Template-directed synthesis of sulphur doped NiCoFe layered double hydroxide porous nanosheets with enhanced electrocatalytic activity for the oxygen evolution reaction
The development of readily available, highly efficient and stable electrocatalysts for the oxygen evolution reaction (OER) is extremely significant to facilitate water splitting for the generation of clean hydrogen energy. Layered double hydroxides (LDHs) exhibit promising electrocatalytic performan...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 6; no. 7; pp. 3224 - 3230 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of readily available, highly efficient and stable electrocatalysts for the oxygen evolution reaction (OER) is extremely significant to facilitate water splitting for the generation of clean hydrogen energy. Layered double hydroxides (LDHs) exhibit promising electrocatalytic performance for the OER. However, their electrical conductivity and active sites should be increased for the preparation of more effective OER electrocatalysts based on LDHs for large-scale applications. Herein, we demonstrate a facile and practical pathway for the hierarchical fabrication of three-dimensional (3D) porous sulphur incorporated NiCoFe LDH nanosheets (S-NiCoFe LDH) on carbon cloth (CC). The as-obtained hierarchically structured S-NiCoFe LDH electrode shows superb electrocatalytic activity and stability for the OER, requiring overpotentials as low as 206 mV and 258 mV to achieve current densities of 10 mA cm
−2
and 100 mA cm
−2
in 1.0 M KOH solution, respectively, making S-NiCoFe LDH one of the most efficient low-cost electrocatalysts for the OER. The enhanced electrocatalytic performance is attributed to the unique 3D hierarchical nanostructure and sulphur doping, which endow the self-supported S-NiCoFe LDH electrode with abundant active sites and superb electrical conductivity. The strategy expands the possibilities for boosting the catalytic activity of LDH-based OER electrocatalysts. |
---|---|
AbstractList | The development of readily available, highly efficient and stable electrocatalysts for the oxygen evolution reaction (OER) is extremely significant to facilitate water splitting for the generation of clean hydrogen energy. Layered double hydroxides (LDHs) exhibit promising electrocatalytic performance for the OER. However, their electrical conductivity and active sites should be increased for the preparation of more effective OER electrocatalysts based on LDHs for large-scale applications. Herein, we demonstrate a facile and practical pathway for the hierarchical fabrication of three-dimensional (3D) porous sulphur incorporated NiCoFe LDH nanosheets (S-NiCoFe LDH) on carbon cloth (CC). The as-obtained hierarchically structured S-NiCoFe LDH electrode shows superb electrocatalytic activity and stability for the OER, requiring overpotentials as low as 206 mV and 258 mV to achieve current densities of 10 mA cm⁻² and 100 mA cm⁻² in 1.0 M KOH solution, respectively, making S-NiCoFe LDH one of the most efficient low-cost electrocatalysts for the OER. The enhanced electrocatalytic performance is attributed to the unique 3D hierarchical nanostructure and sulphur doping, which endow the self-supported S-NiCoFe LDH electrode with abundant active sites and superb electrical conductivity. The strategy expands the possibilities for boosting the catalytic activity of LDH-based OER electrocatalysts. The development of readily available, highly efficient and stable electrocatalysts for the oxygen evolution reaction (OER) is extremely significant to facilitate water splitting for the generation of clean hydrogen energy. Layered double hydroxides (LDHs) exhibit promising electrocatalytic performance for the OER. However, their electrical conductivity and active sites should be increased for the preparation of more effective OER electrocatalysts based on LDHs for large-scale applications. Herein, we demonstrate a facile and practical pathway for the hierarchical fabrication of three-dimensional (3D) porous sulphur incorporated NiCoFe LDH nanosheets (S-NiCoFe LDH) on carbon cloth (CC). The as-obtained hierarchically structured S-NiCoFe LDH electrode shows superb electrocatalytic activity and stability for the OER, requiring overpotentials as low as 206 mV and 258 mV to achieve current densities of 10 mA cm −2 and 100 mA cm −2 in 1.0 M KOH solution, respectively, making S-NiCoFe LDH one of the most efficient low-cost electrocatalysts for the OER. The enhanced electrocatalytic performance is attributed to the unique 3D hierarchical nanostructure and sulphur doping, which endow the self-supported S-NiCoFe LDH electrode with abundant active sites and superb electrical conductivity. The strategy expands the possibilities for boosting the catalytic activity of LDH-based OER electrocatalysts. The development of readily available, highly efficient and stable electrocatalysts for the oxygen evolution reaction (OER) is extremely significant to facilitate water splitting for the generation of clean hydrogen energy. Layered double hydroxides (LDHs) exhibit promising electrocatalytic performance for the OER. However, their electrical conductivity and active sites should be increased for the preparation of more effective OER electrocatalysts based on LDHs for large-scale applications. Herein, we demonstrate a facile and practical pathway for the hierarchical fabrication of three-dimensional (3D) porous sulphur incorporated NiCoFe LDH nanosheets (S-NiCoFe LDH) on carbon cloth (CC). The as-obtained hierarchically structured S-NiCoFe LDH electrode shows superb electrocatalytic activity and stability for the OER, requiring overpotentials as low as 206 mV and 258 mV to achieve current densities of 10 mA cm−2 and 100 mA cm−2 in 1.0 M KOH solution, respectively, making S-NiCoFe LDH one of the most efficient low-cost electrocatalysts for the OER. The enhanced electrocatalytic performance is attributed to the unique 3D hierarchical nanostructure and sulphur doping, which endow the self-supported S-NiCoFe LDH electrode with abundant active sites and superb electrical conductivity. The strategy expands the possibilities for boosting the catalytic activity of LDH-based OER electrocatalysts. |
Author | Cao, Li-Ming Wang, Jia-Wei Lu, Tong-Bu Zhong, Di-Chang |
Author_xml | – sequence: 1 givenname: Li-Ming surname: Cao fullname: Cao, Li-Ming organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China – sequence: 2 givenname: Jia-Wei orcidid: 0000-0003-1966-7131 surname: Wang fullname: Wang, Jia-Wei organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China – sequence: 3 givenname: Di-Chang orcidid: 0000-0002-5504-249X surname: Zhong fullname: Zhong, Di-Chang organization: Institute for New Energy Materials & Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China – sequence: 4 givenname: Tong-Bu orcidid: 0000-0002-6087-4880 surname: Lu fullname: Lu, Tong-Bu organization: MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China |
BookMark | eNptkc1u1DAQxy1UJMrSC09giQtCCkziJLaP1UILUgWX5Rw5zpi48trBdkrzRn1MvCoCqWIuM6P5_edD85Kc-eCRkNc1vK-ByQ97frgEyVn78Rk5b6CDireyP_sbC_GCXKR0C8UEQC_lOXk44HFxKmM12Yg640TT5vOMySYaDE2rW-Y10ikspfTV7sMVUqc2jCWdwjo6pPM2xXBvJ6RLiGFN1Csf0oyYE_1l80zRz8rrIkBXRsSgVVZuy1ZTpbO9s3mjJkRaptJwv_1AT_EuuDXb4GnEExP8K_LcKJfw4o_fke9Xnw77z9XNt-sv-8ubSrNG5qpVDFoANWkNDUptjKhHNoqmY6Mx_ahEj1zWhneqNdAbbTjwkRvBjRK8a9mOvH3su8Twc8WUh6NNGp1THsttQ9Mw3jWsLX5H3jxBb8MafdluaKAGCaxuRaHgkdIxpBTRDNpmdTopR2XdUMNw-t7w73tF8u6JZIn2qOL2P_g3CYOg7w |
CitedBy_id | crossref_primary_10_1007_s11356_020_10620_7 crossref_primary_10_1016_j_jallcom_2021_162149 crossref_primary_10_1007_s40820_020_00421_5 crossref_primary_10_1039_D4TA02665A crossref_primary_10_3740_MRSK_2020_30_5_217 crossref_primary_10_1039_C9CC06863E crossref_primary_10_1039_D0TA00691B crossref_primary_10_1039_D3SE00573A crossref_primary_10_1016_j_ijhydene_2025_02_102 crossref_primary_10_1016_j_jcat_2019_08_006 crossref_primary_10_1002_aenm_201902535 crossref_primary_10_1016_j_jallcom_2022_164200 crossref_primary_10_1039_D2NR00522K crossref_primary_10_1039_D1NJ02229F crossref_primary_10_1039_D3DT00065F crossref_primary_10_1039_D3SE00942D crossref_primary_10_1016_j_ijhydene_2021_09_201 crossref_primary_10_1021_acssuschemeng_8b02893 crossref_primary_10_1002_smll_202107249 crossref_primary_10_3390_catal13030586 crossref_primary_10_1016_j_jallcom_2020_156787 crossref_primary_10_1002_cssc_201901153 crossref_primary_10_1021_acssuschemeng_8b04274 crossref_primary_10_3390_pr11010245 crossref_primary_10_1016_j_jelechem_2018_11_028 crossref_primary_10_1002_cctc_201901173 crossref_primary_10_1016_j_ijhydene_2021_01_145 crossref_primary_10_1039_D2MA01066F crossref_primary_10_1002_smll_202412576 crossref_primary_10_1016_j_ijhydene_2019_06_064 crossref_primary_10_1002_slct_202403487 crossref_primary_10_1007_s11581_022_04708_y crossref_primary_10_1016_j_electacta_2019_135395 crossref_primary_10_1016_j_jechem_2024_08_030 crossref_primary_10_1016_j_inoche_2024_112582 crossref_primary_10_1002_adfm_202422645 crossref_primary_10_1016_j_cej_2020_125407 crossref_primary_10_1002_smll_202101003 crossref_primary_10_1016_j_jcis_2023_01_037 crossref_primary_10_1002_asia_202000213 crossref_primary_10_1039_D2NR01515C crossref_primary_10_1016_S1872_2067_19_63284_5 crossref_primary_10_1016_j_jcis_2021_04_013 crossref_primary_10_1039_D4QI02325K crossref_primary_10_1016_j_ijhydene_2021_06_013 crossref_primary_10_1007_s12274_023_5453_0 crossref_primary_10_1016_j_mtener_2022_101036 crossref_primary_10_1016_j_jcis_2022_02_007 crossref_primary_10_1039_C8TA10378J crossref_primary_10_1007_s11051_020_04835_5 crossref_primary_10_1039_D2NR05020J crossref_primary_10_1002_aenm_202002863 crossref_primary_10_1016_j_talanta_2021_122087 crossref_primary_10_1002_cssc_202101844 crossref_primary_10_3390_nano11112809 crossref_primary_10_34133_2020_3976278 crossref_primary_10_1002_inf2_12639 crossref_primary_10_1021_acsaem_4c01749 crossref_primary_10_1016_j_jcis_2022_12_138 crossref_primary_10_1016_j_inoche_2021_108605 crossref_primary_10_1016_j_seppur_2021_118606 crossref_primary_10_1039_D3QM00196B crossref_primary_10_1016_j_susmat_2025_e01367 crossref_primary_10_1039_D1TA00122A crossref_primary_10_1016_j_jpowsour_2018_08_088 crossref_primary_10_1016_j_ces_2021_117020 crossref_primary_10_1016_j_ijhydene_2023_04_099 crossref_primary_10_1007_s10008_019_04362_x crossref_primary_10_1002_celc_202000404 crossref_primary_10_1002_eem2_12116 crossref_primary_10_1007_s11581_024_05909_3 crossref_primary_10_1021_acs_energyfuels_2c02017 crossref_primary_10_1039_C9CY02092F crossref_primary_10_1039_D4SE01712A crossref_primary_10_1016_j_xcrp_2022_100762 crossref_primary_10_1016_j_jallcom_2021_163566 crossref_primary_10_1016_j_jechem_2022_01_042 crossref_primary_10_1021_acs_inorgchem_8b03327 crossref_primary_10_1002_cnma_202100508 crossref_primary_10_1002_tcr_202200259 crossref_primary_10_1016_j_ijhydene_2020_01_241 crossref_primary_10_1039_D1DT00319D crossref_primary_10_1016_j_ijhydene_2024_09_320 crossref_primary_10_1039_D4RA07251K crossref_primary_10_1039_D2DT00749E crossref_primary_10_1039_D3NJ01836A crossref_primary_10_1016_j_electacta_2020_135682 crossref_primary_10_1016_j_ijhydene_2020_07_166 crossref_primary_10_1039_C8NR08104B crossref_primary_10_1016_j_chemosphere_2022_137716 crossref_primary_10_1016_j_compositesb_2025_112420 crossref_primary_10_1016_j_electacta_2018_06_185 crossref_primary_10_1016_j_fuel_2024_130941 crossref_primary_10_1039_D0DT03182H crossref_primary_10_1002_aenm_201803358 crossref_primary_10_1039_D2NJ04748A crossref_primary_10_1002_sstr_202300111 crossref_primary_10_1016_j_jelechem_2023_117824 crossref_primary_10_1021_acs_energyfuels_2c00586 crossref_primary_10_1039_D1SE01193F crossref_primary_10_1039_D1TA08303A crossref_primary_10_1016_j_electacta_2019_134679 crossref_primary_10_1016_j_jece_2024_114552 crossref_primary_10_1016_j_ijhydene_2022_05_198 crossref_primary_10_1038_s41427_018_0072_z crossref_primary_10_1039_D3TA01553J crossref_primary_10_1039_D2RA00919F crossref_primary_10_1002_adfm_202009032 crossref_primary_10_1039_D0TA03895D crossref_primary_10_1016_j_ijhydene_2020_05_230 crossref_primary_10_1016_j_ccr_2021_214256 crossref_primary_10_1021_acscatal_9b04231 crossref_primary_10_1021_acs_nanolett_0c03950 crossref_primary_10_1016_j_electacta_2019_06_093 crossref_primary_10_1002_cssc_201900383 crossref_primary_10_1002_ejic_202200325 crossref_primary_10_1016_j_est_2023_109102 crossref_primary_10_1016_j_jcis_2021_12_031 crossref_primary_10_1016_j_jelechem_2022_116540 crossref_primary_10_1039_D1TA08148A crossref_primary_10_1016_j_jallcom_2020_155012 crossref_primary_10_1039_D1TA08039C crossref_primary_10_1007_s11696_023_02978_y crossref_primary_10_1039_C9TA00646J crossref_primary_10_1007_s10853_018_2835_x crossref_primary_10_1016_j_jcis_2025_137354 crossref_primary_10_1016_j_nanoen_2018_10_032 crossref_primary_10_1039_D1DT01329G crossref_primary_10_3390_ma16093372 crossref_primary_10_1016_j_cclet_2021_12_028 crossref_primary_10_1016_j_ijhydene_2019_11_038 crossref_primary_10_1039_D0TA10712C crossref_primary_10_1039_C9DT00538B crossref_primary_10_1039_D0TA07449G crossref_primary_10_1002_celc_202101140 crossref_primary_10_1039_D0TA05038E crossref_primary_10_1016_j_jcis_2022_07_148 crossref_primary_10_1039_D2DT03047K crossref_primary_10_1002_cssc_201901364 crossref_primary_10_1016_j_microc_2024_109922 crossref_primary_10_1021_acssuschemeng_9b02449 crossref_primary_10_1039_D0NJ00021C crossref_primary_10_1039_D0TA11910E crossref_primary_10_1016_j_cattod_2024_114832 crossref_primary_10_1039_D4QI01378F crossref_primary_10_1016_j_apcatb_2025_125227 crossref_primary_10_2139_ssrn_3949875 crossref_primary_10_1016_j_apcatb_2023_123563 crossref_primary_10_1039_C9NR08297B crossref_primary_10_1007_s40820_021_00704_5 crossref_primary_10_1016_j_ijhydene_2024_10_035 crossref_primary_10_1039_D0RA10169A crossref_primary_10_1002_eem2_12164 crossref_primary_10_1039_D0DT03802D crossref_primary_10_1021_acsami_1c24170 crossref_primary_10_1002_smll_202206531 crossref_primary_10_1039_C9CC06219J crossref_primary_10_1002_cssc_201801805 crossref_primary_10_1002_cssc_202000104 crossref_primary_10_1007_s12613_023_2624_7 crossref_primary_10_1039_C9NR03430G crossref_primary_10_1016_j_ijhydene_2024_09_344 crossref_primary_10_1039_D0TA11606H crossref_primary_10_1016_j_jallcom_2024_174238 crossref_primary_10_1039_C9NR08795H crossref_primary_10_1039_D0DT00824A crossref_primary_10_1039_C8TA09240K crossref_primary_10_1016_j_electacta_2021_138824 crossref_primary_10_1039_D0QI00700E crossref_primary_10_1021_acs_inorgchem_8b02451 crossref_primary_10_1016_j_jpowsour_2019_227375 crossref_primary_10_1002_smll_201801878 crossref_primary_10_1039_D4YA00420E crossref_primary_10_1016_j_jechem_2019_08_014 crossref_primary_10_1007_s12274_022_4874_7 crossref_primary_10_2139_ssrn_3969008 crossref_primary_10_1016_j_clay_2023_107051 crossref_primary_10_1039_D2CC01363K crossref_primary_10_1016_j_mtphys_2020_100292 crossref_primary_10_1021_acssuschemeng_9b06149 crossref_primary_10_1039_C9TA13442E crossref_primary_10_1039_D2SE00976E crossref_primary_10_1016_j_electacta_2024_144226 crossref_primary_10_1021_acsaem_2c00018 crossref_primary_10_1016_j_ijhydene_2023_07_227 crossref_primary_10_1021_acsami_4c08215 crossref_primary_10_1016_j_cej_2024_156219 crossref_primary_10_1016_j_ijhydene_2019_06_018 crossref_primary_10_1039_D2MA00370H crossref_primary_10_1021_acs_jpcc_1c07616 crossref_primary_10_1039_D0TA04638H crossref_primary_10_1039_D2SE01098D |
Cites_doi | 10.1021/jacs.6b12250 10.1021/ja5119495 10.1039/C4CS00470A 10.1039/C5CC00661A 10.1038/nmat4410 10.1002/anie.201505320 10.1039/C6EE00100A 10.1039/C6CC04387A 10.1039/C5TA06788J 10.1002/aenm.201700467 10.1039/C5CS00434A 10.1021/ja5096733 10.1126/science.aad4998 10.1126/science.1212858 10.1002/aenm.201500245 10.1021/acscatal.5b02193 10.1021/ja511572q 10.1039/C6TA03153F 10.1016/j.nanoen.2017.08.040 10.1021/ja510442p 10.1002/anie.201502226 10.1126/science.1162018 10.1002/anie.201612635 10.1038/ncomms8261 10.1021/acsnano.6b04252 10.1016/j.nanoen.2016.04.006 10.1039/C3CS60468C 10.1039/C7DT01110E 10.1038/nenergy.2016.53 10.1002/adma.201703870 10.1073/pnas.1701562114 10.1002/adma.201503906 10.1002/anie.201603197 10.1002/adfm.201606635 10.1039/C5SC01335F 10.1039/C7EE01571B 10.1021/ja407115p 10.1002/anie.201509758 10.1016/j.nanoen.2017.11.022 10.1002/adfm.201702324 10.1038/nchem.2695 10.1038/ncomms7616 10.1021/ja4027715 10.1002/anie.201407031 10.1002/adfm.201600566 10.1021/jz2016507 10.1021/acs.nanolett.6b03803 10.1039/C6SC05687C 10.1002/anie.201408222 10.1039/C7TA01447C 10.1016/j.nanoen.2017.08.031 10.1002/adma.201502696 10.1038/ncomms5345 10.1021/nn500880v 10.1039/C4CS00160E 10.1021/acscatal.6b03497 10.1021/jacs.5b07788 10.1002/anie.201501616 10.1021/acscatal.5b01657 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
DOI | 10.1039/C7TA09734D |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 3230 |
ExternalDocumentID | 10_1039_C7TA09734D |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH 7SP 7SR 7ST 7U5 8BQ 8FD C1K JG9 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c329t-4a30400adcc02e9cff81b3b8253bff6ba86e791f75a4f06fcf707b7f87fa87543 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 16:50:39 EDT 2025 Mon Jun 30 12:06:40 EDT 2025 Tue Jul 01 03:13:47 EDT 2025 Thu Apr 24 23:12:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c329t-4a30400adcc02e9cff81b3b8253bff6ba86e791f75a4f06fcf707b7f87fa87543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1966-7131 0000-0002-5504-249X 0000-0002-6087-4880 |
PQID | 2010903148 |
PQPubID | 2047523 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2237523422 proquest_journals_2010903148 crossref_citationtrail_10_1039_C7TA09734D crossref_primary_10_1039_C7TA09734D |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | You (C7TA09734D-(cit47)/*[position()=1]) 2016; 6 Li (C7TA09734D-(cit43)/*[position()=1]) 2017; 7 Seh (C7TA09734D-(cit1)/*[position()=1]) 2017; 355 Nai (C7TA09734D-(cit30)/*[position()=1]) 2017; 29 Shao (C7TA09734D-(cit41)/*[position()=1]) 2016; 52 Duan (C7TA09734D-(cit44)/*[position()=1]) 2016; 10 Kibsgaard (C7TA09734D-(cit52)/*[position()=1]) 2014; 53 Zhang (C7TA09734D-(cit60)/*[position()=1]) 2017; 27 Jiao (C7TA09734D-(cit2)/*[position()=1]) 2015; 44 Lu (C7TA09734D-(cit13)/*[position()=1]) 2014; 5 Tan (C7TA09734D-(cit51)/*[position()=1]) 2015; 51 Wang (C7TA09734D-(cit9)/*[position()=1]) 2016; 28 McCrory (C7TA09734D-(cit15)/*[position()=1]) 2013; 135 Wei (C7TA09734D-(cit18)/*[position()=1]) 2016; 1 Lyu (C7TA09734D-(cit25)/*[position()=1]) 2017; 46 Zheng (C7TA09734D-(cit45)/*[position()=1]) 2015; 6 Cabán-Acevedo (C7TA09734D-(cit55)/*[position()=1]) 2015; 14 Xu (C7TA09734D-(cit48)/*[position()=1]) 2016; 24 Zheng (C7TA09734D-(cit5)/*[position()=1]) 2015; 54 Lee (C7TA09734D-(cit16)/*[position()=1]) 2012; 3 Liang (C7TA09734D-(cit34)/*[position()=1]) 2016; 16 Sivanantham (C7TA09734D-(cit57)/*[position()=1]) 2016; 26 Lu (C7TA09734D-(cit46)/*[position()=1]) 2015; 6 Xia (C7TA09734D-(cit27)/*[position()=1]) 2016; 28 Long (C7TA09734D-(cit59)/*[position()=1]) 2017; 5 Wang (C7TA09734D-(cit7)/*[position()=1]) 2015; 137 Xu (C7TA09734D-(cit50)/*[position()=1]) 2016; 4 Yu (C7TA09734D-(cit32)/*[position()=1]) 2016; 9 Wang (C7TA09734D-(cit17)/*[position()=1]) 2015; 6 Morales-Guio (C7TA09734D-(cit6)/*[position()=1]) 2014; 43 Al-Mamun (C7TA09734D-(cit53)/*[position()=1]) 2016; 52 Wang (C7TA09734D-(cit37)/*[position()=1]) 2017; 40 Xu (C7TA09734D-(cit36)/*[position()=1]) 2015; 137 Lyu (C7TA09734D-(cit24)/*[position()=1]) 2017; 27 Gao (C7TA09734D-(cit29)/*[position()=1]) 2014; 8 Mccrory (C7TA09734D-(cit3)/*[position()=1]) 2015; 137 Zhou (C7TA09734D-(cit31)/*[position()=1]) 2017; 114 Ma (C7TA09734D-(cit38)/*[position()=1]) 2016; 55 Gorlin (C7TA09734D-(cit21)/*[position()=1]) 2017; 139 Reier (C7TA09734D-(cit12)/*[position()=1]) 2015; 137 Bao (C7TA09734D-(cit19)/*[position()=1]) 2015; 54 He (C7TA09734D-(cit35)/*[position()=1]) 2017; 56 Zhang (C7TA09734D-(cit8)/*[position()=1]) 2017; 8 Wang (C7TA09734D-(cit22)/*[position()=1]) 2017; 7 Qian (C7TA09734D-(cit40)/*[position()=1]) 2015; 5 Zhuo (C7TA09734D-(cit56)/*[position()=1]) 2015; 5 Suntivich (C7TA09734D-(cit11)/*[position()=1]) 2011; 334 Shi (C7TA09734D-(cit4)/*[position()=1]) 2016; 45 Liu (C7TA09734D-(cit26)/*[position()=1]) 2015; 54 Jiang (C7TA09734D-(cit33)/*[position()=1]) 2015; 54 Gong (C7TA09734D-(cit20)/*[position()=1]) 2013; 135 Grimaud (C7TA09734D-(cit10)/*[position()=1]) 2017; 9 Kanan (C7TA09734D-(cit14)/*[position()=1]) 2011; 321 Fan (C7TA09734D-(cit42)/*[position()=1]) 2014; 43 Xu (C7TA09734D-(cit23)/*[position()=1]) 2018; 43 Wang (C7TA09734D-(cit28)/*[position()=1]) 2016; 55 Liu (C7TA09734D-(cit54)/*[position()=1]) 2017; 40 Song (C7TA09734D-(cit39)/*[position()=1]) 2014; 136 Cheng (C7TA09734D-(cit58)/*[position()=1]) 2015; 3 Yu (C7TA09734D-(cit49)/*[position()=1]) 2017; 10 |
References_xml | – volume: 139 start-page: 2070 year: 2017 ident: C7TA09734D-(cit21)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12250 – volume: 137 start-page: 4119 year: 2015 ident: C7TA09734D-(cit36)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5119495 – volume: 44 start-page: 2060 year: 2015 ident: C7TA09734D-(cit2)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00470A – volume: 51 start-page: 5695 year: 2015 ident: C7TA09734D-(cit51)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC00661A – volume: 14 start-page: 1245 year: 2015 ident: C7TA09734D-(cit55)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat4410 – volume: 54 start-page: 11231 year: 2015 ident: C7TA09734D-(cit26)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201505320 – volume: 9 start-page: 1246 year: 2016 ident: C7TA09734D-(cit32)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00100A – volume: 52 start-page: 9450 year: 2016 ident: C7TA09734D-(cit53)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC04387A – volume: 3 start-page: 23207 year: 2015 ident: C7TA09734D-(cit58)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06788J – volume: 7 start-page: 1700467 year: 2017 ident: C7TA09734D-(cit22)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700467 – volume: 45 start-page: 1529 year: 2016 ident: C7TA09734D-(cit4)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00434A – volume: 136 start-page: 16481 year: 2014 ident: C7TA09734D-(cit39)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5096733 – volume: 355 start-page: 146 year: 2017 ident: C7TA09734D-(cit1)/*[position()=1] publication-title: Science doi: 10.1126/science.aad4998 – volume: 334 start-page: 1383 year: 2011 ident: C7TA09734D-(cit11)/*[position()=1] publication-title: Science doi: 10.1126/science.1212858 – volume: 5 start-page: 1500245 year: 2015 ident: C7TA09734D-(cit40)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500245 – volume: 6 start-page: 714 year: 2016 ident: C7TA09734D-(cit47)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b02193 – volume: 137 start-page: 1587 year: 2015 ident: C7TA09734D-(cit7)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511572q – volume: 4 start-page: 10779 year: 2016 ident: C7TA09734D-(cit50)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA03153F – volume: 40 start-page: 382 year: 2017 ident: C7TA09734D-(cit37)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.040 – volume: 137 start-page: 4347 year: 2015 ident: C7TA09734D-(cit3)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja510442p – volume: 54 start-page: 7399 year: 2015 ident: C7TA09734D-(cit19)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201502226 – volume: 321 start-page: 1072 year: 2011 ident: C7TA09734D-(cit14)/*[position()=1] publication-title: Science doi: 10.1126/science.1162018 – volume: 56 start-page: 3897 year: 2017 ident: C7TA09734D-(cit35)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201612635 – volume: 6 start-page: 7261 year: 2015 ident: C7TA09734D-(cit17)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms8261 – volume: 10 start-page: 8738 year: 2016 ident: C7TA09734D-(cit44)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b04252 – volume: 24 start-page: 103 year: 2016 ident: C7TA09734D-(cit48)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.006 – volume: 43 start-page: 6555 year: 2014 ident: C7TA09734D-(cit6)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60468C – volume: 46 start-page: 10545 year: 2017 ident: C7TA09734D-(cit25)/*[position()=1] publication-title: Dalton Trans. doi: 10.1039/C7DT01110E – volume: 1 start-page: 16053 year: 2016 ident: C7TA09734D-(cit18)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.53 – volume: 29 start-page: 1703870 year: 2017 ident: C7TA09734D-(cit30)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201703870 – volume: 114 start-page: 5607 year: 2017 ident: C7TA09734D-(cit31)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1701562114 – volume: 28 start-page: 77 year: 2016 ident: C7TA09734D-(cit27)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201503906 – volume: 55 start-page: 9055 year: 2016 ident: C7TA09734D-(cit28)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201603197 – volume: 27 start-page: 1606635 year: 2017 ident: C7TA09734D-(cit60)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201606635 – volume: 6 start-page: 4594 year: 2015 ident: C7TA09734D-(cit45)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C5SC01335F – volume: 10 start-page: 1820 year: 2017 ident: C7TA09734D-(cit49)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01571B – volume: 135 start-page: 16977 year: 2013 ident: C7TA09734D-(cit15)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407115p – volume: 55 start-page: 1138 year: 2016 ident: C7TA09734D-(cit38)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201509758 – volume: 52 start-page: 15880 year: 2016 ident: C7TA09734D-(cit41)/*[position()=1] publication-title: Chem. Commun. – volume: 43 start-page: 110 year: 2018 ident: C7TA09734D-(cit23)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.11.022 – volume: 27 start-page: 1702324 year: 2017 ident: C7TA09734D-(cit24)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702324 – volume: 9 start-page: 457 year: 2017 ident: C7TA09734D-(cit10)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2695 – volume: 6 start-page: 6616 year: 2015 ident: C7TA09734D-(cit46)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms7616 – volume: 135 start-page: 8452 year: 2013 ident: C7TA09734D-(cit20)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4027715 – volume: 54 start-page: 52 year: 2015 ident: C7TA09734D-(cit5)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201407031 – volume: 26 start-page: 4661 year: 2016 ident: C7TA09734D-(cit57)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600566 – volume: 3 start-page: 399 year: 2012 ident: C7TA09734D-(cit16)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz2016507 – volume: 16 start-page: 7718 year: 2016 ident: C7TA09734D-(cit34)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03803 – volume: 8 start-page: 2769 year: 2017 ident: C7TA09734D-(cit8)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C6SC05687C – volume: 53 start-page: 14433 year: 2014 ident: C7TA09734D-(cit52)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201408222 – volume: 5 start-page: 10495 year: 2017 ident: C7TA09734D-(cit59)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01447C – volume: 40 start-page: 264 year: 2017 ident: C7TA09734D-(cit54)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.031 – volume: 28 start-page: 215 year: 2016 ident: C7TA09734D-(cit9)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201502696 – volume: 5 start-page: 4345 year: 2014 ident: C7TA09734D-(cit13)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms5345 – volume: 8 start-page: 3970 year: 2014 ident: C7TA09734D-(cit29)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn500880v – volume: 43 start-page: 7040 year: 2014 ident: C7TA09734D-(cit42)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00160E – volume: 7 start-page: 2535 year: 2017 ident: C7TA09734D-(cit43)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b03497 – volume: 137 start-page: 13031 year: 2015 ident: C7TA09734D-(cit12)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07788 – volume: 54 start-page: 6251 year: 2015 ident: C7TA09734D-(cit33)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201501616 – volume: 5 start-page: 6355 year: 2015 ident: C7TA09734D-(cit56)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b01657 |
SSID | ssj0000800699 |
Score | 2.5916317 |
Snippet | The development of readily available, highly efficient and stable electrocatalysts for the oxygen evolution reaction (OER) is extremely significant to... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 3224 |
SubjectTerms | active sites carbon Catalysis Catalytic activity Clean energy Cloth Electrical conductivity Electrical resistivity Electrocatalysts Electrodes energy Fabrication hydrogen Hydrogen-based energy Hydroxides Nanosheets Nanostructure Oxygen Oxygen evolution reactions oxygen production potassium hydroxide Sulfur Water splitting |
Title | Template-directed synthesis of sulphur doped NiCoFe layered double hydroxide porous nanosheets with enhanced electrocatalytic activity for the oxygen evolution reaction |
URI | https://www.proquest.com/docview/2010903148 https://www.proquest.com/docview/2237523422 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbG9gIPiKsoDGQELyhyyeLUTh9L12qgbrx0om-R49hrpZFUW4NWfhF_h3_E8S3t2B4GL1FlW27r88Xn8_G5IPQ-FqA2WRkTyXlB0hKOO0VGGUk1LRUtGRxJzEHx-IQdnaZfZr3Zzs7vLa-lZlV05c9b40r-R6rQBnI1UbL_INl2UmiAzyBfeIKE4Xk3Gavvy3Mgi8QpJuCOl-sKGJ1PMmI9z5uLqKyX0HWyGNZjFZ2LtSnPCY2NCZqar8uL-mpRqgiIuM3WKqr6cq5UiHtT1dw5CfiCOdbes7ZpXqWvPBE8Feur9ZkpGvDD_-kICKlsBX-TAQNZdqsUyVB2rhsNXARR6LEZyV18ojXxh3gv49Lb3gYMRe3sC-Q4aGJ7R-C9jReCfFOLjYnceyEfLoiNrQgdk8aCF3rJp2bbGrK9dSdxLyY8dfVxw97OtiDMo2UXtq-U0MRfBbk927Rt6f_Qe0O3xNSkZpV8JUyKo7TcaNDgNXDyNR-fTib5dDSb3kN7CZxckl20NxhNP09aw5-h6MzWNW1_cUibS_sfN9NfJ0rXeYIlP9NH6KGXGR44CD5GO6p6gh5s5bJ8in7dACNuwYhrjT0YsQUjdmDEHozYgRG3YMQOjHgDRmzAiAMY8d9gxAGMGACD4VuxAyNuwYgDGJ-h0_FoOjwivgwIkTTpr0gqqNE0opQyTlRfag1HLVpkSY8WWrNCZEzx_oHmPZHqmGmpecwLrjOuBZzGU_oc7VZ1pV4gDFuRYr1-BqS9SAvOhJCKsSyBybgQVHfQh7DmufQ58k2plvPc-mrQfj7k04GVz2EHvWvHLl1mmFtH7QfR5X7nuMwT6w5ND9Ksg9623fCemcs6USlY4BxoO-8lNE2Sl3cY8wrdN2-Dsw3uo93VRaNeA1teFW88_v4AjKXOow |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Template-directed+synthesis+of+sulphur+doped+NiCoFe+layered+double+hydroxide+porous+nanosheets+with+enhanced+electrocatalytic+activity+for+the+oxygen+evolution+reaction&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Cao%2C+Li-Ming&rft.au=Wang%2C+Jia-Wei&rft.au=Zhong%2C+Di-Chang&rft.au=Lu%2C+Tong-Bu&rft.date=2018&rft.issn=2050-7496&rft.volume=6&rft.issue=7+p.3224-3230&rft.spage=3224&rft.epage=3230&rft_id=info:doi/10.1039%2Fc7ta09734d&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |