Core–shell anatase anode materials for sodium-ion batteries: the impact of oxygen vacancies and nitrogen-doped carbon coating
In this work, the impact of oxygen vacancies and nitrogen-doped carbon coating on the sodium-ion storage properties of anatase TiO 2 has been demonstrated. Oxygen vacancies and nitrogen-doped carbon coating were introduced simultaneously by the calcination of core–shell structured TiO 2 spheres in a...
Saved in:
Published in | Nanoscale Vol. 11; no. 38; pp. 17860 - 17868 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
14.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, the impact of oxygen vacancies and nitrogen-doped carbon coating on the sodium-ion storage properties of anatase TiO
2
has been demonstrated. Oxygen vacancies and nitrogen-doped carbon coating were introduced simultaneously by the calcination of core–shell structured TiO
2
spheres in a reducing atmosphere. Compared to the anatase TiO
2
with and without oxygen vacancies, TiO
2−x
@NC exhibits much better electrochemical performance in the storage of sodium ions. A high reversible capacity of 245.6 mA h g
−1
is maintained at 0.1 A g
−1
after 200 cycles, and a high specific capacity of 155.6 mA h g
−1
is achieved at a high rate of 5.0 A g
−1
. The significantly improved electrochemical performance of the core–shell structured anatase TiO
2
spheres is attributed to the synergistic effect of the oxygen vacancies in the anatase lattice and surface nitrogen-doped carbon coating. This work provides an efficient strategy for improving the electrochemical performance of metal–oxide-based electrode materials for sodium-ion batteries. |
---|---|
AbstractList | In this work, the impact of oxygen vacancies and nitrogen-doped carbon coating on the sodium-ion storage properties of anatase TiO2 has been demonstrated. Oxygen vacancies and nitrogen-doped carbon coating were introduced simultaneously by the calcination of core-shell structured TiO2 spheres in a reducing atmosphere. Compared to the anatase TiO2 with and without oxygen vacancies, TiO2-x@NC exhibits much better electrochemical performance in the storage of sodium ions. A high reversible capacity of 245.6 mA h g-1 is maintained at 0.1 A g-1 after 200 cycles, and a high specific capacity of 155.6 mA h g-1 is achieved at a high rate of 5.0 A g-1. The significantly improved electrochemical performance of the core-shell structured anatase TiO2 spheres is attributed to the synergistic effect of the oxygen vacancies in the anatase lattice and surface nitrogen-doped carbon coating. This work provides an efficient strategy for improving the electrochemical performance of metal-oxide-based electrode materials for sodium-ion batteries.In this work, the impact of oxygen vacancies and nitrogen-doped carbon coating on the sodium-ion storage properties of anatase TiO2 has been demonstrated. Oxygen vacancies and nitrogen-doped carbon coating were introduced simultaneously by the calcination of core-shell structured TiO2 spheres in a reducing atmosphere. Compared to the anatase TiO2 with and without oxygen vacancies, TiO2-x@NC exhibits much better electrochemical performance in the storage of sodium ions. A high reversible capacity of 245.6 mA h g-1 is maintained at 0.1 A g-1 after 200 cycles, and a high specific capacity of 155.6 mA h g-1 is achieved at a high rate of 5.0 A g-1. The significantly improved electrochemical performance of the core-shell structured anatase TiO2 spheres is attributed to the synergistic effect of the oxygen vacancies in the anatase lattice and surface nitrogen-doped carbon coating. This work provides an efficient strategy for improving the electrochemical performance of metal-oxide-based electrode materials for sodium-ion batteries. In this work, the impact of oxygen vacancies and nitrogen-doped carbon coating on the sodium-ion storage properties of anatase TiO 2 has been demonstrated. Oxygen vacancies and nitrogen-doped carbon coating were introduced simultaneously by the calcination of core–shell structured TiO 2 spheres in a reducing atmosphere. Compared to the anatase TiO 2 with and without oxygen vacancies, TiO 2−x @NC exhibits much better electrochemical performance in the storage of sodium ions. A high reversible capacity of 245.6 mA h g −1 is maintained at 0.1 A g −1 after 200 cycles, and a high specific capacity of 155.6 mA h g −1 is achieved at a high rate of 5.0 A g −1 . The significantly improved electrochemical performance of the core–shell structured anatase TiO 2 spheres is attributed to the synergistic effect of the oxygen vacancies in the anatase lattice and surface nitrogen-doped carbon coating. This work provides an efficient strategy for improving the electrochemical performance of metal–oxide-based electrode materials for sodium-ion batteries. In this work, the impact of oxygen vacancies and nitrogen-doped carbon coating on the sodium-ion storage properties of anatase TiO2 has been demonstrated. Oxygen vacancies and nitrogen-doped carbon coating were introduced simultaneously by the calcination of core–shell structured TiO2 spheres in a reducing atmosphere. Compared to the anatase TiO2 with and without oxygen vacancies, TiO2−x@NC exhibits much better electrochemical performance in the storage of sodium ions. A high reversible capacity of 245.6 mA h g−1 is maintained at 0.1 A g−1 after 200 cycles, and a high specific capacity of 155.6 mA h g−1 is achieved at a high rate of 5.0 A g−1. The significantly improved electrochemical performance of the core–shell structured anatase TiO2 spheres is attributed to the synergistic effect of the oxygen vacancies in the anatase lattice and surface nitrogen-doped carbon coating. This work provides an efficient strategy for improving the electrochemical performance of metal–oxide-based electrode materials for sodium-ion batteries. |
Author | Wang, Kai-Xue Xarapatgvl, Raxidin Bai, Yu-Lin Liu, Yu-Si Liu, Xin Wu, Xue-Yan Chen, Jie-Sheng |
Author_xml | – sequence: 1 givenname: Yu-Lin orcidid: 0000-0003-1452-8132 surname: Bai fullname: Bai, Yu-Lin organization: Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China – sequence: 2 givenname: Raxidin surname: Xarapatgvl fullname: Xarapatgvl, Raxidin organization: Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China – sequence: 3 givenname: Xue-Yan surname: Wu fullname: Wu, Xue-Yan organization: Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China – sequence: 4 givenname: Xin surname: Liu fullname: Liu, Xin organization: Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China – sequence: 5 givenname: Yu-Si orcidid: 0000-0003-0606-549X surname: Liu fullname: Liu, Yu-Si organization: Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China – sequence: 6 givenname: Kai-Xue orcidid: 0000-0002-2076-5487 surname: Wang fullname: Wang, Kai-Xue organization: Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China – sequence: 7 givenname: Jie-Sheng orcidid: 0000-0001-5570-736X surname: Chen fullname: Chen, Jie-Sheng organization: Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China |
BookMark | eNptkc1KAzEQx4MoqNWLTxDwIsJqNkl3G29S_IKiIHpepslsG-kmNUnFnvQdfEOfxJSKgnhIZpj5zX9mmF2y6bxDQg5KdlIyoU6H6vaeVVz2zzfIDmeSFULUfPPHr-Q22Y3xibFKiUrskLehD_j5_hGnOJtRcJAgYrbeIO0gYbAwi7T1gUZv7KIrrHd0DGmVwXhG0xSp7eagE_Ut9a_LCTr6AhqczvksZKizKfgcLoyfo6EawjhraA_Juske2WpzB9z_tj3yeHnxMLwuRndXN8PzUaEFV6moB4MaK6hbaThApaXWhrWIyoylLBkINpb5sVLwVijIbP5blTnDTX-gRY8crXXnwT8vMKams1HnncGhX8SGc1WXvBZKZvTwD_rkF8Hl6RouGONl3edlptia0sHHGLBttE15Je9SADtrStasLtL8XiSXHP8pmQfbQVj-B38BCNWQOw |
CitedBy_id | crossref_primary_10_1002_chem_202304157 crossref_primary_10_1039_D2MA00390B crossref_primary_10_1016_j_apsusc_2022_154982 crossref_primary_10_1021_acsanm_4c00565 crossref_primary_10_1039_D1DT00047K crossref_primary_10_1007_s40242_022_2030_0 crossref_primary_10_1016_j_jcis_2024_01_139 crossref_primary_10_1016_S1872_5805_23_60710_3 crossref_primary_10_1021_acsomega_2c07689 crossref_primary_10_1016_j_apsusc_2022_153869 crossref_primary_10_1016_j_electacta_2020_136782 crossref_primary_10_1016_j_jpowsour_2024_234349 crossref_primary_10_1039_C9NR07849E crossref_primary_10_1007_s11426_021_1103_6 crossref_primary_10_1021_acs_energyfuels_4c03971 crossref_primary_10_1016_j_cej_2021_133555 crossref_primary_10_1007_s40242_023_3196_9 crossref_primary_10_1016_j_jallcom_2023_172395 crossref_primary_10_1039_D2EE03642H crossref_primary_10_1093_nsr_nwaa178 crossref_primary_10_1016_j_apmt_2020_100810 crossref_primary_10_1016_j_mtener_2024_101589 |
Cites_doi | 10.1002/aenm.201501489 10.1021/acsami.8b19288 10.1016/j.jpowsour.2015.04.086 10.1002/anie.201801654 10.1002/smll.201802694 10.1021/acs.chemmater.8b03463 10.1039/C9CC01018A 10.1038/srep14178 10.1039/C7EE03016A 10.1002/smll.201800078 10.1021/jp074464w 10.1021/acsnano.8b03541 10.1021/acsenergylett.8b02510 10.1002/anie.201811683 10.1021/cm2031009 10.1016/j.jpowsour.2014.09.048 10.1002/adfm.201808745 10.1002/adma.201700989 10.1002/anie.201811784 10.1021/acsami.7b13760 10.1021/acsami.9b02123 10.1002/aenm.201601424 10.1039/C5NR03335G 10.1021/acs.chemmater.5b02348 10.1002/cssc.201801662 10.1002/aenm.201800930 10.1002/adma.201401937 10.1039/C9NR01637F 10.1039/C6TA04611H 10.1002/adma.201504412 10.1021/acsaem.8b00985 10.1021/acsnano.8b06585 10.1002/aenm.201702267 10.1002/adma.201704337 10.1016/j.ensm.2018.04.011 10.1039/C9NR00406H 10.1002/adma.201700176 10.1002/aenm.201703238 10.1039/C6CS00776G 10.1039/C8TA11440D 10.1088/1361-6528/aa8a2c |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/C9NR06245A |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 17868 |
ExternalDocumentID | 10_1039_C9NR06245A |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RSCEA RVUXY 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c329t-7887e6a7f4d2aa6c4ccd0fee9db4410a30b430b0132f39a7e639af9c4cd2d58c3 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 06:53:47 EDT 2025 Mon Jun 30 05:24:29 EDT 2025 Tue Jul 01 01:13:44 EDT 2025 Thu Apr 24 23:05:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c329t-7887e6a7f4d2aa6c4ccd0fee9db4410a30b430b0132f39a7e639af9c4cd2d58c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1452-8132 0000-0001-5570-736X 0000-0003-0606-549X 0000-0002-2076-5487 |
PQID | 2300217521 |
PQPubID | 2047485 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2297127394 proquest_journals_2300217521 crossref_citationtrail_10_1039_C9NR06245A crossref_primary_10_1039_C9NR06245A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-14 |
PublicationDateYYYYMMDD | 2019-10-14 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Ma (C9NR06245A-(cit9)/*[position()=1]) 2018; 57 Du (C9NR06245A-(cit26)/*[position()=1]) 2014; 26 Li (C9NR06245A-(cit35)/*[position()=1]) 2015; 5 Ni (C9NR06245A-(cit24)/*[position()=1]) 2018; 30 Hwang (C9NR06245A-(cit1)/*[position()=1]) 2017; 46 Tan (C9NR06245A-(cit7)/*[position()=1]) 2019; 29 Chen (C9NR06245A-(cit21)/*[position()=1]) 2018; 11 Wang (C9NR06245A-(cit25)/*[position()=1]) 2018; 14 Wang (C9NR06245A-(cit6)/*[position()=1]) 2018; 11 Rahman (C9NR06245A-(cit16)/*[position()=1]) 2015; 7 Jiao (C9NR06245A-(cit18)/*[position()=1]) 2019; 58 Xie (C9NR06245A-(cit29)/*[position()=1]) 2017; 29 Zhao (C9NR06245A-(cit37)/*[position()=1]) 2018; 1 Dong (C9NR06245A-(cit3)/*[position()=1]) 2018; 12 Yin (C9NR06245A-(cit5)/*[position()=1]) 2019; 11 Wu (C9NR06245A-(cit23)/*[position()=1]) 2019; 58 Su (C9NR06245A-(cit34)/*[position()=1]) 2015; 27 Song (C9NR06245A-(cit19)/*[position()=1]) 2019; 11 Wang (C9NR06245A-(cit30)/*[position()=1]) 2019; 11 Lu (C9NR06245A-(cit11)/*[position()=1]) 2018; 14 Zeng (C9NR06245A-(cit27)/*[position()=1]) 2019; 55 Chen (C9NR06245A-(cit13)/*[position()=1]) 2017; 28 Xiao (C9NR06245A-(cit40)/*[position()=1]) 2018; 8 Wang (C9NR06245A-(cit41)/*[position()=1]) 2007; 111 Gan (C9NR06245A-(cit33)/*[position()=1]) 2018; 10 Yao (C9NR06245A-(cit10)/*[position()=1]) 2018; 8 Xiu (C9NR06245A-(cit36)/*[position()=1]) 2015; 287 Dong (C9NR06245A-(cit4)/*[position()=1]) 2018; 15 Mei (C9NR06245A-(cit17)/*[position()=1]) 2016; 4 Zhao (C9NR06245A-(cit15)/*[position()=1]) 2017; 7 Bai (C9NR06245A-(cit2)/*[position()=1]) 2018; 12 Hwang (C9NR06245A-(cit22)/*[position()=1]) 2019; 4 Chen (C9NR06245A-(cit28)/*[position()=1]) 2019; 11 Ma (C9NR06245A-(cit8)/*[position()=1]) 2018; 30 Chen (C9NR06245A-(cit31)/*[position()=1]) 2019; 7 Shin (C9NR06245A-(cit38)/*[position()=1]) 2012; 24 Xiao (C9NR06245A-(cit12)/*[position()=1]) 2018; 8 Chen (C9NR06245A-(cit39)/*[position()=1]) 2014; 272 Ni (C9NR06245A-(cit32)/*[position()=1]) 2016; 28 Mei (C9NR06245A-(cit14)/*[position()=1]) 2017; 29 Tahir (C9NR06245A-(cit20)/*[position()=1]) 2016; 6 |
References_xml | – volume: 6 start-page: 1501489 year: 2016 ident: C9NR06245A-(cit20)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501489 – volume: 11 start-page: 3061 year: 2019 ident: C9NR06245A-(cit30)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b19288 – volume: 287 start-page: 334 year: 2015 ident: C9NR06245A-(cit36)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.04.086 – volume: 57 start-page: 8865 year: 2018 ident: C9NR06245A-(cit9)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201801654 – volume: 14 start-page: e1802694 year: 2018 ident: C9NR06245A-(cit11)/*[position()=1] publication-title: Small doi: 10.1002/smll.201802694 – volume: 30 start-page: 8426 year: 2018 ident: C9NR06245A-(cit8)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03463 – volume: 55 start-page: 3614 year: 2019 ident: C9NR06245A-(cit27)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C9CC01018A – volume: 5 start-page: 14178 year: 2015 ident: C9NR06245A-(cit35)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep14178 – volume: 11 start-page: 1218 year: 2018 ident: C9NR06245A-(cit21)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C7EE03016A – volume: 14 start-page: e1800078 year: 2018 ident: C9NR06245A-(cit25)/*[position()=1] publication-title: Small doi: 10.1002/smll.201800078 – volume: 111 start-page: 14925 year: 2007 ident: C9NR06245A-(cit41)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp074464w – volume: 12 start-page: 8277 year: 2018 ident: C9NR06245A-(cit3)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b03541 – volume: 4 start-page: 494 year: 2019 ident: C9NR06245A-(cit22)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b02510 – volume: 58 start-page: 996 year: 2019 ident: C9NR06245A-(cit18)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201811683 – volume: 24 start-page: 543 year: 2012 ident: C9NR06245A-(cit38)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm2031009 – volume: 272 start-page: 991 year: 2014 ident: C9NR06245A-(cit39)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.09.048 – volume: 29 start-page: 1808745 year: 2019 ident: C9NR06245A-(cit7)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808745 – volume: 29 start-page: 1700989 year: 2017 ident: C9NR06245A-(cit29)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201700989 – volume: 58 start-page: 811 year: 2019 ident: C9NR06245A-(cit23)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201811784 – volume: 10 start-page: 7031 year: 2018 ident: C9NR06245A-(cit33)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13760 – volume: 11 start-page: 17416 year: 2019 ident: C9NR06245A-(cit19)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b02123 – volume: 7 start-page: 1601424 year: 2017 ident: C9NR06245A-(cit15)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601424 – volume: 7 start-page: 13088 year: 2015 ident: C9NR06245A-(cit16)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR03335G – volume: 27 start-page: 6022 year: 2015 ident: C9NR06245A-(cit34)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02348 – volume: 11 start-page: 3376 year: 2018 ident: C9NR06245A-(cit6)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201801662 – volume: 8 start-page: 1800930 year: 2018 ident: C9NR06245A-(cit40)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800930 – volume: 26 start-page: 6145 year: 2014 ident: C9NR06245A-(cit26)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201401937 – volume: 11 start-page: 5967 year: 2019 ident: C9NR06245A-(cit28)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C9NR01637F – volume: 4 start-page: 12001 year: 2016 ident: C9NR06245A-(cit17)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04611H – volume: 28 start-page: 2259 year: 2016 ident: C9NR06245A-(cit32)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201504412 – volume: 1 start-page: 4459 year: 2018 ident: C9NR06245A-(cit37)/*[position()=1] publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00985 – volume: 12 start-page: 11503 year: 2018 ident: C9NR06245A-(cit2)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b06585 – volume: 8 start-page: 1702267 year: 2018 ident: C9NR06245A-(cit10)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702267 – volume: 30 start-page: 1704337 year: 2018 ident: C9NR06245A-(cit24)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201704337 – volume: 15 start-page: 234 year: 2018 ident: C9NR06245A-(cit4)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.04.011 – volume: 11 start-page: 7129 year: 2019 ident: C9NR06245A-(cit5)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C9NR00406H – volume: 29 start-page: 1700176 year: 2017 ident: C9NR06245A-(cit14)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201700176 – volume: 8 start-page: 1703238 year: 2018 ident: C9NR06245A-(cit12)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703238 – volume: 46 start-page: 3529 year: 2017 ident: C9NR06245A-(cit1)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00776G – volume: 7 start-page: 6740 year: 2019 ident: C9NR06245A-(cit31)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11440D – volume: 28 start-page: 445604 year: 2017 ident: C9NR06245A-(cit13)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/1361-6528/aa8a2c |
SSID | ssj0069363 |
Score | 2.4169533 |
Snippet | In this work, the impact of oxygen vacancies and nitrogen-doped carbon coating on the sodium-ion storage properties of anatase TiO
2
has been demonstrated.... In this work, the impact of oxygen vacancies and nitrogen-doped carbon coating on the sodium-ion storage properties of anatase TiO2 has been demonstrated.... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 17860 |
SubjectTerms | Anatase Anodes Batteries Carbon Coating Electrochemical analysis Electrode materials Infrared radiation Ion storage Lattice vacancies Nitrogen Oxygen Rechargeable batteries Sodium Sodium-ion batteries Synergistic effect Titanium dioxide |
Title | Core–shell anatase anode materials for sodium-ion batteries: the impact of oxygen vacancies and nitrogen-doped carbon coating |
URI | https://www.proquest.com/docview/2300217521 https://www.proquest.com/docview/2297127394 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4EHNL5EYSAjeEFTRhK7ScxbqTYmKEWaWq17ihzHQZUgntJk2pD43zl_JGlFHwYvbnW5OpXv57uzfb5D6C2Jk4wCEry8CKhHMy48JkYBTDyfBkVMEmoWil9n0emCfl6Oln2sqrldUmdH4tfOeyX_I1WggVz1Ldl_kGzXKRDgO8gXWpAwtLeS8URV0lvrUM5DXvIaDBJ8KhOTWtv3myjCtcpXzU9PCzoz6TRXNhBO-5z9LUl1fQMvOrziwhTstbmbYcJXCsheri7BNRW8ypQOXOd1a_KcYwtaWq1B3v0hva1zfdF401UHwCXXBdfr71dm4_mMX6_y_uF5o4nLRnoXG4FCK0t1bG5_ImBasdt7oVaNhTpmkRBboOdI7qC1ejjYwJtN-eK0ahAntujAX_reJzpdqmBl5UchHW1YtfYkf_YtPVlMp-n8eDm_i_ZCWE2EA7Q3_vLx03lrsiNGTMm97m-1eWwJe9_3ve25bBtu443M99EDt4zAY4uJh-iOLB-h-xvJJR-j3z06sEMHNujAHTowoAP36MAdOj5gwAa22MCqwBYbuMMGdJTjbWxgiw3ssPEELU6O55NTzxXb8AQJWW2iSmXE44LmIeeRoELkfiElyzPwmH1O_IwSs2seFoRx4IW2YMCXh_koEeQpGpSqlM8QjoIiEhzmqQwS-C3PikQmDEZQp11gIzpE79qBTIXLRK8LovxITUQEYemEzc7MoI-H6E3He2nzr-zkOmjlkbr5uU5hca0X3OCfDtHr7jFoT30kxkupGuAJWRyAB8_o81vwvED3eoQfoEFdNfIl-KR19soh6g8X7JD9 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Core-shell+anatase+anode+materials+for+sodium-ion+batteries%3A+the+impact+of+oxygen+vacancies+and+nitrogen-doped+carbon+coating&rft.jtitle=Nanoscale&rft.au=Bai%2C+Yu-Lin&rft.au=Xarapatgvl%2C+Raxidin&rft.au=Wu%2C+Xue-Yan&rft.au=Liu%2C+Xin&rft.date=2019-10-14&rft.issn=2040-3372&rft.eissn=2040-3372&rft.volume=11&rft.issue=38&rft.spage=17860&rft_id=info:doi/10.1039%2Fc9nr06245a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |