Emotion Recognition Based on High-Resolution EEG Recordings and Reconstructed Brain Sources

Electroencephalography (EEG)-based emotion recognition is currently a hot issue in the affective computing community. Numerous studies have been published on this topic, following generally the same schema: 1) presentation of emotional stimuli to a number of subjects during the recording of their EE...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on affective computing Vol. 11; no. 2; pp. 244 - 257
Main Authors Becker, Hanna, Fleureau, Julien, Guillotel, Philippe, Wendling, Fabrice, Merlet, Isabelle, Albera, Laurent
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN1949-3045
1949-3045
DOI10.1109/TAFFC.2017.2768030

Cover

Loading…
Abstract Electroencephalography (EEG)-based emotion recognition is currently a hot issue in the affective computing community. Numerous studies have been published on this topic, following generally the same schema: 1) presentation of emotional stimuli to a number of subjects during the recording of their EEG, 2) application of machine learning techniques to classify the subjects' emotions. The proposed approaches vary mainly in the type of features extracted from the EEG and in the employed classifiers, but it is difficult to compare the reported results due to the use of different datasets. In this paper, we present a new database for the analysis of valence (positive or negative emotions), which is made publicly available. The database comprises physiological recordings and 257-channel EEG data, contrary to all previously published datasets, which include at most 62 EEG channels. Furthermore, we reconstruct the brain activity on the cortical surface by applying source localization techniques. We then compare the performances of valence classification that can be achieved with various features extracted from all source regions (source space features) and from all EEG channels (sensor space features), showing that the source reconstruction improves the classification results. Finally, we discuss the influence of several parameters on the classification scores.
AbstractList Electroencephalography (EEG)-based emotion recognition is currently a hot issue in the affective computing community. Numerous studies have been published on this topic, following generally the same schema: 1) presentation of emotional stimuli to a number of subjects during the recording of their EEG, 2) application of machine learning techniques to classify the subjects’ emotions. The proposed approaches vary mainly in the type of features extracted from the EEG and in the employed classifiers, but it is difficult to compare the reported results due to the use of different datasets. In this paper, we present a new database for the analysis of valence (positive or negative emotions), which is made publicly available. The database comprises physiological recordings and 257-channel EEG data, contrary to all previously published datasets, which include at most 62 EEG channels. Furthermore, we reconstruct the brain activity on the cortical surface by applying source localization techniques. We then compare the performances of valence classification that can be achieved with various features extracted from all source regions (source space features) and from all EEG channels (sensor space features), showing that the source reconstruction improves the classification results. Finally, we discuss the influence of several parameters on the classification scores.
Electroencephalography (EEG)-based emotion recognition is currently a hot issue in the affective computing community. Numerous studies have been published on this topic, following generally the same schema 1) presentation of emotional stimuli to a number of subjects during the recording of their EEG, 2) application of machine learning techniques to classify the subjects' emotions. The proposed approaches vary mainly in the type of features extracted from the EEG and in the employed classifiers, but it is difficult to compare the reported results due to the use of different datasets. In this paper, we present a new database for the analysis of valence (positive or negative emotions), which is made publicly available. The database comprises physiological recordings and 257-channel EEG data, contrary to all previously published datasets, which include at most 62 EEG channels. Furthermore, we reconstruct the brain activity on the cortical surface by applying source localization techniques. We then compare the performances of valence classification that can be achieved with various features extracted from all source regions (source space features) and from all EEG channels (sensor space features), showing that the source reconstruction improves the classification results. Finally, we discuss the influence of several parameters on the classification scores. © 2010-2012 IEEE.
Author Guillotel, Philippe
Wendling, Fabrice
Fleureau, Julien
Becker, Hanna
Merlet, Isabelle
Albera, Laurent
Author_xml – sequence: 1
  givenname: Hanna
  orcidid: 0000-0003-2283-3110
  surname: Becker
  fullname: Becker, Hanna
  email: hannabecker6@hotmail.com
  organization: Technicolor R&D France, Cesson-Sévigné, France
– sequence: 2
  givenname: Julien
  surname: Fleureau
  fullname: Fleureau, Julien
  email: julien.fleureau@technicolor.com
  organization: Technicolor R&D France, Cesson-Sévigné, France
– sequence: 3
  givenname: Philippe
  orcidid: 0000-0002-1169-4349
  surname: Guillotel
  fullname: Guillotel, Philippe
  email: philippe.guillotel@technicolor.com
  organization: Technicolor R&D France, Cesson-Sévigné, France
– sequence: 4
  givenname: Fabrice
  orcidid: 0000-0003-2428-9665
  surname: Wendling
  fullname: Wendling, Fabrice
  email: fabrice.wendling@univ-rennes1.fr
  organization: INSERM, U1099, Rennes, France
– sequence: 5
  givenname: Isabelle
  surname: Merlet
  fullname: Merlet, Isabelle
  email: isabelle.merlet@univ-rennes1.fr
  organization: INSERM, U1099, Rennes, France
– sequence: 6
  givenname: Laurent
  surname: Albera
  fullname: Albera, Laurent
  email: laurent.albera@univ-rennes1.fr
  organization: INSERM, U1099, Rennes, France
BackLink https://hal.science/hal-02891691$$DView record in HAL
BookMark eNp9kE9PAjEQxRuDiYh-Ab2QePKw2HZ2t-0RyAImJCb-OXlolm4XSqDFdjHx21sWNcaDvcxM-3uT13eOOtZZjdAVwQNCsLh7Hk4m4wHFhA0oyzkGfIK6RKQiAZxmnV_9GboMYY3jAYCcsi56LbauMc72H7VyS2vaflQGXfVjMzPLVfKog9vs24eimLagr4xdhn5pq3a0ofF71UTNyJfG9p_c3isdLtBpXW6CvvyqPfQyKZ7Hs2T-ML0fD-eJAiqaJKOE5WRBBdYVCJIrrVOepiBSxRTPVL2oREorxnSlMOQYBM7qTAHwyEEN0EO3x72rciN33mxL_yFdaeRsOJeHO0x53CvIO4nszZHdefe216GR62jWRnuSppjnGY8lUvxIKe9C8LqWyjTlIYImfnAjCZaH5GWbvDwkL7-Sj1L6R_rt6F_R9VFktNY_Ao65YMDgE913jsI
CODEN ITACBQ
CitedBy_id crossref_primary_10_1007_s12559_022_10016_4
crossref_primary_10_3390_brainsci10100669
crossref_primary_10_1111_psyp_14446
crossref_primary_10_1038_s41598_025_86040_9
crossref_primary_10_1109_JPROC_2023_3277471
crossref_primary_10_1016_j_jneumeth_2024_110358
crossref_primary_10_3390_s25072029
crossref_primary_10_1088_1741_2552_acbfe0
crossref_primary_10_1016_j_hcc_2023_100118
crossref_primary_10_1109_ACCESS_2019_2944008
crossref_primary_10_1088_1741_2552_ac6d7d
crossref_primary_10_1177_09727531241234727
crossref_primary_10_3390_systems10040111
crossref_primary_10_1109_TBME_2018_2793882
crossref_primary_10_1109_ACCESS_2020_3032380
crossref_primary_10_1109_TMI_2024_3506596
crossref_primary_10_1016_j_cmpb_2022_106646
crossref_primary_10_1016_j_bspc_2023_104783
crossref_primary_10_1016_j_bspc_2023_105037
crossref_primary_10_1109_TAFFC_2020_2982143
crossref_primary_10_3390_electronics12183810
crossref_primary_10_1007_s00521_024_10240_z
crossref_primary_10_1007_s12652_020_01985_1
crossref_primary_10_1109_TAFFC_2021_3068496
crossref_primary_10_1109_TCSS_2024_3420445
crossref_primary_10_1016_j_bspc_2024_106189
crossref_primary_10_1016_j_bspc_2021_103332
crossref_primary_10_1080_10447318_2023_2254626
crossref_primary_10_1109_ACCESS_2020_2966144
crossref_primary_10_1016_j_bspc_2022_103700
crossref_primary_10_3390_brainsci12020218
crossref_primary_10_1109_TAFFC_2024_3407380
crossref_primary_10_1186_s12859_023_05544_1
crossref_primary_10_1109_TCYB_2023_3320107
crossref_primary_10_1109_TAFFC_2018_2890636
crossref_primary_10_1016_j_compedu_2024_105111
crossref_primary_10_3390_s22228808
crossref_primary_10_3390_s21216985
crossref_primary_10_1016_j_asoc_2020_106954
crossref_primary_10_1142_S1469026821500231
crossref_primary_10_26599_BSA_2020_9050026
crossref_primary_10_1007_s10489_023_04971_0
crossref_primary_10_2478_amns_2025_0500
crossref_primary_10_1109_TAFFC_2022_3170369
crossref_primary_10_1109_TBME_2020_2987168
crossref_primary_10_1155_2021_5582666
crossref_primary_10_3390_s21124035
crossref_primary_10_1007_s42486_023_00129_6
crossref_primary_10_3390_e24050577
crossref_primary_10_1016_j_bspc_2020_101902
crossref_primary_10_1007_s11042_021_11304_1
crossref_primary_10_2139_ssrn_3987850
crossref_primary_10_1016_j_bspc_2023_105136
crossref_primary_10_1109_ACCESS_2020_2980893
crossref_primary_10_3390_brainsci14121166
crossref_primary_10_3390_electronics9121988
crossref_primary_10_1109_JIOT_2021_3079461
crossref_primary_10_1109_TIM_2025_3533618
crossref_primary_10_1109_TBME_2022_3202751
crossref_primary_10_3390_electronics11060888
crossref_primary_10_1016_j_bspc_2021_102979
crossref_primary_10_1109_TAFFC_2018_2885474
crossref_primary_10_25046_aj050603
crossref_primary_10_3390_s21031018
Cites_doi 10.1109/TAFFC.2015.2396531
10.1037//0003-066X.50.5.372
10.2478/v10175-012-0052-3
10.1371/journal.pone.0105041
10.1109/T-AFFC.2011.15
10.1007/BF02471106
10.1080/02699930802204677
10.3390/s140813361
10.1016/j.jneumeth.2006.05.033
10.1016/j.neuroimage.2012.01.060
10.1016/j.neubiorev.2011.05.001
10.1155/2014/627892
10.1093/cercor/bhv001
10.1080/02699930903274322
10.1109/TAFFC.2014.2339834
10.1007/978-3-540-74889-2_43
10.1109/TAMD.2015.2431497
10.1109/TSP.2009.2020752
10.1002/0470013494.ch3
10.1017/S0140525X11000446
10.1109/T-AFFC.2012.2
10.1109/ACII.2009.5349479
10.1109/MSP.2015.2413711
10.1109/79.911197
10.1016/j.neuroimage.2006.01.021
10.1109/TBME.2015.2467312
10.1093/scan/nsu002
10.1109/TMI.2004.837363
10.7551/mitpress/1140.001.0001
10.1371/journal.pone.0095415
10.1109/TAFFC.2015.2436926
10.1155/2011/879716
10.1155/2013/573734
10.1109/ACII.2013.160
10.1016/0167-2789(88)90081-4
10.1142/S1793351X09000744
10.1109/ICASSP.2014.6854493
10.1186/1475-925X-9-45
10.1109/T-AFFC.2011.25
10.1109/TITB.2009.2034649
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
DOI 10.1109/TAFFC.2017.2768030
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1949-3045
EndPage 257
ExternalDocumentID oai_HAL_hal_02891691v1
10_1109_TAFFC_2017_2768030
8089737
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNI
RZB
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c329t-521761b290ed3916cee4844394c7c85cfbd942d77edc03603905f5c338e483f33
IEDL.DBID RIE
ISSN 1949-3045
IngestDate Fri May 09 12:27:15 EDT 2025
Mon Jun 30 04:57:14 EDT 2025
Tue Jul 01 02:57:52 EDT 2025
Thu Apr 24 22:56:35 EDT 2025
Wed Aug 27 02:38:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords source localization
functional connectivity
emotion recognition
EEG
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-521761b290ed3916cee4844394c7c85cfbd942d77edc03603905f5c338e483f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2428-9665
0000-0003-2283-3110
0000-0002-1169-4349
0000-0002-2109-5649
PQID 2408658240
PQPubID 2040414
PageCount 14
ParticipantIDs proquest_journals_2408658240
crossref_primary_10_1109_TAFFC_2017_2768030
ieee_primary_8089737
hal_primary_oai_HAL_hal_02891691v1
crossref_citationtrail_10_1109_TAFFC_2017_2768030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on affective computing
PublicationTitleAbbrev T-AFFC
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref15
ref14
ref11
ref10
ref17
ref16
ref18
becker (ref40) 2014
ref50
ref46
ref45
ref48
ref42
ref41
sourina (ref47) 2011
ref44
ref43
pascual-marqui (ref39) 2002; 24
ref8
ref7
ref9
pascual-marqui (ref38) 1999; 1
picard (ref1) 1997; 252
ref4
ref3
ref6
ref5
ref35
ref34
ref37
ref36
li (ref49) 2009
ref31
choppin (ref12) 2000
ref30
ref32
gramfort (ref33) 2009
ref2
savran (ref23) 0
ref24
ref26
ref25
ref20
park (ref19) 2013
ref22
ref28
ref27
lang (ref21) 0
ref29
References_xml – ident: ref29
  doi: 10.1109/TAFFC.2015.2396531
– ident: ref4
  doi: 10.1037//0003-066X.50.5.372
– start-page: 209
  year: 2011
  ident: ref47
  article-title: A fractal-based algorithm of emotion recognition from EEG using arousal-valence model
  publication-title: Proc Int Conf Bio-Inspired Syst Signal Process
– ident: ref22
  doi: 10.2478/v10175-012-0052-3
– ident: ref45
  doi: 10.1371/journal.pone.0105041
– start-page: 1223
  year: 2009
  ident: ref49
  article-title: Emotion classification based on gamma-band EEG
  publication-title: Proc 31st Annu Int Conf IEEE Eng Med Biol Soc
– ident: ref9
  doi: 10.1109/T-AFFC.2011.15
– volume: 24
  start-page: 5
  year: 2002
  ident: ref39
  article-title: Standardized low resolution brain electromagnetic tomography (sLORETA): Technical details
  publication-title: Meth Findings Experimental Clin Pharmacol
– ident: ref11
  doi: 10.1007/BF02471106
– ident: ref5
  doi: 10.1080/02699930802204677
– ident: ref16
  doi: 10.3390/s140813361
– ident: ref31
  doi: 10.1016/j.jneumeth.2006.05.033
– ident: ref44
  doi: 10.1016/j.neuroimage.2012.01.060
– ident: ref50
  doi: 10.1016/j.neubiorev.2011.05.001
– ident: ref17
  doi: 10.1155/2014/627892
– ident: ref42
  doi: 10.1093/cercor/bhv001
– year: 0
  ident: ref23
  article-title: Emotiondetection in the loop from brain signals and facial images
  publication-title: Proc eNTERFACE Workshop
– ident: ref30
  doi: 10.1080/02699930903274322
– ident: ref14
  doi: 10.1109/TAFFC.2014.2339834
– ident: ref28
  doi: 10.1007/978-3-540-74889-2_43
– ident: ref24
  doi: 10.1109/TAMD.2015.2431497
– ident: ref26
  doi: 10.1109/TSP.2009.2020752
– ident: ref3
  doi: 10.1002/0470013494.ch3
– ident: ref41
  doi: 10.1017/S0140525X11000446
– year: 0
  ident: ref21
  article-title: International affective picture system (IAPS): Affective ratings of pictures and instruction manual
– ident: ref8
  doi: 10.1109/T-AFFC.2012.2
– ident: ref2
  doi: 10.1109/ACII.2009.5349479
– year: 2009
  ident: ref33
  article-title: Mapping, timing and tracking cortical activations with MEG and EEG: Methods and application to human vision
– ident: ref37
  doi: 10.1109/MSP.2015.2413711
– ident: ref6
  doi: 10.1109/79.911197
– ident: ref32
  doi: 10.1016/j.neuroimage.2006.01.021
– ident: ref27
  doi: 10.1109/TBME.2015.2467312
– ident: ref43
  doi: 10.1093/scan/nsu002
– ident: ref36
  doi: 10.1109/TMI.2004.837363
– volume: 252
  year: 1997
  ident: ref1
  publication-title: Affective Computing
  doi: 10.7551/mitpress/1140.001.0001
– ident: ref15
  doi: 10.1371/journal.pone.0095415
– ident: ref18
  doi: 10.1109/TAFFC.2015.2436926
– ident: ref34
  doi: 10.1155/2011/879716
– ident: ref13
  doi: 10.1155/2013/573734
– ident: ref20
  doi: 10.1109/ACII.2013.160
– start-page: 41
  year: 2014
  ident: ref40
  article-title: Fast, variation-based methods for the analysis of extended brain sources
  publication-title: Proc 22nd Eur Signal Process Conf
– ident: ref48
  doi: 10.1016/0167-2789(88)90081-4
– ident: ref7
  doi: 10.1142/S1793351X09000744
– ident: ref25
  doi: 10.1109/ICASSP.2014.6854493
– volume: 1
  start-page: 75
  year: 1999
  ident: ref38
  article-title: Review of methods for solving the EEG inverse problem
  publication-title: Int J Bioelectromagnetism
– ident: ref35
  doi: 10.1186/1475-925X-9-45
– ident: ref10
  doi: 10.1109/T-AFFC.2011.25
– year: 2000
  ident: ref12
  article-title: EEG-based human interface for disabled individuals: Emotion expression with neural networks
– start-page: 56
  year: 2013
  ident: ref19
  article-title: EEG-based emotion recognition during emotionally evocative films
  publication-title: Proc Int Winter Workshop Brain-Comput Interf
– ident: ref46
  doi: 10.1109/TITB.2009.2034649
SSID ssj0000333627
Score 2.478621
Snippet Electroencephalography (EEG)-based emotion recognition is currently a hot issue in the affective computing community. Numerous studies have been published on...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 244
SubjectTerms Affective computing
Bioengineering
Brain
Brain modeling
Channels
Classification
Datasets
EEG
Electroencephalography
Emotion recognition
Emotions
Feature extraction
functional connectivity
Life Sciences
Machine learning
Physiology
source localization
Videos
Title Emotion Recognition Based on High-Resolution EEG Recordings and Reconstructed Brain Sources
URI https://ieeexplore.ieee.org/document/8089737
https://www.proquest.com/docview/2408658240
https://hal.science/hal-02891691
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5aT158i_VFEG-6NZtku5tjK61F1IMPEDwszWMRlFawevDXO5N9ICriabPLBMLOJPPINzMAhyIuxERlvUj2XBKpiXARSomJrDZoLSDTfUEJzpdXvfGdOr9P7ltw3OTCeO8D-Mx3aRju8t3MvlGo7CTjmU5l2oY2Om5lrlYTT-FS4lmc1nkxXJ_c9kejUwJvpV2BRnUAOn_RPe1HQj6Glio_zuGgXEbLcFkvq8SUPHXf5qZrP75VbPzvuldgqbIyWb8Ui1Vo-ekaLNcdHFi1odfhYVh28WHXNY4IxwNUbI7hgDAgEcX3S-lkw-EZK91VCq-zydSF16oGLc4ZUL8JdhPuA1434G40vD0dR1W7hchKoefoksZpLzZCc-8oHRfVp8oUZc7a1GaJLYzTSrg09c6i3uNS86RILPq4SCcLKTdhYTqb-i1gSntdxDaZeO2UN5lx3MexNZ7rQkkRdyCuGZHbqhY5tcR4zoNPwnUemJcT8_KKeR04aua8lJU4_qQ-QP42hFREe9y_yOkb3a1SiaB3XMY6MauhqvjUgd1aHPJqR7_mVAoOrTV8bP8-awcWBfniAdWzCwv46_0eGixzsx8k9RNFHeZs
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4BPcCllJdIC8VCvcEGr-3Nro8BJU0h4VCChMTBih8rJKpQicCBX98Z70OIoqqn9a7GkqVvvDNjfzMD8E2kpZipopfIns8SNRM-QS2xidMWvQUEPZSU4Dy57I2u1flNdrMEx20uTAghks9Cl4bxLt8_uCc6KjspeKFzmS_Dh4yScatsrfZEhUuJf-O8yYzh-mTaHw7PiL6VdwW61ZHq_Mr6LN8R9zE2VfnrTxzNy3AdJs3CKlbJffdpYbvu5U3Nxv9d-Sf4WPuZrF8pxgYshfkmrDc9HFi9pbfgdlD18WE_GyYRjk_RtHmGA2KBJHTCX-knGwy-sypgpQN2Npv7-FpXocU5p9Rxgl3FG4HHbbgeDqZno6RuuJA4KfQCg9I076VWaB48JeSiAVWFotxZl7sic6X1Wgmf58E7tHxcap6VmcMoF-VkKeUOrMwf5mEXmNJBl6nLZkF7FWxhPQ9p6mzgulRSpB1IGyCMq6uRU1OMXyZGJVybCJ4h8EwNXgeO2jm_q1oc_5Q-RHxbQSqjPeqPDX2j21UqEvSMy9gisFqpGqcO7DXqYOo9_WioGBz6a_j4_P6sA1gdTSdjM_5xefEF1gRF5pHjswcrCEPYR_dlYb9Grf0DbojptA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+Recognition+Based+on+High-Resolution+EEG+Recordings+and+Reconstructed+Brain+Sources&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Becker%2C+H.&rft.au=Fleureau%2C+Julien&rft.au=Guillotel%2C+Philippe&rft.au=Wendling%2C+F.&rft.date=2020-04-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1949-3045&rft.volume=11&rft.issue=2&rft.spage=244&rft.epage=257&rft_id=info:doi/10.1109%2FTAFFC.2017.2768030&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02891691v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon