Single-Cell RNA Sequencing Technology Landscape in 2023
Abstract Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity and the dynamics of gene expression, bearing profound significance in stem cell research. Depending on the starting materials used for analysis, scRNA-seq encompasses scRNA-seq and single-n...
Saved in:
Published in | Stem cells (Dayton, Ohio) Vol. 42; no. 1; pp. 1 - 12 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
US
Oxford University Press
13.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity and the dynamics of gene expression, bearing profound significance in stem cell research. Depending on the starting materials used for analysis, scRNA-seq encompasses scRNA-seq and single-nucleus RNA sequencing (snRNA-seq). scRNA-seq excels in capturing cellular heterogeneity and characterizing rare cell populations within complex tissues, while snRNA-seq is advantageous in situations where intact cell dissociation is challenging or undesirable (eg, epigenomic studies). A number of scRNA-seq technologies have been developed as of late, including but not limited to droplet-based, plate-based, hydrogel-based, and spatial transcriptomics. The number of cells, sequencing depth, and sequencing length in scRNA-seq can vary across different studies. Addressing current technical challenges will drive the future of scRNA-seq, leading to more comprehensive and precise insights into cellular biology and disease mechanisms informing therapeutic interventions.
Graphical Abstract
Graphical Abstract |
---|---|
AbstractList | Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity and the dynamics of gene expression, bearing profound significance in stem cell research. Depending on the starting materials used for analysis, scRNA-seq encompasses scRNA-seq and single-nucleus RNA sequencing (snRNA-seq). scRNA-seq excels in capturing cellular heterogeneity and characterizing rare cell populations within complex tissues, while snRNA-seq is advantageous in situations where intact cell dissociation is challenging or undesirable (eg, epigenomic studies). A number of scRNA-seq technologies have been developed as of late, including but not limited to droplet-based, plate-based, hydrogel-based, and spatial transcriptomics. The number of cells, sequencing depth, and sequencing length in scRNA-seq can vary across different studies. Addressing current technical challenges will drive the future of scRNA-seq, leading to more comprehensive and precise insights into cellular biology and disease mechanisms informing therapeutic interventions. Abstract Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity and the dynamics of gene expression, bearing profound significance in stem cell research. Depending on the starting materials used for analysis, scRNA-seq encompasses scRNA-seq and single-nucleus RNA sequencing (snRNA-seq). scRNA-seq excels in capturing cellular heterogeneity and characterizing rare cell populations within complex tissues, while snRNA-seq is advantageous in situations where intact cell dissociation is challenging or undesirable (eg, epigenomic studies). A number of scRNA-seq technologies have been developed as of late, including but not limited to droplet-based, plate-based, hydrogel-based, and spatial transcriptomics. The number of cells, sequencing depth, and sequencing length in scRNA-seq can vary across different studies. Addressing current technical challenges will drive the future of scRNA-seq, leading to more comprehensive and precise insights into cellular biology and disease mechanisms informing therapeutic interventions. Graphical Abstract Graphical Abstract Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity and the dynamics of gene expression, bearing profound significance in stem cell research. Depending on the starting materials used for analysis, scRNA-seq encompasses scRNA-seq and single-nucleus RNA sequencing (snRNA-seq). scRNA-seq excels in capturing cellular heterogeneity and characterizing rare cell populations within complex tissues, while snRNA-seq is advantageous in situations where intact cell dissociation is challenging or undesirable (eg, epigenomic studies). A number of scRNA-seq technologies have been developed as of late, including but not limited to droplet-based, plate-based, hydrogel-based, and spatial transcriptomics. The number of cells, sequencing depth, and sequencing length in scRNA-seq can vary across different studies. Addressing current technical challenges will drive the future of scRNA-seq, leading to more comprehensive and precise insights into cellular biology and disease mechanisms informing therapeutic interventions.Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity and the dynamics of gene expression, bearing profound significance in stem cell research. Depending on the starting materials used for analysis, scRNA-seq encompasses scRNA-seq and single-nucleus RNA sequencing (snRNA-seq). scRNA-seq excels in capturing cellular heterogeneity and characterizing rare cell populations within complex tissues, while snRNA-seq is advantageous in situations where intact cell dissociation is challenging or undesirable (eg, epigenomic studies). A number of scRNA-seq technologies have been developed as of late, including but not limited to droplet-based, plate-based, hydrogel-based, and spatial transcriptomics. The number of cells, sequencing depth, and sequencing length in scRNA-seq can vary across different studies. Addressing current technical challenges will drive the future of scRNA-seq, leading to more comprehensive and precise insights into cellular biology and disease mechanisms informing therapeutic interventions. |
Author | Hakonarson, Hakon Qu, Hui-Qi Kao, Charlly |
Author_xml | – sequence: 1 givenname: Hui-Qi orcidid: 0000-0001-9317-4488 surname: Qu fullname: Qu, Hui-Qi – sequence: 2 givenname: Charlly surname: Kao fullname: Kao, Charlly – sequence: 3 givenname: Hakon surname: Hakonarson fullname: Hakonarson, Hakon email: hakonarson@chop.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37934608$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkNtLwzAUxoNM3EVffZQ-6kO3pLk1j2N4g6Hg5nPJ0tNZaZPZtOD-ezM6fRBECJycw-87-fKN0cA6CwhdEjwlWNGZb2tT-Zn_1DmW8gSNCGcqZoqkg3DHQsQcKzVEY-_fMSaMp-kZGlKpKBM4HSG5Ku22gngBVRW9PM2jFXx0YE2YRmswb9ZVbruPltrm3ugdRKWNEpzQc3Ra6MrDxbFO0Ovd7XrxEC-f7x8X82VsaKLamANgkXNpiGAJFxJIUSiMgRiBsTGcCRkOmGRDQ0uoKXhwSFgQ60NDJ-i637trXDDm26wuvQlmtQXX-SxJU8mkxIkK6NUR7TY15NmuKWvd7LPvzwZg2gOmcd43UPwgBGeHNLM-zeyYZhCwXwJTtrotnW0bXVZ_y256met2_z3xBbaHiCw |
CitedBy_id | crossref_primary_10_3389_fimmu_2025_1554876 crossref_primary_10_3390_agronomy14112530 crossref_primary_10_1016_j_compbiomed_2025_109880 crossref_primary_10_3389_fendo_2025_1539063 crossref_primary_10_1016_j_bbagrm_2024_195062 crossref_primary_10_1016_j_cytogfr_2024_11_007 crossref_primary_10_1016_j_jcyt_2024_10_009 crossref_primary_10_1093_nar_gkae225 crossref_primary_10_1007_s00216_024_05521_4 crossref_primary_10_1210_endocr_bqae151 crossref_primary_10_7717_peerj_cs_2240 |
Cites_doi | 10.1002/0471250953.bi1114s51 10.1007/978-1-4939-7717-8_18 10.1186/s13059-017-1382-0 10.1038/s41593-022-01061-1 10.1096/fj.202002420R 10.1038/s41598-017-04426-w 10.22203/eCM.v034a14 10.1038/s41467-020-14976-9 10.1186/s12951-021-01045-6 10.1126/science.aba7721 10.1038/s41587-023-01881-x 10.1016/j.csbj.2021.01.015 10.1007/978-3-319-42059-2_1 10.1038/s41587-023-01685-z 10.1007/978-1-0716-0623-0_21 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com. 2023 The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com. 2023 – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/stmcls/sxad077 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1549-4918 |
EndPage | 12 |
ExternalDocumentID | 37934608 10_1093_stmcls_sxad077 10.1093/stmcls/sxad077 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Children's Hospital of Philadelphia – fundername: Center for Applied Genomics – fundername: Endowed Chair in Genomic Research |
GroupedDBID | --- .GJ 05W 0R~ 123 18M 1OB 2WC 31~ 3WU 4.4 53G 5RE 5WD 8-0 8-1 AABZA AACZT AAESR AAIHA AAONW AAPGJ AAPXW AARHZ AAUAY AAVAP AAWDT AAZKR ABCUV ABDFA ABEJV ABGNP ABHFT ABJNI ABLJU ABMNT ABNHQ ABPTD ABVGC ABXVV ABXZS ACFRR ACGFO ACGFS ACIWK ACPOU ACPRK ACUFI ACUTJ ACVCV ACXQS ACZBC ADBBV ADGKP ADIPN ADKYN ADMTO ADQBN ADVEK ADXAS ADZMN AENEX AFBPY AFFQV AFFZL AFGWE AFRAH AFYAG AFZJQ AGMDO AGORE AHGBF AHMBA AHMMS AIURR AJAOE AJBYB AJDVS AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALXQX AMYDB APJGH ATGXG AVNTJ AZBYB AZVAB BAWUL BCRHZ BEYMZ BMXJE BRXPI CS3 DCZOG DIK DU5 E3Z EBS EJD EMOBN F5P FD6 G-S GODZA GX1 H13 HHY HZ~ IH2 KOP KSI KSN LATKE LEEKS LH4 LITHE LMP LOXES LUTES LW6 LYRES MY~ N9A NNB NOMLY NU- O9- OBFPC OBOKY OCZFY OIG OJZSN OK1 OPAEJ OVD OWPYF P2P P2W PALCI PQQKQ RAO RIWAO RJQFR ROL ROX SUPJJ TEORI TMA TR2 WBKPD WOHZO WOQ XV2 ZGI ZXP ZZTAW ~S- AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c329t-5ee06d57c1642567e1ff900e1c600cc5467467ec2b30cc13cf558814329a3cf53 |
ISSN | 1066-5099 1549-4918 |
IngestDate | Fri Jul 11 07:40:52 EDT 2025 Sat Jul 19 01:30:41 EDT 2025 Thu Apr 24 22:51:12 EDT 2025 Tue Jul 01 00:23:45 EDT 2025 Mon Jun 30 08:34:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | single-cell RNA sequencing transcriptomics cellular heterogeneity single-nucleus RNA sequencing gene expression |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights) https://academic.oup.com/pages/standard-publication-reuse-rights The Author(s) 2023. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c329t-5ee06d57c1642567e1ff900e1c600cc5467467ec2b30cc13cf558814329a3cf53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9317-4488 |
PMID | 37934608 |
PQID | 2887477029 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2887477029 pubmed_primary_37934608 crossref_primary_10_1093_stmcls_sxad077 crossref_citationtrail_10_1093_stmcls_sxad077 oup_primary_10_1093_stmcls_sxad077 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-13 |
PublicationDateYYYYMMDD | 2024-01-13 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | US |
PublicationPlace_xml | – name: US – name: England |
PublicationTitle | Stem cells (Dayton, Ohio) |
PublicationTitleAlternate | Stem Cells |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Lee (2024011308271581700_CIT0058) 2020 Williams (2024011308271581700_CIT0010) 2012 Anderson (2024011308271581700_CIT0028) 2020 Skene (2024011308271581700_CIT0067) 2017 Williams (2024011308271581700_CIT0090) 2022 Stoeckius (2024011308271581700_CIT0098) 2018 González-Silva (2024011308271581700_CIT0030) 2020 Fleming (2024011308271581700_CIT0114) 2023 Boisvert (2024011308271581700_CIT0009) 2007 Rosenberg (2024011308271581700_CIT0086) 2018 Picelli (2024011308271581700_CIT0081) 2014 Ruder (2024011308271581700_CIT0043) 2022 McCann (2024011308271581700_CIT0011) 2020 Kang (2024011308271581700_CIT0101) 2018 Meistermann (2024011308271581700_CIT0044) 2021 Linnarsson (2024011308271581700_CIT0016) 2016 Zeng (2024011308271581700_CIT0033) 2022 Subramanian (2024011308271581700_CIT0125) 2005 McGinnis (2024011308271581700_CIT0100) 2019 Salmen (2024011308271581700_CIT0087) 2022 Becht (2024011308271581700_CIT0122) 2019 Satija (2024011308271581700_CIT0123) 2015 Griffiths (2024011308271581700_CIT0019) 2018 Danese (2024011308271581700_CIT0069) 2021 Svensson (2024011308271581700_CIT0106) 2017 DeWolf (2024011308271581700_CIT0038) 2023 Rizzetto (2024011308271581700_CIT0036) 2018; 34 Di (2024011308271581700_CIT0068) 2022 Darmanis (2024011308271581700_CIT0103) 2017 Gaublomme (2024011308271581700_CIT0099) 2019 Macosko (2024011308271581700_CIT0076) 2015 Lee (2024011308271581700_CIT0045) 2021 Lun (2024011308271581700_CIT0120) 2016; 17 Kong (2024011308271581700_CIT0050) 2020 Huang (2024011308271581700_CIT0041) 2021 Gierahn (2024011308271581700_CIT0078) 2017 Macosko (2024011308271581700_CIT0104) 2015 Ma (2024011308271581700_CIT0023) 2020 Blum (2024011308271581700_CIT0060) 2021 Svensson (2024011308271581700_CIT0102) 2018 Alemany (2024011308271581700_CIT0048) 2018 Volden (2024011308271581700_CIT0111) 2018 Qu (2024011308271581700_CIT0127) 2023 Tsokos (2024011308271581700_CIT0027) 2016 Belkina (2024011308271581700_CIT0121) 2019 Cao (2024011308271581700_CIT0085) 2020; 370 Ray (2024011308271581700_CIT0108) 2020 Hewitt (2024011308271581700_CIT0042) 2021 McKenna (2024011308271581700_CIT0046) 2016 Hatori (2024011308271581700_CIT0089) 2018 Liberzon (2024011308271581700_CIT0126) 2015 Shalek (2024011308271581700_CIT0001) 2014 Zheng (2024011308271581700_CIT0105) 2017 Salomon (2024011308271581700_CIT0079) 2019 Wu (2024011308271581700_CIT0008) 2019 Lake (2024011308271581700_CIT0062) 2019 Brennecke (2024011308271581700_CIT0074) 2013 Klein (2024011308271581700_CIT0077) 2015 Gao (2024011308271581700_CIT0065) 2017 Eng (2024011308271581700_CIT0092) 2019 Trapnell (2024011308271581700_CIT0002) 2015 Butler (2024011308271581700_CIT0017) 2018 Perez (2024011308271581700_CIT0024) 2022 He (2024011308271581700_CIT0049) 2022 Zhou (2024011308271581700_CIT0073) 2021; 19 Pasquini (2024011308271581700_CIT0014) 2021; 19 Asrat (2024011308271581700_CIT0039) 2023 Lee (2024011308271581700_CIT0040) 2020 Mayère (2024011308271581700_CIT0051) 2021; 35 Wright (2024011308271581700_CIT0032) 2021 Lacar (2024011308271581700_CIT0055) 2016 Hombach (2024011308271581700_CIT0007) 2016 Mereu (2024011308271581700_CIT0072) 2020 Zhou (2024011308271581700_CIT0053) 2019 Wolock (2024011308271581700_CIT0117) 2019 Yekelchyk (2024011308271581700_CIT0063) 2019 Clark (2024011308271581700_CIT0088) 2023 Anders (2024011308271581700_CIT0118) 2015 Ding (2024011308271581700_CIT0012) 2020 Lee (2024011308271581700_CIT0031) 2022 Raj (2024011308271581700_CIT0047) 2018 Zollinger (2024011308271581700_CIT0096) 2020 Yan (2024011308271581700_CIT0075) 2013 Zhao (2024011308271581700_CIT0015) 2021; 13 Czaplinski (2024011308271581700_CIT0005) 2006 McLeod (2024011308271581700_CIT0004) 2017; 34 Azizi (2024011308271581700_CIT0035) 2018 Al’Khafaji (2024011308271581700_CIT0112) 2023; 1 Rezayatmand (2024011308271581700_CIT0066) 2022 Maldonado-Soto (2024011308271581700_CIT0059) 2014 Rhoads (2024011308271581700_CIT0109) 2015 Kolodziejczyk (2024011308271581700_CIT0003) 2015 Qiu (2024011308271581700_CIT0128) 2020; 11 Sadick (2024011308271581700_CIT0056) 2022 De Rop (2024011308271581700_CIT0022) 2023 Wolf (2024011308271581700_CIT0124) 2018; 19 Lin (2024011308271581700_CIT0110) 2021 Dobin (2024011308271581700_CIT0115) 2015; 51 Lake (2024011308271581700_CIT0013) 2017; 7 Longo (2024011308271581700_CIT0054) 2021 Ziegenhain (2024011308271581700_CIT0071) 2017 Song (2024011308271581700_CIT0037) 2021 Kotliar (2024011308271581700_CIT0018) 2019 Karzbrun (2024011308271581700_CIT0052) 2021 Chen (2024011308271581700_CIT0093) 2015 Patro (2024011308271581700_CIT0119) 2017 Yazar (2024011308271581700_CIT0029) 2022 Afik (2024011308271581700_CIT0034) 2017 Andrews (2024011308271581700_CIT0070) 2022 Cao (2024011308271581700_CIT0084) 2017 Zhang (2024011308271581700_CIT0107) 2019 Janesick (2024011308271581700_CIT0094) 2010; 2022 Lubeck (2024011308271581700_CIT0091) 2014 Gao (2024011308271581700_CIT0113) 2018; 1754 Buenrostro (2024011308271581700_CIT0021) 2015 Durcan (2024011308271581700_CIT0025) 2016 Santosh (2024011308271581700_CIT0006) 2015 Rodriques (2024011308271581700_CIT0097) 2019 Ke (2024011308271581700_CIT0095) 2013 Kamath (2024011308271581700_CIT0057) 2022; 25 Hashimshony (2024011308271581700_CIT0083) 2016 Zeng (2024011308271581700_CIT0064) 2016 Kim (2024011308271581700_CIT0116) 2015 Postal (2024011308271581700_CIT0026) 2020 Ramsköld (2024011308271581700_CIT0080) 2012 Hagemann-Jensen (2024011308271581700_CIT0082) 2020 Raz (2024011308271581700_CIT0020) 2023 Richter (2024011308271581700_CIT0061) 2021 |
References_xml | – start-page: 395 volume-title: Nat Methods year: 2017 ident: 2024011308271581700_CIT0078 article-title: Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput – start-page: 381 volume-title: Nat Methods year: 2017 ident: 2024011308271581700_CIT0106 article-title: Power analysis of single-cell RNA-sequencing experiments – start-page: 495 volume-title: Nat Biotechnol year: 2015 ident: 2024011308271581700_CIT0123 article-title: Spatial reconstruction of single-cell gene expression data – start-page: 11022 volume-title: Nat Commun year: 2016 ident: 2024011308271581700_CIT0055 article-title: Nuclear RNA-seq of single neurons reveals molecular signatures of activation – start-page: 176 volume-title: Science (New York, NY) year: 2018 ident: 2024011308271581700_CIT0086 article-title: SPLiT-seq reveals cell types and lineages in the developing brain and spinal cord – start-page: 716 volume-title: Nat Rev Rheumatol year: 2016 ident: 2024011308271581700_CIT0027 article-title: New insights into the immunopathogenesis of systemic lupus erythematosus – start-page: 1202 volume-title: Cell year: 2015 ident: 2024011308271581700_CIT0104 article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets – start-page: 363 volume-title: Nature year: 2014 ident: 2024011308271581700_CIT0001 article-title: Single-cell RNA-seq reveals dynamic paracrine control of cellular variation – start-page: 68 volume-title: Genome Med year: 2022 ident: 2024011308271581700_CIT0090 article-title: An introduction to spatial transcriptomics for biomedical research – volume: 51 start-page: 11.14. 11 issue: 1 year: 2015 ident: 2024011308271581700_CIT0115 article-title: Mapping RNA-seq reads with STAR publication-title: Current Protoc Bioinformatics doi: 10.1002/0471250953.bi1114s51 – volume: 1 year: 2023 ident: 2024011308271581700_CIT0112 article-title: High-throughput RNA isoform sequencing using programmed cDNA concatenation publication-title: Nat Biotechnol – start-page: 1548 volume-title: Cell Mol Gastroenterol Hepatol year: 2021 ident: 2024011308271581700_CIT0032 article-title: scRNA-Seq reveals new enteric nervous system roles for GDNF, NRTN, and TBX3 – start-page: eabq0476 volume-title: Sci Transl Med year: 2023 ident: 2024011308271581700_CIT0038 article-title: Tissue-specific features of the T cell repertoire after allogeneic hematopoietic cell transplantation in human and mouse [in eng] – start-page: 599 volume-title: Nat Protocols year: 2018 ident: 2024011308271581700_CIT0102 article-title: Exponential scaling of single-cell RNA-seq in the past decade – start-page: 84 volume-title: Nat Rev Cancer year: 2012 ident: 2024011308271581700_CIT0010 article-title: Are snoRNAs and snoRNA host genes new players in cancer – start-page: 281 volume-title: Cell Syst year: 2019 ident: 2024011308271581700_CIT0117 article-title: Scrublet: computational identification of cell doublets in single-cell transcriptomic data [in eng] – volume: 1754 start-page: 311 year: 2018 ident: 2024011308271581700_CIT0113 article-title: Data analysis in single-cell transcriptome sequencing publication-title: Comput Syst Biol: Methods Protocols doi: 10.1007/978-1-4939-7717-8_18 – start-page: eabf3041 volume-title: Science (New York, NY) year: 2022 ident: 2024011308271581700_CIT0029 article-title: Single-cell eQTL mapping identifies cell type-specific genetic control of autoimmune disease – start-page: 1131 volume-title: Nat Struct Mol Biol year: 2013 ident: 2024011308271581700_CIT0075 article-title: Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells – start-page: 14049 volume-title: Nat Commun year: 2017 ident: 2024011308271581700_CIT0105 article-title: Massively parallel digital transcriptional profiling of single cells – start-page: 417 volume-title: Cell Syst year: 2015 ident: 2024011308271581700_CIT0126 article-title: The molecular signatures database (MSigDB) hallmark gene set collection [in eng] – start-page: aaa6090 volume-title: Science (New York, NY) year: 2015 ident: 2024011308271581700_CIT0093 article-title: Spatially resolved, highly multiplexed RNA profiling in single cells – start-page: 339 volume-title: Nat Rev Drug Discovery year: 2022 ident: 2024011308271581700_CIT0031 article-title: Function and therapeutic value of astrocytes in neurological diseases – start-page: 1323 volume-title: Nat Methods year: 2023 ident: 2024011308271581700_CIT0114 article-title: Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender – volume: 19 start-page: 1 issue: 1 year: 2018 ident: 2024011308271581700_CIT0124 article-title: SCANPY: large-scale single-cell gene expression data analysis publication-title: Genome Biol doi: 10.1186/s13059-017-1382-0 – start-page: 708 volume-title: Nat Biotechnol year: 2020 ident: 2024011308271581700_CIT0082 article-title: Single-cell RNA counting at allele and isoform resolution using Smart-seq3 – start-page: 4264 volume-title: Nat Commun year: 2021 ident: 2024011308271581700_CIT0061 article-title: Single-nucleus RNA-seq2 reveals functional crosstalk between liver zonation and ploidy – volume: 25 start-page: 588 issue: 5 year: 2022 ident: 2024011308271581700_CIT0057 article-title: Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease publication-title: Nat Neurosci doi: 10.1038/s41593-022-01061-1 – start-page: 1625 volume-title: Cell Stem Cell year: 2021 ident: 2024011308271581700_CIT0044 article-title: Integrated pseudotime analysis of human pre-implantation embryo single-cell transcriptomes reveals the dynamics of lineage specification – start-page: 130 volume-title: Mol Cell year: 2019 ident: 2024011308271581700_CIT0107 article-title: Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems – start-page: e8046 volume-title: Mol Syst Biol. year: 2018 ident: 2024011308271581700_CIT0019 article-title: Using single-cell genomics to understand developmental processes and cell fate decisions – start-page: 747 volume-title: Nat Biotechnol year: 2020 ident: 2024011308271581700_CIT0072 article-title: Benchmarking single-cell RNA-sequencing protocols for cell atlas projects – start-page: 777 volume-title: Nat Biotechnol year: 2012 ident: 2024011308271581700_CIT0080 article-title: Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells – volume: 35 start-page: e21452 issue: 4 year: 2021 ident: 2024011308271581700_CIT0051 article-title: Single cell transcriptomics reveal temporal dynamics of critical regulators of germ cell fate during mouse sex determination publication-title: FASEB J doi: 10.1096/fj.202002420R – start-page: 737 volume-title: Nat Biotechnol year: 2020 ident: 2024011308271581700_CIT0012 article-title: Systematic comparison of single-cell and single-nucleus RNA-sequencing methods – start-page: 750 volume-title: Nat Protoc year: 2020 ident: 2024011308271581700_CIT0050 article-title: CellTagging: combinatorial indexing to simultaneously map lineage and identity at single-cell resolution [in eng] – start-page: e158 volume-title: Nucleic Acids Res year: 2016 ident: 2024011308271581700_CIT0064 article-title: Single-nucleus RNA-seq of differentiating human myoblasts reveals the extent of fate heterogeneity – start-page: 127 volume-title: Mol Cells year: 2021 ident: 2024011308271581700_CIT0045 article-title: Single-cell toolkits opening a new era for cell engineering – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 2024011308271581700_CIT0013 article-title: A comparative strategy for single-nucleus and single-cell transcriptomes confirms accuracy in predicted cell-type expression from nuclear RNA publication-title: Sci Rep doi: 10.1038/s41598-017-04426-w – start-page: 1463 volume-title: Science (New York, NY) year: 2019 ident: 2024011308271581700_CIT0097 article-title: Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution – start-page: 1103 volume-title: Cell year: 2020 ident: 2024011308271581700_CIT0023 article-title: Chromatin potential identified by shared single-cell profiling of RNA and chromatin – start-page: 90 volume-title: Nat Methods year: 2022 ident: 2024011308271581700_CIT0049 article-title: Lineage recording in human cerebral organoids – start-page: 5415 volume-title: Nat Commun year: 2019 ident: 2024011308271581700_CIT0121 article-title: Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets – volume: 34 start-page: 217 year: 2017 ident: 2024011308271581700_CIT0004 article-title: On the origin and impact of mesenchymal stem cell heterogeneity: new insights and emerging tools for single cell analysis publication-title: Eur Cell Mater doi: 10.22203/eCM.v034a14 – start-page: aaf7907 volume-title: Science (New York, NY) year: 2016 ident: 2024011308271581700_CIT0046 article-title: Whole-organism lineage tracing by combinatorial and cumulative genome editing [in eng] – start-page: 214 volume-title: Biosensors year: 2021 ident: 2024011308271581700_CIT0110 article-title: Nanopore technology and its applications in gene sequencing – volume: 11 start-page: 1169 issue: 1 year: 2020 ident: 2024011308271581700_CIT0128 article-title: Embracing the dropouts in single-cell RNA-seq analysis publication-title: Nat Commun doi: 10.1038/s41467-020-14976-9 – start-page: 89 volume-title: Nat Biotechnol year: 2018 ident: 2024011308271581700_CIT0101 article-title: Multiplexed droplet single-cell RNA-sequencing using natural genetic variation – volume: 19 start-page: 312 issue: 1 year: 2021 ident: 2024011308271581700_CIT0073 article-title: Microfluidics applications for high-throughput single cell sequencing publication-title: J Nanobiotechnol doi: 10.1186/s12951-021-01045-6 – start-page: 857 volume-title: Nat Methods year: 2013 ident: 2024011308271581700_CIT0095 article-title: In situ sequencing for RNA analysis in preserved tissue and cells – start-page: 411 volume-title: Nat Biotechnol year: 2018 ident: 2024011308271581700_CIT0017 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species – start-page: eabf1970 volume-title: Science (New York, NY) year: 2022 ident: 2024011308271581700_CIT0024 article-title: Single-cell RNA-seq reveals cell type–specific molecular and genetic associations to lupus – start-page: 275 volume-title: Immunotherapy year: 2020 ident: 2024011308271581700_CIT0028 article-title: Anifrolumab in systemic lupus erythematosus: current knowledge and future considerations – start-page: 619 volume-title: Nat Methods year: 2019 ident: 2024011308271581700_CIT0100 article-title: MULTI-seq: sample multiplexing for single-cell RNA sequencing using lipid-tagged indices – start-page: 15545 volume-title: Proc Natl Acad Sci USA year: 2005 ident: 2024011308271581700_CIT0125 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles – volume: 13 issue: 82 year: 2021 ident: 2024011308271581700_CIT0015 article-title: Deconvolution of cell type-specific drug responses consequences of mosaic structural variants in human tumor tissue with single-cell RNA-seq hematopoietic stem and progenitor cells publication-title: Genome Med – volume: 34 start-page: 2846 issue: 16 year: 2018 ident: 2024011308271581700_CIT0036 article-title: B-cell receptor reconstruction from single-cell RNA-seq with VDJPuzzle publication-title: Bioinformatics (Oxford, England) – start-page: 278 volume-title: Genomics, Proteomics Bioinformatics. year: 2015 ident: 2024011308271581700_CIT0109 article-title: PacBio sequencing and its applications – start-page: 417 volume-title: Nat Methods year: 2017 ident: 2024011308271581700_CIT0119 article-title: Salmon provides fast and bias-aware quantification of transcript expression – start-page: 171 volume-title: Nat Protocols year: 2014 ident: 2024011308271581700_CIT0081 article-title: Full-length RNA-seq from single cells using Smart-seq2 – start-page: 166 volume-title: Bioinformatics (Oxford, England). year: 2015 ident: 2024011308271581700_CIT0118 article-title: HTSeq--a Python framework to work with high-throughput sequencing data [in eng] – start-page: 100522 volume-title: Cell Rep Methods year: 2023 ident: 2024011308271581700_CIT0039 article-title: TRAPnSeq allows high-throughput profiling of antigen-specific antibody-secreting cells – start-page: 181 volume-title: Stem Cell Res Ther year: 2022 ident: 2024011308271581700_CIT0066 article-title: Drug resistance in cancer therapy: the Pandora’s Box of cancer stem cells – start-page: 1491 volume-title: Genome Res year: 2015 ident: 2024011308271581700_CIT0002 article-title: Defining cell types and states with single-cell genomics – start-page: 594 volume-title: Nat Genet year: 2020 ident: 2024011308271581700_CIT0040 article-title: Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer – start-page: 38 volume-title: Nat Biotechnol year: 2019 ident: 2024011308271581700_CIT0122 article-title: Dimensionality reduction for visualizing single-cell data using UMAP – volume: 370 start-page: eaba7721 issue: 6518 year: 2020 ident: 2024011308271581700_CIT0085 article-title: A human cell atlas of fetal gene expression [in eng] publication-title: Science (New York, NY) doi: 10.1126/science.aba7721 – start-page: 661 volume-title: Science (New York, NY) year: 2017 ident: 2024011308271581700_CIT0084 article-title: Comprehensive single-cell transcriptional profiling of a multicellular organism [in eng] – start-page: 891 volume-title: Neuron year: 2020 ident: 2024011308271581700_CIT0058 article-title: Cell type-specific transcriptomics reveals that mutant huntingtin leads to mitochondrial RNA release and neuronal innate immune activation – start-page: 224 volume-title: Genome Biol year: 2018 ident: 2024011308271581700_CIT0098 article-title: Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics – start-page: 1293 volume-title: Cell year: 2018 ident: 2024011308271581700_CIT0035 article-title: Single-cell map of diverse immune phenotypes in the breast tumor microenvironment – start-page: 357 volume-title: Nat Methods year: 2015 ident: 2024011308271581700_CIT0116 article-title: HISAT: a fast spliced aligner with low memory requirements – start-page: 3328 volume-title: Nat Commun year: 2020 ident: 2024011308271581700_CIT0108 article-title: Comprehensive identification of mRNA isoforms reveals the diversity of neural cell-surface molecules with roles in retinal development and disease – start-page: 1399 volume-title: Cell Rep year: 2017 ident: 2024011308271581700_CIT0103 article-title: Single-cell RNA-seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma – start-page: 1706 volume-title: Lab Chip year: 2019 ident: 2024011308271581700_CIT0079 article-title: Droplet-based single cell RNAseq tools: a practical guide [in eng] – volume-title: Nat Biotechnol year: 2023 ident: 2024011308271581700_CIT0022 article-title: Systematic benchmarking of single-cell ATAC-sequencing protocols doi: 10.1038/s41587-023-01881-x – start-page: 228 volume-title: Nat Commun year: 2017 ident: 2024011308271581700_CIT0065 article-title: Nanogrid single-nucleus RNA sequencing reveals phenotypic diversity in breast cancer – volume: 19 start-page: 961 year: 2021 ident: 2024011308271581700_CIT0014 article-title: Automated methods for cell type annotation on scRNA-seq data publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2021.01.015 – start-page: 486 volume-title: Nature year: 2015 ident: 2024011308271581700_CIT0021 article-title: Single-cell chromatin accessibility reveals principles of regulatory variation – start-page: e148 volume-title: Nucleic Acids Res year: 2017 ident: 2024011308271581700_CIT0034 article-title: Targeted reconstruction of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell differentiation state – start-page: 268 volume-title: Nature year: 2021 ident: 2024011308271581700_CIT0052 article-title: Human neural tube morphogenesis in vitro by geometric constraints – start-page: 631 volume-title: Mol Cell year: 2017 ident: 2024011308271581700_CIT0071 article-title: Comparative analysis of single-cell RNA sequencing methods [in eng] – start-page: 13 volume-title: Trends Cancer year: 2020 ident: 2024011308271581700_CIT0030 article-title: Tumor functional heterogeneity unraveled by scRNA-seq technologies – start-page: e21856 volume-title: Elife year: 2017 ident: 2024011308271581700_CIT0067 article-title: An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites [in eng] – start-page: 87 volume-title: Curr Opin Immunol year: 2020 ident: 2024011308271581700_CIT0026 article-title: Type I interferon in the pathogenesis of systemic lupus erythematosus – start-page: 213 volume-title: BMC Biol year: 2022 ident: 2024011308271581700_CIT0068 article-title: Rapid and sensitive single-cell RNA sequencing with SHERRY2 [in eng] – start-page: 23 volume-title: J Am Soc Nephrol: JASN year: 2019 ident: 2024011308271581700_CIT0008 article-title: Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis – start-page: 8686 volume-title: Nucleic Acids Res year: 2020 ident: 2024011308271581700_CIT0011 article-title: H/ACA snoRNA levels are regulated during stem cell differentiation – start-page: 2685 volume-title: Nat Protoc year: 2018 ident: 2024011308271581700_CIT0047 article-title: Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR-Cas9 barcodes by scGESTALT [in eng] – start-page: 1624 volume-title: Cell Stem Cell year: 2022 ident: 2024011308271581700_CIT0070 article-title: The consequences of recurrent genetic and epigenetic variants in human pluripotent stem cells – start-page: 627 volume-title: Nat Methods year: 2021 ident: 2024011308271581700_CIT0037 article-title: TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data – start-page: 3 volume-title: Non-Coding RNAs in Colorectal Cancer year: 2016 ident: 2024011308271581700_CIT0007 article-title: Non-coding RNAs: classification, biology and functioning doi: 10.1007/978-3-319-42059-2_1 – start-page: 2907 volume-title: Nat Commun year: 2019 ident: 2024011308271581700_CIT0099 article-title: Nuclei multiplexing with barcoded antibodies for single-nucleus genomics – start-page: 9813 volume-title: Anal Chem year: 2018 ident: 2024011308271581700_CIT0089 article-title: Particle-templated emulsification for microfluidics-free digital biology – start-page: 574 volume-title: Nat Rev Mol Cell Biol year: 2007 ident: 2024011308271581700_CIT0009 article-title: The multifunctional nucleolus – volume: 17 start-page: 1 issue: 1 year: 2016 ident: 2024011308271581700_CIT0120 article-title: Pooling across cells to normalize single-cell RNA sequencing data with many zero counts publication-title: Genome Biol – start-page: 1202 volume-title: Cell year: 2015 ident: 2024011308271581700_CIT0076 article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets – start-page: 9726 volume-title: Proc Natl Acad Sci USA year: 2018 ident: 2024011308271581700_CIT0111 article-title: Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA – start-page: 110 volume-title: Signal Transduct Target Ther year: 2021 ident: 2024011308271581700_CIT0041 article-title: Dynamic blood single-cell immune responses in patients with COVID-19 – start-page: 235 volume-title: Nature year: 2019 ident: 2024011308271581700_CIT0092 article-title: Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+ – start-page: 2832 volume-title: Nat Commun year: 2019 ident: 2024011308271581700_CIT0062 article-title: A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys – start-page: 36 volume-title: Basic Res Cardiol year: 2019 ident: 2024011308271581700_CIT0063 article-title: Mono- and multi-nucleated ventricular cardiomyocytes constitute a transcriptionally homogenous cell population – start-page: 149 volume-title: Cell Stem Cell year: 2019 ident: 2024011308271581700_CIT0053 article-title: Single-cell transcriptomic analyses of cell fate transitions during human cardiac reprogramming – start-page: 5228 volume-title: Nat Commun year: 2021 ident: 2024011308271581700_CIT0069 article-title: EpiScanpy: integrated single-cell epigenomic analysis – start-page: 360 volume-title: Nat Methods year: 2014 ident: 2024011308271581700_CIT0091 article-title: Single-cell in situ RNA profiling by sequential hybridization [in eng] – start-page: 108 volume-title: Nature year: 2018 ident: 2024011308271581700_CIT0048 article-title: Whole-organism clone tracing using single-cell sequencing [in eng] – year: 2023 ident: 2024011308271581700_CIT0088 article-title: Microfluidics-free single-cell genomics with templated emulsification publication-title: Nat Biotechnol doi: 10.1038/s41587-023-01685-z – start-page: 610 volume-title: Mol Cell year: 2015 ident: 2024011308271581700_CIT0003 article-title: The technology and biology of single-cell RNA sequencing – start-page: 73 volume-title: J Autoimmun year: 2016 ident: 2024011308271581700_CIT0025 article-title: Immunomodulators in SLE: clinical evidence and immunologic actions – start-page: 687 volume-title: Trends Biochem Sci year: 2006 ident: 2024011308271581700_CIT0005 article-title: Pathways for mRNA localization in the cytoplasm – start-page: 347 volume-title: Nat Rev Immunol year: 2021 ident: 2024011308271581700_CIT0042 article-title: Regulation of immune responses by the airway epithelial cell landscape – start-page: 1093 volume-title: Nat Methods year: 2013 ident: 2024011308271581700_CIT0074 article-title: Accounting for technical noise in single-cell RNA-seq experiments – start-page: e43803 volume-title: Elife year: 2019 ident: 2024011308271581700_CIT0018 article-title: Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq – start-page: 1 year: 2016 ident: 2024011308271581700_CIT0016 article-title: Single-cell genomics: coming of age – start-page: e82201 volume-title: Elife year: 2023 ident: 2024011308271581700_CIT0020 article-title: Emergent dynamics of adult stem cell lineages from single nucleus and single cell RNA-Seq of Drosophila testes – start-page: 572 volume-title: Nat Neurosci year: 2021 ident: 2024011308271581700_CIT0060 article-title: Single-cell transcriptomic analysis of the adult mouse spinal cord reveals molecular diversity of autonomic and skeletal motor neurons [in eng] – start-page: 331 volume-title: Situ Hybridization Protocols year: 2020 ident: 2024011308271581700_CIT0096 article-title: GeoMx™ RNA assay: high multiplex, digital, spatial analysis of RNA in FFPE tissue doi: 10.1007/978-1-0716-0623-0_21 – start-page: 9463314 volume-title: Stem Cells Int year: 2022 ident: 2024011308271581700_CIT0033 article-title: Efficacy and safety of mesenchymal stem cell transplantation in the treatment of autoimmune diseases (rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, multiple sclerosis, and ankylosing spondylitis): a systematic review and meta-analysis of randomized controlled trial – start-page: 1187 volume-title: Cell year: 2015 ident: 2024011308271581700_CIT0077 article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells – start-page: 77 volume-title: Genome Biol year: 2016 ident: 2024011308271581700_CIT0083 article-title: CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq – start-page: 627 volume-title: Nat Rev Genet year: 2021 ident: 2024011308271581700_CIT0054 article-title: Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics – start-page: 142 volume-title: Genes year: 2023 ident: 2024011308271581700_CIT0127 article-title: Single cell transcriptome analysis of peripheral blood mononuclear cells in freshly isolated versus stored blood samples – start-page: 1788 volume-title: Neuron year: 2022 ident: 2024011308271581700_CIT0056 article-title: Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer’s disease – start-page: eabq1693 volume-title: Sci Transl Med year: 2022 ident: 2024011308271581700_CIT0043 article-title: Dynamics of T cell repertoire renewal following autologous hematopoietic stem cell transplantation in multiple sclerosis – start-page: 1780 volume-title: Nat Biotechnol year: 2022 ident: 2024011308271581700_CIT0087 article-title: High-throughput total RNA sequencing in single cells using VASA-seq – volume: 2022 start-page: 2006 issue: 2022 year: 2010 ident: 2024011308271581700_CIT0094 article-title: High resolution mapping of the breast cancer tumor microenvironment using integrated single cell, spatial and in situ analysis of FFPE tissue publication-title: bioRxiv – start-page: 14 volume-title: Cell Biochem Funct year: 2015 ident: 2024011308271581700_CIT0006 article-title: Non-coding RNAs: biological functions and applications – start-page: S132 volume-title: Am J Phys Med Rehab year: 2014 ident: 2024011308271581700_CIT0059 article-title: Stem cells in the nervous system [in eng] |
SSID | ssj0014588 |
Score | 2.5289 |
SecondaryResourceType | review_article |
Snippet | Abstract
Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity and the dynamics of gene expression, bearing... Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity and the dynamics of gene expression, bearing profound... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Base Sequence Gene Expression Profiling RNA, Small Nuclear Sequence Analysis, RNA Single-Cell Analysis |
Title | Single-Cell RNA Sequencing Technology Landscape in 2023 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37934608 https://www.proquest.com/docview/2887477029 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1rb9Mw0IIhJL4gxrPjoYCQ-DCZOY7dzB-nDVReQ2ObtG9RcnZFpS5FWypt-_W7s70kVRkMvlix5TqN73wv34OxtxoqC6AMd9YBV8hwubEgsHHjyliUGSwFCn_bHY4O1ecjfdT56frokqZ6Dxe_jSv5H6jiGMKVomT_AbLtojiAzwhfbBHC2N4IxvvId6aOb5P97cfuFh587xdN2n9nMl__StG85OdEtg2qY94XSPcbd7xO1ntvfd0pz6M7_fefk1nPSrA39zxqPuF7k5ZGl7P2wr5zCh2VKHKWJzGQy_f6lgVJ3ig8BIb-KWKxRyxRXOEocIT_4iIBVVS1LtLUSGGVXMKkQC7THt8N3tRLFD1mu2qOYXpKD2elFbHwy2Ke7Osn32Z3JCoRXuH-9KW9Y6IYXX8XHr-iTemZbYQVNuLvF0SWhTDIJW3ESyUHD9j9qE4kWwE3VtktVz9kd0OB0fNHLO9hSIIYknQYknQYkrQYkkzqhDDkMTv8-OFge8RjqQwOmTQN186JodU5oPaLQmzu0vHYCOFSQIEWQFNNGRwFWWXYTTMYa_x6lJWlKamTPWEr9ax2z1iSglGptboqzaayWVoJp81Q41JCKUjlgPGr3Sgg5pGncibTIvgzZEXYvSLu3oC9a-f_ChlUrp35Bjf3r5NeX-19gZSQDkhZu9n8tJDIL1WeC2kG7GkASrtWhmxIDcXm2k1e8Zzd647DC7bSnMzdSxQ9m-qVx6BLHKCEaA |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-Cell+RNA+Sequencing+Technology+Landscape+in+2023&rft.jtitle=Stem+cells+%28Dayton%2C+Ohio%29&rft.au=Qu%2C+Hui-Qi&rft.au=Kao%2C+Charlly&rft.au=Hakonarson%2C+Hakon&rft.date=2024-01-13&rft.pub=Oxford+University+Press&rft.issn=1066-5099&rft.eissn=1549-4918&rft.volume=42&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1093%2Fstmcls%2Fsxad077&rft.externalDocID=10.1093%2Fstmcls%2Fsxad077 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5099&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5099&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5099&client=summon |