Template-directed synthesis of sulphur doped NiCoFe layered double hydroxide porous nanosheets with enhanced electrocatalytic activity for the oxygen evolution reaction

The development of readily available, highly efficient and stable electrocatalysts for the oxygen evolution reaction (OER) is extremely significant to facilitate water splitting for the generation of clean hydrogen energy. Layered double hydroxides (LDHs) exhibit promising electrocatalytic performan...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 6; no. 7; pp. 3224 - 3230
Main Authors Cao, Li-Ming, Wang, Jia-Wei, Zhong, Di-Chang, Lu, Tong-Bu
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of readily available, highly efficient and stable electrocatalysts for the oxygen evolution reaction (OER) is extremely significant to facilitate water splitting for the generation of clean hydrogen energy. Layered double hydroxides (LDHs) exhibit promising electrocatalytic performance for the OER. However, their electrical conductivity and active sites should be increased for the preparation of more effective OER electrocatalysts based on LDHs for large-scale applications. Herein, we demonstrate a facile and practical pathway for the hierarchical fabrication of three-dimensional (3D) porous sulphur incorporated NiCoFe LDH nanosheets (S-NiCoFe LDH) on carbon cloth (CC). The as-obtained hierarchically structured S-NiCoFe LDH electrode shows superb electrocatalytic activity and stability for the OER, requiring overpotentials as low as 206 mV and 258 mV to achieve current densities of 10 mA cm −2 and 100 mA cm −2 in 1.0 M KOH solution, respectively, making S-NiCoFe LDH one of the most efficient low-cost electrocatalysts for the OER. The enhanced electrocatalytic performance is attributed to the unique 3D hierarchical nanostructure and sulphur doping, which endow the self-supported S-NiCoFe LDH electrode with abundant active sites and superb electrical conductivity. The strategy expands the possibilities for boosting the catalytic activity of LDH-based OER electrocatalysts.
AbstractList The development of readily available, highly efficient and stable electrocatalysts for the oxygen evolution reaction (OER) is extremely significant to facilitate water splitting for the generation of clean hydrogen energy. Layered double hydroxides (LDHs) exhibit promising electrocatalytic performance for the OER. However, their electrical conductivity and active sites should be increased for the preparation of more effective OER electrocatalysts based on LDHs for large-scale applications. Herein, we demonstrate a facile and practical pathway for the hierarchical fabrication of three-dimensional (3D) porous sulphur incorporated NiCoFe LDH nanosheets (S-NiCoFe LDH) on carbon cloth (CC). The as-obtained hierarchically structured S-NiCoFe LDH electrode shows superb electrocatalytic activity and stability for the OER, requiring overpotentials as low as 206 mV and 258 mV to achieve current densities of 10 mA cm⁻² and 100 mA cm⁻² in 1.0 M KOH solution, respectively, making S-NiCoFe LDH one of the most efficient low-cost electrocatalysts for the OER. The enhanced electrocatalytic performance is attributed to the unique 3D hierarchical nanostructure and sulphur doping, which endow the self-supported S-NiCoFe LDH electrode with abundant active sites and superb electrical conductivity. The strategy expands the possibilities for boosting the catalytic activity of LDH-based OER electrocatalysts.
The development of readily available, highly efficient and stable electrocatalysts for the oxygen evolution reaction (OER) is extremely significant to facilitate water splitting for the generation of clean hydrogen energy. Layered double hydroxides (LDHs) exhibit promising electrocatalytic performance for the OER. However, their electrical conductivity and active sites should be increased for the preparation of more effective OER electrocatalysts based on LDHs for large-scale applications. Herein, we demonstrate a facile and practical pathway for the hierarchical fabrication of three-dimensional (3D) porous sulphur incorporated NiCoFe LDH nanosheets (S-NiCoFe LDH) on carbon cloth (CC). The as-obtained hierarchically structured S-NiCoFe LDH electrode shows superb electrocatalytic activity and stability for the OER, requiring overpotentials as low as 206 mV and 258 mV to achieve current densities of 10 mA cm −2 and 100 mA cm −2 in 1.0 M KOH solution, respectively, making S-NiCoFe LDH one of the most efficient low-cost electrocatalysts for the OER. The enhanced electrocatalytic performance is attributed to the unique 3D hierarchical nanostructure and sulphur doping, which endow the self-supported S-NiCoFe LDH electrode with abundant active sites and superb electrical conductivity. The strategy expands the possibilities for boosting the catalytic activity of LDH-based OER electrocatalysts.
The development of readily available, highly efficient and stable electrocatalysts for the oxygen evolution reaction (OER) is extremely significant to facilitate water splitting for the generation of clean hydrogen energy. Layered double hydroxides (LDHs) exhibit promising electrocatalytic performance for the OER. However, their electrical conductivity and active sites should be increased for the preparation of more effective OER electrocatalysts based on LDHs for large-scale applications. Herein, we demonstrate a facile and practical pathway for the hierarchical fabrication of three-dimensional (3D) porous sulphur incorporated NiCoFe LDH nanosheets (S-NiCoFe LDH) on carbon cloth (CC). The as-obtained hierarchically structured S-NiCoFe LDH electrode shows superb electrocatalytic activity and stability for the OER, requiring overpotentials as low as 206 mV and 258 mV to achieve current densities of 10 mA cm−2 and 100 mA cm−2 in 1.0 M KOH solution, respectively, making S-NiCoFe LDH one of the most efficient low-cost electrocatalysts for the OER. The enhanced electrocatalytic performance is attributed to the unique 3D hierarchical nanostructure and sulphur doping, which endow the self-supported S-NiCoFe LDH electrode with abundant active sites and superb electrical conductivity. The strategy expands the possibilities for boosting the catalytic activity of LDH-based OER electrocatalysts.
Author Cao, Li-Ming
Wang, Jia-Wei
Lu, Tong-Bu
Zhong, Di-Chang
Author_xml – sequence: 1
  givenname: Li-Ming
  surname: Cao
  fullname: Cao, Li-Ming
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
– sequence: 2
  givenname: Jia-Wei
  orcidid: 0000-0003-1966-7131
  surname: Wang
  fullname: Wang, Jia-Wei
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
– sequence: 3
  givenname: Di-Chang
  orcidid: 0000-0002-5504-249X
  surname: Zhong
  fullname: Zhong, Di-Chang
  organization: Institute for New Energy Materials & Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
– sequence: 4
  givenname: Tong-Bu
  orcidid: 0000-0002-6087-4880
  surname: Lu
  fullname: Lu, Tong-Bu
  organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
BookMark eNptkc1u1DAQxy1UJMrSC09giQtCCkziJLaP1UILUgWX5Rw5zpi48trBdkrzRn1MvCoCqWIuM6P5_edD85Kc-eCRkNc1vK-ByQ97frgEyVn78Rk5b6CDireyP_sbC_GCXKR0C8UEQC_lOXk44HFxKmM12Yg640TT5vOMySYaDE2rW-Y10ikspfTV7sMVUqc2jCWdwjo6pPM2xXBvJ6RLiGFN1Csf0oyYE_1l80zRz8rrIkBXRsSgVVZuy1ZTpbO9s3mjJkRaptJwv_1AT_EuuDXb4GnEExP8K_LcKJfw4o_fke9Xnw77z9XNt-sv-8ubSrNG5qpVDFoANWkNDUptjKhHNoqmY6Mx_ahEj1zWhneqNdAbbTjwkRvBjRK8a9mOvH3su8Twc8WUh6NNGp1THsttQ9Mw3jWsLX5H3jxBb8MafdluaKAGCaxuRaHgkdIxpBTRDNpmdTopR2XdUMNw-t7w73tF8u6JZIn2qOL2P_g3CYOg7w
CitedBy_id crossref_primary_10_1007_s11356_020_10620_7
crossref_primary_10_1016_j_jallcom_2021_162149
crossref_primary_10_1007_s40820_020_00421_5
crossref_primary_10_1039_D4TA02665A
crossref_primary_10_3740_MRSK_2020_30_5_217
crossref_primary_10_1039_C9CC06863E
crossref_primary_10_1039_D0TA00691B
crossref_primary_10_1039_D3SE00573A
crossref_primary_10_1016_j_ijhydene_2025_02_102
crossref_primary_10_1016_j_jcat_2019_08_006
crossref_primary_10_1002_aenm_201902535
crossref_primary_10_1016_j_jallcom_2022_164200
crossref_primary_10_1039_D2NR00522K
crossref_primary_10_1039_D1NJ02229F
crossref_primary_10_1039_D3DT00065F
crossref_primary_10_1039_D3SE00942D
crossref_primary_10_1016_j_ijhydene_2021_09_201
crossref_primary_10_1021_acssuschemeng_8b02893
crossref_primary_10_1002_smll_202107249
crossref_primary_10_3390_catal13030586
crossref_primary_10_1016_j_jallcom_2020_156787
crossref_primary_10_1002_cssc_201901153
crossref_primary_10_1021_acssuschemeng_8b04274
crossref_primary_10_3390_pr11010245
crossref_primary_10_1016_j_jelechem_2018_11_028
crossref_primary_10_1002_cctc_201901173
crossref_primary_10_1016_j_ijhydene_2021_01_145
crossref_primary_10_1039_D2MA01066F
crossref_primary_10_1002_smll_202412576
crossref_primary_10_1016_j_ijhydene_2019_06_064
crossref_primary_10_1002_slct_202403487
crossref_primary_10_1007_s11581_022_04708_y
crossref_primary_10_1016_j_electacta_2019_135395
crossref_primary_10_1016_j_jechem_2024_08_030
crossref_primary_10_1016_j_inoche_2024_112582
crossref_primary_10_1002_adfm_202422645
crossref_primary_10_1016_j_cej_2020_125407
crossref_primary_10_1002_smll_202101003
crossref_primary_10_1016_j_jcis_2023_01_037
crossref_primary_10_1002_asia_202000213
crossref_primary_10_1039_D2NR01515C
crossref_primary_10_1016_S1872_2067_19_63284_5
crossref_primary_10_1016_j_jcis_2021_04_013
crossref_primary_10_1039_D4QI02325K
crossref_primary_10_1016_j_ijhydene_2021_06_013
crossref_primary_10_1007_s12274_023_5453_0
crossref_primary_10_1016_j_mtener_2022_101036
crossref_primary_10_1016_j_jcis_2022_02_007
crossref_primary_10_1039_C8TA10378J
crossref_primary_10_1007_s11051_020_04835_5
crossref_primary_10_1039_D2NR05020J
crossref_primary_10_1002_aenm_202002863
crossref_primary_10_1016_j_talanta_2021_122087
crossref_primary_10_1002_cssc_202101844
crossref_primary_10_3390_nano11112809
crossref_primary_10_34133_2020_3976278
crossref_primary_10_1002_inf2_12639
crossref_primary_10_1021_acsaem_4c01749
crossref_primary_10_1016_j_jcis_2022_12_138
crossref_primary_10_1016_j_inoche_2021_108605
crossref_primary_10_1016_j_seppur_2021_118606
crossref_primary_10_1039_D3QM00196B
crossref_primary_10_1016_j_susmat_2025_e01367
crossref_primary_10_1039_D1TA00122A
crossref_primary_10_1016_j_jpowsour_2018_08_088
crossref_primary_10_1016_j_ces_2021_117020
crossref_primary_10_1016_j_ijhydene_2023_04_099
crossref_primary_10_1007_s10008_019_04362_x
crossref_primary_10_1002_celc_202000404
crossref_primary_10_1002_eem2_12116
crossref_primary_10_1007_s11581_024_05909_3
crossref_primary_10_1021_acs_energyfuels_2c02017
crossref_primary_10_1039_C9CY02092F
crossref_primary_10_1039_D4SE01712A
crossref_primary_10_1016_j_xcrp_2022_100762
crossref_primary_10_1016_j_jallcom_2021_163566
crossref_primary_10_1016_j_jechem_2022_01_042
crossref_primary_10_1021_acs_inorgchem_8b03327
crossref_primary_10_1002_cnma_202100508
crossref_primary_10_1002_tcr_202200259
crossref_primary_10_1016_j_ijhydene_2020_01_241
crossref_primary_10_1039_D1DT00319D
crossref_primary_10_1016_j_ijhydene_2024_09_320
crossref_primary_10_1039_D4RA07251K
crossref_primary_10_1039_D2DT00749E
crossref_primary_10_1039_D3NJ01836A
crossref_primary_10_1016_j_electacta_2020_135682
crossref_primary_10_1016_j_ijhydene_2020_07_166
crossref_primary_10_1039_C8NR08104B
crossref_primary_10_1016_j_chemosphere_2022_137716
crossref_primary_10_1016_j_compositesb_2025_112420
crossref_primary_10_1016_j_electacta_2018_06_185
crossref_primary_10_1016_j_fuel_2024_130941
crossref_primary_10_1039_D0DT03182H
crossref_primary_10_1002_aenm_201803358
crossref_primary_10_1039_D2NJ04748A
crossref_primary_10_1002_sstr_202300111
crossref_primary_10_1016_j_jelechem_2023_117824
crossref_primary_10_1021_acs_energyfuels_2c00586
crossref_primary_10_1039_D1SE01193F
crossref_primary_10_1039_D1TA08303A
crossref_primary_10_1016_j_electacta_2019_134679
crossref_primary_10_1016_j_jece_2024_114552
crossref_primary_10_1016_j_ijhydene_2022_05_198
crossref_primary_10_1038_s41427_018_0072_z
crossref_primary_10_1039_D3TA01553J
crossref_primary_10_1039_D2RA00919F
crossref_primary_10_1002_adfm_202009032
crossref_primary_10_1039_D0TA03895D
crossref_primary_10_1016_j_ijhydene_2020_05_230
crossref_primary_10_1016_j_ccr_2021_214256
crossref_primary_10_1021_acscatal_9b04231
crossref_primary_10_1021_acs_nanolett_0c03950
crossref_primary_10_1016_j_electacta_2019_06_093
crossref_primary_10_1002_cssc_201900383
crossref_primary_10_1002_ejic_202200325
crossref_primary_10_1016_j_est_2023_109102
crossref_primary_10_1016_j_jcis_2021_12_031
crossref_primary_10_1016_j_jelechem_2022_116540
crossref_primary_10_1039_D1TA08148A
crossref_primary_10_1016_j_jallcom_2020_155012
crossref_primary_10_1039_D1TA08039C
crossref_primary_10_1007_s11696_023_02978_y
crossref_primary_10_1039_C9TA00646J
crossref_primary_10_1007_s10853_018_2835_x
crossref_primary_10_1016_j_jcis_2025_137354
crossref_primary_10_1016_j_nanoen_2018_10_032
crossref_primary_10_1039_D1DT01329G
crossref_primary_10_3390_ma16093372
crossref_primary_10_1016_j_cclet_2021_12_028
crossref_primary_10_1016_j_ijhydene_2019_11_038
crossref_primary_10_1039_D0TA10712C
crossref_primary_10_1039_C9DT00538B
crossref_primary_10_1039_D0TA07449G
crossref_primary_10_1002_celc_202101140
crossref_primary_10_1039_D0TA05038E
crossref_primary_10_1016_j_jcis_2022_07_148
crossref_primary_10_1039_D2DT03047K
crossref_primary_10_1002_cssc_201901364
crossref_primary_10_1016_j_microc_2024_109922
crossref_primary_10_1021_acssuschemeng_9b02449
crossref_primary_10_1039_D0NJ00021C
crossref_primary_10_1039_D0TA11910E
crossref_primary_10_1016_j_cattod_2024_114832
crossref_primary_10_1039_D4QI01378F
crossref_primary_10_1016_j_apcatb_2025_125227
crossref_primary_10_2139_ssrn_3949875
crossref_primary_10_1016_j_apcatb_2023_123563
crossref_primary_10_1039_C9NR08297B
crossref_primary_10_1007_s40820_021_00704_5
crossref_primary_10_1016_j_ijhydene_2024_10_035
crossref_primary_10_1039_D0RA10169A
crossref_primary_10_1002_eem2_12164
crossref_primary_10_1039_D0DT03802D
crossref_primary_10_1021_acsami_1c24170
crossref_primary_10_1002_smll_202206531
crossref_primary_10_1039_C9CC06219J
crossref_primary_10_1002_cssc_201801805
crossref_primary_10_1002_cssc_202000104
crossref_primary_10_1007_s12613_023_2624_7
crossref_primary_10_1039_C9NR03430G
crossref_primary_10_1016_j_ijhydene_2024_09_344
crossref_primary_10_1039_D0TA11606H
crossref_primary_10_1016_j_jallcom_2024_174238
crossref_primary_10_1039_C9NR08795H
crossref_primary_10_1039_D0DT00824A
crossref_primary_10_1039_C8TA09240K
crossref_primary_10_1016_j_electacta_2021_138824
crossref_primary_10_1039_D0QI00700E
crossref_primary_10_1021_acs_inorgchem_8b02451
crossref_primary_10_1016_j_jpowsour_2019_227375
crossref_primary_10_1002_smll_201801878
crossref_primary_10_1039_D4YA00420E
crossref_primary_10_1016_j_jechem_2019_08_014
crossref_primary_10_1007_s12274_022_4874_7
crossref_primary_10_2139_ssrn_3969008
crossref_primary_10_1016_j_clay_2023_107051
crossref_primary_10_1039_D2CC01363K
crossref_primary_10_1016_j_mtphys_2020_100292
crossref_primary_10_1021_acssuschemeng_9b06149
crossref_primary_10_1039_C9TA13442E
crossref_primary_10_1039_D2SE00976E
crossref_primary_10_1016_j_electacta_2024_144226
crossref_primary_10_1021_acsaem_2c00018
crossref_primary_10_1016_j_ijhydene_2023_07_227
crossref_primary_10_1021_acsami_4c08215
crossref_primary_10_1016_j_cej_2024_156219
crossref_primary_10_1016_j_ijhydene_2019_06_018
crossref_primary_10_1039_D2MA00370H
crossref_primary_10_1021_acs_jpcc_1c07616
crossref_primary_10_1039_D0TA04638H
crossref_primary_10_1039_D2SE01098D
Cites_doi 10.1021/jacs.6b12250
10.1021/ja5119495
10.1039/C4CS00470A
10.1039/C5CC00661A
10.1038/nmat4410
10.1002/anie.201505320
10.1039/C6EE00100A
10.1039/C6CC04387A
10.1039/C5TA06788J
10.1002/aenm.201700467
10.1039/C5CS00434A
10.1021/ja5096733
10.1126/science.aad4998
10.1126/science.1212858
10.1002/aenm.201500245
10.1021/acscatal.5b02193
10.1021/ja511572q
10.1039/C6TA03153F
10.1016/j.nanoen.2017.08.040
10.1021/ja510442p
10.1002/anie.201502226
10.1126/science.1162018
10.1002/anie.201612635
10.1038/ncomms8261
10.1021/acsnano.6b04252
10.1016/j.nanoen.2016.04.006
10.1039/C3CS60468C
10.1039/C7DT01110E
10.1038/nenergy.2016.53
10.1002/adma.201703870
10.1073/pnas.1701562114
10.1002/adma.201503906
10.1002/anie.201603197
10.1002/adfm.201606635
10.1039/C5SC01335F
10.1039/C7EE01571B
10.1021/ja407115p
10.1002/anie.201509758
10.1016/j.nanoen.2017.11.022
10.1002/adfm.201702324
10.1038/nchem.2695
10.1038/ncomms7616
10.1021/ja4027715
10.1002/anie.201407031
10.1002/adfm.201600566
10.1021/jz2016507
10.1021/acs.nanolett.6b03803
10.1039/C6SC05687C
10.1002/anie.201408222
10.1039/C7TA01447C
10.1016/j.nanoen.2017.08.031
10.1002/adma.201502696
10.1038/ncomms5345
10.1021/nn500880v
10.1039/C4CS00160E
10.1021/acscatal.6b03497
10.1021/jacs.5b07788
10.1002/anie.201501616
10.1021/acscatal.5b01657
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
DOI 10.1039/C7TA09734D
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 3230
ExternalDocumentID 10_1039_C7TA09734D
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7SP
7SR
7ST
7U5
8BQ
8FD
C1K
JG9
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c329t-4a30400adcc02e9cff81b3b8253bff6ba86e791f75a4f06fcf707b7f87fa87543
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 16:50:39 EDT 2025
Mon Jun 30 12:06:40 EDT 2025
Tue Jul 01 03:13:47 EDT 2025
Thu Apr 24 23:12:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c329t-4a30400adcc02e9cff81b3b8253bff6ba86e791f75a4f06fcf707b7f87fa87543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1966-7131
0000-0002-5504-249X
0000-0002-6087-4880
PQID 2010903148
PQPubID 2047523
PageCount 7
ParticipantIDs proquest_miscellaneous_2237523422
proquest_journals_2010903148
crossref_citationtrail_10_1039_C7TA09734D
crossref_primary_10_1039_C7TA09734D
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References You (C7TA09734D-(cit47)/*[position()=1]) 2016; 6
Li (C7TA09734D-(cit43)/*[position()=1]) 2017; 7
Seh (C7TA09734D-(cit1)/*[position()=1]) 2017; 355
Nai (C7TA09734D-(cit30)/*[position()=1]) 2017; 29
Shao (C7TA09734D-(cit41)/*[position()=1]) 2016; 52
Duan (C7TA09734D-(cit44)/*[position()=1]) 2016; 10
Kibsgaard (C7TA09734D-(cit52)/*[position()=1]) 2014; 53
Zhang (C7TA09734D-(cit60)/*[position()=1]) 2017; 27
Jiao (C7TA09734D-(cit2)/*[position()=1]) 2015; 44
Lu (C7TA09734D-(cit13)/*[position()=1]) 2014; 5
Tan (C7TA09734D-(cit51)/*[position()=1]) 2015; 51
Wang (C7TA09734D-(cit9)/*[position()=1]) 2016; 28
McCrory (C7TA09734D-(cit15)/*[position()=1]) 2013; 135
Wei (C7TA09734D-(cit18)/*[position()=1]) 2016; 1
Lyu (C7TA09734D-(cit25)/*[position()=1]) 2017; 46
Zheng (C7TA09734D-(cit45)/*[position()=1]) 2015; 6
Cabán-Acevedo (C7TA09734D-(cit55)/*[position()=1]) 2015; 14
Xu (C7TA09734D-(cit48)/*[position()=1]) 2016; 24
Zheng (C7TA09734D-(cit5)/*[position()=1]) 2015; 54
Lee (C7TA09734D-(cit16)/*[position()=1]) 2012; 3
Liang (C7TA09734D-(cit34)/*[position()=1]) 2016; 16
Sivanantham (C7TA09734D-(cit57)/*[position()=1]) 2016; 26
Lu (C7TA09734D-(cit46)/*[position()=1]) 2015; 6
Xia (C7TA09734D-(cit27)/*[position()=1]) 2016; 28
Long (C7TA09734D-(cit59)/*[position()=1]) 2017; 5
Wang (C7TA09734D-(cit7)/*[position()=1]) 2015; 137
Xu (C7TA09734D-(cit50)/*[position()=1]) 2016; 4
Yu (C7TA09734D-(cit32)/*[position()=1]) 2016; 9
Wang (C7TA09734D-(cit17)/*[position()=1]) 2015; 6
Morales-Guio (C7TA09734D-(cit6)/*[position()=1]) 2014; 43
Al-Mamun (C7TA09734D-(cit53)/*[position()=1]) 2016; 52
Wang (C7TA09734D-(cit37)/*[position()=1]) 2017; 40
Xu (C7TA09734D-(cit36)/*[position()=1]) 2015; 137
Lyu (C7TA09734D-(cit24)/*[position()=1]) 2017; 27
Gao (C7TA09734D-(cit29)/*[position()=1]) 2014; 8
Mccrory (C7TA09734D-(cit3)/*[position()=1]) 2015; 137
Zhou (C7TA09734D-(cit31)/*[position()=1]) 2017; 114
Ma (C7TA09734D-(cit38)/*[position()=1]) 2016; 55
Gorlin (C7TA09734D-(cit21)/*[position()=1]) 2017; 139
Reier (C7TA09734D-(cit12)/*[position()=1]) 2015; 137
Bao (C7TA09734D-(cit19)/*[position()=1]) 2015; 54
He (C7TA09734D-(cit35)/*[position()=1]) 2017; 56
Zhang (C7TA09734D-(cit8)/*[position()=1]) 2017; 8
Wang (C7TA09734D-(cit22)/*[position()=1]) 2017; 7
Qian (C7TA09734D-(cit40)/*[position()=1]) 2015; 5
Zhuo (C7TA09734D-(cit56)/*[position()=1]) 2015; 5
Suntivich (C7TA09734D-(cit11)/*[position()=1]) 2011; 334
Shi (C7TA09734D-(cit4)/*[position()=1]) 2016; 45
Liu (C7TA09734D-(cit26)/*[position()=1]) 2015; 54
Jiang (C7TA09734D-(cit33)/*[position()=1]) 2015; 54
Gong (C7TA09734D-(cit20)/*[position()=1]) 2013; 135
Grimaud (C7TA09734D-(cit10)/*[position()=1]) 2017; 9
Kanan (C7TA09734D-(cit14)/*[position()=1]) 2011; 321
Fan (C7TA09734D-(cit42)/*[position()=1]) 2014; 43
Xu (C7TA09734D-(cit23)/*[position()=1]) 2018; 43
Wang (C7TA09734D-(cit28)/*[position()=1]) 2016; 55
Liu (C7TA09734D-(cit54)/*[position()=1]) 2017; 40
Song (C7TA09734D-(cit39)/*[position()=1]) 2014; 136
Cheng (C7TA09734D-(cit58)/*[position()=1]) 2015; 3
Yu (C7TA09734D-(cit49)/*[position()=1]) 2017; 10
References_xml – volume: 139
  start-page: 2070
  year: 2017
  ident: C7TA09734D-(cit21)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12250
– volume: 137
  start-page: 4119
  year: 2015
  ident: C7TA09734D-(cit36)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5119495
– volume: 44
  start-page: 2060
  year: 2015
  ident: C7TA09734D-(cit2)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00470A
– volume: 51
  start-page: 5695
  year: 2015
  ident: C7TA09734D-(cit51)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC00661A
– volume: 14
  start-page: 1245
  year: 2015
  ident: C7TA09734D-(cit55)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4410
– volume: 54
  start-page: 11231
  year: 2015
  ident: C7TA09734D-(cit26)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201505320
– volume: 9
  start-page: 1246
  year: 2016
  ident: C7TA09734D-(cit32)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00100A
– volume: 52
  start-page: 9450
  year: 2016
  ident: C7TA09734D-(cit53)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC04387A
– volume: 3
  start-page: 23207
  year: 2015
  ident: C7TA09734D-(cit58)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA06788J
– volume: 7
  start-page: 1700467
  year: 2017
  ident: C7TA09734D-(cit22)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700467
– volume: 45
  start-page: 1529
  year: 2016
  ident: C7TA09734D-(cit4)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00434A
– volume: 136
  start-page: 16481
  year: 2014
  ident: C7TA09734D-(cit39)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5096733
– volume: 355
  start-page: 146
  year: 2017
  ident: C7TA09734D-(cit1)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 334
  start-page: 1383
  year: 2011
  ident: C7TA09734D-(cit11)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1212858
– volume: 5
  start-page: 1500245
  year: 2015
  ident: C7TA09734D-(cit40)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500245
– volume: 6
  start-page: 714
  year: 2016
  ident: C7TA09734D-(cit47)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02193
– volume: 137
  start-page: 1587
  year: 2015
  ident: C7TA09734D-(cit7)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511572q
– volume: 4
  start-page: 10779
  year: 2016
  ident: C7TA09734D-(cit50)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA03153F
– volume: 40
  start-page: 382
  year: 2017
  ident: C7TA09734D-(cit37)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.040
– volume: 137
  start-page: 4347
  year: 2015
  ident: C7TA09734D-(cit3)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja510442p
– volume: 54
  start-page: 7399
  year: 2015
  ident: C7TA09734D-(cit19)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201502226
– volume: 321
  start-page: 1072
  year: 2011
  ident: C7TA09734D-(cit14)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1162018
– volume: 56
  start-page: 3897
  year: 2017
  ident: C7TA09734D-(cit35)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201612635
– volume: 6
  start-page: 7261
  year: 2015
  ident: C7TA09734D-(cit17)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8261
– volume: 10
  start-page: 8738
  year: 2016
  ident: C7TA09734D-(cit44)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b04252
– volume: 24
  start-page: 103
  year: 2016
  ident: C7TA09734D-(cit48)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.006
– volume: 43
  start-page: 6555
  year: 2014
  ident: C7TA09734D-(cit6)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60468C
– volume: 46
  start-page: 10545
  year: 2017
  ident: C7TA09734D-(cit25)/*[position()=1]
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT01110E
– volume: 1
  start-page: 16053
  year: 2016
  ident: C7TA09734D-(cit18)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.53
– volume: 29
  start-page: 1703870
  year: 2017
  ident: C7TA09734D-(cit30)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703870
– volume: 114
  start-page: 5607
  year: 2017
  ident: C7TA09734D-(cit31)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1701562114
– volume: 28
  start-page: 77
  year: 2016
  ident: C7TA09734D-(cit27)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503906
– volume: 55
  start-page: 9055
  year: 2016
  ident: C7TA09734D-(cit28)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201603197
– volume: 27
  start-page: 1606635
  year: 2017
  ident: C7TA09734D-(cit60)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201606635
– volume: 6
  start-page: 4594
  year: 2015
  ident: C7TA09734D-(cit45)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC01335F
– volume: 10
  start-page: 1820
  year: 2017
  ident: C7TA09734D-(cit49)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01571B
– volume: 135
  start-page: 16977
  year: 2013
  ident: C7TA09734D-(cit15)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407115p
– volume: 55
  start-page: 1138
  year: 2016
  ident: C7TA09734D-(cit38)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201509758
– volume: 52
  start-page: 15880
  year: 2016
  ident: C7TA09734D-(cit41)/*[position()=1]
  publication-title: Chem. Commun.
– volume: 43
  start-page: 110
  year: 2018
  ident: C7TA09734D-(cit23)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.11.022
– volume: 27
  start-page: 1702324
  year: 2017
  ident: C7TA09734D-(cit24)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702324
– volume: 9
  start-page: 457
  year: 2017
  ident: C7TA09734D-(cit10)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2695
– volume: 6
  start-page: 6616
  year: 2015
  ident: C7TA09734D-(cit46)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7616
– volume: 135
  start-page: 8452
  year: 2013
  ident: C7TA09734D-(cit20)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4027715
– volume: 54
  start-page: 52
  year: 2015
  ident: C7TA09734D-(cit5)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201407031
– volume: 26
  start-page: 4661
  year: 2016
  ident: C7TA09734D-(cit57)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600566
– volume: 3
  start-page: 399
  year: 2012
  ident: C7TA09734D-(cit16)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz2016507
– volume: 16
  start-page: 7718
  year: 2016
  ident: C7TA09734D-(cit34)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03803
– volume: 8
  start-page: 2769
  year: 2017
  ident: C7TA09734D-(cit8)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC05687C
– volume: 53
  start-page: 14433
  year: 2014
  ident: C7TA09734D-(cit52)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201408222
– volume: 5
  start-page: 10495
  year: 2017
  ident: C7TA09734D-(cit59)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01447C
– volume: 40
  start-page: 264
  year: 2017
  ident: C7TA09734D-(cit54)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.031
– volume: 28
  start-page: 215
  year: 2016
  ident: C7TA09734D-(cit9)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502696
– volume: 5
  start-page: 4345
  year: 2014
  ident: C7TA09734D-(cit13)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5345
– volume: 8
  start-page: 3970
  year: 2014
  ident: C7TA09734D-(cit29)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn500880v
– volume: 43
  start-page: 7040
  year: 2014
  ident: C7TA09734D-(cit42)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00160E
– volume: 7
  start-page: 2535
  year: 2017
  ident: C7TA09734D-(cit43)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03497
– volume: 137
  start-page: 13031
  year: 2015
  ident: C7TA09734D-(cit12)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07788
– volume: 54
  start-page: 6251
  year: 2015
  ident: C7TA09734D-(cit33)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201501616
– volume: 5
  start-page: 6355
  year: 2015
  ident: C7TA09734D-(cit56)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01657
SSID ssj0000800699
Score 2.5916317
Snippet The development of readily available, highly efficient and stable electrocatalysts for the oxygen evolution reaction (OER) is extremely significant to...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3224
SubjectTerms active sites
carbon
Catalysis
Catalytic activity
Clean energy
Cloth
Electrical conductivity
Electrical resistivity
Electrocatalysts
Electrodes
energy
Fabrication
hydrogen
Hydrogen-based energy
Hydroxides
Nanosheets
Nanostructure
Oxygen
Oxygen evolution reactions
oxygen production
potassium hydroxide
Sulfur
Water splitting
Title Template-directed synthesis of sulphur doped NiCoFe layered double hydroxide porous nanosheets with enhanced electrocatalytic activity for the oxygen evolution reaction
URI https://www.proquest.com/docview/2010903148
https://www.proquest.com/docview/2237523422
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbG9gIPiKsoDGQELyhyyeLUTh9L12qgbrx0om-R49hrpZFUW4NWfhF_h3_E8S3t2B4GL1FlW27r88Xn8_G5IPQ-FqA2WRkTyXlB0hKOO0VGGUk1LRUtGRxJzEHx-IQdnaZfZr3Zzs7vLa-lZlV05c9b40r-R6rQBnI1UbL_INl2UmiAzyBfeIKE4Xk3Gavvy3Mgi8QpJuCOl-sKGJ1PMmI9z5uLqKyX0HWyGNZjFZ2LtSnPCY2NCZqar8uL-mpRqgiIuM3WKqr6cq5UiHtT1dw5CfiCOdbes7ZpXqWvPBE8Feur9ZkpGvDD_-kICKlsBX-TAQNZdqsUyVB2rhsNXARR6LEZyV18ojXxh3gv49Lb3gYMRe3sC-Q4aGJ7R-C9jReCfFOLjYnceyEfLoiNrQgdk8aCF3rJp2bbGrK9dSdxLyY8dfVxw97OtiDMo2UXtq-U0MRfBbk927Rt6f_Qe0O3xNSkZpV8JUyKo7TcaNDgNXDyNR-fTib5dDSb3kN7CZxckl20NxhNP09aw5-h6MzWNW1_cUibS_sfN9NfJ0rXeYIlP9NH6KGXGR44CD5GO6p6gh5s5bJ8in7dACNuwYhrjT0YsQUjdmDEHozYgRG3YMQOjHgDRmzAiAMY8d9gxAGMGACD4VuxAyNuwYgDGJ-h0_FoOjwivgwIkTTpr0gqqNE0opQyTlRfag1HLVpkSY8WWrNCZEzx_oHmPZHqmGmpecwLrjOuBZzGU_oc7VZ1pV4gDFuRYr1-BqS9SAvOhJCKsSyBybgQVHfQh7DmufQ58k2plvPc-mrQfj7k04GVz2EHvWvHLl1mmFtH7QfR5X7nuMwT6w5ND9Ksg9623fCemcs6USlY4BxoO-8lNE2Sl3cY8wrdN2-Dsw3uo93VRaNeA1teFW88_v4AjKXOow
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Template-directed+synthesis+of+sulphur+doped+NiCoFe+layered+double+hydroxide+porous+nanosheets+with+enhanced+electrocatalytic+activity+for+the+oxygen+evolution+reaction&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Cao%2C+Li-Ming&rft.au=Wang%2C+Jia-Wei&rft.au=Zhong%2C+Di-Chang&rft.au=Lu%2C+Tong-Bu&rft.date=2018&rft.issn=2050-7496&rft.volume=6&rft.issue=7+p.3224-3230&rft.spage=3224&rft.epage=3230&rft_id=info:doi/10.1039%2Fc7ta09734d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon