9IxBICtkzH1BZOSzhAo_5wLmlS5WxiMJEYjOd34zidIZO56H817vZ4e1tFryPfF1Y17J_2gVZKBXnSX7D5pdPxQE8B_0C1fQMFz_Ssdvwe4slA9x80dvCbMWNFZ50qRAQay90mf7wlYEcKwGahvfOLkn6tXZAgbq3sSf8wt9ejApdRHS9DlJiKea5KpzTfwom-RJT_PYPfuU-kspW926HX6TT6hB1cmjc9mXLZQOTSvsseLlGqIHRpbm9cWqZQs1suNyUVs7C7K5OVgBfbzv7lyQsKFutTuXZn_EkVMb8oltcddZj-OQ-WFk2uXtqY4sDqLNi3h7TG5WZGbSRa111xHWRssRUF14VTKle2Ww4ENrHx0nYHKaHc3G42w6mk-voS0CcQnpo639k4PX75zxj0jQlHdcv7eriEuTl-2zL_tAl12Axq-Z3kI3bUCC9w26bqOequ6gG50ylXfR9w7OsMMZNjjDFmfY4enXtx9XEIYtwrBFGK4rPClfnKa7BFt04TW6sEYXvoque2h2NJoepr5t3eELSpKlPxzkoYqjBNZ4wWXBh5SyOCrCWA4FEcWgkDLMheQDoiIaDHMKpoZTSsD7lYOCSHof9au6Ug8QDgIOZoJBYDGkLCcFD-MYnOiCFRx-Ar6Ndt3HzISta6_bqyyyhl9Bk-wVG42aD3-yjZ6ux56Zai4bR-04nWR2tp9n4GfDS4LzHj_88-1H6HoL9h3UX35aqcfguC75EwuW3wSSnvQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-atom+tungsten+doping+induced+chemical%E2%80%93electrochemical+coupled+pathway+on+Ni%28OH%292+enables+efficient+urea+electrooxidation&rft.jtitle=Energy+%26+environmental+science&rft.au=Cai%2C+Lebin&rft.au=Bai%2C+Haoyun&rft.au=Li%2C+Jilong&rft.au=Xie%2C+Feng&rft.date=2025-03-04&rft.pub=Royal+Society+of+Chemistry&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=18&rft.issue=5&rft.spage=2415&rft.epage=2425&rft_id=info:doi/10.1039%2Fd4ee05340k&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |