Individual-level functional connectomes predict the motor symptoms of Parkinson’s disease
Abstract Abnormalities in functional connectivity networks are associated with sensorimotor networks in Parkinson’s disease (PD) based on group-level mapping studies, but these results are controversial. Using individual-level cortical segmentation to construct individual brain atlases can supplemen...
Saved in:
Published in | Cerebral cortex (New York, N.Y. 1991) Vol. 33; no. 10; pp. 6282 - 6290 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
09.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1047-3211 1460-2199 1460-2199 |
DOI | 10.1093/cercor/bhac503 |
Cover
Loading…
Abstract | Abstract
Abnormalities in functional connectivity networks are associated with sensorimotor networks in Parkinson’s disease (PD) based on group-level mapping studies, but these results are controversial. Using individual-level cortical segmentation to construct individual brain atlases can supplement the individual information covered by group-level cortical segmentation. Functional connectivity analyses at the individual level are helpful for obtaining clinically useful markers and predicting treatment response. Based on the functional connectivity of individualized regions of interest, a support vector regression model was trained to estimate the severity of motor symptoms for each subject, and a correlation analysis between the estimated scores and clinical symptom scores was performed. Forty-six PD patients aged 50–75 years were included from the Parkinson’s Progression Markers Initiative database, and 63 PD patients were included from the Beijing Rehabilitation Hospital database. Only patients below Hoehn and Yahr stage III were included. The analysis showed that the severity of motor symptoms could be estimated by the individualized functional connectivity between the visual network and sensorimotor network in early-stage disease. The results reveal individual-level connectivity biomarkers related to motor symptoms and emphasize the importance of individual differences in the prediction of the treatment response of PD. |
---|---|
AbstractList | Abnormalities in functional connectivity networks are associated with sensorimotor networks in Parkinson's disease (PD) based on group-level mapping studies, but these results are controversial. Using individual-level cortical segmentation to construct individual brain atlases can supplement the individual information covered by group-level cortical segmentation. Functional connectivity analyses at the individual level are helpful for obtaining clinically useful markers and predicting treatment response. Based on the functional connectivity of individualized regions of interest, a support vector regression model was trained to estimate the severity of motor symptoms for each subject, and a correlation analysis between the estimated scores and clinical symptom scores was performed. Forty-six PD patients aged 50-75 years were included from the Parkinson's Progression Markers Initiative database, and 63 PD patients were included from the Beijing Rehabilitation Hospital database. Only patients below Hoehn and Yahr stage III were included. The analysis showed that the severity of motor symptoms could be estimated by the individualized functional connectivity between the visual network and sensorimotor network in early-stage disease. The results reveal individual-level connectivity biomarkers related to motor symptoms and emphasize the importance of individual differences in the prediction of the treatment response of PD.Abnormalities in functional connectivity networks are associated with sensorimotor networks in Parkinson's disease (PD) based on group-level mapping studies, but these results are controversial. Using individual-level cortical segmentation to construct individual brain atlases can supplement the individual information covered by group-level cortical segmentation. Functional connectivity analyses at the individual level are helpful for obtaining clinically useful markers and predicting treatment response. Based on the functional connectivity of individualized regions of interest, a support vector regression model was trained to estimate the severity of motor symptoms for each subject, and a correlation analysis between the estimated scores and clinical symptom scores was performed. Forty-six PD patients aged 50-75 years were included from the Parkinson's Progression Markers Initiative database, and 63 PD patients were included from the Beijing Rehabilitation Hospital database. Only patients below Hoehn and Yahr stage III were included. The analysis showed that the severity of motor symptoms could be estimated by the individualized functional connectivity between the visual network and sensorimotor network in early-stage disease. The results reveal individual-level connectivity biomarkers related to motor symptoms and emphasize the importance of individual differences in the prediction of the treatment response of PD. Abnormalities in functional connectivity networks are associated with sensorimotor networks in Parkinson's disease (PD) based on group-level mapping studies, but these results are controversial. Using individual-level cortical segmentation to construct individual brain atlases can supplement the individual information covered by group-level cortical segmentation. Functional connectivity analyses at the individual level are helpful for obtaining clinically useful markers and predicting treatment response. Based on the functional connectivity of individualized regions of interest, a support vector regression model was trained to estimate the severity of motor symptoms for each subject, and a correlation analysis between the estimated scores and clinical symptom scores was performed. Forty-six PD patients aged 50-75 years were included from the Parkinson's Progression Markers Initiative database, and 63 PD patients were included from the Beijing Rehabilitation Hospital database. Only patients below Hoehn and Yahr stage III were included. The analysis showed that the severity of motor symptoms could be estimated by the individualized functional connectivity between the visual network and sensorimotor network in early-stage disease. The results reveal individual-level connectivity biomarkers related to motor symptoms and emphasize the importance of individual differences in the prediction of the treatment response of PD. Abstract Abnormalities in functional connectivity networks are associated with sensorimotor networks in Parkinson’s disease (PD) based on group-level mapping studies, but these results are controversial. Using individual-level cortical segmentation to construct individual brain atlases can supplement the individual information covered by group-level cortical segmentation. Functional connectivity analyses at the individual level are helpful for obtaining clinically useful markers and predicting treatment response. Based on the functional connectivity of individualized regions of interest, a support vector regression model was trained to estimate the severity of motor symptoms for each subject, and a correlation analysis between the estimated scores and clinical symptom scores was performed. Forty-six PD patients aged 50–75 years were included from the Parkinson’s Progression Markers Initiative database, and 63 PD patients were included from the Beijing Rehabilitation Hospital database. Only patients below Hoehn and Yahr stage III were included. The analysis showed that the severity of motor symptoms could be estimated by the individualized functional connectivity between the visual network and sensorimotor network in early-stage disease. The results reveal individual-level connectivity biomarkers related to motor symptoms and emphasize the importance of individual differences in the prediction of the treatment response of PD. |
Author | Liu, Tiantian Wang, Li Suo, Dingjie Zhang, Jian Jiang, Bo Pei, Guangying Yan, Tianyi Wu, Jinglong Shi, Zhongyan Funahashi, Shintaro |
Author_xml | – sequence: 1 givenname: Zhongyan surname: Shi fullname: Shi, Zhongyan email: 3120195703@bit.edu.cn – sequence: 2 givenname: Bo surname: Jiang fullname: Jiang, Bo email: 2595854252@qq.com – sequence: 3 givenname: Tiantian surname: Liu fullname: Liu, Tiantian email: tiantian2bit@bit.edu.cn – sequence: 4 givenname: Li surname: Wang fullname: Wang, Li email: wleewell@qq.com – sequence: 5 givenname: Guangying orcidid: 0000-0003-3349-8813 surname: Pei fullname: Pei, Guangying email: pei_guangying@bit.edu.cn – sequence: 6 givenname: Dingjie surname: Suo fullname: Suo, Dingjie email: suo@bit.edu.cn – sequence: 7 givenname: Jian surname: Zhang fullname: Zhang, Jian email: zhangjian2023@163.com – sequence: 8 givenname: Shintaro surname: Funahashi fullname: Funahashi, Shintaro – sequence: 9 givenname: Jinglong surname: Wu fullname: Wu, Jinglong email: wujl@bit.edu.cn – sequence: 10 givenname: Tianyi orcidid: 0000-0002-2674-4134 surname: Yan fullname: Yan, Tianyi email: yantianyi@bit.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36627247$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkD1PHDEQQK2IKMBBS4lcQrF3_trzuUQIAhISFEmVwjL2WBh27cX2ItHxN_h7_JIsuqNBQlQz0rw3xdtFWzFFQOiAkjklii8sZJvy4vbO2JbwH2iHiiVpGFVqa9qJkA1nlG6j3VLuCaGStewX2ubLJZNMyB307zK68BTcaLqmgyfosB-jrSFF02GbYgRbUw8FDxlcsBXXO8B9qinj8twP063g5PGNyQ8hlhTfXl4LdqGAKbCHfnrTFdjfzBn6e3725_Siubr-fXl6ctVYzlRt2tZ5L5VYcQmMM-GUWlnfWkK8UkI46wlZOaBCihVQQwUnzDtlrWTSEa74DB2t_w45PY5Qqu5DsdB1JkIai2ZSilYt1WTO0OEGHW97cHrIoTf5WX8EmQCxBmxOpWTw2oZq3nvUbEKnKdHv3fW6u950n7T5J-3j85fC8VpI4_Ad-x-gHZg- |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2023_e21789 crossref_primary_10_1093_cercor_bhad252 crossref_primary_10_26599_BSA_2023_9050015 crossref_primary_10_1093_cercor_bhae429 crossref_primary_10_1093_cercor_bhae506 crossref_primary_10_1093_cercor_bhad477 |
Cites_doi | 10.1007/s11682-016-9524-7 10.1152/jn.00338.2011 10.1016/j.neulet.2020.135512 10.1093/cercor/bhy270 10.1016/j.neulet.2021.135970 10.1038/s41386-020-0711-2 10.1016/j.neuroimage.2019.01.068 10.1186/s40035-016-0066-0 10.1016/j.neuroimage.2013.03.004 10.1016/j.neuroimage.2019.116318 10.1002/mdc3.12730 10.26599/BSA.2020.9050020 10.1016/j.neuron.2019.11.012 10.1002/mds.26321 10.1017/S1355617798002859 10.26599/BSA.2019.9050007 10.1007/s00429-021-02319-3 10.1016/j.neuron.2018.10.010 10.1016/j.parkreldis.2020.03.031 10.1017/S1461145701002589 10.1016/j.pnpbp.2020.109860 10.1038/nn.4164 10.1016/j.pnpbp.2019.109665 10.1093/brain/awab375 10.1016/j.neurobiolaging.2014.07.004 10.1371/journal.pbio.2007032 10.1038/mp.2017.92 10.1002/hbm.23474 10.3390/e21090882 10.1016/j.neuroimage.2013.04.127 10.1093/cercor/bhab101 10.1016/j.neuroimage.2014.05.069 10.1038/s41467-020-18823-9 10.1007/s00234-016-1646-5 10.1007/s11910-016-0687-9 10.7150/thno.23772 10.3389/fnagi.2021.723948 10.1038/nn.4134 10.1007/s00415-015-7750-3 10.1148/radiol.2017162929 10.1038/s41380-018-0276-1 10.1016/j.cortex.2017.03.016 10.1148/radiol.211762 10.1002/hbm.25307 10.1093/cercor/bhy121 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023 The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023 – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/cercor/bhac503 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1460-2199 |
EndPage | 6290 |
ExternalDocumentID | 36627247 10_1093_cercor_bhac503 10.1093/cercor/bhac503 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -E4 .2P .GJ .I3 .ZR 0R~ 1TH 29B 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT ABDFA ABEJV ABEUO ABGNP ABIME ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNGD ABNHQ ABNKS ABPIB ABPQP ABPTD ABQLI ABQTQ ABSMQ ABVGC ABWST ABXVV ABXZS ABZBJ ABZEO ACFRR ACGFS ACIWK ACPQN ACPRK ACUFI ACUKT ACUTJ ACUTO ACVCV ACZBC ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADMTO ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEHUL AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFQV AFFZL AFGWE AFIYH AFOFC AFRAH AFSHK AFYAG AGINJ AGKEF AGKRT AGMDO AGQXC AGSYK AHMBA AHMMS AHXPO AIJHB AJDVS AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO AQKUS ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVNTJ AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BTRTY BVRKM BZKNY C1A CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS EE~ EIHJH EJD ELUNK EMOBN F5P F9B FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z M49 MBLQV MBTAY ML0 N9A NGC NLBLG NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAWHX OBFPC OBOKY OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P P6G PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCN TEORI TJX TLC TMA TR2 UQL W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 AAYXX AGORE AHGBF AJBYB CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c329t-55dff794837e2324d998cf5c00f9944dcf008de14748e1a14302fd9cc727d0393 |
ISSN | 1047-3211 1460-2199 |
IngestDate | Thu Jul 10 19:23:01 EDT 2025 Thu Apr 03 07:07:26 EDT 2025 Thu Apr 24 22:54:37 EDT 2025 Tue Jul 01 00:42:32 EDT 2025 Wed Apr 02 07:05:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | fMRI functional connectivity PD individual level |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c329t-55dff794837e2324d998cf5c00f9944dcf008de14748e1a14302fd9cc727d0393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2674-4134 0000-0003-3349-8813 |
PMID | 36627247 |
PQID | 2774596914 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2774596914 pubmed_primary_36627247 crossref_citationtrail_10_1093_cercor_bhac503 crossref_primary_10_1093_cercor_bhac503 oup_primary_10_1093_cercor_bhac503 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-09 |
PublicationDateYYYYMMDD | 2023-05-09 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cerebral cortex (New York, N.Y. 1991) |
PublicationTitleAlternate | Cereb Cortex |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Lopes (2023051507112215800_ref24) 2017; 38 Glasser (2023051507112215800_ref8) 2013; 80 Kong (2023051507112215800_ref15) 2021; 31 Lin (2023051507112215800_ref20) 2019; 5 Liu (2023051507112215800_ref21) 2021; 226 Li (2023051507112215800_ref19) 2021; 759 Robinson (2023051507112215800_ref32) 2014; 100 Han (2023051507112215800_ref11) 2019; 94 Marek (2023051507112215800_ref29) 2018; 100 Oliver (2023051507112215800_ref30) 2019; 21 Fan (2023051507112215800_ref5) 2021; 42 Filippi (2023051507112215800_ref6) 2019; 6 Wang (2023051507112215800_ref40) 2020; 45 Zhang (2023051507112215800_ref48) 2016; 58 Greene (2023051507112215800_ref10) 2020; 105 Yan (2023051507112215800_ref44) 2020; 11 Yoo (2023051507112215800_ref47) 2020; 74 Kurani (2023051507112215800_ref16) 2015; 36 Tahmasian (2023051507112215800_ref36) 2017; 92 Wang (2023051507112215800_ref38) 2015; 18 Cerasa (2023051507112215800_ref1) 2016; 16 Katzen (2023051507112215800_ref13) 1998; 4 Elliott (2023051507112215800_ref3) 2019; 189 Khan (2023051507112215800_ref14) 2022; 145 Sheng (2023051507112215800_ref33) 2021; 13 Yan (2023051507112215800_ref42) 2013; 76 De Schipper (2023051507112215800_ref2) 2018; 9:419 Gratton (2023051507112215800_ref9) 2019; 29 Yang (2023051507112215800_ref45) 2020; 206 Lou (2023051507112215800_ref25) 2015; 30 Wang (2023051507112215800_ref39) 2020; 25 Suo (2023051507112215800_ref35) 2017; 285 Fan (2023051507112215800_ref4) 2020; 99 Jbabdi (2023051507112215800_ref12) 2015; 18 Loonen (2023051507112215800_ref23) 2001; 4 Ma (2023051507112215800_ref28) 2017; 11 Shi (2023051507112215800_ref34) 2017; 22 Zhou (2023051507112215800_ref49) 2022 Luo (2023051507112215800_ref26) 2015; 262 Wang (2023051507112215800_ref41) 2021; 742 Yan (2023051507112215800_ref43) 2018; 8 Prodoehl (2023051507112215800_ref31) 2014; 448 Li (2023051507112215800_ref17) 2020; 6 Lynch (2023051507112215800_ref27) 2019; 29 Yeo (2023051507112215800_ref46) 2011; 106 Liu (2023051507112215800_ref22) 2022; 304 Li (2023051507112215800_ref18) 2019; 17 Trojanowski (2023051507112215800_ref37) 2013; 72 Gao (2023051507112215800_ref7) 2016; 5 |
References_xml | – volume: 11 start-page: 430 issue: 2 year: 2017 ident: 2023051507112215800_ref28 article-title: Altered modular organization of intrinsic brain functional networks in patients with Parkinson's disease publication-title: Brain Imaging Behav doi: 10.1007/s11682-016-9524-7 – volume: 72 start-page: 546 year: 2013 ident: 2023051507112215800_ref37 article-title: The Parkinson progression marker initiative (PPMI) publication-title: J Neuropathol Exp Neurol – volume: 106 start-page: 1125 issue: 3 year: 2011 ident: 2023051507112215800_ref46 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J Neurophysiol doi: 10.1152/jn.00338.2011 – volume: 742 start-page: 135512 year: 2021 ident: 2023051507112215800_ref41 article-title: Investigation of sensorimotor dysfunction in Parkinson disease by resting-state fMRI publication-title: Neurosci Lett doi: 10.1016/j.neulet.2020.135512 – volume: 29 start-page: 3912 issue: 9 year: 2019 ident: 2023051507112215800_ref27 article-title: Precision inhibitory stimulation of individual-specific cortical hubs disrupts information processing in humans publication-title: Cereb Cortex doi: 10.1093/cercor/bhy270 – volume: 759 start-page: 135970 year: 2021 ident: 2023051507112215800_ref19 article-title: Disrupted functional brain network topology in Parkinson's disease patients with freezing of gait publication-title: Neurosci Lett doi: 10.1016/j.neulet.2021.135970 – volume: 45 start-page: 1579 issue: 9 year: 2020 ident: 2023051507112215800_ref40 article-title: Functional connectivity underpinnings of electroconvulsive therapy-induced memory impairments in patients with depression publication-title: Neuropsychopharmacology doi: 10.1038/s41386-020-0711-2 – volume: 189 start-page: 516 year: 2019 ident: 2023051507112215800_ref3 article-title: General functional connectivity: shared features of resting-state and task fMRI drive reliable and heritable individual differences in functional brain networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.01.068 – volume: 5 start-page: 18 issue: 1 year: 2016 ident: 2023051507112215800_ref7 article-title: The study of brain functional connectivity in Parkinson’s disease publication-title: Transl Neurodegener doi: 10.1186/s40035-016-0066-0 – volume: 76 start-page: 183 year: 2013 ident: 2023051507112215800_ref42 article-title: A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.03.004 – volume: 206 start-page: 116318 year: 2020 ident: 2023051507112215800_ref45 article-title: Sample sizes and population differences in brain template construction publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.116318 – volume: 6 start-page: 104 issue: 2 year: 2019 ident: 2023051507112215800_ref6 article-title: Resting-state functional MRI in parkinsonian syndromes publication-title: Mov Disord Clin Pract doi: 10.1002/mdc3.12730 – volume: 6 start-page: 210 issue: 3 year: 2020 ident: 2023051507112215800_ref17 article-title: Thoughts on neurophysiological signal analysis and classification publication-title: Brain Sci Adv doi: 10.26599/BSA.2020.9050020 – volume: 105 start-page: 742 issue: 4 year: 2020 ident: 2023051507112215800_ref10 article-title: Integrative and network-specific connectivity of the basal ganglia and thalamus defined in individuals publication-title: Neuron doi: 10.1016/j.neuron.2019.11.012 – volume: 30 start-page: 1777 issue: 13 year: 2015 ident: 2023051507112215800_ref25 article-title: Altered brain network centrality in depressed Parkinson's disease patients publication-title: Mov Disord doi: 10.1002/mds.26321 – volume: 4 start-page: 285 issue: 3 year: 1998 ident: 2023051507112215800_ref13 article-title: Age of disease onset influences cognition in Parkinson's disease publication-title: J Int Neuropsychol Soc doi: 10.1017/S1355617798002859 – volume: 5 start-page: 169 issue: 3 year: 2019 ident: 2023051507112215800_ref20 article-title: The role of blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) combined with diffusion tensor imaging (DTI) in surgery for tumors involving motor pathways publication-title: Brain Sci Adv doi: 10.26599/BSA.2019.9050007 – volume: 226 start-page: 2205 issue: 7 year: 2021 ident: 2023051507112215800_ref21 article-title: Disrupted rich-club organization of brain structural networks in Parkinson's disease publication-title: Brain Struct Funct doi: 10.1007/s00429-021-02319-3 – volume: 100 start-page: 977 issue: 4 year: 2018 ident: 2023051507112215800_ref29 article-title: Spatial and temporal organization of the individual human cerebellum publication-title: Neuron doi: 10.1016/j.neuron.2018.10.010 – volume: 74 start-page: 16 year: 2020 ident: 2023051507112215800_ref47 article-title: Impaired functional connectivity of sensorimotor network predicts recovery in drug-induced parkinsonism publication-title: Parkinsonism Relat Disord doi: 10.1016/j.parkreldis.2020.03.031 – volume: 4 start-page: 347 issue: 04 year: 2001 ident: 2023051507112215800_ref23 article-title: The schedule for the assessment of drug-induced movement disorders (SADIMoD): inter-rater reliability and construct validity publication-title: Int J Neuropsychopharmacol doi: 10.1017/S1461145701002589 – volume: 99 start-page: 109860 year: 2020 ident: 2023051507112215800_ref4 article-title: A temporal chronnectomic framework: cigarette smoking preserved the prefrontal dysfunction in schizophrenia publication-title: Prog Neuro-Psychopharmacol Biol Psychiatry doi: 10.1016/j.pnpbp.2020.109860 – volume: 18 start-page: 1853 issue: 12 year: 2015 ident: 2023051507112215800_ref38 article-title: Parcellating cortical functional networks in individuals publication-title: Nat Neurosci doi: 10.1038/nn.4164 – volume: 94 start-page: 109665 year: 2019 ident: 2023051507112215800_ref11 article-title: Decreased static and increased dynamic global signal topography in major depressive disorder publication-title: Prog Neuro-Psychopharmacol Biol Psychiatry doi: 10.1016/j.pnpbp.2019.109665 – volume: 145 start-page: 1785 issue: 5 year: 2022 ident: 2023051507112215800_ref14 article-title: Personalized brain models identify neurotransmitter receptor changes in Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awab375 – volume: 36 start-page: 462 issue: 1 year: 2015 ident: 2023051507112215800_ref16 article-title: Subthalamic nucleus-sensorimotor cortex functional connectivity in de novo and moderate Parkinson's disease publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2014.07.004 – volume: 17 start-page: 27 issue: 3 year: 2019 ident: 2023051507112215800_ref18 article-title: Performing group-level functional image analyses based on homologous functional regions mapped in individuals publication-title: PLoS Biol doi: 10.1371/journal.pbio.2007032 – volume: 9:419 year: 2018 ident: 2023051507112215800_ref2 article-title: Altered whole-brain and network-based functional connectivity in Parkinson's disease publication-title: Front Neurol – volume: 22 start-page: 1230 issue: 9 year: 2017 ident: 2023051507112215800_ref34 article-title: Connectome imaging for mapping human brain pathways publication-title: Mol Psychiatry doi: 10.1038/mp.2017.92 – start-page: 1 year: 2022 ident: 2023051507112215800_ref49 article-title: Abnormal functional connectivity of brain regions associated with fear network model in panic disorder publication-title: World J Biol Psychiatry – volume: 38 start-page: 1604 issue: 3 year: 2017 ident: 2023051507112215800_ref24 article-title: Cognitive phenotypes in Parkinson's disease differ in terms of brain-network organization and connectivity publication-title: Hum Brain Mapp doi: 10.1002/hbm.23474 – volume: 21 issue: 9 year: 2019 ident: 2023051507112215800_ref30 article-title: Quantifying the variability in resting-state networks publication-title: Entropy doi: 10.3390/e21090882 – volume: 80 start-page: 105 year: 2013 ident: 2023051507112215800_ref8 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 31 start-page: 4477 issue: 10 year: 2021 ident: 2023051507112215800_ref15 article-title: Individual-specific areal-level parcellations improve functional connectivity prediction of behavior publication-title: Cereb Cortex doi: 10.1093/cercor/bhab101 – volume: 100 start-page: 414 year: 2014 ident: 2023051507112215800_ref32 article-title: MSM: a new flexible framework for multimodal surface matching publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.05.069 – volume: 11 start-page: 5046 issue: 1 year: 2020 ident: 2023051507112215800_ref44 article-title: Reconstructing lost BOLD signal in individual participants using deep machine learning publication-title: Nat Commun doi: 10.1038/s41467-020-18823-9 – volume: 58 start-page: 503 issue: 5 year: 2016 ident: 2023051507112215800_ref48 article-title: Relationship between functional connectivity and motor function assessment in stroke patients with hemiplegia: a resting-state functional MRI study publication-title: Neuroradiology doi: 10.1007/s00234-016-1646-5 – volume: 16 issue: 10 year: 2016 ident: 2023051507112215800_ref1 article-title: Connectivity changes in Parkinson's disease publication-title: Curr Neurol Neurosci Rep doi: 10.1007/s11910-016-0687-9 – volume: 8 start-page: 3237 issue: 12 year: 2018 ident: 2023051507112215800_ref43 article-title: Rich club disturbances of the human connectome from subjective cognitive decline to Alzheimer's disease publication-title: Theranostics doi: 10.7150/thno.23772 – volume: 13 start-page: 723948 year: 2021 ident: 2023051507112215800_ref33 article-title: Altered cortical cholinergic network in Parkinson's disease at different stage: a resting-state fMRI study publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2021.723948 – volume: 18 start-page: 1546 issue: 11 year: 2015 ident: 2023051507112215800_ref12 article-title: Measuring macroscopic brain connections in vivo publication-title: Nat Neurosci doi: 10.1038/nn.4134 – volume: 262 start-page: 1557 issue: 6 year: 2015 ident: 2023051507112215800_ref26 article-title: Functional connectome assessed using graph theory in drug-naive Parkinson's disease publication-title: J Neurol doi: 10.1007/s00415-015-7750-3 – volume: 285 start-page: 904 issue: 3 year: 2017 ident: 2023051507112215800_ref35 article-title: Functional brain connectome and its relation to Hoehn and Yahr stage in Parkinson disease publication-title: Radiology doi: 10.1148/radiol.2017162929 – volume: 25 start-page: 2119 issue: 9 year: 2020 ident: 2023051507112215800_ref39 article-title: Individual-specific functional connectivity markers track dimensional and categorical features of psychotic illness publication-title: Mol Psychiatry doi: 10.1038/s41380-018-0276-1 – volume: 92 start-page: 119 year: 2017 ident: 2023051507112215800_ref36 article-title: Resting-state functional reorganization in Parkinson's disease: an activation likelihood estimation meta-analysis publication-title: Cortex doi: 10.1016/j.cortex.2017.03.016 – volume: 304 start-page: 624 issue: 3 year: 2022 ident: 2023051507112215800_ref22 article-title: Resting-state functional MRI of healthy adults: temporal dynamic brain coactivation patterns publication-title: Radiology doi: 10.1148/radiol.211762 – volume: 448 year: 2014 ident: 2023051507112215800_ref31 article-title: Resting state functional magnetic resonance imaging in Parkinson’s disease publication-title: Mov Disord – volume: 42 start-page: 1475 issue: 5 year: 2021 ident: 2023051507112215800_ref5 article-title: Individual-specific functional connectome biomarkers predict schizophrenia positive symptoms during adolescent brain maturation publication-title: Hum Brain Mapp doi: 10.1002/hbm.25307 – volume: 29 start-page: 2509 issue: 6 year: 2019 ident: 2023051507112215800_ref9 article-title: Emergent functional network effects in Parkinson disease publication-title: Cereb Cortex doi: 10.1093/cercor/bhy121 |
SSID | ssj0017252 |
Score | 2.4648147 |
Snippet | Abstract
Abnormalities in functional connectivity networks are associated with sensorimotor networks in Parkinson’s disease (PD) based on group-level mapping... Abnormalities in functional connectivity networks are associated with sensorimotor networks in Parkinson’s disease (PD) based on group-level mapping studies,... Abnormalities in functional connectivity networks are associated with sensorimotor networks in Parkinson's disease (PD) based on group-level mapping studies,... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6282 |
SubjectTerms | Brain - diagnostic imaging Connectome Humans Magnetic Resonance Imaging - methods Parkinson Disease |
Title | Individual-level functional connectomes predict the motor symptoms of Parkinson’s disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36627247 https://www.proquest.com/docview/2774596914 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiEuCFoey0sGITisQhPbeR3Lo2oL5UIrKjhEiWPTlUqyymYlyom_wR_gh_FLmImdx9KuKFyildfr1Xq-HY9nvpkh5Ikv0jRTbuboWDIH7l_aiTTPHOGjuZF5OhKY77z_Ltg5FHtH_tFo9HPAWlrU2XP57dy8kv-RKoyBXDFL9h8k2y0KA_Aa5AtPkDA8LyTj3S6byjlB8s8ETynr3JPIYJF1icWYZhWGY5qsxQmIpsQCzl9m8J6hwKXoL0dSiCU-xPOluE1bx0BVGGTGlatafT2vjc8EGU4D38L7pmPw5ONxWXw-7WG4N7VO6hdlxweaLgxyQNADwH6wE99Oh94JZriAvQ5ckfU4ULhYKYIzq3CVGROB64AmjYda2pTLaNHoDnRuwEz7Int-B8z0Hz1zNpi6WVJVEh0h29lxKn2X9-dgx05cPfkSuczgOoKdMl7tvumiVSHzWVv1An9LVxyUb5oVNu3nl4yfpYTKM_eaxr45uE6u2YsJ3TIou0FGqlgnG1tFCjA5pU9pQxVuYjDr5Mq-ZWRskE9_YpD2GKQDDFKLQQoYpA0GaYtBWmraYfDX9x9zatF3kxxuvz54uePYhh2O5CyuHd_PtQYFH_FQoaWew11eal-6ro5jIXKpweLMlSdCESkvBVPdZTqPpQQjOsck8VtkrSgLdYdQxrnmEszNLOYC8BCFkZfKSEc8d7Ms9MfEaXcykbaaPTZVOUkMq4InZucTu_Nj8qybPzN1XFbOfAyC-eukR63cEtDHGGRLC1Uu5gngQ_hxEHtiTG4bgXZrcey2wER49yJfcY9c7f9Q98laXS3UAzCA6-xhg77fbya0Kg |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Individual-level+functional+connectomes+predict+the+motor+symptoms+of+Parkinson%E2%80%99s+disease&rft.jtitle=Cerebral+cortex+%28New+York%2C+N.Y.+1991%29&rft.au=Shi%2C+Zhongyan&rft.au=Jiang%2C+Bo&rft.au=Liu%2C+Tiantian&rft.au=Wang%2C+Li&rft.date=2023-05-09&rft.pub=Oxford+University+Press&rft.issn=1047-3211&rft.eissn=1460-2199&rft.volume=33&rft.issue=10&rft.spage=6282&rft.epage=6290&rft_id=info:doi/10.1093%2Fcercor%2Fbhac503&rft.externalDocID=10.1093%2Fcercor%2Fbhac503 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3211&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3211&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3211&client=summon |