Learning Model Predictive Control for Iterative Tasks. A Data-Driven Control Framework

A learning model predictive controller for iterative tasks is presented. The controller is reference-free and is able to improve its performance by learning from previous iterations. A safe set and a terminal cost function are used in order to guarantee recursive feasibility and nondecreasing perfor...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 63; no. 7; pp. 1883 - 1896
Main Authors Rosolia, Ugo, Borrelli, Francesco
Format Journal Article
LanguageEnglish
Published IEEE 01.07.2018
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2017.2753460

Cover

Loading…
Abstract A learning model predictive controller for iterative tasks is presented. The controller is reference-free and is able to improve its performance by learning from previous iterations. A safe set and a terminal cost function are used in order to guarantee recursive feasibility and nondecreasing performance at each iteration. This paper presents the control design approach, and shows how to recursively construct terminal set and terminal cost from state and input trajectories of previous iterations. Simulation results show the effectiveness of the proposed control logic.
AbstractList A learning model predictive controller for iterative tasks is presented. The controller is reference-free and is able to improve its performance by learning from previous iterations. A safe set and a terminal cost function are used in order to guarantee recursive feasibility and nondecreasing performance at each iteration. This paper presents the control design approach, and shows how to recursively construct terminal set and terminal cost from state and input trajectories of previous iterations. Simulation results show the effectiveness of the proposed control logic.
Author Borrelli, Francesco
Rosolia, Ugo
Author_xml – sequence: 1
  givenname: Ugo
  surname: Rosolia
  fullname: Rosolia, Ugo
  email: ugo.rosolia@berkeley.edu
  organization: Dept. of Mech. Eng., Univ. of California at Berkeley, Berkeley, CA, USA
– sequence: 2
  givenname: Francesco
  surname: Borrelli
  fullname: Borrelli, Francesco
  email: fborrelli@berkeley.edu
  organization: Dept. of Mech. Eng., Univ. of California at Berkeley, Berkeley, CA, USA
BookMark eNp9kEtPwzAQhC1UJNrCHYmL_0CCH3FiH6uUQqUiOBSu0dYPZJrGyIlA_HtcWvXAgdNqZ2dWo2-CRl3oLELXlOSUEnW7ntU5I7TKWSV4UZIzNKZCyIwJxkdoTAiVmWKyvECTvn9Pa1kUdIxeVxZi57s3_BiMbfFztMbrwX9aXIduiKHFLkS8HGyEX3UN_bbP8QzPYYBsHpPWnayLCDv7FeL2Ep07aHt7dZxT9LK4W9cP2erpflnPVpnmTA2ZUEKWlDmmOecbxThQwnTJN1SZikljtEtFHQA4U5XCaCFA2nQjghsOwKeoPPzVMfR9tK7RfkhF933Atw0lzZ5Ok-g0ezrNkU4Kkj_Bj-h3EL__i9wcIt5ae7JLwhUjBf8BVfZxvw
CODEN IETAA9
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3163267
crossref_primary_10_1007_s10846_024_02118_y
crossref_primary_10_1109_ACCESS_2021_3074372
crossref_primary_10_1109_TCST_2023_3254213
crossref_primary_10_1016_j_automatica_2022_110734
crossref_primary_10_1115_1_4062532
crossref_primary_10_1016_j_arcontrol_2023_03_009
crossref_primary_10_1002_rnc_5261
crossref_primary_10_1109_ACCESS_2022_3160709
crossref_primary_10_1016_j_ifacol_2021_08_564
crossref_primary_10_1002_asjc_2885
crossref_primary_10_1016_j_asoc_2022_109698
crossref_primary_10_1093_imamci_dny046
crossref_primary_10_1016_j_ifacol_2020_12_1930
crossref_primary_10_1109_LCSYS_2021_3086058
crossref_primary_10_1016_j_conengprac_2019_104211
crossref_primary_10_1109_ACCESS_2019_2917331
crossref_primary_10_1016_j_ins_2022_11_092
crossref_primary_10_1016_j_conengprac_2024_105940
crossref_primary_10_1007_s12555_021_0429_x
crossref_primary_10_1016_j_artint_2023_104020
crossref_primary_10_1016_j_ifacol_2020_12_1265
crossref_primary_10_1109_LCSYS_2019_2913347
crossref_primary_10_1109_LCSYS_2023_3322965
crossref_primary_10_1016_j_ifacol_2021_08_571
crossref_primary_10_1016_j_sysconle_2024_106005
crossref_primary_10_1109_TII_2021_3107522
crossref_primary_10_1109_TIE_2023_3274869
crossref_primary_10_1016_j_ifacol_2022_07_361
crossref_primary_10_1177_1077546321990179
crossref_primary_10_1002_rnc_7275
crossref_primary_10_1109_LCSYS_2024_3455174
crossref_primary_10_3390_app12041995
crossref_primary_10_1002_btpr_3426
crossref_primary_10_1016_j_jprocont_2023_103109
crossref_primary_10_1146_annurev_control_042920_020211
crossref_primary_10_1016_j_automatica_2024_111803
crossref_primary_10_1016_j_automatica_2023_110912
crossref_primary_10_1016_j_ijepes_2020_106639
crossref_primary_10_1002_rnc_5282
crossref_primary_10_1016_j_ifacol_2020_12_1198
crossref_primary_10_1016_j_ifacol_2021_08_585
crossref_primary_10_1016_j_automatica_2021_109729
crossref_primary_10_1021_acs_iecr_9b02370
crossref_primary_10_1109_TASE_2021_3115937
crossref_primary_10_1109_TNNLS_2020_3016295
crossref_primary_10_1109_LCSYS_2023_3287801
crossref_primary_10_2139_ssrn_3977596
crossref_primary_10_1002_rnc_5686
crossref_primary_10_1109_TAC_2020_2986211
crossref_primary_10_1002_rnc_5166
crossref_primary_10_1002_rnc_5284
crossref_primary_10_1002_cta_3370
crossref_primary_10_1109_TAC_2021_3097706
crossref_primary_10_1016_j_engappai_2024_109009
crossref_primary_10_1146_annurev_control_090419_075625
crossref_primary_10_1109_TASE_2024_3445335
crossref_primary_10_1002_oca_2656
crossref_primary_10_3390_en14020517
crossref_primary_10_1049_pel2_12720
crossref_primary_10_1016_j_ces_2021_117372
crossref_primary_10_1109_OJCSYS_2023_3289771
crossref_primary_10_1016_j_ifacol_2023_10_1873
crossref_primary_10_1109_TCYB_2021_3121078
crossref_primary_10_1109_TSMC_2023_3341031
crossref_primary_10_1109_LCSYS_2021_3086561
crossref_primary_10_1016_j_neucom_2022_11_014
crossref_primary_10_1109_TAC_2024_3389552
crossref_primary_10_1080_00207721_2022_2058107
crossref_primary_10_1109_TSIPN_2023_3239695
crossref_primary_10_1109_TAC_2021_3083559
crossref_primary_10_1007_s11768_024_00234_6
crossref_primary_10_1016_j_energy_2025_135701
crossref_primary_10_1109_TFUZZ_2023_3245656
crossref_primary_10_1016_j_jprocont_2024_103327
crossref_primary_10_1016_j_ifacol_2024_07_433
crossref_primary_10_1109_TASE_2024_3398655
crossref_primary_10_1016_j_ifacol_2023_10_1705
crossref_primary_10_1109_OJCSYS_2023_3241486
crossref_primary_10_1109_TAC_2022_3217269
crossref_primary_10_1109_TCST_2023_3279949
crossref_primary_10_1016_j_ifacol_2020_12_903
crossref_primary_10_1109_TAC_2022_3184406
crossref_primary_10_1016_j_automatica_2020_108974
crossref_primary_10_1017_S0373463322000522
crossref_primary_10_1109_TCST_2023_3243993
crossref_primary_10_1177_10775463221075901
crossref_primary_10_1016_j_enbuild_2022_112584
crossref_primary_10_1016_j_conengprac_2019_104120
crossref_primary_10_1109_LCSYS_2022_3231837
crossref_primary_10_1016_j_ifacol_2022_10_289
crossref_primary_10_1016_j_robot_2023_104469
crossref_primary_10_1109_TCST_2022_3142629
crossref_primary_10_1109_TAC_2021_3106860
crossref_primary_10_1016_j_conengprac_2023_105523
crossref_primary_10_1016_j_ces_2024_120465
crossref_primary_10_1109_ACCESS_2023_3346197
crossref_primary_10_1016_j_ifacol_2020_12_2034
crossref_primary_10_1016_j_neunet_2022_09_021
crossref_primary_10_1109_TIE_2022_3229323
crossref_primary_10_1002_rnc_6027
crossref_primary_10_1177_01423312231188871
crossref_primary_10_1049_cth2_12764
crossref_primary_10_1109_TSMC_2021_3110790
crossref_primary_10_1109_TTE_2024_3434750
crossref_primary_10_1109_LCSYS_2024_3408073
crossref_primary_10_1109_TITS_2024_3435551
crossref_primary_10_1016_j_ejcon_2024_101043
crossref_primary_10_1007_s10845_024_02428_w
crossref_primary_10_1109_TCST_2023_3324869
crossref_primary_10_1016_j_asoc_2020_106633
crossref_primary_10_1016_j_isatra_2021_03_039
crossref_primary_10_1109_TIE_2023_3266574
crossref_primary_10_1016_j_automatica_2021_110114
crossref_primary_10_1016_j_automatica_2020_109247
crossref_primary_10_1016_j_automatica_2020_109402
crossref_primary_10_3390_en14051291
crossref_primary_10_1109_LRA_2021_3070252
crossref_primary_10_1109_LCSYS_2021_3094764
crossref_primary_10_1109_LCSYS_2023_3287450
crossref_primary_10_1146_annurev_control_060117_105215
crossref_primary_10_3390_wevj14070163
crossref_primary_10_1016_j_neucom_2025_129418
crossref_primary_10_1016_j_ifacol_2020_12_1395
crossref_primary_10_1146_annurev_control_053018_023825
crossref_primary_10_1016_j_arcontrol_2022_09_003
crossref_primary_10_1016_j_ifacol_2019_12_612
crossref_primary_10_1016_j_rico_2022_100121
crossref_primary_10_1016_j_automatica_2021_110121
crossref_primary_10_1109_LRA_2020_2976272
crossref_primary_10_1177_10775463231209815
crossref_primary_10_1016_j_ifacol_2024_09_056
crossref_primary_10_1109_TSM_2023_3266220
crossref_primary_10_1016_j_oceaneng_2023_113994
crossref_primary_10_1109_TAC_2022_3148227
crossref_primary_10_1109_TSMC_2024_3388853
crossref_primary_10_1109_TRO_2023_3266995
crossref_primary_10_1109_LCSYS_2020_3034750
crossref_primary_10_1016_j_oceaneng_2023_115097
crossref_primary_10_1109_TSMC_2024_3450126
crossref_primary_10_1109_JIOT_2024_3497185
crossref_primary_10_1109_TAC_2023_3347499
crossref_primary_10_1109_TASE_2024_3453668
crossref_primary_10_1016_j_ifacol_2023_10_1310
crossref_primary_10_1016_j_automatica_2021_109539
crossref_primary_10_1109_TAC_2022_3227907
crossref_primary_10_3390_machines11050521
crossref_primary_10_1016_j_trc_2025_105087
crossref_primary_10_1109_TCYB_2025_3536606
crossref_primary_10_1007_s00500_024_10304_1
crossref_primary_10_1007_s12555_021_0290_y
crossref_primary_10_1109_TCST_2023_3291562
Cites_doi 10.1016/j.jprocont.2013.06.004
10.1080/00423114.2011.586707
10.1109/9.863592
10.1016/j.disopt.2006.10.011
10.1016/j.jprocont.2009.09.006
10.15607/RSS.2010.VI.034
10.1109/TCST.2014.2377777
10.1016/0005-1098(89)90002-2
10.1109/CACSD.2004.1393890
10.1016/j.conengprac.2006.11.013
10.1016/j.automatica.2008.11.008
10.1002/aic.690451016
10.1515/9781400842643
10.1109/TAC.2000.881002
10.1016/j.ifacol.2017.08.324
10.1109/9.83532
10.1109/MCS.2006.1636313
10.1109/CDC.2015.7403175
10.1016/S0005-1098(99)00214-9
10.1109/FSKD.2015.7382330
10.23919/ACC.2017.7963748
10.1016/0005-1098(86)90081-6
10.1109/IROS.2008.4651075
10.1109/ICRA.2014.6907230
10.1016/S0098-1354(97)87612-0
10.1016/S0005-1098(99)00194-6
10.1115/DSCC2010-4263
10.1109/JPROC.2011.2158181
10.1016/j.conengprac.2007.11.003
10.2307/2372560
10.1109/9.467664
10.1109/ACC.2015.7171162
10.1007/s12532-012-0043-2
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TAC.2017.2753460
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 1896
ExternalDocumentID 10_1109_TAC_2017_2753460
8039204
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYOK
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c329t-5958612f2c333b923a102c63b19d728ddcf016faaafd765dc55a8e9d7053d3aa3
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Thu Apr 24 22:51:27 EDT 2025
Tue Jul 01 03:36:21 EDT 2025
Wed Aug 27 02:48:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-5958612f2c333b923a102c63b19d728ddcf016faaafd765dc55a8e9d7053d3aa3
ORCID 0000-0002-1682-0551
0000-0001-8919-6430
PageCount 14
ParticipantIDs crossref_primary_10_1109_TAC_2017_2753460
crossref_citationtrail_10_1109_TAC_2017_2753460
ieee_primary_8039204
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-July
2018-7-00
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-July
PublicationDecade 2010
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
rajamani (ref24) 2011
borrelli (ref18) 2003; 290
calafiore (ref37) 2007
ref23
ref26
ref25
ref20
ref22
ref21
liberzon (ref28) 2012
ref27
ref29
ref8
ref7
kouvaritakis (ref38) 2015
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref11
  doi: 10.1016/j.jprocont.2013.06.004
– ident: ref12
  doi: 10.1080/00423114.2011.586707
– ident: ref36
  doi: 10.1109/9.863592
– ident: ref21
  doi: 10.1016/j.disopt.2006.10.011
– ident: ref4
  doi: 10.1016/j.jprocont.2009.09.006
– start-page: 2636
  year: 2007
  ident: ref37
  article-title: Linear programming with probability constraints-Part 1
  publication-title: Proc Amer Control Conf
– ident: ref27
  doi: 10.15607/RSS.2010.VI.034
– ident: ref13
  doi: 10.1109/TCST.2014.2377777
– ident: ref16
  doi: 10.1016/0005-1098(89)90002-2
– ident: ref20
  doi: 10.1109/CACSD.2004.1393890
– volume: 290
  year: 2003
  ident: ref18
  publication-title: Constrained Optimal Control of Linear and Hybrid Systems
– ident: ref3
  doi: 10.1016/j.conengprac.2006.11.013
– ident: ref30
  doi: 10.1016/j.automatica.2008.11.008
– ident: ref7
  doi: 10.1002/aic.690451016
– year: 2012
  ident: ref28
  publication-title: Calculus of Variations and Optimal Control Theory A Concise Introduction
  doi: 10.1515/9781400842643
– ident: ref8
  doi: 10.1109/TAC.2000.881002
– year: 2011
  ident: ref24
  publication-title: Vehicle Dynamics and Control
– ident: ref32
  doi: 10.1016/j.ifacol.2017.08.324
– ident: ref19
  doi: 10.1109/9.83532
– ident: ref1
  doi: 10.1109/MCS.2006.1636313
– ident: ref5
  doi: 10.1109/CDC.2015.7403175
– year: 2015
  ident: ref38
  publication-title: Model Predictive Control Classical Robust and Stochastic
– ident: ref17
  doi: 10.1016/S0005-1098(99)00214-9
– ident: ref14
  doi: 10.1109/FSKD.2015.7382330
– ident: ref33
  doi: 10.23919/ACC.2017.7963748
– ident: ref31
  doi: 10.1016/0005-1098(86)90081-6
– ident: ref26
  doi: 10.1109/IROS.2008.4651075
– ident: ref15
  doi: 10.1109/ICRA.2014.6907230
– ident: ref2
  doi: 10.1016/S0098-1354(97)87612-0
– ident: ref9
  doi: 10.1016/S0005-1098(99)00194-6
– ident: ref23
  doi: 10.1115/DSCC2010-4263
– ident: ref25
  doi: 10.1109/JPROC.2011.2158181
– ident: ref10
  doi: 10.1016/j.conengprac.2007.11.003
– ident: ref22
  doi: 10.2307/2372560
– ident: ref35
  doi: 10.1016/0005-1098(89)90002-2
– ident: ref34
  doi: 10.1109/9.467664
– ident: ref6
  doi: 10.1109/ACC.2015.7171162
– ident: ref29
  doi: 10.1007/s12532-012-0043-2
SSID ssj0016441
Score 2.657739
Snippet A learning model predictive controller for iterative tasks is presented. The controller is reference-free and is able to improve its performance by learning...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1883
SubjectTerms Control design
Cost function
Data driven
Iterative learning control
learning
Nonlinear dynamical systems
optimal control
Predictive control
Predictive models
safety
Trajectory
Title Learning Model Predictive Control for Iterative Tasks. A Data-Driven Control Framework
URI https://ieeexplore.ieee.org/document/8039204
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUR5yQMLEklTJ66TsWqpClIRQ4u6RX6FoVWL2nTh13PnpKFCCLFFziWyzvbdZ9_5O0LulA15oGIF25KO8jAwB3YwEJ4y7ciythQswsvJo5fOcBI9T_m0Rh6quzDWWpd8Zn18dLF8s9QbPCprxQF4cyT_3IONW3FXq4oYoF8vrC4sYBZXIckgaY27PczhEj4DbB45MspvF7RTU8W5lMERGW07U2SSzPxNrnz9-YOn8b-9PSaHJbak3WIynJCaXZySgx3GwQZ5K_lU3ykWQZvT1xUGatDk0V6RtE4BxdInx7WMrWO5nq192qV9mUuvv0LjWIkOtpldZ2QyeBz3hl5ZWsHTIUtyjyc8BmyTMR2GoQKQJwFo6E6o2okRLDZGZ6DSTEqZGdHhRnMuYwvvYM2aUMrwnNQXy4W9IDTiikkJqCjTIuJBhn9iygoDWNQKGzRJa6vtVJe841j-Yp66_UeQpDA-KY5PWo5Pk9xXX3wUnBt_yDZQ85VcqfTL35uvyD7DCeLSba9JPV9t7A2Ailzdutn0Bc8Exyw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4QPagHX2jE5x68mNjSbru0PRKQgALxAIZbs696gICBcvHXO9OWSowx3prttNnM7s58uzP7DSH30njckaGEbUlDWhiYAzvoBJbUrm-YKwLm4-XkwbDRHfvPEz6pkMfyLowxJks-MzY-ZrF8vVBrPCqrhw54cyT_3AW_z938tlYZM0DPnttdWMIsLIOSTlQfNVuYxRXYDNC5n9FRfjuhraoqmVPpHJHBpjt5LsnUXqfSVp8_mBr_299jcligS9rMp8MJqZj5KTnY4hyskreCUfWdYhm0GX1dYqgGjR5t5WnrFHAs7WVsy9g6EqvpyqZN2hapsNpLNI-laGeT23VGxp2nUatrFcUVLOWxKLV4xENANwlTnudJgHkCoIZqeNKNdMBCrVUCKk2EEIkOGlwrzkVo4B2sWu0J4Z2Tnflibi4I9blkQgAuSlTgcyfBPzFpAg1o1ATGqZH6RtuxKpjHsQDGLM52IE4Uw_jEOD5xMT418lB-8ZGzbvwhW0XNl3KF0i9_b74je93RoB_3e8OXK7LPcLJkybfXZCddrs0NQIxU3mYz6wtg3cp1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Model+Predictive+Control+for+Iterative+Tasks.+A+Data-Driven+Control+Framework&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Rosolia%2C+Ugo&rft.au=Borrelli%2C+Francesco&rft.date=2018-07-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=63&rft.issue=7&rft.spage=1883&rft.epage=1896&rft_id=info:doi/10.1109%2FTAC.2017.2753460&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2017_2753460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon