Ultrasmall MoC nanoparticles embedded in 3D frameworks of nitrogen-doped porous carbon as anode materials for efficient lithium storage with pseudocapacitance

Transition metal carbides are promising anode candidates for lithium ion batteries, however, their potential accomplishment still requires a rational structural design to improve their low reversible capacities, especially at high current densities and during long-term cycling. This work designs ult...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 6; no. 28; pp. 13705 - 13716
Main Authors Chen, Xiudong, Lv, Li-Ping, Sun, Weiwei, Hu, Yiyang, Tao, Xuechun, Wang, Yong
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transition metal carbides are promising anode candidates for lithium ion batteries, however, their potential accomplishment still requires a rational structural design to improve their low reversible capacities, especially at high current densities and during long-term cycling. This work designs ultrasmall MoC nanoparticles with a diameter of 2–3 nm that are anchored in a three-dimensional (3D) network of nitrogen-doped porous carbon (denoted as MoC–N–C). The MoC–N–C can not only shorten the ion diffusion pathway, leading to fast transport of Li + , but also accommodate the volume expansion and adhesion of MoC nanoparticles during long-term cycling. Consequently, it displays large charge reversible capacities of 1246 mA h g −1 (300 cycles, 100 mA g −1 ), 813 mA h g −1 (500 cycles, 1 A g −1 ) and 675 mA h g −1 (500 cycles, 2 A g −1 ), for lithium ion batteries. In addition to mesoporous properties, large surface area, high ion/electron conductivity, and N-doped characteristics, the excellent lithium storage capability of the MoC–N–C composites, especially at high current densities and during long-term cycling can be mainly ascribed to the significant pseudocapacitance contribution (∼84% at 0.5 mV s −1 ) and synergistic effects between the N-doped 3D conductive network and the in situ generated ultrafine MoC nanoparticles.
AbstractList Transition metal carbides are promising anode candidates for lithium ion batteries, however, their potential accomplishment still requires a rational structural design to improve their low reversible capacities, especially at high current densities and during long-term cycling. This work designs ultrasmall MoC nanoparticles with a diameter of 2–3 nm that are anchored in a three-dimensional (3D) network of nitrogen-doped porous carbon (denoted as MoC–N–C). The MoC–N–C can not only shorten the ion diffusion pathway, leading to fast transport of Li + , but also accommodate the volume expansion and adhesion of MoC nanoparticles during long-term cycling. Consequently, it displays large charge reversible capacities of 1246 mA h g −1 (300 cycles, 100 mA g −1 ), 813 mA h g −1 (500 cycles, 1 A g −1 ) and 675 mA h g −1 (500 cycles, 2 A g −1 ), for lithium ion batteries. In addition to mesoporous properties, large surface area, high ion/electron conductivity, and N-doped characteristics, the excellent lithium storage capability of the MoC–N–C composites, especially at high current densities and during long-term cycling can be mainly ascribed to the significant pseudocapacitance contribution (∼84% at 0.5 mV s −1 ) and synergistic effects between the N-doped 3D conductive network and the in situ generated ultrafine MoC nanoparticles.
Transition metal carbides are promising anode candidates for lithium ion batteries, however, their potential accomplishment still requires a rational structural design to improve their low reversible capacities, especially at high current densities and during long-term cycling. This work designs ultrasmall MoC nanoparticles with a diameter of 2–3 nm that are anchored in a three-dimensional (3D) network of nitrogen-doped porous carbon (denoted as MoC–N–C). The MoC–N–C can not only shorten the ion diffusion pathway, leading to fast transport of Li⁺, but also accommodate the volume expansion and adhesion of MoC nanoparticles during long-term cycling. Consequently, it displays large charge reversible capacities of 1246 mA h g⁻¹ (300 cycles, 100 mA g⁻¹), 813 mA h g⁻¹ (500 cycles, 1 A g⁻¹) and 675 mA h g⁻¹ (500 cycles, 2 A g⁻¹), for lithium ion batteries. In addition to mesoporous properties, large surface area, high ion/electron conductivity, and N-doped characteristics, the excellent lithium storage capability of the MoC–N–C composites, especially at high current densities and during long-term cycling can be mainly ascribed to the significant pseudocapacitance contribution (∼84% at 0.5 mV s⁻¹) and synergistic effects between the N-doped 3D conductive network and the in situ generated ultrafine MoC nanoparticles.
Transition metal carbides are promising anode candidates for lithium ion batteries, however, their potential accomplishment still requires a rational structural design to improve their low reversible capacities, especially at high current densities and during long-term cycling. This work designs ultrasmall MoC nanoparticles with a diameter of 2–3 nm that are anchored in a three-dimensional (3D) network of nitrogen-doped porous carbon (denoted as MoC–N–C). The MoC–N–C can not only shorten the ion diffusion pathway, leading to fast transport of Li+, but also accommodate the volume expansion and adhesion of MoC nanoparticles during long-term cycling. Consequently, it displays large charge reversible capacities of 1246 mA h g−1 (300 cycles, 100 mA g−1), 813 mA h g−1 (500 cycles, 1 A g−1) and 675 mA h g−1 (500 cycles, 2 A g−1), for lithium ion batteries. In addition to mesoporous properties, large surface area, high ion/electron conductivity, and N-doped characteristics, the excellent lithium storage capability of the MoC–N–C composites, especially at high current densities and during long-term cycling can be mainly ascribed to the significant pseudocapacitance contribution (∼84% at 0.5 mV s−1) and synergistic effects between the N-doped 3D conductive network and the in situ generated ultrafine MoC nanoparticles.
Author Lv, Li-Ping
Hu, Yiyang
Tao, Xuechun
Chen, Xiudong
Wang, Yong
Sun, Weiwei
Author_xml – sequence: 1
  givenname: Xiudong
  surname: Chen
  fullname: Chen, Xiudong
  organization: School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P. R. China, School of Chemistry and Chemical Engineering
– sequence: 2
  givenname: Li-Ping
  orcidid: 0000-0003-4054-008X
  surname: Lv
  fullname: Lv, Li-Ping
  organization: School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P. R. China
– sequence: 3
  givenname: Weiwei
  surname: Sun
  fullname: Sun, Weiwei
  organization: School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P. R. China
– sequence: 4
  givenname: Yiyang
  surname: Hu
  fullname: Hu, Yiyang
  organization: School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P. R. China
– sequence: 5
  givenname: Xuechun
  surname: Tao
  fullname: Tao, Xuechun
  organization: School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P. R. China
– sequence: 6
  givenname: Yong
  orcidid: 0000-0003-3489-7672
  surname: Wang
  fullname: Wang, Yong
  organization: School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P. R. China
BookMark eNptkVtrFjEQhoO00Fp7018w4I0Iq8mesrmsn4cWKr1pr5f5kklNzSZrkqX4Z_ytplQUinMzB555meF9yQ5CDMTYmeDvBO_U-910c847IccPL9hxywfeyF6NB3_raTpipznf8xoT56NSx-zXrS8J84Lew9e4g4AhrpiK054y0LInY8iAC9B9BJtwoYeYvmeIFoIrKd5RaExcK7LGFLcMGtM-BsAMVckQLFgoOfQZbExA1jrtKBTwrnxz2wK5xIR3BA-1hzXTZqLGFbUrGDS9Yoe27tLpn3zCbj9_utldNFfXXy5351eN7lpVGtnKnrcadSelku0kcaSh74W0xqLUorOchMTBjGh6VSd7OVglppFbRByoO2FvnnTXFH9slMu8uKzJewxUv5rbtpODUOMwVfT1M_Q-binU6-aWS656OY2yUm-fKJ1izonsvCa3YPo5Cz4_ujX_c6vC_Bn8-H5xMVRvnP_fym-LF5uU
CitedBy_id crossref_primary_10_1002_adma_201901640
crossref_primary_10_1002_adma_201903125
crossref_primary_10_1016_j_jelechem_2020_114013
crossref_primary_10_1002_smtd_202401974
crossref_primary_10_1016_j_jcis_2025_137423
crossref_primary_10_1016_j_ijbiomac_2022_12_095
crossref_primary_10_1016_j_apsusc_2023_158850
crossref_primary_10_1021_acssuschemeng_2c04750
crossref_primary_10_1002_celc_202100365
crossref_primary_10_1149_1945_7111_ac91fd
crossref_primary_10_1002_ente_202000258
crossref_primary_10_1039_C9NR05732C
crossref_primary_10_1002_aelm_201900006
crossref_primary_10_1002_celc_202000963
crossref_primary_10_1007_s10854_023_10832_w
crossref_primary_10_1039_C9TA12679A
crossref_primary_10_1007_s10008_020_04804_x
crossref_primary_10_1016_j_cej_2023_148499
crossref_primary_10_1016_j_jelechem_2021_115737
crossref_primary_10_1088_1361_6463_ac3610
crossref_primary_10_1002_adfm_202314176
crossref_primary_10_1016_j_cej_2019_123111
crossref_primary_10_1016_j_est_2023_107207
crossref_primary_10_1016_j_jallcom_2019_152167
crossref_primary_10_1002_celc_202101506
crossref_primary_10_1002_smtd_201900338
crossref_primary_10_1021_acsnano_9b07360
crossref_primary_10_1021_acsami_9b22368
crossref_primary_10_1016_j_synthmet_2022_117112
crossref_primary_10_1039_D2TA04581H
crossref_primary_10_1039_D2TA09123B
crossref_primary_10_1039_D0EE03407J
crossref_primary_10_1016_j_jpowsour_2018_12_031
crossref_primary_10_1002_er_8080
crossref_primary_10_1007_s11706_021_0552_x
crossref_primary_10_1016_j_ensm_2025_104031
crossref_primary_10_1016_j_electacta_2019_01_133
crossref_primary_10_1016_j_matlet_2019_05_141
crossref_primary_10_1016_j_carbon_2021_02_099
crossref_primary_10_1039_D0RA08503K
crossref_primary_10_2139_ssrn_4054565
crossref_primary_10_1039_C9TA03529J
crossref_primary_10_1039_C9TA09124F
crossref_primary_10_1016_j_est_2024_113591
crossref_primary_10_1039_D3RA01926H
crossref_primary_10_1016_j_electacta_2019_06_025
crossref_primary_10_1021_acsnano_9b00165
crossref_primary_10_1039_D2TA07101K
Cites_doi 10.1021/acs.accounts.6b00485
10.1016/j.jpowsour.2015.09.001
10.1016/j.jpowsour.2016.01.014
10.1002/adma.200903328
10.1039/C4TA06742H
10.1039/C7NR01717K
10.1016/j.jpowsour.2012.09.026
10.1016/j.electacta.2016.01.008
10.1039/C6CS00829A
10.1039/c3ee43463j
10.1039/C6TA09060E
10.1016/j.electacta.2016.08.051
10.1039/C4TA05902F
10.1039/C5NH00023H
10.1002/adfm.201502959
10.1039/C6CP07569J
10.1038/nmat3601
10.1039/C4TA03440F
10.1002/aenm.201601424
10.1002/adma.201600164
10.1002/anie.201203207
10.1039/C5TA03929K
10.1016/j.jpowsour.2017.05.020
10.1016/j.cej.2017.09.070
10.1039/C6TA08742F
10.1021/acs.jpcc.5b10341
10.1039/C5NH00116A
10.1038/natrevmats.2016.98
10.1021/am3023652
10.1039/C4CS00350K
10.1002/adfm.201303856
10.1016/j.electacta.2016.06.163
10.1002/adfm.201601631
10.1039/C7TA01256J
10.1039/C5NH00134J
10.1016/S1872-2067(15)61024-5
10.1016/j.carbon.2015.10.076
10.1002/adma.201401427
10.1002/adfm.201604904
10.1021/acsami.5b11492
10.1021/acsnano.6b05566
10.1016/j.elecom.2011.11.010
10.1002/adma.201500783
10.1021/ja408421n
10.1016/j.nanoen.2016.02.001
10.1039/C6QI00465B
10.1002/smll.201702228
10.1039/c3nr06678a
10.1016/j.jpowsour.2016.03.042
10.1039/C4NR02999B
10.1016/j.chempr.2017.01.010
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/C8TA03176B
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 2050-7496
EndPage 13716
ExternalDocumentID 10_1039_C8TA03176B
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c329t-727402cac37797287a6e54417fdfa7c13f0e17a5d6ad49a7cb75f91860faaa5e3
ISSN 2050-7488
2050-7496
IngestDate Thu Jul 10 22:34:32 EDT 2025
Mon Jun 30 11:59:00 EDT 2025
Thu Apr 24 22:57:12 EDT 2025
Tue Jul 01 03:13:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c329t-727402cac37797287a6e54417fdfa7c13f0e17a5d6ad49a7cb75f91860faaa5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4054-008X
0000-0003-3489-7672
PQID 2070947867
PQPubID 2047523
PageCount 12
ParticipantIDs proquest_miscellaneous_2237519658
proquest_journals_2070947867
crossref_primary_10_1039_C8TA03176B
crossref_citationtrail_10_1039_C8TA03176B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zhu (C8TA03176B-(cit38)/*[position()=1]) 2016; 307
Rahman (C8TA03176B-(cit5)/*[position()=1]) 2016; 26
Wang (C8TA03176B-(cit44)/*[position()=1]) 2017; 13
Yang (C8TA03176B-(cit11)/*[position()=1]) 2017; 46
Pang (C8TA03176B-(cit12)/*[position()=1]) 2016; 213
Sheng (C8TA03176B-(cit8)/*[position()=1]) 2016; 49
Li (C8TA03176B-(cit27)/*[position()=1]) 2017; 19
Chen (C8TA03176B-(cit23)/*[position()=1]) 2013; 222
Wang (C8TA03176B-(cit47)/*[position()=1]) 2018; 332
Wu (C8TA03176B-(cit15)/*[position()=1]) 2017; 359
Wang (C8TA03176B-(cit7)/*[position()=1]) 2016; 37
Hu (C8TA03176B-(cit29)/*[position()=1]) 2015; 44
Liu (C8TA03176B-(cit4)/*[position()=1]) 2010; 22
Xiong (C8TA03176B-(cit16)/*[position()=1]) 2016; 1
Zhang (C8TA03176B-(cit40)/*[position()=1]) 2014; 24
Geng (C8TA03176B-(cit14)/*[position()=1]) 2014; 2
Yao (C8TA03176B-(cit9)/*[position()=1]) 2017; 2
Wu (C8TA03176B-(cit3)/*[position()=1]) 2016; 1
Zhao (C8TA03176B-(cit46)/*[position()=1]) 2016; 8
Chen (C8TA03176B-(cit28)/*[position()=1]) 2017; 5
Ihsan (C8TA03176B-(cit39)/*[position()=1]) 2016; 96
Li (C8TA03176B-(cit45)/*[position()=1]) 2015; 3
Augustyn (C8TA03176B-(cit42)/*[position()=1]) 2013; 12
Zhao (C8TA03176B-(cit17)/*[position()=1]) 2017; 7
Sun (C8TA03176B-(cit22)/*[position()=1]) 2014; 6
Huang (C8TA03176B-(cit52)/*[position()=1]) 2016; 120
Huang (C8TA03176B-(cit33)/*[position()=1]) 2015; 3
Lu (C8TA03176B-(cit21)/*[position()=1]) 2012; 14
Wang (C8TA03176B-(cit36)/*[position()=1]) 2014; 7
Chen (C8TA03176B-(cit51)/*[position()=1]) 2013; 135
Pang (C8TA03176B-(cit13)/*[position()=1]) 2016; 4
Gu (C8TA03176B-(cit20)/*[position()=1]) 2013; 5
Yu (C8TA03176B-(cit31)/*[position()=1]) 2017; 9
Kou (C8TA03176B-(cit26)/*[position()=1]) 2017; 27
Cummins (C8TA03176B-(cit35)/*[position()=1]) 2015
Li (C8TA03176B-(cit49)/*[position()=1]) 2016; 26
Li (C8TA03176B-(cit32)/*[position()=1]) 2012; 51
Nejad (C8TA03176B-(cit19)/*[position()=1]) 2016; 316
Wang (C8TA03176B-(cit6)/*[position()=1]) 2017; 5
Guan (C8TA03176B-(cit24)/*[position()=1]) 2016; 190
Dai (C8TA03176B-(cit37)/*[position()=1]) 2016; 217
Wang (C8TA03176B-(cit1)/*[position()=1]) 2016; 1
Ai (C8TA03176B-(cit50)/*[position()=1]) 2014; 26
Zhao (C8TA03176B-(cit18)/*[position()=1]) 2015; 299
Anasori (C8TA03176B-(cit25)/*[position()=1]) 2017; 2
Wang (C8TA03176B-(cit34)/*[position()=1]) 2015; 3
Chen (C8TA03176B-(cit2)/*[position()=1]) 2016; 28
Peng (C8TA03176B-(cit10)/*[position()=1]) 2016; 22
Li (C8TA03176B-(cit30)/*[position()=1]) 2017; 4
Gao (C8TA03176B-(cit41)/*[position()=1]) 2014; 6
Chao (C8TA03176B-(cit43)/*[position()=1]) 2016; 10
Wu (C8TA03176B-(cit48)/*[position()=1]) 2015; 27
References_xml – volume: 49
  start-page: 2569
  year: 2016
  ident: C8TA03176B-(cit8)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00485
– volume: 299
  start-page: 557
  year: 2015
  ident: C8TA03176B-(cit18)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.09.001
– volume: 307
  start-page: 552
  year: 2016
  ident: C8TA03176B-(cit38)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.01.014
– volume: 22
  start-page: E28
  year: 2010
  ident: C8TA03176B-(cit4)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903328
– volume: 3
  start-page: 4976
  year: 2015
  ident: C8TA03176B-(cit33)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06742H
– volume: 9
  start-page: 7260
  year: 2017
  ident: C8TA03176B-(cit31)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C7NR01717K
– volume: 222
  start-page: 526
  year: 2013
  ident: C8TA03176B-(cit23)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.09.026
– volume: 190
  start-page: 354
  year: 2016
  ident: C8TA03176B-(cit24)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.01.008
– volume: 46
  start-page: 481
  year: 2017
  ident: C8TA03176B-(cit11)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00829A
– volume: 7
  start-page: 576
  year: 2014
  ident: C8TA03176B-(cit36)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee43463j
– volume: 4
  start-page: 19179
  year: 2016
  ident: C8TA03176B-(cit13)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09060E
– volume: 217
  start-page: 123
  year: 2016
  ident: C8TA03176B-(cit37)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.08.051
– volume: 3
  start-page: 894
  year: 2015
  ident: C8TA03176B-(cit45)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05902F
– volume: 1
  start-page: 27
  year: 2016
  ident: C8TA03176B-(cit3)/*[position()=1]
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C5NH00023H
– volume: 26
  start-page: 647
  year: 2016
  ident: C8TA03176B-(cit5)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502959
– volume: 19
  start-page: 2908
  year: 2017
  ident: C8TA03176B-(cit27)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP07569J
– volume: 12
  start-page: 518
  year: 2013
  ident: C8TA03176B-(cit42)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3601
– volume: 2
  start-page: 15152
  year: 2014
  ident: C8TA03176B-(cit14)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03440F
– volume: 7
  start-page: 1601424
  year: 2017
  ident: C8TA03176B-(cit17)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601424
– volume: 28
  start-page: 7580
  year: 2016
  ident: C8TA03176B-(cit2)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600164
– volume: 51
  start-page: 9689
  year: 2012
  ident: C8TA03176B-(cit32)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.201203207
– volume: 3
  start-page: 17403
  year: 2015
  ident: C8TA03176B-(cit34)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03929K
– volume: 359
  start-page: 7
  year: 2017
  ident: C8TA03176B-(cit15)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.05.020
– volume: 332
  start-page: 49
  year: 2018
  ident: C8TA03176B-(cit47)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.070
– volume: 5
  start-page: 2411
  year: 2017
  ident: C8TA03176B-(cit6)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA08742F
– volume: 120
  start-page: 15707
  year: 2016
  ident: C8TA03176B-(cit52)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b10341
– volume: 1
  start-page: 272
  year: 2016
  ident: C8TA03176B-(cit1)/*[position()=1]
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C5NH00116A
– volume: 2
  start-page: 16098
  year: 2017
  ident: C8TA03176B-(cit25)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.98
– volume: 5
  start-page: 801
  year: 2013
  ident: C8TA03176B-(cit20)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am3023652
– volume: 44
  start-page: 2376
  year: 2015
  ident: C8TA03176B-(cit29)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00350K
– volume: 24
  start-page: 3399
  year: 2014
  ident: C8TA03176B-(cit40)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303856
– volume: 213
  start-page: 351
  year: 2016
  ident: C8TA03176B-(cit12)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.06.163
– volume: 26
  start-page: 8345
  year: 2016
  ident: C8TA03176B-(cit49)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601631
– volume: 5
  start-page: 8125
  year: 2017
  ident: C8TA03176B-(cit28)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01256J
– volume: 1
  start-page: 340
  year: 2016
  ident: C8TA03176B-(cit16)/*[position()=1]
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C5NH00134J
– volume: 37
  start-page: 218
  year: 2016
  ident: C8TA03176B-(cit7)/*[position()=1]
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(15)61024-5
– volume: 96
  start-page: 1200
  year: 2016
  ident: C8TA03176B-(cit39)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.10.076
– volume: 26
  start-page: 6186
  year: 2014
  ident: C8TA03176B-(cit50)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401427
– volume: 27
  start-page: 1604904
  year: 2017
  ident: C8TA03176B-(cit26)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604904
– volume: 8
  start-page: 2372
  year: 2016
  ident: C8TA03176B-(cit46)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b11492
– volume: 10
  start-page: 10211
  year: 2016
  ident: C8TA03176B-(cit43)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05566
– volume: 14
  start-page: 82
  year: 2012
  ident: C8TA03176B-(cit21)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2011.11.010
– start-page: 111857
  year: 2015
  ident: C8TA03176B-(cit35)/*[position()=1]
  publication-title: Nat. Commun.
– volume: 27
  start-page: 3038
  year: 2015
  ident: C8TA03176B-(cit48)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500783
– volume: 135
  start-page: 16280
  year: 2013
  ident: C8TA03176B-(cit51)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja408421n
– volume: 22
  start-page: 361
  year: 2016
  ident: C8TA03176B-(cit10)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.02.001
– volume: 4
  start-page: 289
  year: 2017
  ident: C8TA03176B-(cit30)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C6QI00465B
– volume: 13
  start-page: 1702228
  year: 2017
  ident: C8TA03176B-(cit44)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201702228
– volume: 6
  start-page: 6151
  year: 2014
  ident: C8TA03176B-(cit41)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr06678a
– volume: 316
  start-page: 183
  year: 2016
  ident: C8TA03176B-(cit19)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.03.042
– volume: 6
  start-page: 11528
  year: 2014
  ident: C8TA03176B-(cit22)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR02999B
– volume: 2
  start-page: 171
  year: 2017
  ident: C8TA03176B-(cit9)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.01.010
SSID ssj0000800699
Score 2.4364629
Snippet Transition metal carbides are promising anode candidates for lithium ion batteries, however, their potential accomplishment still requires a rational...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 13705
SubjectTerms adhesion
Anodes
Batteries
carbides
Carbon
chemistry
Current density
Diffusion rate
Electrode materials
Electron conductivity
High current
Ion diffusion
Lithium
lithium batteries
Lithium-ion batteries
Metal carbides
Nanoparticles
Nitrogen
Porous materials
porous media
Rechargeable batteries
Structural design
Structural engineering
surface area
synergism
Synergistic effect
Title Ultrasmall MoC nanoparticles embedded in 3D frameworks of nitrogen-doped porous carbon as anode materials for efficient lithium storage with pseudocapacitance
URI https://www.proquest.com/docview/2070947867
https://www.proquest.com/docview/2237519658
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wAcECygLSzICC4oSkniPI-l29WCugsSqegtchxbRNomVZuC4Mfwc_hdjB3nUXUPC5eodUZOmvk6D-ebMUJvIsdhoRtx07VTSFC4b5lUOAy-OlQIktqhKhe7vPIvFu7HpbccDP70WEu7Kh2zXzfWlfyPVmEM9CqrZP9Bs-2kMACfQb9wBA3D8VY6XlxXG7pdybfLl-XUKGgBKbBmuhl8lXKwKrK3kkHODNGwsGruRl5tSpjXzMo1iEAQLqmwjG5SyU6WfZtLRW2t6p9RNwZX3SYkdwBC92_5bmVIZqXk_KjF3PWW7zLwjJCE51WLpcO4t5uUNZvNjY1JXTe0d7m6KlEt7DdVXpLI274DmOrCkmUO19UOWFKLvtdrDebnvBv8slOiX3n-g-cdlJUDyn9SLahXP_qm2rE8ywzcej_cxpb7Pcg6obEe2ySQrVZJYPfNtBrt-fz2_IFDsYjsx8rCioL1C_y0c5sNVeDqU3K-mM-TeLaM76AjB9IVZ4iOJrP4w7xd7ZNxua82M21vu-mVS6J33fT70dF-cKAinvgheqBVhic1oB6hAS-O0d1po7RjdL_XzPIx-t2hEQMa8R4acYNGnBeYnOEOjbgUeB-NuEYjrtGI6RYrNOIWOBjggVs0Yo1GrNGIJRrxARqfoMX5LJ5emHr3D5MRJ6pMCKxdy2GUyZaYAST21OdqwzyRCRowmwiL2wH1Mp9mbgQjaeCJCGyLJSilHidP0bAoC36CsCAstVKRRSJLXZeF1KUhYQwyBzfzGbdG6G3z1BOmW-PLHVquE0XRIFEyDeOJ0tD7EXrdyq7rhjA3Sp02yku0wdgmDrjXyA1CPxihV-1p0Jl8R0cLDo82gWg98GSXz_DZLWSeo3vyT1EvCZ6iYbXZ8RcQJFfpS43AvyyEyRo
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrasmall+MoC+nanoparticles+embedded+in+3D+frameworks+of+nitrogen-doped+porous+carbon+as+anode+materials+for+efficient+lithium+storage+with+pseudocapacitance&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Chen%2C+Xiudong&rft.au=Lv%2C+Li-Ping&rft.au=Sun%2C+Weiwei&rft.au=Hu%2C+Yiyang&rft.date=2018&rft.issn=2050-7496&rft.volume=6&rft.issue=28+p.13705-13716&rft.spage=13705&rft.epage=13716&rft_id=info:doi/10.1039%2Fc8ta03176b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon