Ultrasmall MoC nanoparticles embedded in 3D frameworks of nitrogen-doped porous carbon as anode materials for efficient lithium storage with pseudocapacitance
Transition metal carbides are promising anode candidates for lithium ion batteries, however, their potential accomplishment still requires a rational structural design to improve their low reversible capacities, especially at high current densities and during long-term cycling. This work designs ult...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 6; no. 28; pp. 13705 - 13716 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transition metal carbides are promising anode candidates for lithium ion batteries, however, their potential accomplishment still requires a rational structural design to improve their low reversible capacities, especially at high current densities and during long-term cycling. This work designs ultrasmall MoC nanoparticles with a diameter of 2–3 nm that are anchored in a three-dimensional (3D) network of nitrogen-doped porous carbon (denoted as MoC–N–C). The MoC–N–C can not only shorten the ion diffusion pathway, leading to fast transport of Li
+
, but also accommodate the volume expansion and adhesion of MoC nanoparticles during long-term cycling. Consequently, it displays large charge reversible capacities of 1246 mA h g
−1
(300 cycles, 100 mA g
−1
), 813 mA h g
−1
(500 cycles, 1 A g
−1
) and 675 mA h g
−1
(500 cycles, 2 A g
−1
), for lithium ion batteries. In addition to mesoporous properties, large surface area, high ion/electron conductivity, and N-doped characteristics, the excellent lithium storage capability of the MoC–N–C composites, especially at high current densities and during long-term cycling can be mainly ascribed to the significant pseudocapacitance contribution (∼84% at 0.5 mV s
−1
) and synergistic effects between the N-doped 3D conductive network and the
in situ
generated ultrafine MoC nanoparticles. |
---|---|
AbstractList | Transition metal carbides are promising anode candidates for lithium ion batteries, however, their potential accomplishment still requires a rational structural design to improve their low reversible capacities, especially at high current densities and during long-term cycling. This work designs ultrasmall MoC nanoparticles with a diameter of 2–3 nm that are anchored in a three-dimensional (3D) network of nitrogen-doped porous carbon (denoted as MoC–N–C). The MoC–N–C can not only shorten the ion diffusion pathway, leading to fast transport of Li
+
, but also accommodate the volume expansion and adhesion of MoC nanoparticles during long-term cycling. Consequently, it displays large charge reversible capacities of 1246 mA h g
−1
(300 cycles, 100 mA g
−1
), 813 mA h g
−1
(500 cycles, 1 A g
−1
) and 675 mA h g
−1
(500 cycles, 2 A g
−1
), for lithium ion batteries. In addition to mesoporous properties, large surface area, high ion/electron conductivity, and N-doped characteristics, the excellent lithium storage capability of the MoC–N–C composites, especially at high current densities and during long-term cycling can be mainly ascribed to the significant pseudocapacitance contribution (∼84% at 0.5 mV s
−1
) and synergistic effects between the N-doped 3D conductive network and the
in situ
generated ultrafine MoC nanoparticles. Transition metal carbides are promising anode candidates for lithium ion batteries, however, their potential accomplishment still requires a rational structural design to improve their low reversible capacities, especially at high current densities and during long-term cycling. This work designs ultrasmall MoC nanoparticles with a diameter of 2–3 nm that are anchored in a three-dimensional (3D) network of nitrogen-doped porous carbon (denoted as MoC–N–C). The MoC–N–C can not only shorten the ion diffusion pathway, leading to fast transport of Li⁺, but also accommodate the volume expansion and adhesion of MoC nanoparticles during long-term cycling. Consequently, it displays large charge reversible capacities of 1246 mA h g⁻¹ (300 cycles, 100 mA g⁻¹), 813 mA h g⁻¹ (500 cycles, 1 A g⁻¹) and 675 mA h g⁻¹ (500 cycles, 2 A g⁻¹), for lithium ion batteries. In addition to mesoporous properties, large surface area, high ion/electron conductivity, and N-doped characteristics, the excellent lithium storage capability of the MoC–N–C composites, especially at high current densities and during long-term cycling can be mainly ascribed to the significant pseudocapacitance contribution (∼84% at 0.5 mV s⁻¹) and synergistic effects between the N-doped 3D conductive network and the in situ generated ultrafine MoC nanoparticles. Transition metal carbides are promising anode candidates for lithium ion batteries, however, their potential accomplishment still requires a rational structural design to improve their low reversible capacities, especially at high current densities and during long-term cycling. This work designs ultrasmall MoC nanoparticles with a diameter of 2–3 nm that are anchored in a three-dimensional (3D) network of nitrogen-doped porous carbon (denoted as MoC–N–C). The MoC–N–C can not only shorten the ion diffusion pathway, leading to fast transport of Li+, but also accommodate the volume expansion and adhesion of MoC nanoparticles during long-term cycling. Consequently, it displays large charge reversible capacities of 1246 mA h g−1 (300 cycles, 100 mA g−1), 813 mA h g−1 (500 cycles, 1 A g−1) and 675 mA h g−1 (500 cycles, 2 A g−1), for lithium ion batteries. In addition to mesoporous properties, large surface area, high ion/electron conductivity, and N-doped characteristics, the excellent lithium storage capability of the MoC–N–C composites, especially at high current densities and during long-term cycling can be mainly ascribed to the significant pseudocapacitance contribution (∼84% at 0.5 mV s−1) and synergistic effects between the N-doped 3D conductive network and the in situ generated ultrafine MoC nanoparticles. |
Author | Lv, Li-Ping Hu, Yiyang Tao, Xuechun Chen, Xiudong Wang, Yong Sun, Weiwei |
Author_xml | – sequence: 1 givenname: Xiudong surname: Chen fullname: Chen, Xiudong organization: School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P. R. China, School of Chemistry and Chemical Engineering – sequence: 2 givenname: Li-Ping orcidid: 0000-0003-4054-008X surname: Lv fullname: Lv, Li-Ping organization: School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P. R. China – sequence: 3 givenname: Weiwei surname: Sun fullname: Sun, Weiwei organization: School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P. R. China – sequence: 4 givenname: Yiyang surname: Hu fullname: Hu, Yiyang organization: School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P. R. China – sequence: 5 givenname: Xuechun surname: Tao fullname: Tao, Xuechun organization: School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P. R. China – sequence: 6 givenname: Yong orcidid: 0000-0003-3489-7672 surname: Wang fullname: Wang, Yong organization: School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P. R. China |
BookMark | eNptkVtrFjEQhoO00Fp7018w4I0Iq8mesrmsn4cWKr1pr5f5kklNzSZrkqX4Z_ytplQUinMzB555meF9yQ5CDMTYmeDvBO_U-910c847IccPL9hxywfeyF6NB3_raTpipznf8xoT56NSx-zXrS8J84Lew9e4g4AhrpiK054y0LInY8iAC9B9BJtwoYeYvmeIFoIrKd5RaExcK7LGFLcMGtM-BsAMVckQLFgoOfQZbExA1jrtKBTwrnxz2wK5xIR3BA-1hzXTZqLGFbUrGDS9Yoe27tLpn3zCbj9_utldNFfXXy5351eN7lpVGtnKnrcadSelku0kcaSh74W0xqLUorOchMTBjGh6VSd7OVglppFbRByoO2FvnnTXFH9slMu8uKzJewxUv5rbtpODUOMwVfT1M_Q-binU6-aWS656OY2yUm-fKJ1izonsvCa3YPo5Cz4_ujX_c6vC_Bn8-H5xMVRvnP_fym-LF5uU |
CitedBy_id | crossref_primary_10_1002_adma_201901640 crossref_primary_10_1002_adma_201903125 crossref_primary_10_1016_j_jelechem_2020_114013 crossref_primary_10_1002_smtd_202401974 crossref_primary_10_1016_j_jcis_2025_137423 crossref_primary_10_1016_j_ijbiomac_2022_12_095 crossref_primary_10_1016_j_apsusc_2023_158850 crossref_primary_10_1021_acssuschemeng_2c04750 crossref_primary_10_1002_celc_202100365 crossref_primary_10_1149_1945_7111_ac91fd crossref_primary_10_1002_ente_202000258 crossref_primary_10_1039_C9NR05732C crossref_primary_10_1002_aelm_201900006 crossref_primary_10_1002_celc_202000963 crossref_primary_10_1007_s10854_023_10832_w crossref_primary_10_1039_C9TA12679A crossref_primary_10_1007_s10008_020_04804_x crossref_primary_10_1016_j_cej_2023_148499 crossref_primary_10_1016_j_jelechem_2021_115737 crossref_primary_10_1088_1361_6463_ac3610 crossref_primary_10_1002_adfm_202314176 crossref_primary_10_1016_j_cej_2019_123111 crossref_primary_10_1016_j_est_2023_107207 crossref_primary_10_1016_j_jallcom_2019_152167 crossref_primary_10_1002_celc_202101506 crossref_primary_10_1002_smtd_201900338 crossref_primary_10_1021_acsnano_9b07360 crossref_primary_10_1021_acsami_9b22368 crossref_primary_10_1016_j_synthmet_2022_117112 crossref_primary_10_1039_D2TA04581H crossref_primary_10_1039_D2TA09123B crossref_primary_10_1039_D0EE03407J crossref_primary_10_1016_j_jpowsour_2018_12_031 crossref_primary_10_1002_er_8080 crossref_primary_10_1007_s11706_021_0552_x crossref_primary_10_1016_j_ensm_2025_104031 crossref_primary_10_1016_j_electacta_2019_01_133 crossref_primary_10_1016_j_matlet_2019_05_141 crossref_primary_10_1016_j_carbon_2021_02_099 crossref_primary_10_1039_D0RA08503K crossref_primary_10_2139_ssrn_4054565 crossref_primary_10_1039_C9TA03529J crossref_primary_10_1039_C9TA09124F crossref_primary_10_1016_j_est_2024_113591 crossref_primary_10_1039_D3RA01926H crossref_primary_10_1016_j_electacta_2019_06_025 crossref_primary_10_1021_acsnano_9b00165 crossref_primary_10_1039_D2TA07101K |
Cites_doi | 10.1021/acs.accounts.6b00485 10.1016/j.jpowsour.2015.09.001 10.1016/j.jpowsour.2016.01.014 10.1002/adma.200903328 10.1039/C4TA06742H 10.1039/C7NR01717K 10.1016/j.jpowsour.2012.09.026 10.1016/j.electacta.2016.01.008 10.1039/C6CS00829A 10.1039/c3ee43463j 10.1039/C6TA09060E 10.1016/j.electacta.2016.08.051 10.1039/C4TA05902F 10.1039/C5NH00023H 10.1002/adfm.201502959 10.1039/C6CP07569J 10.1038/nmat3601 10.1039/C4TA03440F 10.1002/aenm.201601424 10.1002/adma.201600164 10.1002/anie.201203207 10.1039/C5TA03929K 10.1016/j.jpowsour.2017.05.020 10.1016/j.cej.2017.09.070 10.1039/C6TA08742F 10.1021/acs.jpcc.5b10341 10.1039/C5NH00116A 10.1038/natrevmats.2016.98 10.1021/am3023652 10.1039/C4CS00350K 10.1002/adfm.201303856 10.1016/j.electacta.2016.06.163 10.1002/adfm.201601631 10.1039/C7TA01256J 10.1039/C5NH00134J 10.1016/S1872-2067(15)61024-5 10.1016/j.carbon.2015.10.076 10.1002/adma.201401427 10.1002/adfm.201604904 10.1021/acsami.5b11492 10.1021/acsnano.6b05566 10.1016/j.elecom.2011.11.010 10.1002/adma.201500783 10.1021/ja408421n 10.1016/j.nanoen.2016.02.001 10.1039/C6QI00465B 10.1002/smll.201702228 10.1039/c3nr06678a 10.1016/j.jpowsour.2016.03.042 10.1039/C4NR02999B 10.1016/j.chempr.2017.01.010 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/C8TA03176B |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 2050-7496 |
EndPage | 13716 |
ExternalDocumentID | 10_1039_C8TA03176B |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c329t-727402cac37797287a6e54417fdfa7c13f0e17a5d6ad49a7cb75f91860faaa5e3 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Thu Jul 10 22:34:32 EDT 2025 Mon Jun 30 11:59:00 EDT 2025 Thu Apr 24 22:57:12 EDT 2025 Tue Jul 01 03:13:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c329t-727402cac37797287a6e54417fdfa7c13f0e17a5d6ad49a7cb75f91860faaa5e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4054-008X 0000-0003-3489-7672 |
PQID | 2070947867 |
PQPubID | 2047523 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2237519658 proquest_journals_2070947867 crossref_primary_10_1039_C8TA03176B crossref_citationtrail_10_1039_C8TA03176B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zhu (C8TA03176B-(cit38)/*[position()=1]) 2016; 307 Rahman (C8TA03176B-(cit5)/*[position()=1]) 2016; 26 Wang (C8TA03176B-(cit44)/*[position()=1]) 2017; 13 Yang (C8TA03176B-(cit11)/*[position()=1]) 2017; 46 Pang (C8TA03176B-(cit12)/*[position()=1]) 2016; 213 Sheng (C8TA03176B-(cit8)/*[position()=1]) 2016; 49 Li (C8TA03176B-(cit27)/*[position()=1]) 2017; 19 Chen (C8TA03176B-(cit23)/*[position()=1]) 2013; 222 Wang (C8TA03176B-(cit47)/*[position()=1]) 2018; 332 Wu (C8TA03176B-(cit15)/*[position()=1]) 2017; 359 Wang (C8TA03176B-(cit7)/*[position()=1]) 2016; 37 Hu (C8TA03176B-(cit29)/*[position()=1]) 2015; 44 Liu (C8TA03176B-(cit4)/*[position()=1]) 2010; 22 Xiong (C8TA03176B-(cit16)/*[position()=1]) 2016; 1 Zhang (C8TA03176B-(cit40)/*[position()=1]) 2014; 24 Geng (C8TA03176B-(cit14)/*[position()=1]) 2014; 2 Yao (C8TA03176B-(cit9)/*[position()=1]) 2017; 2 Wu (C8TA03176B-(cit3)/*[position()=1]) 2016; 1 Zhao (C8TA03176B-(cit46)/*[position()=1]) 2016; 8 Chen (C8TA03176B-(cit28)/*[position()=1]) 2017; 5 Ihsan (C8TA03176B-(cit39)/*[position()=1]) 2016; 96 Li (C8TA03176B-(cit45)/*[position()=1]) 2015; 3 Augustyn (C8TA03176B-(cit42)/*[position()=1]) 2013; 12 Zhao (C8TA03176B-(cit17)/*[position()=1]) 2017; 7 Sun (C8TA03176B-(cit22)/*[position()=1]) 2014; 6 Huang (C8TA03176B-(cit52)/*[position()=1]) 2016; 120 Huang (C8TA03176B-(cit33)/*[position()=1]) 2015; 3 Lu (C8TA03176B-(cit21)/*[position()=1]) 2012; 14 Wang (C8TA03176B-(cit36)/*[position()=1]) 2014; 7 Chen (C8TA03176B-(cit51)/*[position()=1]) 2013; 135 Pang (C8TA03176B-(cit13)/*[position()=1]) 2016; 4 Gu (C8TA03176B-(cit20)/*[position()=1]) 2013; 5 Yu (C8TA03176B-(cit31)/*[position()=1]) 2017; 9 Kou (C8TA03176B-(cit26)/*[position()=1]) 2017; 27 Cummins (C8TA03176B-(cit35)/*[position()=1]) 2015 Li (C8TA03176B-(cit49)/*[position()=1]) 2016; 26 Li (C8TA03176B-(cit32)/*[position()=1]) 2012; 51 Nejad (C8TA03176B-(cit19)/*[position()=1]) 2016; 316 Wang (C8TA03176B-(cit6)/*[position()=1]) 2017; 5 Guan (C8TA03176B-(cit24)/*[position()=1]) 2016; 190 Dai (C8TA03176B-(cit37)/*[position()=1]) 2016; 217 Wang (C8TA03176B-(cit1)/*[position()=1]) 2016; 1 Ai (C8TA03176B-(cit50)/*[position()=1]) 2014; 26 Zhao (C8TA03176B-(cit18)/*[position()=1]) 2015; 299 Anasori (C8TA03176B-(cit25)/*[position()=1]) 2017; 2 Wang (C8TA03176B-(cit34)/*[position()=1]) 2015; 3 Chen (C8TA03176B-(cit2)/*[position()=1]) 2016; 28 Peng (C8TA03176B-(cit10)/*[position()=1]) 2016; 22 Li (C8TA03176B-(cit30)/*[position()=1]) 2017; 4 Gao (C8TA03176B-(cit41)/*[position()=1]) 2014; 6 Chao (C8TA03176B-(cit43)/*[position()=1]) 2016; 10 Wu (C8TA03176B-(cit48)/*[position()=1]) 2015; 27 |
References_xml | – volume: 49 start-page: 2569 year: 2016 ident: C8TA03176B-(cit8)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00485 – volume: 299 start-page: 557 year: 2015 ident: C8TA03176B-(cit18)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.09.001 – volume: 307 start-page: 552 year: 2016 ident: C8TA03176B-(cit38)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.01.014 – volume: 22 start-page: E28 year: 2010 ident: C8TA03176B-(cit4)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200903328 – volume: 3 start-page: 4976 year: 2015 ident: C8TA03176B-(cit33)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06742H – volume: 9 start-page: 7260 year: 2017 ident: C8TA03176B-(cit31)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C7NR01717K – volume: 222 start-page: 526 year: 2013 ident: C8TA03176B-(cit23)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.09.026 – volume: 190 start-page: 354 year: 2016 ident: C8TA03176B-(cit24)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.01.008 – volume: 46 start-page: 481 year: 2017 ident: C8TA03176B-(cit11)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00829A – volume: 7 start-page: 576 year: 2014 ident: C8TA03176B-(cit36)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43463j – volume: 4 start-page: 19179 year: 2016 ident: C8TA03176B-(cit13)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09060E – volume: 217 start-page: 123 year: 2016 ident: C8TA03176B-(cit37)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.08.051 – volume: 3 start-page: 894 year: 2015 ident: C8TA03176B-(cit45)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05902F – volume: 1 start-page: 27 year: 2016 ident: C8TA03176B-(cit3)/*[position()=1] publication-title: Nanoscale Horiz. doi: 10.1039/C5NH00023H – volume: 26 start-page: 647 year: 2016 ident: C8TA03176B-(cit5)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502959 – volume: 19 start-page: 2908 year: 2017 ident: C8TA03176B-(cit27)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP07569J – volume: 12 start-page: 518 year: 2013 ident: C8TA03176B-(cit42)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3601 – volume: 2 start-page: 15152 year: 2014 ident: C8TA03176B-(cit14)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03440F – volume: 7 start-page: 1601424 year: 2017 ident: C8TA03176B-(cit17)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601424 – volume: 28 start-page: 7580 year: 2016 ident: C8TA03176B-(cit2)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201600164 – volume: 51 start-page: 9689 year: 2012 ident: C8TA03176B-(cit32)/*[position()=1] publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.201203207 – volume: 3 start-page: 17403 year: 2015 ident: C8TA03176B-(cit34)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03929K – volume: 359 start-page: 7 year: 2017 ident: C8TA03176B-(cit15)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.05.020 – volume: 332 start-page: 49 year: 2018 ident: C8TA03176B-(cit47)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.070 – volume: 5 start-page: 2411 year: 2017 ident: C8TA03176B-(cit6)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA08742F – volume: 120 start-page: 15707 year: 2016 ident: C8TA03176B-(cit52)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b10341 – volume: 1 start-page: 272 year: 2016 ident: C8TA03176B-(cit1)/*[position()=1] publication-title: Nanoscale Horiz. doi: 10.1039/C5NH00116A – volume: 2 start-page: 16098 year: 2017 ident: C8TA03176B-(cit25)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.98 – volume: 5 start-page: 801 year: 2013 ident: C8TA03176B-(cit20)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am3023652 – volume: 44 start-page: 2376 year: 2015 ident: C8TA03176B-(cit29)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00350K – volume: 24 start-page: 3399 year: 2014 ident: C8TA03176B-(cit40)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303856 – volume: 213 start-page: 351 year: 2016 ident: C8TA03176B-(cit12)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.06.163 – volume: 26 start-page: 8345 year: 2016 ident: C8TA03176B-(cit49)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601631 – volume: 5 start-page: 8125 year: 2017 ident: C8TA03176B-(cit28)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01256J – volume: 1 start-page: 340 year: 2016 ident: C8TA03176B-(cit16)/*[position()=1] publication-title: Nanoscale Horiz. doi: 10.1039/C5NH00134J – volume: 37 start-page: 218 year: 2016 ident: C8TA03176B-(cit7)/*[position()=1] publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(15)61024-5 – volume: 96 start-page: 1200 year: 2016 ident: C8TA03176B-(cit39)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2015.10.076 – volume: 26 start-page: 6186 year: 2014 ident: C8TA03176B-(cit50)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201401427 – volume: 27 start-page: 1604904 year: 2017 ident: C8TA03176B-(cit26)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604904 – volume: 8 start-page: 2372 year: 2016 ident: C8TA03176B-(cit46)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b11492 – volume: 10 start-page: 10211 year: 2016 ident: C8TA03176B-(cit43)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b05566 – volume: 14 start-page: 82 year: 2012 ident: C8TA03176B-(cit21)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2011.11.010 – start-page: 111857 year: 2015 ident: C8TA03176B-(cit35)/*[position()=1] publication-title: Nat. Commun. – volume: 27 start-page: 3038 year: 2015 ident: C8TA03176B-(cit48)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201500783 – volume: 135 start-page: 16280 year: 2013 ident: C8TA03176B-(cit51)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja408421n – volume: 22 start-page: 361 year: 2016 ident: C8TA03176B-(cit10)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.02.001 – volume: 4 start-page: 289 year: 2017 ident: C8TA03176B-(cit30)/*[position()=1] publication-title: Inorg. Chem. Front. doi: 10.1039/C6QI00465B – volume: 13 start-page: 1702228 year: 2017 ident: C8TA03176B-(cit44)/*[position()=1] publication-title: Small doi: 10.1002/smll.201702228 – volume: 6 start-page: 6151 year: 2014 ident: C8TA03176B-(cit41)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c3nr06678a – volume: 316 start-page: 183 year: 2016 ident: C8TA03176B-(cit19)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.03.042 – volume: 6 start-page: 11528 year: 2014 ident: C8TA03176B-(cit22)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR02999B – volume: 2 start-page: 171 year: 2017 ident: C8TA03176B-(cit9)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2017.01.010 |
SSID | ssj0000800699 |
Score | 2.4364629 |
Snippet | Transition metal carbides are promising anode candidates for lithium ion batteries, however, their potential accomplishment still requires a rational... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 13705 |
SubjectTerms | adhesion Anodes Batteries carbides Carbon chemistry Current density Diffusion rate Electrode materials Electron conductivity High current Ion diffusion Lithium lithium batteries Lithium-ion batteries Metal carbides Nanoparticles Nitrogen Porous materials porous media Rechargeable batteries Structural design Structural engineering surface area synergism Synergistic effect |
Title | Ultrasmall MoC nanoparticles embedded in 3D frameworks of nitrogen-doped porous carbon as anode materials for efficient lithium storage with pseudocapacitance |
URI | https://www.proquest.com/docview/2070947867 https://www.proquest.com/docview/2237519658 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wAcECygLSzICC4oSkniPI-l29WCugsSqegtchxbRNomVZuC4Mfwc_hdjB3nUXUPC5eodUZOmvk6D-ebMUJvIsdhoRtx07VTSFC4b5lUOAy-OlQIktqhKhe7vPIvFu7HpbccDP70WEu7Kh2zXzfWlfyPVmEM9CqrZP9Bs-2kMACfQb9wBA3D8VY6XlxXG7pdybfLl-XUKGgBKbBmuhl8lXKwKrK3kkHODNGwsGruRl5tSpjXzMo1iEAQLqmwjG5SyU6WfZtLRW2t6p9RNwZX3SYkdwBC92_5bmVIZqXk_KjF3PWW7zLwjJCE51WLpcO4t5uUNZvNjY1JXTe0d7m6KlEt7DdVXpLI274DmOrCkmUO19UOWFKLvtdrDebnvBv8slOiX3n-g-cdlJUDyn9SLahXP_qm2rE8ywzcej_cxpb7Pcg6obEe2ySQrVZJYPfNtBrt-fz2_IFDsYjsx8rCioL1C_y0c5sNVeDqU3K-mM-TeLaM76AjB9IVZ4iOJrP4w7xd7ZNxua82M21vu-mVS6J33fT70dF-cKAinvgheqBVhic1oB6hAS-O0d1po7RjdL_XzPIx-t2hEQMa8R4acYNGnBeYnOEOjbgUeB-NuEYjrtGI6RYrNOIWOBjggVs0Yo1GrNGIJRrxARqfoMX5LJ5emHr3D5MRJ6pMCKxdy2GUyZaYAST21OdqwzyRCRowmwiL2wH1Mp9mbgQjaeCJCGyLJSilHidP0bAoC36CsCAstVKRRSJLXZeF1KUhYQwyBzfzGbdG6G3z1BOmW-PLHVquE0XRIFEyDeOJ0tD7EXrdyq7rhjA3Sp02yku0wdgmDrjXyA1CPxihV-1p0Jl8R0cLDo82gWg98GSXz_DZLWSeo3vyT1EvCZ6iYbXZ8RcQJFfpS43AvyyEyRo |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrasmall+MoC+nanoparticles+embedded+in+3D+frameworks+of+nitrogen-doped+porous+carbon+as+anode+materials+for+efficient+lithium+storage+with+pseudocapacitance&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Chen%2C+Xiudong&rft.au=Lv%2C+Li-Ping&rft.au=Sun%2C+Weiwei&rft.au=Hu%2C+Yiyang&rft.date=2018&rft.issn=2050-7496&rft.volume=6&rft.issue=28+p.13705-13716&rft.spage=13705&rft.epage=13716&rft_id=info:doi/10.1039%2Fc8ta03176b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |