Core–shell anatase anode materials for sodium-ion batteries: the impact of oxygen vacancies and nitrogen-doped carbon coating

In this work, the impact of oxygen vacancies and nitrogen-doped carbon coating on the sodium-ion storage properties of anatase TiO 2 has been demonstrated. Oxygen vacancies and nitrogen-doped carbon coating were introduced simultaneously by the calcination of core–shell structured TiO 2 spheres in a...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 11; no. 38; pp. 17860 - 17868
Main Authors Bai, Yu-Lin, Xarapatgvl, Raxidin, Wu, Xue-Yan, Liu, Xin, Liu, Yu-Si, Wang, Kai-Xue, Chen, Jie-Sheng
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 14.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, the impact of oxygen vacancies and nitrogen-doped carbon coating on the sodium-ion storage properties of anatase TiO 2 has been demonstrated. Oxygen vacancies and nitrogen-doped carbon coating were introduced simultaneously by the calcination of core–shell structured TiO 2 spheres in a reducing atmosphere. Compared to the anatase TiO 2 with and without oxygen vacancies, TiO 2−x @NC exhibits much better electrochemical performance in the storage of sodium ions. A high reversible capacity of 245.6 mA h g −1 is maintained at 0.1 A g −1 after 200 cycles, and a high specific capacity of 155.6 mA h g −1 is achieved at a high rate of 5.0 A g −1 . The significantly improved electrochemical performance of the core–shell structured anatase TiO 2 spheres is attributed to the synergistic effect of the oxygen vacancies in the anatase lattice and surface nitrogen-doped carbon coating. This work provides an efficient strategy for improving the electrochemical performance of metal–oxide-based electrode materials for sodium-ion batteries.
AbstractList In this work, the impact of oxygen vacancies and nitrogen-doped carbon coating on the sodium-ion storage properties of anatase TiO2 has been demonstrated. Oxygen vacancies and nitrogen-doped carbon coating were introduced simultaneously by the calcination of core-shell structured TiO2 spheres in a reducing atmosphere. Compared to the anatase TiO2 with and without oxygen vacancies, TiO2-x@NC exhibits much better electrochemical performance in the storage of sodium ions. A high reversible capacity of 245.6 mA h g-1 is maintained at 0.1 A g-1 after 200 cycles, and a high specific capacity of 155.6 mA h g-1 is achieved at a high rate of 5.0 A g-1. The significantly improved electrochemical performance of the core-shell structured anatase TiO2 spheres is attributed to the synergistic effect of the oxygen vacancies in the anatase lattice and surface nitrogen-doped carbon coating. This work provides an efficient strategy for improving the electrochemical performance of metal-oxide-based electrode materials for sodium-ion batteries.In this work, the impact of oxygen vacancies and nitrogen-doped carbon coating on the sodium-ion storage properties of anatase TiO2 has been demonstrated. Oxygen vacancies and nitrogen-doped carbon coating were introduced simultaneously by the calcination of core-shell structured TiO2 spheres in a reducing atmosphere. Compared to the anatase TiO2 with and without oxygen vacancies, TiO2-x@NC exhibits much better electrochemical performance in the storage of sodium ions. A high reversible capacity of 245.6 mA h g-1 is maintained at 0.1 A g-1 after 200 cycles, and a high specific capacity of 155.6 mA h g-1 is achieved at a high rate of 5.0 A g-1. The significantly improved electrochemical performance of the core-shell structured anatase TiO2 spheres is attributed to the synergistic effect of the oxygen vacancies in the anatase lattice and surface nitrogen-doped carbon coating. This work provides an efficient strategy for improving the electrochemical performance of metal-oxide-based electrode materials for sodium-ion batteries.
In this work, the impact of oxygen vacancies and nitrogen-doped carbon coating on the sodium-ion storage properties of anatase TiO 2 has been demonstrated. Oxygen vacancies and nitrogen-doped carbon coating were introduced simultaneously by the calcination of core–shell structured TiO 2 spheres in a reducing atmosphere. Compared to the anatase TiO 2 with and without oxygen vacancies, TiO 2−x @NC exhibits much better electrochemical performance in the storage of sodium ions. A high reversible capacity of 245.6 mA h g −1 is maintained at 0.1 A g −1 after 200 cycles, and a high specific capacity of 155.6 mA h g −1 is achieved at a high rate of 5.0 A g −1 . The significantly improved electrochemical performance of the core–shell structured anatase TiO 2 spheres is attributed to the synergistic effect of the oxygen vacancies in the anatase lattice and surface nitrogen-doped carbon coating. This work provides an efficient strategy for improving the electrochemical performance of metal–oxide-based electrode materials for sodium-ion batteries.
In this work, the impact of oxygen vacancies and nitrogen-doped carbon coating on the sodium-ion storage properties of anatase TiO2 has been demonstrated. Oxygen vacancies and nitrogen-doped carbon coating were introduced simultaneously by the calcination of core–shell structured TiO2 spheres in a reducing atmosphere. Compared to the anatase TiO2 with and without oxygen vacancies, TiO2−x@NC exhibits much better electrochemical performance in the storage of sodium ions. A high reversible capacity of 245.6 mA h g−1 is maintained at 0.1 A g−1 after 200 cycles, and a high specific capacity of 155.6 mA h g−1 is achieved at a high rate of 5.0 A g−1. The significantly improved electrochemical performance of the core–shell structured anatase TiO2 spheres is attributed to the synergistic effect of the oxygen vacancies in the anatase lattice and surface nitrogen-doped carbon coating. This work provides an efficient strategy for improving the electrochemical performance of metal–oxide-based electrode materials for sodium-ion batteries.
Author Wang, Kai-Xue
Xarapatgvl, Raxidin
Bai, Yu-Lin
Liu, Yu-Si
Liu, Xin
Wu, Xue-Yan
Chen, Jie-Sheng
Author_xml – sequence: 1
  givenname: Yu-Lin
  orcidid: 0000-0003-1452-8132
  surname: Bai
  fullname: Bai, Yu-Lin
  organization: Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
– sequence: 2
  givenname: Raxidin
  surname: Xarapatgvl
  fullname: Xarapatgvl, Raxidin
  organization: Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
– sequence: 3
  givenname: Xue-Yan
  surname: Wu
  fullname: Wu, Xue-Yan
  organization: Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
– sequence: 4
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
  organization: Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
– sequence: 5
  givenname: Yu-Si
  orcidid: 0000-0003-0606-549X
  surname: Liu
  fullname: Liu, Yu-Si
  organization: Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
– sequence: 6
  givenname: Kai-Xue
  orcidid: 0000-0002-2076-5487
  surname: Wang
  fullname: Wang, Kai-Xue
  organization: Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
– sequence: 7
  givenname: Jie-Sheng
  orcidid: 0000-0001-5570-736X
  surname: Chen
  fullname: Chen, Jie-Sheng
  organization: Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
BookMark eNptkc1KAzEQx4MoqNWLTxDwIsJqNkl3G29S_IKiIHpepslsG-kmNUnFnvQdfEOfxJSKgnhIZpj5zX9mmF2y6bxDQg5KdlIyoU6H6vaeVVz2zzfIDmeSFULUfPPHr-Q22Y3xibFKiUrskLehD_j5_hGnOJtRcJAgYrbeIO0gYbAwi7T1gUZv7KIrrHd0DGmVwXhG0xSp7eagE_Ut9a_LCTr6AhqczvksZKizKfgcLoyfo6EawjhraA_Juske2WpzB9z_tj3yeHnxMLwuRndXN8PzUaEFV6moB4MaK6hbaThApaXWhrWIyoylLBkINpb5sVLwVijIbP5blTnDTX-gRY8crXXnwT8vMKams1HnncGhX8SGc1WXvBZKZvTwD_rkF8Hl6RouGONl3edlptia0sHHGLBttE15Je9SADtrStasLtL8XiSXHP8pmQfbQVj-B38BCNWQOw
CitedBy_id crossref_primary_10_1002_chem_202304157
crossref_primary_10_1039_D2MA00390B
crossref_primary_10_1016_j_apsusc_2022_154982
crossref_primary_10_1021_acsanm_4c00565
crossref_primary_10_1039_D1DT00047K
crossref_primary_10_1007_s40242_022_2030_0
crossref_primary_10_1016_j_jcis_2024_01_139
crossref_primary_10_1016_S1872_5805_23_60710_3
crossref_primary_10_1021_acsomega_2c07689
crossref_primary_10_1016_j_apsusc_2022_153869
crossref_primary_10_1016_j_electacta_2020_136782
crossref_primary_10_1016_j_jpowsour_2024_234349
crossref_primary_10_1039_C9NR07849E
crossref_primary_10_1007_s11426_021_1103_6
crossref_primary_10_1021_acs_energyfuels_4c03971
crossref_primary_10_1016_j_cej_2021_133555
crossref_primary_10_1007_s40242_023_3196_9
crossref_primary_10_1016_j_jallcom_2023_172395
crossref_primary_10_1039_D2EE03642H
crossref_primary_10_1093_nsr_nwaa178
crossref_primary_10_1016_j_apmt_2020_100810
crossref_primary_10_1016_j_mtener_2024_101589
Cites_doi 10.1002/aenm.201501489
10.1021/acsami.8b19288
10.1016/j.jpowsour.2015.04.086
10.1002/anie.201801654
10.1002/smll.201802694
10.1021/acs.chemmater.8b03463
10.1039/C9CC01018A
10.1038/srep14178
10.1039/C7EE03016A
10.1002/smll.201800078
10.1021/jp074464w
10.1021/acsnano.8b03541
10.1021/acsenergylett.8b02510
10.1002/anie.201811683
10.1021/cm2031009
10.1016/j.jpowsour.2014.09.048
10.1002/adfm.201808745
10.1002/adma.201700989
10.1002/anie.201811784
10.1021/acsami.7b13760
10.1021/acsami.9b02123
10.1002/aenm.201601424
10.1039/C5NR03335G
10.1021/acs.chemmater.5b02348
10.1002/cssc.201801662
10.1002/aenm.201800930
10.1002/adma.201401937
10.1039/C9NR01637F
10.1039/C6TA04611H
10.1002/adma.201504412
10.1021/acsaem.8b00985
10.1021/acsnano.8b06585
10.1002/aenm.201702267
10.1002/adma.201704337
10.1016/j.ensm.2018.04.011
10.1039/C9NR00406H
10.1002/adma.201700176
10.1002/aenm.201703238
10.1039/C6CS00776G
10.1039/C8TA11440D
10.1088/1361-6528/aa8a2c
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/C9NR06245A
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 17868
ExternalDocumentID 10_1039_C9NR06245A
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c329t-7887e6a7f4d2aa6c4ccd0fee9db4410a30b430b0132f39a7e639af9c4cd2d58c3
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 06:53:47 EDT 2025
Mon Jun 30 05:24:29 EDT 2025
Tue Jul 01 01:13:44 EDT 2025
Thu Apr 24 23:05:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c329t-7887e6a7f4d2aa6c4ccd0fee9db4410a30b430b0132f39a7e639af9c4cd2d58c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1452-8132
0000-0001-5570-736X
0000-0003-0606-549X
0000-0002-2076-5487
PQID 2300217521
PQPubID 2047485
PageCount 9
ParticipantIDs proquest_miscellaneous_2297127394
proquest_journals_2300217521
crossref_citationtrail_10_1039_C9NR06245A
crossref_primary_10_1039_C9NR06245A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-14
PublicationDateYYYYMMDD 2019-10-14
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-14
  day: 14
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Nanoscale
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Ma (C9NR06245A-(cit9)/*[position()=1]) 2018; 57
Du (C9NR06245A-(cit26)/*[position()=1]) 2014; 26
Li (C9NR06245A-(cit35)/*[position()=1]) 2015; 5
Ni (C9NR06245A-(cit24)/*[position()=1]) 2018; 30
Hwang (C9NR06245A-(cit1)/*[position()=1]) 2017; 46
Tan (C9NR06245A-(cit7)/*[position()=1]) 2019; 29
Chen (C9NR06245A-(cit21)/*[position()=1]) 2018; 11
Wang (C9NR06245A-(cit25)/*[position()=1]) 2018; 14
Wang (C9NR06245A-(cit6)/*[position()=1]) 2018; 11
Rahman (C9NR06245A-(cit16)/*[position()=1]) 2015; 7
Jiao (C9NR06245A-(cit18)/*[position()=1]) 2019; 58
Xie (C9NR06245A-(cit29)/*[position()=1]) 2017; 29
Zhao (C9NR06245A-(cit37)/*[position()=1]) 2018; 1
Dong (C9NR06245A-(cit3)/*[position()=1]) 2018; 12
Yin (C9NR06245A-(cit5)/*[position()=1]) 2019; 11
Wu (C9NR06245A-(cit23)/*[position()=1]) 2019; 58
Su (C9NR06245A-(cit34)/*[position()=1]) 2015; 27
Song (C9NR06245A-(cit19)/*[position()=1]) 2019; 11
Wang (C9NR06245A-(cit30)/*[position()=1]) 2019; 11
Lu (C9NR06245A-(cit11)/*[position()=1]) 2018; 14
Zeng (C9NR06245A-(cit27)/*[position()=1]) 2019; 55
Chen (C9NR06245A-(cit13)/*[position()=1]) 2017; 28
Xiao (C9NR06245A-(cit40)/*[position()=1]) 2018; 8
Wang (C9NR06245A-(cit41)/*[position()=1]) 2007; 111
Gan (C9NR06245A-(cit33)/*[position()=1]) 2018; 10
Yao (C9NR06245A-(cit10)/*[position()=1]) 2018; 8
Xiu (C9NR06245A-(cit36)/*[position()=1]) 2015; 287
Dong (C9NR06245A-(cit4)/*[position()=1]) 2018; 15
Mei (C9NR06245A-(cit17)/*[position()=1]) 2016; 4
Zhao (C9NR06245A-(cit15)/*[position()=1]) 2017; 7
Bai (C9NR06245A-(cit2)/*[position()=1]) 2018; 12
Hwang (C9NR06245A-(cit22)/*[position()=1]) 2019; 4
Chen (C9NR06245A-(cit28)/*[position()=1]) 2019; 11
Ma (C9NR06245A-(cit8)/*[position()=1]) 2018; 30
Chen (C9NR06245A-(cit31)/*[position()=1]) 2019; 7
Shin (C9NR06245A-(cit38)/*[position()=1]) 2012; 24
Xiao (C9NR06245A-(cit12)/*[position()=1]) 2018; 8
Chen (C9NR06245A-(cit39)/*[position()=1]) 2014; 272
Ni (C9NR06245A-(cit32)/*[position()=1]) 2016; 28
Mei (C9NR06245A-(cit14)/*[position()=1]) 2017; 29
Tahir (C9NR06245A-(cit20)/*[position()=1]) 2016; 6
References_xml – volume: 6
  start-page: 1501489
  year: 2016
  ident: C9NR06245A-(cit20)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501489
– volume: 11
  start-page: 3061
  year: 2019
  ident: C9NR06245A-(cit30)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b19288
– volume: 287
  start-page: 334
  year: 2015
  ident: C9NR06245A-(cit36)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.04.086
– volume: 57
  start-page: 8865
  year: 2018
  ident: C9NR06245A-(cit9)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201801654
– volume: 14
  start-page: e1802694
  year: 2018
  ident: C9NR06245A-(cit11)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201802694
– volume: 30
  start-page: 8426
  year: 2018
  ident: C9NR06245A-(cit8)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03463
– volume: 55
  start-page: 3614
  year: 2019
  ident: C9NR06245A-(cit27)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC01018A
– volume: 5
  start-page: 14178
  year: 2015
  ident: C9NR06245A-(cit35)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep14178
– volume: 11
  start-page: 1218
  year: 2018
  ident: C9NR06245A-(cit21)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE03016A
– volume: 14
  start-page: e1800078
  year: 2018
  ident: C9NR06245A-(cit25)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201800078
– volume: 111
  start-page: 14925
  year: 2007
  ident: C9NR06245A-(cit41)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp074464w
– volume: 12
  start-page: 8277
  year: 2018
  ident: C9NR06245A-(cit3)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03541
– volume: 4
  start-page: 494
  year: 2019
  ident: C9NR06245A-(cit22)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b02510
– volume: 58
  start-page: 996
  year: 2019
  ident: C9NR06245A-(cit18)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201811683
– volume: 24
  start-page: 543
  year: 2012
  ident: C9NR06245A-(cit38)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm2031009
– volume: 272
  start-page: 991
  year: 2014
  ident: C9NR06245A-(cit39)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.09.048
– volume: 29
  start-page: 1808745
  year: 2019
  ident: C9NR06245A-(cit7)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808745
– volume: 29
  start-page: 1700989
  year: 2017
  ident: C9NR06245A-(cit29)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700989
– volume: 58
  start-page: 811
  year: 2019
  ident: C9NR06245A-(cit23)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201811784
– volume: 10
  start-page: 7031
  year: 2018
  ident: C9NR06245A-(cit33)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13760
– volume: 11
  start-page: 17416
  year: 2019
  ident: C9NR06245A-(cit19)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b02123
– volume: 7
  start-page: 1601424
  year: 2017
  ident: C9NR06245A-(cit15)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601424
– volume: 7
  start-page: 13088
  year: 2015
  ident: C9NR06245A-(cit16)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR03335G
– volume: 27
  start-page: 6022
  year: 2015
  ident: C9NR06245A-(cit34)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02348
– volume: 11
  start-page: 3376
  year: 2018
  ident: C9NR06245A-(cit6)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201801662
– volume: 8
  start-page: 1800930
  year: 2018
  ident: C9NR06245A-(cit40)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800930
– volume: 26
  start-page: 6145
  year: 2014
  ident: C9NR06245A-(cit26)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401937
– volume: 11
  start-page: 5967
  year: 2019
  ident: C9NR06245A-(cit28)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C9NR01637F
– volume: 4
  start-page: 12001
  year: 2016
  ident: C9NR06245A-(cit17)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04611H
– volume: 28
  start-page: 2259
  year: 2016
  ident: C9NR06245A-(cit32)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504412
– volume: 1
  start-page: 4459
  year: 2018
  ident: C9NR06245A-(cit37)/*[position()=1]
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00985
– volume: 12
  start-page: 11503
  year: 2018
  ident: C9NR06245A-(cit2)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06585
– volume: 8
  start-page: 1702267
  year: 2018
  ident: C9NR06245A-(cit10)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702267
– volume: 30
  start-page: 1704337
  year: 2018
  ident: C9NR06245A-(cit24)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704337
– volume: 15
  start-page: 234
  year: 2018
  ident: C9NR06245A-(cit4)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.04.011
– volume: 11
  start-page: 7129
  year: 2019
  ident: C9NR06245A-(cit5)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C9NR00406H
– volume: 29
  start-page: 1700176
  year: 2017
  ident: C9NR06245A-(cit14)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700176
– volume: 8
  start-page: 1703238
  year: 2018
  ident: C9NR06245A-(cit12)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703238
– volume: 46
  start-page: 3529
  year: 2017
  ident: C9NR06245A-(cit1)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00776G
– volume: 7
  start-page: 6740
  year: 2019
  ident: C9NR06245A-(cit31)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11440D
– volume: 28
  start-page: 445604
  year: 2017
  ident: C9NR06245A-(cit13)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa8a2c
SSID ssj0069363
Score 2.4169533
Snippet In this work, the impact of oxygen vacancies and nitrogen-doped carbon coating on the sodium-ion storage properties of anatase TiO 2 has been demonstrated....
In this work, the impact of oxygen vacancies and nitrogen-doped carbon coating on the sodium-ion storage properties of anatase TiO2 has been demonstrated....
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 17860
SubjectTerms Anatase
Anodes
Batteries
Carbon
Coating
Electrochemical analysis
Electrode materials
Infrared radiation
Ion storage
Lattice vacancies
Nitrogen
Oxygen
Rechargeable batteries
Sodium
Sodium-ion batteries
Synergistic effect
Titanium dioxide
Title Core–shell anatase anode materials for sodium-ion batteries: the impact of oxygen vacancies and nitrogen-doped carbon coating
URI https://www.proquest.com/docview/2300217521
https://www.proquest.com/docview/2297127394
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4EHNL5EYSAjeEFTRhK7ScxbqTYmKEWaWq17ihzHQZUgntJk2pD43zl_JGlFHwYvbnW5OpXv57uzfb5D6C2Jk4wCEry8CKhHMy48JkYBTDyfBkVMEmoWil9n0emCfl6Oln2sqrldUmdH4tfOeyX_I1WggVz1Ldl_kGzXKRDgO8gXWpAwtLeS8URV0lvrUM5DXvIaDBJ8KhOTWtv3myjCtcpXzU9PCzoz6TRXNhBO-5z9LUl1fQMvOrziwhTstbmbYcJXCsheri7BNRW8ypQOXOd1a_KcYwtaWq1B3v0hva1zfdF401UHwCXXBdfr71dm4_mMX6_y_uF5o4nLRnoXG4FCK0t1bG5_ImBasdt7oVaNhTpmkRBboOdI7qC1ejjYwJtN-eK0ahAntujAX_reJzpdqmBl5UchHW1YtfYkf_YtPVlMp-n8eDm_i_ZCWE2EA7Q3_vLx03lrsiNGTMm97m-1eWwJe9_3ve25bBtu443M99EDt4zAY4uJh-iOLB-h-xvJJR-j3z06sEMHNujAHTowoAP36MAdOj5gwAa22MCqwBYbuMMGdJTjbWxgiw3ssPEELU6O55NTzxXb8AQJWW2iSmXE44LmIeeRoELkfiElyzPwmH1O_IwSs2seFoRx4IW2YMCXh_koEeQpGpSqlM8QjoIiEhzmqQwS-C3PikQmDEZQp11gIzpE79qBTIXLRK8LovxITUQEYemEzc7MoI-H6E3He2nzr-zkOmjlkbr5uU5hca0X3OCfDtHr7jFoT30kxkupGuAJWRyAB8_o81vwvED3eoQfoEFdNfIl-KR19soh6g8X7JD9
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Core-shell+anatase+anode+materials+for+sodium-ion+batteries%3A+the+impact+of+oxygen+vacancies+and+nitrogen-doped+carbon+coating&rft.jtitle=Nanoscale&rft.au=Bai%2C+Yu-Lin&rft.au=Xarapatgvl%2C+Raxidin&rft.au=Wu%2C+Xue-Yan&rft.au=Liu%2C+Xin&rft.date=2019-10-14&rft.issn=2040-3372&rft.eissn=2040-3372&rft.volume=11&rft.issue=38&rft.spage=17860&rft_id=info:doi/10.1039%2Fc9nr06245a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon