Brain functional gradients are related to cortical folding gradient
Cortical folding is closely linked to brain functions, with gyri acting more like local functional “hubs” to integrate information than sulci do. However, understanding how anatomical constraints relate to complex functions remains fragmented. One possible reason is that the relationship is estimate...
Saved in:
Published in | Cerebral cortex (New York, N.Y. 1991) Vol. 34; no. 11 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
05.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1047-3211 1460-2199 1460-2199 |
DOI | 10.1093/cercor/bhae453 |
Cover
Loading…
Abstract | Cortical folding is closely linked to brain functions, with gyri acting more like local functional “hubs” to integrate information than sulci do. However, understanding how anatomical constraints relate to complex functions remains fragmented. One possible reason is that the relationship is estimated on brain mosaics divided by brain functions and cortical folding patterns. The boundaries of these hypothetical hard-segmented mosaics could be subject to the selection of functional/morphological features and as well as the thresholds. In contrast, functional gradient and folding gradient could provide a more feasible and unitless platform to mitigate the uncertainty introduced by boundary definition. Based on the MRI datasets, we used cortical surface curvature as the folding gradient and related it to the functional connectivity transition gradient. We found that, at the local scale, the functional gradient exhibits different function transition patterns between convex/concave cortices, with positive/negative curvatures, respectively. At the global scale, a cortex with more positive curvature could provide more function transition efficiency and play a more dominant role in more abstractive functional networks. These results reveal a novel relation between cortical morphology and brain functions, providing new clues to how anatomical constraint is related to the rise of an efficient brain function architecture. |
---|---|
AbstractList | Cortical folding is closely linked to brain functions, with gyri acting more like local functional “hubs” to integrate information than sulci do. However, understanding how anatomical constraints relate to complex functions remains fragmented. One possible reason is that the relationship is estimated on brain mosaics divided by brain functions and cortical folding patterns. The boundaries of these hypothetical hard-segmented mosaics could be subject to the selection of functional/morphological features and as well as the thresholds. In contrast, functional gradient and folding gradient could provide a more feasible and unitless platform to mitigate the uncertainty introduced by boundary definition. Based on the MRI datasets, we used cortical surface curvature as the folding gradient and related it to the functional connectivity transition gradient. We found that, at the local scale, the functional gradient exhibits different function transition patterns between convex/concave cortices, with positive/negative curvatures, respectively. At the global scale, a cortex with more positive curvature could provide more function transition efficiency and play a more dominant role in more abstractive functional networks. These results reveal a novel relation between cortical morphology and brain functions, providing new clues to how anatomical constraint is related to the rise of an efficient brain function architecture. Cortical folding is closely linked to brain functions, with gyri acting more like local functional "hubs" to integrate information than sulci do. However, understanding how anatomical constraints relate to complex functions remains fragmented. One possible reason is that the relationship is estimated on brain mosaics divided by brain functions and cortical folding patterns. The boundaries of these hypothetical hard-segmented mosaics could be subject to the selection of functional/morphological features and as well as the thresholds. In contrast, functional gradient and folding gradient could provide a more feasible and unitless platform to mitigate the uncertainty introduced by boundary definition. Based on the MRI datasets, we used cortical surface curvature as the folding gradient and related it to the functional connectivity transition gradient. We found that, at the local scale, the functional gradient exhibits different function transition patterns between convex/concave cortices, with positive/negative curvatures, respectively. At the global scale, a cortex with more positive curvature could provide more function transition efficiency and play a more dominant role in more abstractive functional networks. These results reveal a novel relation between cortical morphology and brain functions, providing new clues to how anatomical constraint is related to the rise of an efficient brain function architecture.Cortical folding is closely linked to brain functions, with gyri acting more like local functional "hubs" to integrate information than sulci do. However, understanding how anatomical constraints relate to complex functions remains fragmented. One possible reason is that the relationship is estimated on brain mosaics divided by brain functions and cortical folding patterns. The boundaries of these hypothetical hard-segmented mosaics could be subject to the selection of functional/morphological features and as well as the thresholds. In contrast, functional gradient and folding gradient could provide a more feasible and unitless platform to mitigate the uncertainty introduced by boundary definition. Based on the MRI datasets, we used cortical surface curvature as the folding gradient and related it to the functional connectivity transition gradient. We found that, at the local scale, the functional gradient exhibits different function transition patterns between convex/concave cortices, with positive/negative curvatures, respectively. At the global scale, a cortex with more positive curvature could provide more function transition efficiency and play a more dominant role in more abstractive functional networks. These results reveal a novel relation between cortical morphology and brain functions, providing new clues to how anatomical constraint is related to the rise of an efficient brain function architecture. |
Author | Zhang, Tuo Jiang, Xi Han, Junwei Zhao, Shijie Zhang, Songyao Cao, Guannan Guo, Lei Yuan, Yixuan He, Zhibin Liu, Tianming Wang, Qiyu |
Author_xml | – sequence: 1 givenname: Zhibin surname: He fullname: He, Zhibin – sequence: 2 givenname: Tuo surname: Zhang fullname: Zhang, Tuo email: tuozhang@nwpu.edu.cn – sequence: 3 givenname: Qiyu surname: Wang fullname: Wang, Qiyu – sequence: 4 givenname: Songyao surname: Zhang fullname: Zhang, Songyao email: tuozhang@nwpu.edu.cn – sequence: 5 givenname: Guannan surname: Cao fullname: Cao, Guannan – sequence: 6 givenname: Tianming surname: Liu fullname: Liu, Tianming – sequence: 7 givenname: Shijie surname: Zhao fullname: Zhao, Shijie – sequence: 8 givenname: Xi surname: Jiang fullname: Jiang, Xi – sequence: 9 givenname: Lei surname: Guo fullname: Guo, Lei – sequence: 10 givenname: Yixuan surname: Yuan fullname: Yuan, Yixuan – sequence: 11 givenname: Junwei surname: Han fullname: Han, Junwei email: tuozhang@nwpu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39569627$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkD1PwzAQhi1URD9gZUQZYUhrx3bSjFDxJVVi6R7ZzrkYpXaxnYF_j6uUDkiI6W543nt1zxSNrLOA0DXBc4JrulDglfML-S6AcXqGJoSVOC9IXY_SjlmV04KQMZqG8IExqQpeXKAxrXlZl0U1QasHL4zNdG9VNM6KLtt60RqwMWTCQ-ahExHaLLos9USjEqFd1xq7PZGX6FyLLsDVcc7Q5ulxs3rJ12_Pr6v7da5oUceclUBUSRShTFItNK7YUvEaBMaaLNmSUE0llFrxkkkphJJM0yXlmhYSuKQzdDuc3Xv32UOIzc4EBV0nLLg-NJRQwtOLNU3ozRHt5Q7aZu_NTviv5ufvBMwHQHkXggd9QghuDmKbQWxzFJsC7FdAmSgOymIS2P0duxtirt__V_ENuEuOXA |
CitedBy_id | crossref_primary_10_1016_j_brainresbull_2025_111222 |
Cites_doi | 10.1016/j.arr.2021.101372 10.3389/fnins.2021.724391 10.1093/cercor/bhac111 10.1016/j.neuron.2015.12.001 10.1016/j.acha.2006.04.006 10.1016/j.nicl.2016.06.004 10.1038/nrn3214 10.1016/j.tics.2017.11.002 10.1016/j.media.2014.04.005 10.1007/s00429-013-0581-z 10.1007/978-3-030-59861-7_26 10.1007/s00429-016-1329-3 10.1093/brain/120.4.701 10.1016/j.neuroimage.2014.07.051 10.1152/jn.00338.2011 10.1016/j.neuroimage.2013.04.127 10.1145/1401890.1401984 10.1038/nature18933 10.1007/978-3-031-43999-5_52 10.1016/j.neuroimage.2016.11.049 10.1016/j.neuroimage.2015.04.033 10.3171/2009.11.FOCUS09245 10.1093/cercor/bhv239 10.1016/j.pscychresns.2010.04.012 10.1007/978-3-319-02126-3_2 10.1007/s11682-019-00204-6 10.1016/j.neuroimage.2011.09.015 10.1093/cercor/11.8.702 10.1016/j.neuroimage.2010.01.071 10.1016/j.neuroimage.2013.05.041 10.1038/s41467-022-35197-2 10.1016/j.brainres.2017.07.018 10.1093/cercor/bhy305 10.1016/j.tics.2004.07.008 10.1016/S0165-0173(97)00058-1 10.1016/S0893-6080(00)00053-8 10.1093/cercor/7.1.18 10.3389/fninf.2011.00004 10.1016/j.neuroimage.2020.117429 10.4103/0019-5545.43634 10.1523/JNEUROSCI.3539-11.2011 10.1093/brain/121.6.1013 10.1016/j.neuroscience.2017.08.022 10.1080/23273798.2014.1002505 10.7554/eLife.90182.3 10.1093/cercor/bhab420 10.1038/s41586-023-06098-1 10.1016/S0028-3932(99)00075-5 10.1242/dev.00334 10.1038/nn1278 10.1002/hbm.23013 10.1523/JNEUROSCI.2318-11.2011 10.1038/s42003-020-0794-7 10.1073/pnas.1608282113 10.1016/j.neuroimage.2006.06.054 10.1016/j.neuroimage.2007.10.060 10.1073/pnas.1418198112 10.1016/j.neuroimage.2012.01.021 10.1007/978-3-031-72120-5_25 10.1093/cercor/bhac053 10.1016/j.tics.2023.08.005 10.1016/j.neuron.2009.06.005 10.1109/TBME.2018.2872726 10.1126/science.1088545 10.1109/ISBI.2019.8759395 10.1016/j.neuroimage.2020.117620 10.1038/s41467-022-34371-w 10.1038/nn1958 10.1038/s41593-022-01070-0 10.1038/s41598-019-55738-y 10.1016/j.neuroimage.2018.10.070 10.1016/j.neuron.2018.08.039 10.1016/j.neuroimage.2012.02.018 10.1016/j.neuroimage.2015.08.004 10.3389/fnins.2018.00575 10.3389/fncir.2019.00036 10.1016/j.neuroimage.2013.05.033 10.1093/psyrad/kkab002 10.1093/cercor/bhq011 10.1103/PhysRevLett.94.018102 10.1002/(sici)1097-0193(1999)8:4<272::aid-hbm10>3.0.co;2-4 10.1093/cercor/bhm225 10.1002/hbm.25971 10.1016/S0361-9230(97)00094-4 10.1523/JNEUROSCI.2060-18.2019 10.1177/1073858406293182 10.15252/embj.201591176 10.1016/j.neuroimage.2017.02.018 10.1109/TBME.2014.2369495 10.3389/fnint.2016.00009 10.1101/cshperspect.a002519 10.1523/JNEUROSCI.0759-12.2012 10.1016/j.neuroscience.2014.06.046 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2024 The Author(s) 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2024 – notice: The Author(s) 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/cercor/bhae453 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1460-2199 |
ExternalDocumentID | 39569627 10_1093_cercor_bhae453 10.1093/cercor/bhae453 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Hong Kong Research Grants Council General Research Fund grantid: 14220622 – fundername: National Science and Technology Major Project of China grantid: 2023ZD0500903 – fundername: Innovation for Doctor Dissertation of Northwestern Polytechnical University grantid: CX2022052 – fundername: Sichuan Science and Technology Program grantid: 2024NSFSC0655 – fundername: National Natural Science Foundation of China grantid: 62403103 – fundername: Shenzhen Science and Technology Program grantid: JCYJ20220530161409021 – fundername: National Natural Science Foundation of China grantid: 62131009 – fundername: Science and Technology Support Project of Guizhou Province grantid: 2021]432 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2022A1515011418 |
GroupedDBID | --- -E4 .2P .GJ .I3 .ZR 0R~ 1TH 29B 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT ABDFA ABEJV ABEUO ABGNP ABIME ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNGD ABNHQ ABNKS ABPIB ABPQP ABPTD ABQLI ABSMQ ABVGC ABWST ABXVV ABXZS ABZBJ ABZEO ACFRR ACGFS ACIWK ACPQN ACPRK ACUFI ACUKT ACUTJ ACUTO ACVCV ACZBC ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADMTO ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEHUL AEJOX AEKPW AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFQV AFFZL AFGWE AFIYH AFOFC AFRAH AFSHK AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AHGBF AHMBA AHMMS AHXPO AIJHB AJBYB AJDVS AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO AQKUS ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVNTJ AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BTRTY BVRKM BZKNY C1A CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS EE~ EIHJH EJD ELUNK EMOBN F5P F9B FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z MBLQV MBTAY ML0 N9A NGC NLBLG NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAWHX OBFPC OBOKY OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P P6G PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCN TEORI TJX TLC TMA TR2 UQL W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c329t-46e1c61c134b3faf0748c59ea00f184813f3be6fc564bbaacb4f3835f32be5b3 |
ISSN | 1047-3211 1460-2199 |
IngestDate | Fri Jul 11 16:35:53 EDT 2025 Sun Aug 31 01:36:51 EDT 2025 Tue Jul 01 00:42:39 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Mon Jun 30 08:34:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | functional gradient folding gradient structure–function relation gradient transfer pathway |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights) https://academic.oup.com/pages/standard-publication-reuse-rights The Author(s) 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c329t-46e1c61c134b3faf0748c59ea00f184813f3be6fc564bbaacb4f3835f32be5b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 39569627 |
PQID | 3131501793 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3131501793 pubmed_primary_39569627 crossref_primary_10_1093_cercor_bhae453 crossref_citationtrail_10_1093_cercor_bhae453 oup_primary_10_1093_cercor_bhae453 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-05 |
PublicationDateYYYYMMDD | 2024-11-05 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cerebral cortex (New York, N.Y. 1991) |
PublicationTitleAlternate | Cereb Cortex |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Coifman (2024112109522435900_ref14) 2006; 21 Siddiqui (2024112109522435900_ref67) 2008; 50 Liu (2024112109522435900_ref47) 2021; 226 Sansom (2024112109522435900_ref65) 2009; 1 Zhang (2024112109522435900_ref90) 2018; 66 De Juan Romero (2024112109522435900_ref15) 2015; 34 Smith (2024112109522435900_ref68) 2014; 101 Lv (2024112109522435900_ref51) 2014; 62 Maestú (2024112109522435900_ref52) 2021; 69 Park (2024112109522435900_ref60) 2021; 224 Rusinkiewicz (2024112109522435900_ref64) 2004 Kaas (2024112109522435900_ref40) 1997; 44 He (2024112109522435900_ref28) 2022; 32 Eguiluz (2024112109522435900_ref18) 2005; 94 Zhao (2024112109522435900_ref95) 2016; 12 Reveley (2024112109522435900_ref61) 2015; 112 Uddin (2024112109522435900_ref73) 2010; 20 Liu (2024112109522435900_ref45) 2017; 1672 Zhang (2024112109522435900_ref94) 2024; 12 He (2024112109522435900_ref30) 2024 Vu (2024112109522435900_ref81) 2017; 154 Ge (2024112109522435900_ref23) 2019 White (2024112109522435900_ref83) 1997; 7 Gordon (2024112109522435900_ref26) 2017; 27 Tong (2024112109522435900_ref72) 2022; 13 Hébert (2024112109522435900_ref31) 2003; 130 Pang (2024112109522435900_ref59) 2023; 618 Jiang (2024112109522435900_ref39) 2021; 1 Marcus (2024112109522435900_ref54) 2011; 5 Fischl (2024112109522435900_ref21) 1999; 8 Lopez-Persem (2024112109522435900_ref48) 2019; 39 Akiki (2024112109522435900_ref1) 2019; 9 Luo (2024112109522435900_ref49) 2023; 27 Zhang (2024112109522435900_ref92) 2021; 15 Glasser (2024112109522435900_ref25) 2016; 536 Yang (2024112109522435900_ref85) 2019; 13 Mantini (2024112109522435900_ref53) 2011; 31 Mesulam (2024112109522435900_ref56) 1998; 121 Van Essen (2024112109522435900_ref76) 2012; 62 Wang (2024112109522435900_ref82) 2023; 33 Bajada (2024112109522435900_ref5) 2019; 186 Wu (2024112109522435900_ref84) 2015; 287 Bullmore (2024112109522435900_ref10) 2012; 13 Jiang (2024112109522435900_ref38) Yeo (2024112109522435900_ref87) 2011; 106 Sporns (2024112109522435900_ref70) 2004; 8 Eickhoff (2024112109522435900_ref19) 2018; 170 Fischl (2024112109522435900_ref20) 2012; 62 Zhang (2024112109522435900_ref93) 2022; 43 Mountcastle (2024112109522435900_ref58) 1997; 120 Ribas (2024112109522435900_ref62) 2010; 28 He (2024112109522435900_ref29) 2023 Zhang (2024112109522435900_ref89) 2017; 364 Milham (2024112109522435900_ref57) 2018; 100 Charest (2024112109522435900_ref13) 2015; 30 Brincat (2024112109522435900_ref9) 2004; 7 Barch (2024112109522435900_ref6) 2013; 80 Deng (2024112109522435900_ref16) 2014; 219 Roland (2024112109522435900_ref63) 1998; 26 Li (2024112109522435900_ref42) 2013 Liska (2024112109522435900_ref44) 2015; 115 Yen (2024112109522435900_ref86) 2008 Li (2024112109522435900_ref43) 2017; 222 Van Essen (2024112109522435900_ref77) 2013; 80 Koechlin (2024112109522435900_ref41) 2003; 302 Sepulcre (2024112109522435900_ref66) 2012; 32 Zhang (2024112109522435900_ref88) 2014; 18 Fischl (2024112109522435900_ref22) 2008; 18 Jiang (2024112109522435900_ref36) 2015; 36 Vos de Wael (2024112109522435900_ref79) 2020; 3 Uylings (2024112109522435900_ref74) 2010; 183 Liu (2024112109522435900_ref46) 2019; 29 Hasnain (2024112109522435900_ref27) 2001; 11 Capogna (2024112109522435900_ref11) 2023; 33 Belcher (2024112109522435900_ref8) 2016; 10 Dux (2024112109522435900_ref17) 2009; 63 Huntenburg (2024112109522435900_ref33) 2018; 22 Tian (2024112109522435900_ref71) 2022; 13 Amunts (2024112109522435900_ref2) 2015; 88 Sporns (2024112109522435900_ref69) 2000; 13 Caspers (2024112109522435900_ref12) 2006; 33 Bassett (2024112109522435900_ref7) 2006; 12 Jiang (2024112109522435900_ref37) 2018; 12 Armentano (2024112109522435900_ref4) 2007; 10 Vu (2024112109522435900_ref80) 2015; 122 Margulies (2024112109522435900_ref55) 2016; 113 Glasser (2024112109522435900_ref24) 2013; 80 Amunts (2024112109522435900_ref3) 2000; 38 Iturria-Medina (2024112109522435900_ref34) 2008; 40 Vogt (2024112109522435900_ref78) 1919 Honey (2024112109522435900_ref32) 2010; 52 Zhang (2024112109522435900_ref91) 2020; 14 Luppi (2024112109522435900_ref50) 2022; 25 Jenkinson (2024112109522435900_ref35) 2012; 62 Van Den Heuvel (2024112109522435900_ref75) 2011; 31 |
References_xml | – volume: 69 year: 2021 ident: 2024112109522435900_ref52 article-title: Neuronal excitation/inhibition imbalance: core element of a translational perspective on Alzheimer pathophysiology publication-title: Ageing Res Rev doi: 10.1016/j.arr.2021.101372 – volume: 15 start-page: 724391 year: 2021 ident: 2024112109522435900_ref92 article-title: Joint analysis of functional and structural connectomes between preterm and term infant brains via canonical correlation analysis with locality preserving projection publication-title: Front Neurosci doi: 10.3389/fnins.2021.724391 – volume: 33 start-page: 933 year: 2023 ident: 2024112109522435900_ref82 article-title: Modeling functional difference between gyri and sulci within intrinsic connectivity networks publication-title: Cereb Cortex doi: 10.1093/cercor/bhac111 – volume: 88 start-page: 1086 year: 2015 ident: 2024112109522435900_ref2 article-title: Architectonic mapping of the human brain beyond Brodmann publication-title: Neuron doi: 10.1016/j.neuron.2015.12.001 – volume: 21 start-page: 5 year: 2006 ident: 2024112109522435900_ref14 article-title: Diffusion maps publication-title: Appl Comput Harmon Anal doi: 10.1016/j.acha.2006.04.006 – volume: 12 start-page: 23 year: 2016 ident: 2024112109522435900_ref95 article-title: Connectome-scale group-wise consistent resting-state network analysis in autism spectrum disorder publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2016.06.004 – volume: 13 start-page: 336 year: 2012 ident: 2024112109522435900_ref10 article-title: The economy of brain network organization publication-title: Nat Rev Neurosci doi: 10.1038/nrn3214 – volume: 22 start-page: 21 year: 2018 ident: 2024112109522435900_ref33 article-title: Large-scale gradients in human cortical organization publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2017.11.002 – volume: 18 start-page: 795 year: 2014 ident: 2024112109522435900_ref88 article-title: Characterization of u-shape streamline fibers: methods and applications publication-title: Med Image Anal doi: 10.1016/j.media.2014.04.005 – volume: 219 start-page: 1473 year: 2014 ident: 2024112109522435900_ref16 article-title: A functional model of cortical gyri and sulci publication-title: Brain Struct Funct doi: 10.1007/s00429-013-0581-z – start-page: 12436 volume-title: Machine Learning in Medical Imaging: 11th International Workshop, MLMI 2020, Held in Conjunction with MICCAI 2020. ident: 2024112109522435900_ref38 article-title: Exploring functional difference between gyri and sulci via region-specific 1d convolutional neural networks doi: 10.1007/978-3-030-59861-7_26 – volume: 222 start-page: 2127 year: 2017 ident: 2024112109522435900_ref43 article-title: Commonly preserved and species-specific gyral folding patterns across primate brains publication-title: Brain Struct Funct doi: 10.1007/s00429-016-1329-3 – volume: 120 start-page: 701 year: 1997 ident: 2024112109522435900_ref58 article-title: The columnar organization of the neocortex publication-title: Brain J Neurol doi: 10.1093/brain/120.4.701 – volume: 101 start-page: 738 year: 2014 ident: 2024112109522435900_ref68 article-title: Group-PCA for very large fMRI datasets publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.07.051 – volume: 106 start-page: 1125 year: 2011 ident: 2024112109522435900_ref87 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J Neurophysiol doi: 10.1152/jn.00338.2011 – volume: 80 start-page: 105 year: 2013 ident: 2024112109522435900_ref24 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.127 – start-page: 785 volume-title: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining year: 2008 ident: 2024112109522435900_ref86 article-title: A family of dissimilarity measures between nodes generalizing both the shortest-path and the commute-time distances doi: 10.1145/1401890.1401984 – volume: 536 start-page: 171 year: 2016 ident: 2024112109522435900_ref25 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature doi: 10.1038/nature18933 – start-page: 548 volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention year: 2023 ident: 2024112109522435900_ref29 article-title: H 2 gm: a hierarchical hypergraph matching framework for brain landmark alignment doi: 10.1007/978-3-031-43999-5_52 – volume: 154 start-page: 23 year: 2017 ident: 2024112109522435900_ref81 article-title: Tradeoffs in pushing the spatial resolution of fMRI for the 7T Human Connectome Project publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.11.049 – volume: 115 start-page: 281 year: 2015 ident: 2024112109522435900_ref44 article-title: Functional connectivity hubs of the mouse brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.04.033 – volume: 28 start-page: E2 year: 2010 ident: 2024112109522435900_ref62 article-title: The cerebral sulci and gyri publication-title: Neurosurg Focus doi: 10.3171/2009.11.FOCUS09245 – volume: 27 start-page: 386 year: 2017 ident: 2024112109522435900_ref26 article-title: Individual variability of the system-level organization of the human brain publication-title: Cereb Cortex doi: 10.1093/cercor/bhv239 – volume: 183 start-page: 1 year: 2010 ident: 2024112109522435900_ref74 article-title: 3-d cytoarchitectonic parcellation of human orbitofrontal cortex: correlation with postmortem mri publication-title: Psychiatry Res Neuroimaging doi: 10.1016/j.pscychresns.2010.04.012 – start-page: 8159 volume-title: Multimodal Brain Image Analysis: Third International Workshop, MBIA 2013, Held in Conjunction with MICCAI 2013. year: 2013 ident: 2024112109522435900_ref42 article-title: Assessing structural organization and functional interaction in gyral, sulcal and cortical networks doi: 10.1007/978-3-319-02126-3_2 – volume: 14 start-page: 2512 year: 2020 ident: 2024112109522435900_ref91 article-title: Cortical 3-hinges could serve as hubs in cortico-cortical connective network publication-title: Brain Imaging Behav doi: 10.1007/s11682-019-00204-6 – volume: 62 start-page: 782 year: 2012 ident: 2024112109522435900_ref35 article-title: FSL publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 11 start-page: 702 year: 2001 ident: 2024112109522435900_ref27 article-title: Structure–function spatial covariance in the human visual cortex publication-title: Cereb Cortex doi: 10.1093/cercor/11.8.702 – volume: 52 start-page: 766 year: 2010 ident: 2024112109522435900_ref32 article-title: Can structure predict function in the human brain? publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.01.071 – volume-title: Allgemeine ergebnisse unserer hirnforschung year: 1919 ident: 2024112109522435900_ref78 – volume: 80 start-page: 62 year: 2013 ident: 2024112109522435900_ref77 article-title: The Wu-Minn Human Connectome Project: an overview publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 13 start-page: 7416 year: 2022 ident: 2024112109522435900_ref71 article-title: An integrated resource for functional and structural connectivity of the marmoset brain publication-title: Nat Commun doi: 10.1038/s41467-022-35197-2 – volume: 1672 start-page: 81 year: 2017 ident: 2024112109522435900_ref45 article-title: Elucidating functional differences between cortical gyri and sulci via sparse representation hcp grayordinate fMRI data publication-title: Brain Res doi: 10.1016/j.brainres.2017.07.018 – volume: 29 start-page: 4238 year: 2019 ident: 2024112109522435900_ref46 article-title: The cerebral cortex is bisectionally segregated into two fundamentally different functional units of gyri and sulci publication-title: Cereb Cortex doi: 10.1093/cercor/bhy305 – volume: 8 start-page: 418 year: 2004 ident: 2024112109522435900_ref70 article-title: Organization, development and function of complex brain networks publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2004.07.008 – volume: 26 start-page: 87 year: 1998 ident: 2024112109522435900_ref63 article-title: Structural divisions and functional fields in the human cerebral cortex publication-title: Brain Res Rev doi: 10.1016/S0165-0173(97)00058-1 – volume: 13 start-page: 909 year: 2000 ident: 2024112109522435900_ref69 article-title: Connectivity and complexity: the relationship between neuroanatomy and brain dynamics publication-title: Neural Netw doi: 10.1016/S0893-6080(00)00053-8 – volume: 7 start-page: 18 year: 1997 ident: 2024112109522435900_ref83 article-title: Structure of the human sensorimotor system. I: morphology and cytoarchitecture of the central sulcus publication-title: Cereb Cortex (New York, NY: 1991) doi: 10.1093/cercor/7.1.18 – volume: 5 start-page: 4 year: 2011 ident: 2024112109522435900_ref54 article-title: Informatics and data mining tools and strategies for the Human Connectome Project publication-title: Frontiers in neuroinformatics doi: 10.3389/fninf.2011.00004 – volume: 224 start-page: 117429 year: 2021 ident: 2024112109522435900_ref60 article-title: Signal diffusion along connectome gradients and inter-hub routing differentially contribute to dynamic human brain function publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117429 – volume: 50 start-page: 202 year: 2008 ident: 2024112109522435900_ref67 article-title: Neuropsychology of prefrontal cortex publication-title: Indian J Psychiatry doi: 10.4103/0019-5545.43634 – volume: 31 start-page: 15775 year: 2011 ident: 2024112109522435900_ref75 article-title: Rich-club organization of the human connectome publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3539-11.2011 – volume: 121 start-page: 1013 year: 1998 ident: 2024112109522435900_ref56 article-title: From sensation to cognition publication-title: Brain J Neurol doi: 10.1093/brain/121.6.1013 – volume: 364 start-page: 1 year: 2017 ident: 2024112109522435900_ref89 article-title: Connectome-scale functional intrinsic connectivity networks in macaques publication-title: Neuroscience doi: 10.1016/j.neuroscience.2017.08.022 – volume: 30 start-page: 367 year: 2015 ident: 2024112109522435900_ref13 article-title: The brain of the beholder: honouring individual representational idiosyncrasies publication-title: Lang Cogn Neurosci doi: 10.1080/23273798.2014.1002505 – volume: 12 start-page: RP90182 year: 2024 ident: 2024112109522435900_ref94 article-title: Species-shared and-unique gyral peaks on human and macaque brains publication-title: elife doi: 10.7554/eLife.90182.3 – volume: 32 start-page: 3359 year: 2022 ident: 2024112109522435900_ref28 article-title: Gyral hinges account for the highest cost and the highest communication capacity in a corticocortical network publication-title: Cereb Cortex doi: 10.1093/cercor/bhab420 – volume: 618 start-page: 566 year: 2023 ident: 2024112109522435900_ref59 article-title: Geometric constraints on human brain function publication-title: Nature doi: 10.1038/s41586-023-06098-1 – volume: 38 start-page: 304 year: 2000 ident: 2024112109522435900_ref3 article-title: Interhemispheric asymmetry of the human motor cortex related to handedness and gender publication-title: Neuropsychologia doi: 10.1016/S0028-3932(99)00075-5 – volume: 130 start-page: 1101 year: 2003 ident: 2024112109522435900_ref31 article-title: Fgf signaling through fgfr1 is required for olfactory bulb morphogenesis publication-title: Development doi: 10.1242/dev.00334 – volume: 7 start-page: 880 year: 2004 ident: 2024112109522435900_ref9 article-title: Underlying principles of visual shape selectivity in posterior inferotemporal cortex publication-title: Nat Neurosci doi: 10.1038/nn1278 – volume: 36 start-page: 5301 year: 2015 ident: 2024112109522435900_ref36 article-title: Sparse representation of hcp grayordinate data reveals novel functional architecture of cerebral cortex publication-title: Hum Brain Mapp doi: 10.1002/hbm.23013 – volume: 31 start-page: 12954 year: 2011 ident: 2024112109522435900_ref53 article-title: Default mode of brain function in monkeys publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2318-11.2011 – volume: 3 start-page: 103 year: 2020 ident: 2024112109522435900_ref79 article-title: BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets publication-title: Commun Biol doi: 10.1038/s42003-020-0794-7 – volume: 113 start-page: 12574 year: 2016 ident: 2024112109522435900_ref55 article-title: Situating the default-mode network along a principal gradient of macroscale cortical organization publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1608282113 – volume: 33 start-page: 430 year: 2006 ident: 2024112109522435900_ref12 article-title: The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.06.054 – volume: 40 start-page: 1064 year: 2008 ident: 2024112109522435900_ref34 article-title: Studying the human brain anatomical network via diffusion-weighted MRI and graph theory publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.10.060 – volume: 112 start-page: E2820 year: 2015 ident: 2024112109522435900_ref61 article-title: Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion mr tractography publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1418198112 – volume: 62 start-page: 774 year: 2012 ident: 2024112109522435900_ref20 article-title: FreeSurfer publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.021 – start-page: 265 volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention year: 2024 ident: 2024112109522435900_ref30 article-title: F2TNet: fMRI to T1w MRI knowledge transfer network for brain multi-phenotype prediction doi: 10.1007/978-3-031-72120-5_25 – volume: 33 start-page: 68 year: 2023 ident: 2024112109522435900_ref11 article-title: Whole-brain connectivity during encoding: age-related differences and associations with cognitive and brain structural decline publication-title: Cereb Cortex doi: 10.1093/cercor/bhac053 – start-page: 486 volume-title: Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. year: 2004 ident: 2024112109522435900_ref64 article-title: Estimating curvatures and their derivatives on triangle meshes – volume: 27 start-page: 886 year: 2023 ident: 2024112109522435900_ref49 article-title: How does brain geometry influence human brain function? publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2023.08.005 – volume: 63 start-page: 127 year: 2009 ident: 2024112109522435900_ref17 article-title: Training improves multitasking performance by increasing the speed of information processing in human prefrontal cortex publication-title: Neuron doi: 10.1016/j.neuron.2009.06.005 – volume: 66 start-page: 1297 year: 2018 ident: 2024112109522435900_ref90 article-title: Deep learning models unveiled functional difference between cortical gyri and sulci publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2872726 – volume: 302 start-page: 1181 year: 2003 ident: 2024112109522435900_ref41 article-title: The architecture of cognitive control in the human prefrontal cortex publication-title: Science doi: 10.1126/science.1088545 – start-page: 1585 volume-title: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) year: 2019 ident: 2024112109522435900_ref23 article-title: Exploring intrinsic functional differences of gyri, sulci and 2-hinge, 3-hinge joints on cerebral cortex doi: 10.1109/ISBI.2019.8759395 – volume: 226 start-page: 117620 year: 2021 ident: 2024112109522435900_ref47 article-title: Marmoset brain mapping v3: population multi-modal standard volumetric and surface-based templates publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117620 – volume: 13 start-page: 6584 year: 2022 ident: 2024112109522435900_ref72 article-title: Multimodal analysis demonstrating the shaping of functional gradients in the marmoset brain publication-title: Nat Commun doi: 10.1038/s41467-022-34371-w – volume: 10 start-page: 1277 year: 2007 ident: 2024112109522435900_ref4 article-title: COUP-TFI regulates the balance of cortical patterning between frontal/motor and sensory areas publication-title: Nat Neurosci doi: 10.1038/nn1958 – volume: 25 start-page: 771 year: 2022 ident: 2024112109522435900_ref50 article-title: A synergistic core for human brain evolution and cognition publication-title: Nat Neurosci doi: 10.1038/s41593-022-01070-0 – volume: 9 start-page: 19290 year: 2019 ident: 2024112109522435900_ref1 article-title: Determining the hierarchical architecture of the human brain using subject-level clustering of functional networks publication-title: Sci Rep doi: 10.1038/s41598-019-55738-y – volume: 186 start-page: 164 year: 2019 ident: 2024112109522435900_ref5 article-title: Fiber length profiling: a novel approach to structural brain organization publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.10.070 – volume: 100 start-page: 61 year: 2018 ident: 2024112109522435900_ref57 article-title: An open resource for non-human primate imaging publication-title: Neuron doi: 10.1016/j.neuron.2018.08.039 – volume: 62 start-page: 2222 year: 2012 ident: 2024112109522435900_ref76 article-title: The Human Connectome Project: a data acquisition perspective publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.02.018 – volume: 122 start-page: 318 year: 2015 ident: 2024112109522435900_ref80 article-title: High resolution whole brain diffusion imaging at 7T for the Human Connectome Project publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.08.004 – volume: 12 start-page: 575 year: 2018 ident: 2024112109522435900_ref37 article-title: A cortical folding pattern-guided model of intrinsic functional brain networks in emotion processing publication-title: Front Neurosci doi: 10.3389/fnins.2018.00575 – volume: 13 start-page: 36 year: 2019 ident: 2024112109522435900_ref85 article-title: Temporal variability of cortical gyral-sulcal resting state functional activity correlates with fluid intelligence publication-title: Front Neural Circuits doi: 10.3389/fncir.2019.00036 – volume: 80 start-page: 169 year: 2013 ident: 2024112109522435900_ref6 article-title: Function in the human connectome: task-fMRI and individual differences in behavior publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.033 – volume: 1 start-page: 23 year: 2021 ident: 2024112109522435900_ref39 article-title: Fundamental functional differences between gyri and sulci: implications for brain function, cognition, and behavior publication-title: Psychoradiology doi: 10.1093/psyrad/kkab002 – volume: 20 start-page: 2636 year: 2010 ident: 2024112109522435900_ref73 article-title: Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity publication-title: Cereb Cortex doi: 10.1093/cercor/bhq011 – volume: 94 start-page: 018102 year: 2005 ident: 2024112109522435900_ref18 article-title: Scale-free brain functional networks publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.94.018102 – volume: 8 start-page: 272 year: 1999 ident: 2024112109522435900_ref21 article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface publication-title: Hum Brain Mapp doi: 10.1002/(sici)1097-0193(1999)8:4<272::aid-hbm10>3.0.co;2-4 – volume: 18 start-page: 1973 year: 2008 ident: 2024112109522435900_ref22 article-title: Cortical folding patterns and predicting cytoarchitecture publication-title: Cereb Cortex doi: 10.1093/cercor/bhm225 – volume: 43 start-page: 4540 year: 2022 ident: 2024112109522435900_ref93 article-title: Gyral peaks: novel gyral landmarks in developing macaque brains publication-title: Hum Brain Mapp doi: 10.1002/hbm.25971 – volume: 44 start-page: 107 year: 1997 ident: 2024112109522435900_ref40 article-title: Topographic maps are fundamental to sensory processing publication-title: Brain Res Bull doi: 10.1016/S0361-9230(97)00094-4 – volume: 39 start-page: 3627 year: 2019 ident: 2024112109522435900_ref48 article-title: The human ventromedial prefrontal cortex: sulcal morphology and its influence on functional organization publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2060-18.2019 – volume: 12 start-page: 512 year: 2006 ident: 2024112109522435900_ref7 article-title: Small-world brain networks publication-title: Neuroscientist doi: 10.1177/1073858406293182 – volume: 34 start-page: 1859 year: 2015 ident: 2024112109522435900_ref15 article-title: Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly publication-title: EMBO J doi: 10.15252/embj.201591176 – volume: 170 start-page: 332 year: 2018 ident: 2024112109522435900_ref19 article-title: Topographic organization of the cerebral cortex and brain cartography publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.02.018 – volume: 62 start-page: 1120 year: 2014 ident: 2024112109522435900_ref51 article-title: Holistic atlases of functional networks and interactions reveal reciprocal organizational architecture of cortical function publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2369495 – volume: 10 start-page: 9 year: 2016 ident: 2024112109522435900_ref8 article-title: Functional connectivity hubs and networks in the awake marmoset brain publication-title: Front Integr Neurosci doi: 10.3389/fnint.2016.00009 – volume: 1 start-page: a002519 year: 2009 ident: 2024112109522435900_ref65 article-title: Gradients in the brain: the control of the development of form and function in the cerebral cortex publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a002519 – volume: 32 start-page: 10649 year: 2012 ident: 2024112109522435900_ref66 article-title: Stepwise connectivity of the modal cortex reveals the multimodal organization of the human brain publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0759-12.2012 – volume: 287 start-page: 175 year: 2015 ident: 2024112109522435900_ref84 article-title: Neuronal networks and energy bursts in epilepsy publication-title: Neuroscience doi: 10.1016/j.neuroscience.2014.06.046 |
SSID | ssj0017252 |
Score | 2.4715142 |
Snippet | Cortical folding is closely linked to brain functions, with gyri acting more like local functional “hubs” to integrate information than sulci do. However,... Cortical folding is closely linked to brain functions, with gyri acting more like local functional "hubs" to integrate information than sulci do. However,... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Adult Brain - anatomy & histology Brain - diagnostic imaging Brain - physiology Brain Mapping - methods Cerebral Cortex - diagnostic imaging Cerebral Cortex - physiology Female Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Male |
Title | Brain functional gradients are related to cortical folding gradient |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39569627 https://www.proquest.com/docview/3131501793 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFB60gvgi2nqJN0YRfQhrd3cum32swRKUCoUIfVtmJjNtoO5KugHjr_fMZWe3NsXqyxKGk0mY8-2Zcz8IvV0wpRmnMil4oRMKd0Ai2YQkmrNSpqUiTFiH_tFXPvtGP5-wkz6C76pLWvlB_dpaV_I_XIU14Kutkv0HzsZNYQE-A3_hCRyG5414_NHOdxjbqyl49E5XLoOrvRjbhC5XpwIKJaiXYGN2xYou2hQph8rpVK9sGPncUeuf2wb1jG0O08B7MPPRjbOlXEaURR_0fN30_nq_dLzcrK_6qpv6dCOaoQMip64Sj_Xm6vbCxoFMtc0gSB5kqvZrlKcJCMtyKIiDVzMALtsq4H3zK6VXynozDuWZ0NR3G_6jbfb1xLfRnbwoXEz_y3EfcipylnetK-y_jR0-yb7fYT98_5IGc6kq8opx4pSU-QN0P1gX-MBD5SG6petdtHdQi7b5vsHvsMv3dYGUXXT3KKRV7KGpAxLugYQjkDAACQcg4bbBHZBwAFKkfITmh5_m01kSpmskiuRlm1CuM8UzlREqiREGdMmJYqUWaWoyO2SBGCI1N8q-ylIIJakhoK8bkkvNJHmMduqm1k8RhsW04CUvlFGUlVSalBI9WSwkXZiMmxFKugOrVOg8bwegnFc-A4JU_oCrcMAj9D7S__A9V66lfAPn_1ei1x17KpCdNiAmat2sLyqSEbCH7BU1Qk883-JepGTcDqZ6dpOfeI7u9W_GC7TTrtb6JSirrXzlQPYbOpeW4Q |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+functional+gradients+are+related+to+cortical+folding+gradient&rft.jtitle=Cerebral+cortex+%28New+York%2C+N.Y.+1991%29&rft.au=He%2C+Zhibin&rft.au=Zhang%2C+Tuo&rft.au=Wang%2C+Qiyu&rft.au=Zhang%2C+Songyao&rft.date=2024-11-05&rft.pub=Oxford+University+Press&rft.issn=1047-3211&rft.eissn=1460-2199&rft.volume=34&rft.issue=11&rft_id=info:doi/10.1093%2Fcercor%2Fbhae453&rft.externalDocID=10.1093%2Fcercor%2Fbhae453 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3211&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3211&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3211&client=summon |