Emotion Recognition Based on High-Resolution EEG Recordings and Reconstructed Brain Sources
Electroencephalography (EEG)-based emotion recognition is currently a hot issue in the affective computing community. Numerous studies have been published on this topic, following generally the same schema: 1) presentation of emotional stimuli to a number of subjects during the recording of their EE...
Saved in:
Published in | IEEE transactions on affective computing Vol. 11; no. 2; pp. 244 - 257 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
ISSN | 1949-3045 1949-3045 |
DOI | 10.1109/TAFFC.2017.2768030 |
Cover
Loading…
Abstract | Electroencephalography (EEG)-based emotion recognition is currently a hot issue in the affective computing community. Numerous studies have been published on this topic, following generally the same schema: 1) presentation of emotional stimuli to a number of subjects during the recording of their EEG, 2) application of machine learning techniques to classify the subjects' emotions. The proposed approaches vary mainly in the type of features extracted from the EEG and in the employed classifiers, but it is difficult to compare the reported results due to the use of different datasets. In this paper, we present a new database for the analysis of valence (positive or negative emotions), which is made publicly available. The database comprises physiological recordings and 257-channel EEG data, contrary to all previously published datasets, which include at most 62 EEG channels. Furthermore, we reconstruct the brain activity on the cortical surface by applying source localization techniques. We then compare the performances of valence classification that can be achieved with various features extracted from all source regions (source space features) and from all EEG channels (sensor space features), showing that the source reconstruction improves the classification results. Finally, we discuss the influence of several parameters on the classification scores. |
---|---|
AbstractList | Electroencephalography (EEG)-based emotion recognition is currently a hot issue in the affective computing community. Numerous studies have been published on this topic, following generally the same schema: 1) presentation of emotional stimuli to a number of subjects during the recording of their EEG, 2) application of machine learning techniques to classify the subjects’ emotions. The proposed approaches vary mainly in the type of features extracted from the EEG and in the employed classifiers, but it is difficult to compare the reported results due to the use of different datasets. In this paper, we present a new database for the analysis of valence (positive or negative emotions), which is made publicly available. The database comprises physiological recordings and 257-channel EEG data, contrary to all previously published datasets, which include at most 62 EEG channels. Furthermore, we reconstruct the brain activity on the cortical surface by applying source localization techniques. We then compare the performances of valence classification that can be achieved with various features extracted from all source regions (source space features) and from all EEG channels (sensor space features), showing that the source reconstruction improves the classification results. Finally, we discuss the influence of several parameters on the classification scores. Electroencephalography (EEG)-based emotion recognition is currently a hot issue in the affective computing community. Numerous studies have been published on this topic, following generally the same schema 1) presentation of emotional stimuli to a number of subjects during the recording of their EEG, 2) application of machine learning techniques to classify the subjects' emotions. The proposed approaches vary mainly in the type of features extracted from the EEG and in the employed classifiers, but it is difficult to compare the reported results due to the use of different datasets. In this paper, we present a new database for the analysis of valence (positive or negative emotions), which is made publicly available. The database comprises physiological recordings and 257-channel EEG data, contrary to all previously published datasets, which include at most 62 EEG channels. Furthermore, we reconstruct the brain activity on the cortical surface by applying source localization techniques. We then compare the performances of valence classification that can be achieved with various features extracted from all source regions (source space features) and from all EEG channels (sensor space features), showing that the source reconstruction improves the classification results. Finally, we discuss the influence of several parameters on the classification scores. © 2010-2012 IEEE. |
Author | Guillotel, Philippe Wendling, Fabrice Fleureau, Julien Becker, Hanna Merlet, Isabelle Albera, Laurent |
Author_xml | – sequence: 1 givenname: Hanna orcidid: 0000-0003-2283-3110 surname: Becker fullname: Becker, Hanna email: hannabecker6@hotmail.com organization: Technicolor R&D France, Cesson-Sévigné, France – sequence: 2 givenname: Julien surname: Fleureau fullname: Fleureau, Julien email: julien.fleureau@technicolor.com organization: Technicolor R&D France, Cesson-Sévigné, France – sequence: 3 givenname: Philippe orcidid: 0000-0002-1169-4349 surname: Guillotel fullname: Guillotel, Philippe email: philippe.guillotel@technicolor.com organization: Technicolor R&D France, Cesson-Sévigné, France – sequence: 4 givenname: Fabrice orcidid: 0000-0003-2428-9665 surname: Wendling fullname: Wendling, Fabrice email: fabrice.wendling@univ-rennes1.fr organization: INSERM, U1099, Rennes, France – sequence: 5 givenname: Isabelle surname: Merlet fullname: Merlet, Isabelle email: isabelle.merlet@univ-rennes1.fr organization: INSERM, U1099, Rennes, France – sequence: 6 givenname: Laurent surname: Albera fullname: Albera, Laurent email: laurent.albera@univ-rennes1.fr organization: INSERM, U1099, Rennes, France |
BackLink | https://hal.science/hal-02891691$$DView record in HAL |
BookMark | eNp9kE9PAjEQxRuDiYh-Ab2QePKw2HZ2t-0RyAImJCb-OXlolm4XSqDFdjHx21sWNcaDvcxM-3uT13eOOtZZjdAVwQNCsLh7Hk4m4wHFhA0oyzkGfIK6RKQiAZxmnV_9GboMYY3jAYCcsi56LbauMc72H7VyS2vaflQGXfVjMzPLVfKog9vs24eimLagr4xdhn5pq3a0ofF71UTNyJfG9p_c3isdLtBpXW6CvvyqPfQyKZ7Hs2T-ML0fD-eJAiqaJKOE5WRBBdYVCJIrrVOepiBSxRTPVL2oREorxnSlMOQYBM7qTAHwyEEN0EO3x72rciN33mxL_yFdaeRsOJeHO0x53CvIO4nszZHdefe216GR62jWRnuSppjnGY8lUvxIKe9C8LqWyjTlIYImfnAjCZaH5GWbvDwkL7-Sj1L6R_rt6F_R9VFktNY_Ao65YMDgE913jsI |
CODEN | ITACBQ |
CitedBy_id | crossref_primary_10_1007_s12559_022_10016_4 crossref_primary_10_3390_brainsci10100669 crossref_primary_10_1111_psyp_14446 crossref_primary_10_1038_s41598_025_86040_9 crossref_primary_10_1109_JPROC_2023_3277471 crossref_primary_10_1016_j_jneumeth_2024_110358 crossref_primary_10_3390_s25072029 crossref_primary_10_1088_1741_2552_acbfe0 crossref_primary_10_1016_j_hcc_2023_100118 crossref_primary_10_1109_ACCESS_2019_2944008 crossref_primary_10_1088_1741_2552_ac6d7d crossref_primary_10_1177_09727531241234727 crossref_primary_10_3390_systems10040111 crossref_primary_10_1109_TBME_2018_2793882 crossref_primary_10_1109_ACCESS_2020_3032380 crossref_primary_10_1109_TMI_2024_3506596 crossref_primary_10_1016_j_cmpb_2022_106646 crossref_primary_10_1016_j_bspc_2023_104783 crossref_primary_10_1016_j_bspc_2023_105037 crossref_primary_10_1109_TAFFC_2020_2982143 crossref_primary_10_3390_electronics12183810 crossref_primary_10_1007_s00521_024_10240_z crossref_primary_10_1007_s12652_020_01985_1 crossref_primary_10_1109_TAFFC_2021_3068496 crossref_primary_10_1109_TCSS_2024_3420445 crossref_primary_10_1016_j_bspc_2024_106189 crossref_primary_10_1016_j_bspc_2021_103332 crossref_primary_10_1080_10447318_2023_2254626 crossref_primary_10_1109_ACCESS_2020_2966144 crossref_primary_10_1016_j_bspc_2022_103700 crossref_primary_10_3390_brainsci12020218 crossref_primary_10_1109_TAFFC_2024_3407380 crossref_primary_10_1186_s12859_023_05544_1 crossref_primary_10_1109_TCYB_2023_3320107 crossref_primary_10_1109_TAFFC_2018_2890636 crossref_primary_10_1016_j_compedu_2024_105111 crossref_primary_10_3390_s22228808 crossref_primary_10_3390_s21216985 crossref_primary_10_1016_j_asoc_2020_106954 crossref_primary_10_1142_S1469026821500231 crossref_primary_10_26599_BSA_2020_9050026 crossref_primary_10_1007_s10489_023_04971_0 crossref_primary_10_2478_amns_2025_0500 crossref_primary_10_1109_TAFFC_2022_3170369 crossref_primary_10_1109_TBME_2020_2987168 crossref_primary_10_1155_2021_5582666 crossref_primary_10_3390_s21124035 crossref_primary_10_1007_s42486_023_00129_6 crossref_primary_10_3390_e24050577 crossref_primary_10_1016_j_bspc_2020_101902 crossref_primary_10_1007_s11042_021_11304_1 crossref_primary_10_2139_ssrn_3987850 crossref_primary_10_1016_j_bspc_2023_105136 crossref_primary_10_1109_ACCESS_2020_2980893 crossref_primary_10_3390_brainsci14121166 crossref_primary_10_3390_electronics9121988 crossref_primary_10_1109_JIOT_2021_3079461 crossref_primary_10_1109_TIM_2025_3533618 crossref_primary_10_1109_TBME_2022_3202751 crossref_primary_10_3390_electronics11060888 crossref_primary_10_1016_j_bspc_2021_102979 crossref_primary_10_1109_TAFFC_2018_2885474 crossref_primary_10_25046_aj050603 crossref_primary_10_3390_s21031018 |
Cites_doi | 10.1109/TAFFC.2015.2396531 10.1037//0003-066X.50.5.372 10.2478/v10175-012-0052-3 10.1371/journal.pone.0105041 10.1109/T-AFFC.2011.15 10.1007/BF02471106 10.1080/02699930802204677 10.3390/s140813361 10.1016/j.jneumeth.2006.05.033 10.1016/j.neuroimage.2012.01.060 10.1016/j.neubiorev.2011.05.001 10.1155/2014/627892 10.1093/cercor/bhv001 10.1080/02699930903274322 10.1109/TAFFC.2014.2339834 10.1007/978-3-540-74889-2_43 10.1109/TAMD.2015.2431497 10.1109/TSP.2009.2020752 10.1002/0470013494.ch3 10.1017/S0140525X11000446 10.1109/T-AFFC.2012.2 10.1109/ACII.2009.5349479 10.1109/MSP.2015.2413711 10.1109/79.911197 10.1016/j.neuroimage.2006.01.021 10.1109/TBME.2015.2467312 10.1093/scan/nsu002 10.1109/TMI.2004.837363 10.7551/mitpress/1140.001.0001 10.1371/journal.pone.0095415 10.1109/TAFFC.2015.2436926 10.1155/2011/879716 10.1155/2013/573734 10.1109/ACII.2013.160 10.1016/0167-2789(88)90081-4 10.1142/S1793351X09000744 10.1109/ICASSP.2014.6854493 10.1186/1475-925X-9-45 10.1109/T-AFFC.2011.25 10.1109/TITB.2009.2034649 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 1XC |
DOI | 10.1109/TAFFC.2017.2768030 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1949-3045 |
EndPage | 257 |
ExternalDocumentID | oai_HAL_hal_02891691v1 10_1109_TAFFC_2017_2768030 8089737 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNI RZB AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 1XC |
ID | FETCH-LOGICAL-c329t-521761b290ed3916cee4844394c7c85cfbd942d77edc03603905f5c338e483f33 |
IEDL.DBID | RIE |
ISSN | 1949-3045 |
IngestDate | Fri May 09 12:27:15 EDT 2025 Mon Jun 30 04:57:14 EDT 2025 Tue Jul 01 02:57:52 EDT 2025 Thu Apr 24 22:56:35 EDT 2025 Wed Aug 27 02:38:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | source localization functional connectivity emotion recognition EEG |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c329t-521761b290ed3916cee4844394c7c85cfbd942d77edc03603905f5c338e483f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2428-9665 0000-0003-2283-3110 0000-0002-1169-4349 0000-0002-2109-5649 |
PQID | 2408658240 |
PQPubID | 2040414 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2408658240 crossref_primary_10_1109_TAFFC_2017_2768030 ieee_primary_8089737 hal_primary_oai_HAL_hal_02891691v1 crossref_citationtrail_10_1109_TAFFC_2017_2768030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on affective computing |
PublicationTitleAbbrev | T-AFFC |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
References | ref13 ref15 ref14 ref11 ref10 ref17 ref16 ref18 becker (ref40) 2014 ref50 ref46 ref45 ref48 ref42 ref41 sourina (ref47) 2011 ref44 ref43 pascual-marqui (ref39) 2002; 24 ref8 ref7 ref9 pascual-marqui (ref38) 1999; 1 picard (ref1) 1997; 252 ref4 ref3 ref6 ref5 ref35 ref34 ref37 ref36 li (ref49) 2009 ref31 choppin (ref12) 2000 ref30 ref32 gramfort (ref33) 2009 ref2 savran (ref23) 0 ref24 ref26 ref25 ref20 park (ref19) 2013 ref22 ref28 ref27 lang (ref21) 0 ref29 |
References_xml | – ident: ref29 doi: 10.1109/TAFFC.2015.2396531 – ident: ref4 doi: 10.1037//0003-066X.50.5.372 – start-page: 209 year: 2011 ident: ref47 article-title: A fractal-based algorithm of emotion recognition from EEG using arousal-valence model publication-title: Proc Int Conf Bio-Inspired Syst Signal Process – ident: ref22 doi: 10.2478/v10175-012-0052-3 – ident: ref45 doi: 10.1371/journal.pone.0105041 – start-page: 1223 year: 2009 ident: ref49 article-title: Emotion classification based on gamma-band EEG publication-title: Proc 31st Annu Int Conf IEEE Eng Med Biol Soc – ident: ref9 doi: 10.1109/T-AFFC.2011.15 – volume: 24 start-page: 5 year: 2002 ident: ref39 article-title: Standardized low resolution brain electromagnetic tomography (sLORETA): Technical details publication-title: Meth Findings Experimental Clin Pharmacol – ident: ref11 doi: 10.1007/BF02471106 – ident: ref5 doi: 10.1080/02699930802204677 – ident: ref16 doi: 10.3390/s140813361 – ident: ref31 doi: 10.1016/j.jneumeth.2006.05.033 – ident: ref44 doi: 10.1016/j.neuroimage.2012.01.060 – ident: ref50 doi: 10.1016/j.neubiorev.2011.05.001 – ident: ref17 doi: 10.1155/2014/627892 – ident: ref42 doi: 10.1093/cercor/bhv001 – year: 0 ident: ref23 article-title: Emotiondetection in the loop from brain signals and facial images publication-title: Proc eNTERFACE Workshop – ident: ref30 doi: 10.1080/02699930903274322 – ident: ref14 doi: 10.1109/TAFFC.2014.2339834 – ident: ref28 doi: 10.1007/978-3-540-74889-2_43 – ident: ref24 doi: 10.1109/TAMD.2015.2431497 – ident: ref26 doi: 10.1109/TSP.2009.2020752 – ident: ref3 doi: 10.1002/0470013494.ch3 – ident: ref41 doi: 10.1017/S0140525X11000446 – year: 0 ident: ref21 article-title: International affective picture system (IAPS): Affective ratings of pictures and instruction manual – ident: ref8 doi: 10.1109/T-AFFC.2012.2 – ident: ref2 doi: 10.1109/ACII.2009.5349479 – year: 2009 ident: ref33 article-title: Mapping, timing and tracking cortical activations with MEG and EEG: Methods and application to human vision – ident: ref37 doi: 10.1109/MSP.2015.2413711 – ident: ref6 doi: 10.1109/79.911197 – ident: ref32 doi: 10.1016/j.neuroimage.2006.01.021 – ident: ref27 doi: 10.1109/TBME.2015.2467312 – ident: ref43 doi: 10.1093/scan/nsu002 – ident: ref36 doi: 10.1109/TMI.2004.837363 – volume: 252 year: 1997 ident: ref1 publication-title: Affective Computing doi: 10.7551/mitpress/1140.001.0001 – ident: ref15 doi: 10.1371/journal.pone.0095415 – ident: ref18 doi: 10.1109/TAFFC.2015.2436926 – ident: ref34 doi: 10.1155/2011/879716 – ident: ref13 doi: 10.1155/2013/573734 – ident: ref20 doi: 10.1109/ACII.2013.160 – start-page: 41 year: 2014 ident: ref40 article-title: Fast, variation-based methods for the analysis of extended brain sources publication-title: Proc 22nd Eur Signal Process Conf – ident: ref48 doi: 10.1016/0167-2789(88)90081-4 – ident: ref7 doi: 10.1142/S1793351X09000744 – ident: ref25 doi: 10.1109/ICASSP.2014.6854493 – volume: 1 start-page: 75 year: 1999 ident: ref38 article-title: Review of methods for solving the EEG inverse problem publication-title: Int J Bioelectromagnetism – ident: ref35 doi: 10.1186/1475-925X-9-45 – ident: ref10 doi: 10.1109/T-AFFC.2011.25 – year: 2000 ident: ref12 article-title: EEG-based human interface for disabled individuals: Emotion expression with neural networks – start-page: 56 year: 2013 ident: ref19 article-title: EEG-based emotion recognition during emotionally evocative films publication-title: Proc Int Winter Workshop Brain-Comput Interf – ident: ref46 doi: 10.1109/TITB.2009.2034649 |
SSID | ssj0000333627 |
Score | 2.478621 |
Snippet | Electroencephalography (EEG)-based emotion recognition is currently a hot issue in the affective computing community. Numerous studies have been published on... |
SourceID | hal proquest crossref ieee |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 244 |
SubjectTerms | Affective computing Bioengineering Brain Brain modeling Channels Classification Datasets EEG Electroencephalography Emotion recognition Emotions Feature extraction functional connectivity Life Sciences Machine learning Physiology source localization Videos |
Title | Emotion Recognition Based on High-Resolution EEG Recordings and Reconstructed Brain Sources |
URI | https://ieeexplore.ieee.org/document/8089737 https://www.proquest.com/docview/2408658240 https://hal.science/hal-02891691 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5aT158i_VFEG-6NZtku5tjK61F1IMPEDwszWMRlFawevDXO5N9ICriabPLBMLOJPPINzMAhyIuxERlvUj2XBKpiXARSomJrDZoLSDTfUEJzpdXvfGdOr9P7ltw3OTCeO8D-Mx3aRju8t3MvlGo7CTjmU5l2oY2Om5lrlYTT-FS4lmc1nkxXJ_c9kejUwJvpV2BRnUAOn_RPe1HQj6Glio_zuGgXEbLcFkvq8SUPHXf5qZrP75VbPzvuldgqbIyWb8Ui1Vo-ekaLNcdHFi1odfhYVh28WHXNY4IxwNUbI7hgDAgEcX3S-lkw-EZK91VCq-zydSF16oGLc4ZUL8JdhPuA1434G40vD0dR1W7hchKoefoksZpLzZCc-8oHRfVp8oUZc7a1GaJLYzTSrg09c6i3uNS86RILPq4SCcLKTdhYTqb-i1gSntdxDaZeO2UN5lx3MexNZ7rQkkRdyCuGZHbqhY5tcR4zoNPwnUemJcT8_KKeR04aua8lJU4_qQ-QP42hFREe9y_yOkb3a1SiaB3XMY6MauhqvjUgd1aHPJqR7_mVAoOrTV8bP8-awcWBfniAdWzCwv46_0eGixzsx8k9RNFHeZs |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4BPcCllJdIC8VCvcEGr-3Nro8BJU0h4VCChMTBih8rJKpQicCBX98Z70OIoqqn9a7GkqVvvDNjfzMD8E2kpZipopfIns8SNRM-QS2xidMWvQUEPZSU4Dy57I2u1flNdrMEx20uTAghks9Cl4bxLt8_uCc6KjspeKFzmS_Dh4yScatsrfZEhUuJf-O8yYzh-mTaHw7PiL6VdwW61ZHq_Mr6LN8R9zE2VfnrTxzNy3AdJs3CKlbJffdpYbvu5U3Nxv9d-Sf4WPuZrF8pxgYshfkmrDc9HFi9pbfgdlD18WE_GyYRjk_RtHmGA2KBJHTCX-knGwy-sypgpQN2Npv7-FpXocU5p9Rxgl3FG4HHbbgeDqZno6RuuJA4KfQCg9I076VWaB48JeSiAVWFotxZl7sic6X1Wgmf58E7tHxcap6VmcMoF-VkKeUOrMwf5mEXmNJBl6nLZkF7FWxhPQ9p6mzgulRSpB1IGyCMq6uRU1OMXyZGJVybCJ4h8EwNXgeO2jm_q1oc_5Q-RHxbQSqjPeqPDX2j21UqEvSMy9gisFqpGqcO7DXqYOo9_WioGBz6a_j4_P6sA1gdTSdjM_5xefEF1gRF5pHjswcrCEPYR_dlYb9Grf0DbojptA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+Recognition+Based+on+High-Resolution+EEG+Recordings+and+Reconstructed+Brain+Sources&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Becker%2C+H.&rft.au=Fleureau%2C+Julien&rft.au=Guillotel%2C+Philippe&rft.au=Wendling%2C+F.&rft.date=2020-04-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=1949-3045&rft.volume=11&rft.issue=2&rft.spage=244&rft.epage=257&rft_id=info:doi/10.1109%2FTAFFC.2017.2768030&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02891691v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon |