Learning Model Predictive Control for Iterative Tasks. A Data-Driven Control Framework
A learning model predictive controller for iterative tasks is presented. The controller is reference-free and is able to improve its performance by learning from previous iterations. A safe set and a terminal cost function are used in order to guarantee recursive feasibility and nondecreasing perfor...
Saved in:
Published in | IEEE transactions on automatic control Vol. 63; no. 7; pp. 1883 - 1896 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.07.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0018-9286 1558-2523 |
DOI | 10.1109/TAC.2017.2753460 |
Cover
Loading…
Abstract | A learning model predictive controller for iterative tasks is presented. The controller is reference-free and is able to improve its performance by learning from previous iterations. A safe set and a terminal cost function are used in order to guarantee recursive feasibility and nondecreasing performance at each iteration. This paper presents the control design approach, and shows how to recursively construct terminal set and terminal cost from state and input trajectories of previous iterations. Simulation results show the effectiveness of the proposed control logic. |
---|---|
AbstractList | A learning model predictive controller for iterative tasks is presented. The controller is reference-free and is able to improve its performance by learning from previous iterations. A safe set and a terminal cost function are used in order to guarantee recursive feasibility and nondecreasing performance at each iteration. This paper presents the control design approach, and shows how to recursively construct terminal set and terminal cost from state and input trajectories of previous iterations. Simulation results show the effectiveness of the proposed control logic. |
Author | Borrelli, Francesco Rosolia, Ugo |
Author_xml | – sequence: 1 givenname: Ugo surname: Rosolia fullname: Rosolia, Ugo email: ugo.rosolia@berkeley.edu organization: Dept. of Mech. Eng., Univ. of California at Berkeley, Berkeley, CA, USA – sequence: 2 givenname: Francesco surname: Borrelli fullname: Borrelli, Francesco email: fborrelli@berkeley.edu organization: Dept. of Mech. Eng., Univ. of California at Berkeley, Berkeley, CA, USA |
BookMark | eNp9kEtPwzAQhC1UJNrCHYmL_0CCH3FiH6uUQqUiOBSu0dYPZJrGyIlA_HtcWvXAgdNqZ2dWo2-CRl3oLELXlOSUEnW7ntU5I7TKWSV4UZIzNKZCyIwJxkdoTAiVmWKyvECTvn9Pa1kUdIxeVxZi57s3_BiMbfFztMbrwX9aXIduiKHFLkS8HGyEX3UN_bbP8QzPYYBsHpPWnayLCDv7FeL2Ep07aHt7dZxT9LK4W9cP2erpflnPVpnmTA2ZUEKWlDmmOecbxThQwnTJN1SZikljtEtFHQA4U5XCaCFA2nQjghsOwKeoPPzVMfR9tK7RfkhF933Atw0lzZ5Ok-g0ezrNkU4Kkj_Bj-h3EL__i9wcIt5ae7JLwhUjBf8BVfZxvw |
CODEN | IETAA9 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3163267 crossref_primary_10_1007_s10846_024_02118_y crossref_primary_10_1109_ACCESS_2021_3074372 crossref_primary_10_1109_TCST_2023_3254213 crossref_primary_10_1016_j_automatica_2022_110734 crossref_primary_10_1115_1_4062532 crossref_primary_10_1016_j_arcontrol_2023_03_009 crossref_primary_10_1002_rnc_5261 crossref_primary_10_1109_ACCESS_2022_3160709 crossref_primary_10_1016_j_ifacol_2021_08_564 crossref_primary_10_1002_asjc_2885 crossref_primary_10_1016_j_asoc_2022_109698 crossref_primary_10_1093_imamci_dny046 crossref_primary_10_1016_j_ifacol_2020_12_1930 crossref_primary_10_1109_LCSYS_2021_3086058 crossref_primary_10_1016_j_conengprac_2019_104211 crossref_primary_10_1109_ACCESS_2019_2917331 crossref_primary_10_1016_j_ins_2022_11_092 crossref_primary_10_1016_j_conengprac_2024_105940 crossref_primary_10_1007_s12555_021_0429_x crossref_primary_10_1016_j_artint_2023_104020 crossref_primary_10_1016_j_ifacol_2020_12_1265 crossref_primary_10_1109_LCSYS_2019_2913347 crossref_primary_10_1109_LCSYS_2023_3322965 crossref_primary_10_1016_j_ifacol_2021_08_571 crossref_primary_10_1016_j_sysconle_2024_106005 crossref_primary_10_1109_TII_2021_3107522 crossref_primary_10_1109_TIE_2023_3274869 crossref_primary_10_1016_j_ifacol_2022_07_361 crossref_primary_10_1177_1077546321990179 crossref_primary_10_1002_rnc_7275 crossref_primary_10_1109_LCSYS_2024_3455174 crossref_primary_10_3390_app12041995 crossref_primary_10_1002_btpr_3426 crossref_primary_10_1016_j_jprocont_2023_103109 crossref_primary_10_1146_annurev_control_042920_020211 crossref_primary_10_1016_j_automatica_2024_111803 crossref_primary_10_1016_j_automatica_2023_110912 crossref_primary_10_1016_j_ijepes_2020_106639 crossref_primary_10_1002_rnc_5282 crossref_primary_10_1016_j_ifacol_2020_12_1198 crossref_primary_10_1016_j_ifacol_2021_08_585 crossref_primary_10_1016_j_automatica_2021_109729 crossref_primary_10_1021_acs_iecr_9b02370 crossref_primary_10_1109_TASE_2021_3115937 crossref_primary_10_1109_TNNLS_2020_3016295 crossref_primary_10_1109_LCSYS_2023_3287801 crossref_primary_10_2139_ssrn_3977596 crossref_primary_10_1002_rnc_5686 crossref_primary_10_1109_TAC_2020_2986211 crossref_primary_10_1002_rnc_5166 crossref_primary_10_1002_rnc_5284 crossref_primary_10_1002_cta_3370 crossref_primary_10_1109_TAC_2021_3097706 crossref_primary_10_1016_j_engappai_2024_109009 crossref_primary_10_1146_annurev_control_090419_075625 crossref_primary_10_1109_TASE_2024_3445335 crossref_primary_10_1002_oca_2656 crossref_primary_10_3390_en14020517 crossref_primary_10_1049_pel2_12720 crossref_primary_10_1016_j_ces_2021_117372 crossref_primary_10_1109_OJCSYS_2023_3289771 crossref_primary_10_1016_j_ifacol_2023_10_1873 crossref_primary_10_1109_TCYB_2021_3121078 crossref_primary_10_1109_TSMC_2023_3341031 crossref_primary_10_1109_LCSYS_2021_3086561 crossref_primary_10_1016_j_neucom_2022_11_014 crossref_primary_10_1109_TAC_2024_3389552 crossref_primary_10_1080_00207721_2022_2058107 crossref_primary_10_1109_TSIPN_2023_3239695 crossref_primary_10_1109_TAC_2021_3083559 crossref_primary_10_1007_s11768_024_00234_6 crossref_primary_10_1016_j_energy_2025_135701 crossref_primary_10_1109_TFUZZ_2023_3245656 crossref_primary_10_1016_j_jprocont_2024_103327 crossref_primary_10_1016_j_ifacol_2024_07_433 crossref_primary_10_1109_TASE_2024_3398655 crossref_primary_10_1016_j_ifacol_2023_10_1705 crossref_primary_10_1109_OJCSYS_2023_3241486 crossref_primary_10_1109_TAC_2022_3217269 crossref_primary_10_1109_TCST_2023_3279949 crossref_primary_10_1016_j_ifacol_2020_12_903 crossref_primary_10_1109_TAC_2022_3184406 crossref_primary_10_1016_j_automatica_2020_108974 crossref_primary_10_1017_S0373463322000522 crossref_primary_10_1109_TCST_2023_3243993 crossref_primary_10_1177_10775463221075901 crossref_primary_10_1016_j_enbuild_2022_112584 crossref_primary_10_1016_j_conengprac_2019_104120 crossref_primary_10_1109_LCSYS_2022_3231837 crossref_primary_10_1016_j_ifacol_2022_10_289 crossref_primary_10_1016_j_robot_2023_104469 crossref_primary_10_1109_TCST_2022_3142629 crossref_primary_10_1109_TAC_2021_3106860 crossref_primary_10_1016_j_conengprac_2023_105523 crossref_primary_10_1016_j_ces_2024_120465 crossref_primary_10_1109_ACCESS_2023_3346197 crossref_primary_10_1016_j_ifacol_2020_12_2034 crossref_primary_10_1016_j_neunet_2022_09_021 crossref_primary_10_1109_TIE_2022_3229323 crossref_primary_10_1002_rnc_6027 crossref_primary_10_1177_01423312231188871 crossref_primary_10_1049_cth2_12764 crossref_primary_10_1109_TSMC_2021_3110790 crossref_primary_10_1109_TTE_2024_3434750 crossref_primary_10_1109_LCSYS_2024_3408073 crossref_primary_10_1109_TITS_2024_3435551 crossref_primary_10_1016_j_ejcon_2024_101043 crossref_primary_10_1007_s10845_024_02428_w crossref_primary_10_1109_TCST_2023_3324869 crossref_primary_10_1016_j_asoc_2020_106633 crossref_primary_10_1016_j_isatra_2021_03_039 crossref_primary_10_1109_TIE_2023_3266574 crossref_primary_10_1016_j_automatica_2021_110114 crossref_primary_10_1016_j_automatica_2020_109247 crossref_primary_10_1016_j_automatica_2020_109402 crossref_primary_10_3390_en14051291 crossref_primary_10_1109_LRA_2021_3070252 crossref_primary_10_1109_LCSYS_2021_3094764 crossref_primary_10_1109_LCSYS_2023_3287450 crossref_primary_10_1146_annurev_control_060117_105215 crossref_primary_10_3390_wevj14070163 crossref_primary_10_1016_j_neucom_2025_129418 crossref_primary_10_1016_j_ifacol_2020_12_1395 crossref_primary_10_1146_annurev_control_053018_023825 crossref_primary_10_1016_j_arcontrol_2022_09_003 crossref_primary_10_1016_j_ifacol_2019_12_612 crossref_primary_10_1016_j_rico_2022_100121 crossref_primary_10_1016_j_automatica_2021_110121 crossref_primary_10_1109_LRA_2020_2976272 crossref_primary_10_1177_10775463231209815 crossref_primary_10_1016_j_ifacol_2024_09_056 crossref_primary_10_1109_TSM_2023_3266220 crossref_primary_10_1016_j_oceaneng_2023_113994 crossref_primary_10_1109_TAC_2022_3148227 crossref_primary_10_1109_TSMC_2024_3388853 crossref_primary_10_1109_TRO_2023_3266995 crossref_primary_10_1109_LCSYS_2020_3034750 crossref_primary_10_1016_j_oceaneng_2023_115097 crossref_primary_10_1109_TSMC_2024_3450126 crossref_primary_10_1109_JIOT_2024_3497185 crossref_primary_10_1109_TAC_2023_3347499 crossref_primary_10_1109_TASE_2024_3453668 crossref_primary_10_1016_j_ifacol_2023_10_1310 crossref_primary_10_1016_j_automatica_2021_109539 crossref_primary_10_1109_TAC_2022_3227907 crossref_primary_10_3390_machines11050521 crossref_primary_10_1016_j_trc_2025_105087 crossref_primary_10_1109_TCYB_2025_3536606 crossref_primary_10_1007_s00500_024_10304_1 crossref_primary_10_1007_s12555_021_0290_y crossref_primary_10_1109_TCST_2023_3291562 |
Cites_doi | 10.1016/j.jprocont.2013.06.004 10.1080/00423114.2011.586707 10.1109/9.863592 10.1016/j.disopt.2006.10.011 10.1016/j.jprocont.2009.09.006 10.15607/RSS.2010.VI.034 10.1109/TCST.2014.2377777 10.1016/0005-1098(89)90002-2 10.1109/CACSD.2004.1393890 10.1016/j.conengprac.2006.11.013 10.1016/j.automatica.2008.11.008 10.1002/aic.690451016 10.1515/9781400842643 10.1109/TAC.2000.881002 10.1016/j.ifacol.2017.08.324 10.1109/9.83532 10.1109/MCS.2006.1636313 10.1109/CDC.2015.7403175 10.1016/S0005-1098(99)00214-9 10.1109/FSKD.2015.7382330 10.23919/ACC.2017.7963748 10.1016/0005-1098(86)90081-6 10.1109/IROS.2008.4651075 10.1109/ICRA.2014.6907230 10.1016/S0098-1354(97)87612-0 10.1016/S0005-1098(99)00194-6 10.1115/DSCC2010-4263 10.1109/JPROC.2011.2158181 10.1016/j.conengprac.2007.11.003 10.2307/2372560 10.1109/9.467664 10.1109/ACC.2015.7171162 10.1007/s12532-012-0043-2 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TAC.2017.2753460 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2523 |
EndPage | 1896 |
ExternalDocumentID | 10_1109_TAC_2017_2753460 8039204 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYOK AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c329t-5958612f2c333b923a102c63b19d728ddcf016faaafd765dc55a8e9d7053d3aa3 |
IEDL.DBID | RIE |
ISSN | 0018-9286 |
IngestDate | Thu Apr 24 22:51:27 EDT 2025 Tue Jul 01 03:36:21 EDT 2025 Wed Aug 27 02:48:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c329t-5958612f2c333b923a102c63b19d728ddcf016faaafd765dc55a8e9d7053d3aa3 |
ORCID | 0000-0002-1682-0551 0000-0001-8919-6430 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TAC_2017_2753460 crossref_citationtrail_10_1109_TAC_2017_2753460 ieee_primary_8039204 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-July 2018-7-00 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-July |
PublicationDecade | 2010 |
PublicationTitle | IEEE transactions on automatic control |
PublicationTitleAbbrev | TAC |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref35 ref13 ref34 ref12 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 rajamani (ref24) 2011 borrelli (ref18) 2003; 290 calafiore (ref37) 2007 ref23 ref26 ref25 ref20 ref22 ref21 liberzon (ref28) 2012 ref27 ref29 ref8 ref7 kouvaritakis (ref38) 2015 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref11 doi: 10.1016/j.jprocont.2013.06.004 – ident: ref12 doi: 10.1080/00423114.2011.586707 – ident: ref36 doi: 10.1109/9.863592 – ident: ref21 doi: 10.1016/j.disopt.2006.10.011 – ident: ref4 doi: 10.1016/j.jprocont.2009.09.006 – start-page: 2636 year: 2007 ident: ref37 article-title: Linear programming with probability constraints-Part 1 publication-title: Proc Amer Control Conf – ident: ref27 doi: 10.15607/RSS.2010.VI.034 – ident: ref13 doi: 10.1109/TCST.2014.2377777 – ident: ref16 doi: 10.1016/0005-1098(89)90002-2 – ident: ref20 doi: 10.1109/CACSD.2004.1393890 – volume: 290 year: 2003 ident: ref18 publication-title: Constrained Optimal Control of Linear and Hybrid Systems – ident: ref3 doi: 10.1016/j.conengprac.2006.11.013 – ident: ref30 doi: 10.1016/j.automatica.2008.11.008 – ident: ref7 doi: 10.1002/aic.690451016 – year: 2012 ident: ref28 publication-title: Calculus of Variations and Optimal Control Theory A Concise Introduction doi: 10.1515/9781400842643 – ident: ref8 doi: 10.1109/TAC.2000.881002 – year: 2011 ident: ref24 publication-title: Vehicle Dynamics and Control – ident: ref32 doi: 10.1016/j.ifacol.2017.08.324 – ident: ref19 doi: 10.1109/9.83532 – ident: ref1 doi: 10.1109/MCS.2006.1636313 – ident: ref5 doi: 10.1109/CDC.2015.7403175 – year: 2015 ident: ref38 publication-title: Model Predictive Control Classical Robust and Stochastic – ident: ref17 doi: 10.1016/S0005-1098(99)00214-9 – ident: ref14 doi: 10.1109/FSKD.2015.7382330 – ident: ref33 doi: 10.23919/ACC.2017.7963748 – ident: ref31 doi: 10.1016/0005-1098(86)90081-6 – ident: ref26 doi: 10.1109/IROS.2008.4651075 – ident: ref15 doi: 10.1109/ICRA.2014.6907230 – ident: ref2 doi: 10.1016/S0098-1354(97)87612-0 – ident: ref9 doi: 10.1016/S0005-1098(99)00194-6 – ident: ref23 doi: 10.1115/DSCC2010-4263 – ident: ref25 doi: 10.1109/JPROC.2011.2158181 – ident: ref10 doi: 10.1016/j.conengprac.2007.11.003 – ident: ref22 doi: 10.2307/2372560 – ident: ref35 doi: 10.1016/0005-1098(89)90002-2 – ident: ref34 doi: 10.1109/9.467664 – ident: ref6 doi: 10.1109/ACC.2015.7171162 – ident: ref29 doi: 10.1007/s12532-012-0043-2 |
SSID | ssj0016441 |
Score | 2.657739 |
Snippet | A learning model predictive controller for iterative tasks is presented. The controller is reference-free and is able to improve its performance by learning... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1883 |
SubjectTerms | Control design Cost function Data driven Iterative learning control learning Nonlinear dynamical systems optimal control Predictive control Predictive models safety Trajectory |
Title | Learning Model Predictive Control for Iterative Tasks. A Data-Driven Control Framework |
URI | https://ieeexplore.ieee.org/document/8039204 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUR5yQMLEklTJ66TsWqpClIRQ4u6RX6FoVWL2nTh13PnpKFCCLFFziWyzvbdZ9_5O0LulA15oGIF25KO8jAwB3YwEJ4y7ciythQswsvJo5fOcBI9T_m0Rh6quzDWWpd8Zn18dLF8s9QbPCprxQF4cyT_3IONW3FXq4oYoF8vrC4sYBZXIckgaY27PczhEj4DbB45MspvF7RTU8W5lMERGW07U2SSzPxNrnz9-YOn8b-9PSaHJbak3WIynJCaXZySgx3GwQZ5K_lU3ykWQZvT1xUGatDk0V6RtE4BxdInx7WMrWO5nq192qV9mUuvv0LjWIkOtpldZ2QyeBz3hl5ZWsHTIUtyjyc8BmyTMR2GoQKQJwFo6E6o2okRLDZGZ6DSTEqZGdHhRnMuYwvvYM2aUMrwnNQXy4W9IDTiikkJqCjTIuJBhn9iygoDWNQKGzRJa6vtVJe841j-Yp66_UeQpDA-KY5PWo5Pk9xXX3wUnBt_yDZQ85VcqfTL35uvyD7DCeLSba9JPV9t7A2Ailzdutn0Bc8Exyw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4QPagHX2jE5x68mNjSbru0PRKQgALxAIZbs696gICBcvHXO9OWSowx3prttNnM7s58uzP7DSH30njckaGEbUlDWhiYAzvoBJbUrm-YKwLm4-XkwbDRHfvPEz6pkMfyLowxJks-MzY-ZrF8vVBrPCqrhw54cyT_3AW_z938tlYZM0DPnttdWMIsLIOSTlQfNVuYxRXYDNC5n9FRfjuhraoqmVPpHJHBpjt5LsnUXqfSVp8_mBr_299jcligS9rMp8MJqZj5KTnY4hyskreCUfWdYhm0GX1dYqgGjR5t5WnrFHAs7WVsy9g6EqvpyqZN2hapsNpLNI-laGeT23VGxp2nUatrFcUVLOWxKLV4xENANwlTnudJgHkCoIZqeNKNdMBCrVUCKk2EEIkOGlwrzkVo4B2sWu0J4Z2Tnflibi4I9blkQgAuSlTgcyfBPzFpAg1o1ATGqZH6RtuxKpjHsQDGLM52IE4Uw_jEOD5xMT418lB-8ZGzbvwhW0XNl3KF0i9_b74je93RoB_3e8OXK7LPcLJkybfXZCddrs0NQIxU3mYz6wtg3cp1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Model+Predictive+Control+for+Iterative+Tasks.+A+Data-Driven+Control+Framework&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Rosolia%2C+Ugo&rft.au=Borrelli%2C+Francesco&rft.date=2018-07-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=63&rft.issue=7&rft.spage=1883&rft.epage=1896&rft_id=info:doi/10.1109%2FTAC.2017.2753460&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2017_2753460 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |