Brain functional gradients are related to cortical folding gradient

Cortical folding is closely linked to brain functions, with gyri acting more like local functional “hubs” to integrate information than sulci do. However, understanding how anatomical constraints relate to complex functions remains fragmented. One possible reason is that the relationship is estimate...

Full description

Saved in:
Bibliographic Details
Published inCerebral cortex (New York, N.Y. 1991) Vol. 34; no. 11
Main Authors He, Zhibin, Zhang, Tuo, Wang, Qiyu, Zhang, Songyao, Cao, Guannan, Liu, Tianming, Zhao, Shijie, Jiang, Xi, Guo, Lei, Yuan, Yixuan, Han, Junwei
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 05.11.2024
Subjects
Online AccessGet full text
ISSN1047-3211
1460-2199
1460-2199
DOI10.1093/cercor/bhae453

Cover

Loading…
Abstract Cortical folding is closely linked to brain functions, with gyri acting more like local functional “hubs” to integrate information than sulci do. However, understanding how anatomical constraints relate to complex functions remains fragmented. One possible reason is that the relationship is estimated on brain mosaics divided by brain functions and cortical folding patterns. The boundaries of these hypothetical hard-segmented mosaics could be subject to the selection of functional/morphological features and as well as the thresholds. In contrast, functional gradient and folding gradient could provide a more feasible and unitless platform to mitigate the uncertainty introduced by boundary definition. Based on the MRI datasets, we used cortical surface curvature as the folding gradient and related it to the functional connectivity transition gradient. We found that, at the local scale, the functional gradient exhibits different function transition patterns between convex/concave cortices, with positive/negative curvatures, respectively. At the global scale, a cortex with more positive curvature could provide more function transition efficiency and play a more dominant role in more abstractive functional networks. These results reveal a novel relation between cortical morphology and brain functions, providing new clues to how anatomical constraint is related to the rise of an efficient brain function architecture.
AbstractList Cortical folding is closely linked to brain functions, with gyri acting more like local functional “hubs” to integrate information than sulci do. However, understanding how anatomical constraints relate to complex functions remains fragmented. One possible reason is that the relationship is estimated on brain mosaics divided by brain functions and cortical folding patterns. The boundaries of these hypothetical hard-segmented mosaics could be subject to the selection of functional/morphological features and as well as the thresholds. In contrast, functional gradient and folding gradient could provide a more feasible and unitless platform to mitigate the uncertainty introduced by boundary definition. Based on the MRI datasets, we used cortical surface curvature as the folding gradient and related it to the functional connectivity transition gradient. We found that, at the local scale, the functional gradient exhibits different function transition patterns between convex/concave cortices, with positive/negative curvatures, respectively. At the global scale, a cortex with more positive curvature could provide more function transition efficiency and play a more dominant role in more abstractive functional networks. These results reveal a novel relation between cortical morphology and brain functions, providing new clues to how anatomical constraint is related to the rise of an efficient brain function architecture.
Cortical folding is closely linked to brain functions, with gyri acting more like local functional "hubs" to integrate information than sulci do. However, understanding how anatomical constraints relate to complex functions remains fragmented. One possible reason is that the relationship is estimated on brain mosaics divided by brain functions and cortical folding patterns. The boundaries of these hypothetical hard-segmented mosaics could be subject to the selection of functional/morphological features and as well as the thresholds. In contrast, functional gradient and folding gradient could provide a more feasible and unitless platform to mitigate the uncertainty introduced by boundary definition. Based on the MRI datasets, we used cortical surface curvature as the folding gradient and related it to the functional connectivity transition gradient. We found that, at the local scale, the functional gradient exhibits different function transition patterns between convex/concave cortices, with positive/negative curvatures, respectively. At the global scale, a cortex with more positive curvature could provide more function transition efficiency and play a more dominant role in more abstractive functional networks. These results reveal a novel relation between cortical morphology and brain functions, providing new clues to how anatomical constraint is related to the rise of an efficient brain function architecture.Cortical folding is closely linked to brain functions, with gyri acting more like local functional "hubs" to integrate information than sulci do. However, understanding how anatomical constraints relate to complex functions remains fragmented. One possible reason is that the relationship is estimated on brain mosaics divided by brain functions and cortical folding patterns. The boundaries of these hypothetical hard-segmented mosaics could be subject to the selection of functional/morphological features and as well as the thresholds. In contrast, functional gradient and folding gradient could provide a more feasible and unitless platform to mitigate the uncertainty introduced by boundary definition. Based on the MRI datasets, we used cortical surface curvature as the folding gradient and related it to the functional connectivity transition gradient. We found that, at the local scale, the functional gradient exhibits different function transition patterns between convex/concave cortices, with positive/negative curvatures, respectively. At the global scale, a cortex with more positive curvature could provide more function transition efficiency and play a more dominant role in more abstractive functional networks. These results reveal a novel relation between cortical morphology and brain functions, providing new clues to how anatomical constraint is related to the rise of an efficient brain function architecture.
Author Zhang, Tuo
Jiang, Xi
Han, Junwei
Zhao, Shijie
Zhang, Songyao
Cao, Guannan
Guo, Lei
Yuan, Yixuan
He, Zhibin
Liu, Tianming
Wang, Qiyu
Author_xml – sequence: 1
  givenname: Zhibin
  surname: He
  fullname: He, Zhibin
– sequence: 2
  givenname: Tuo
  surname: Zhang
  fullname: Zhang, Tuo
  email: tuozhang@nwpu.edu.cn
– sequence: 3
  givenname: Qiyu
  surname: Wang
  fullname: Wang, Qiyu
– sequence: 4
  givenname: Songyao
  surname: Zhang
  fullname: Zhang, Songyao
  email: tuozhang@nwpu.edu.cn
– sequence: 5
  givenname: Guannan
  surname: Cao
  fullname: Cao, Guannan
– sequence: 6
  givenname: Tianming
  surname: Liu
  fullname: Liu, Tianming
– sequence: 7
  givenname: Shijie
  surname: Zhao
  fullname: Zhao, Shijie
– sequence: 8
  givenname: Xi
  surname: Jiang
  fullname: Jiang, Xi
– sequence: 9
  givenname: Lei
  surname: Guo
  fullname: Guo, Lei
– sequence: 10
  givenname: Yixuan
  surname: Yuan
  fullname: Yuan, Yixuan
– sequence: 11
  givenname: Junwei
  surname: Han
  fullname: Han, Junwei
  email: tuozhang@nwpu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39569627$$D View this record in MEDLINE/PubMed
BookMark eNqFkD1PwzAQhi1URD9gZUQZYUhrx3bSjFDxJVVi6R7ZzrkYpXaxnYF_j6uUDkiI6W543nt1zxSNrLOA0DXBc4JrulDglfML-S6AcXqGJoSVOC9IXY_SjlmV04KQMZqG8IExqQpeXKAxrXlZl0U1QasHL4zNdG9VNM6KLtt60RqwMWTCQ-ahExHaLLos9USjEqFd1xq7PZGX6FyLLsDVcc7Q5ulxs3rJ12_Pr6v7da5oUceclUBUSRShTFItNK7YUvEaBMaaLNmSUE0llFrxkkkphJJM0yXlmhYSuKQzdDuc3Xv32UOIzc4EBV0nLLg-NJRQwtOLNU3ozRHt5Q7aZu_NTviv5ufvBMwHQHkXggd9QghuDmKbQWxzFJsC7FdAmSgOymIS2P0duxtirt__V_ENuEuOXA
CitedBy_id crossref_primary_10_1016_j_brainresbull_2025_111222
Cites_doi 10.1016/j.arr.2021.101372
10.3389/fnins.2021.724391
10.1093/cercor/bhac111
10.1016/j.neuron.2015.12.001
10.1016/j.acha.2006.04.006
10.1016/j.nicl.2016.06.004
10.1038/nrn3214
10.1016/j.tics.2017.11.002
10.1016/j.media.2014.04.005
10.1007/s00429-013-0581-z
10.1007/978-3-030-59861-7_26
10.1007/s00429-016-1329-3
10.1093/brain/120.4.701
10.1016/j.neuroimage.2014.07.051
10.1152/jn.00338.2011
10.1016/j.neuroimage.2013.04.127
10.1145/1401890.1401984
10.1038/nature18933
10.1007/978-3-031-43999-5_52
10.1016/j.neuroimage.2016.11.049
10.1016/j.neuroimage.2015.04.033
10.3171/2009.11.FOCUS09245
10.1093/cercor/bhv239
10.1016/j.pscychresns.2010.04.012
10.1007/978-3-319-02126-3_2
10.1007/s11682-019-00204-6
10.1016/j.neuroimage.2011.09.015
10.1093/cercor/11.8.702
10.1016/j.neuroimage.2010.01.071
10.1016/j.neuroimage.2013.05.041
10.1038/s41467-022-35197-2
10.1016/j.brainres.2017.07.018
10.1093/cercor/bhy305
10.1016/j.tics.2004.07.008
10.1016/S0165-0173(97)00058-1
10.1016/S0893-6080(00)00053-8
10.1093/cercor/7.1.18
10.3389/fninf.2011.00004
10.1016/j.neuroimage.2020.117429
10.4103/0019-5545.43634
10.1523/JNEUROSCI.3539-11.2011
10.1093/brain/121.6.1013
10.1016/j.neuroscience.2017.08.022
10.1080/23273798.2014.1002505
10.7554/eLife.90182.3
10.1093/cercor/bhab420
10.1038/s41586-023-06098-1
10.1016/S0028-3932(99)00075-5
10.1242/dev.00334
10.1038/nn1278
10.1002/hbm.23013
10.1523/JNEUROSCI.2318-11.2011
10.1038/s42003-020-0794-7
10.1073/pnas.1608282113
10.1016/j.neuroimage.2006.06.054
10.1016/j.neuroimage.2007.10.060
10.1073/pnas.1418198112
10.1016/j.neuroimage.2012.01.021
10.1007/978-3-031-72120-5_25
10.1093/cercor/bhac053
10.1016/j.tics.2023.08.005
10.1016/j.neuron.2009.06.005
10.1109/TBME.2018.2872726
10.1126/science.1088545
10.1109/ISBI.2019.8759395
10.1016/j.neuroimage.2020.117620
10.1038/s41467-022-34371-w
10.1038/nn1958
10.1038/s41593-022-01070-0
10.1038/s41598-019-55738-y
10.1016/j.neuroimage.2018.10.070
10.1016/j.neuron.2018.08.039
10.1016/j.neuroimage.2012.02.018
10.1016/j.neuroimage.2015.08.004
10.3389/fnins.2018.00575
10.3389/fncir.2019.00036
10.1016/j.neuroimage.2013.05.033
10.1093/psyrad/kkab002
10.1093/cercor/bhq011
10.1103/PhysRevLett.94.018102
10.1002/(sici)1097-0193(1999)8:4<272::aid-hbm10>3.0.co;2-4
10.1093/cercor/bhm225
10.1002/hbm.25971
10.1016/S0361-9230(97)00094-4
10.1523/JNEUROSCI.2060-18.2019
10.1177/1073858406293182
10.15252/embj.201591176
10.1016/j.neuroimage.2017.02.018
10.1109/TBME.2014.2369495
10.3389/fnint.2016.00009
10.1101/cshperspect.a002519
10.1523/JNEUROSCI.0759-12.2012
10.1016/j.neuroscience.2014.06.046
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2024
The Author(s) 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2024
– notice: The Author(s) 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/cercor/bhae453
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1460-2199
ExternalDocumentID 39569627
10_1093_cercor_bhae453
10.1093/cercor/bhae453
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Hong Kong Research Grants Council General Research Fund
  grantid: 14220622
– fundername: National Science and Technology Major Project of China
  grantid: 2023ZD0500903
– fundername: Innovation for Doctor Dissertation of Northwestern Polytechnical University
  grantid: CX2022052
– fundername: Sichuan Science and Technology Program
  grantid: 2024NSFSC0655
– fundername: National Natural Science Foundation of China
  grantid: 62403103
– fundername: Shenzhen Science and Technology Program
  grantid: JCYJ20220530161409021
– fundername: National Natural Science Foundation of China
  grantid: 62131009
– fundername: Science and Technology Support Project of Guizhou Province
  grantid: 2021]432
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2022A1515011418
GroupedDBID ---
-E4
.2P
.GJ
.I3
.ZR
0R~
1TH
29B
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
ABDFA
ABEJV
ABEUO
ABGNP
ABIME
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNGD
ABNHQ
ABNKS
ABPIB
ABPQP
ABPTD
ABQLI
ABSMQ
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ABZEO
ACFRR
ACGFS
ACIWK
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACVCV
ACZBC
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADMTO
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEHUL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFQV
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFSHK
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGORE
AGQPQ
AGQXC
AGSYK
AHGBF
AHMBA
AHMMS
AHXPO
AIJHB
AJBYB
AJDVS
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQKUS
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BTRTY
BVRKM
BZKNY
C1A
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EIHJH
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
MBLQV
MBTAY
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBFPC
OBOKY
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
P6G
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
TCN
TEORI
TJX
TLC
TMA
TR2
UQL
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c329t-46e1c61c134b3faf0748c59ea00f184813f3be6fc564bbaacb4f3835f32be5b3
ISSN 1047-3211
1460-2199
IngestDate Fri Jul 11 16:35:53 EDT 2025
Sun Aug 31 01:36:51 EDT 2025
Tue Jul 01 00:42:39 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Mon Jun 30 08:34:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords functional gradient
folding gradient
structure–function relation
gradient transfer pathway
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
https://academic.oup.com/pages/standard-publication-reuse-rights
The Author(s) 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c329t-46e1c61c134b3faf0748c59ea00f184813f3be6fc564bbaacb4f3835f32be5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39569627
PQID 3131501793
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3131501793
pubmed_primary_39569627
crossref_primary_10_1093_cercor_bhae453
crossref_citationtrail_10_1093_cercor_bhae453
oup_primary_10_1093_cercor_bhae453
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-05
PublicationDateYYYYMMDD 2024-11-05
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-05
  day: 05
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cerebral cortex (New York, N.Y. 1991)
PublicationTitleAlternate Cereb Cortex
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Coifman (2024112109522435900_ref14) 2006; 21
Siddiqui (2024112109522435900_ref67) 2008; 50
Liu (2024112109522435900_ref47) 2021; 226
Sansom (2024112109522435900_ref65) 2009; 1
Zhang (2024112109522435900_ref90) 2018; 66
De Juan Romero (2024112109522435900_ref15) 2015; 34
Smith (2024112109522435900_ref68) 2014; 101
Lv (2024112109522435900_ref51) 2014; 62
Maestú (2024112109522435900_ref52) 2021; 69
Park (2024112109522435900_ref60) 2021; 224
Rusinkiewicz (2024112109522435900_ref64) 2004
Kaas (2024112109522435900_ref40) 1997; 44
He (2024112109522435900_ref28) 2022; 32
Eguiluz (2024112109522435900_ref18) 2005; 94
Zhao (2024112109522435900_ref95) 2016; 12
Reveley (2024112109522435900_ref61) 2015; 112
Uddin (2024112109522435900_ref73) 2010; 20
Liu (2024112109522435900_ref45) 2017; 1672
Zhang (2024112109522435900_ref94) 2024; 12
He (2024112109522435900_ref30) 2024
Vu (2024112109522435900_ref81) 2017; 154
Ge (2024112109522435900_ref23) 2019
White (2024112109522435900_ref83) 1997; 7
Gordon (2024112109522435900_ref26) 2017; 27
Tong (2024112109522435900_ref72) 2022; 13
Hébert (2024112109522435900_ref31) 2003; 130
Pang (2024112109522435900_ref59) 2023; 618
Jiang (2024112109522435900_ref39) 2021; 1
Marcus (2024112109522435900_ref54) 2011; 5
Fischl (2024112109522435900_ref21) 1999; 8
Lopez-Persem (2024112109522435900_ref48) 2019; 39
Akiki (2024112109522435900_ref1) 2019; 9
Luo (2024112109522435900_ref49) 2023; 27
Zhang (2024112109522435900_ref92) 2021; 15
Glasser (2024112109522435900_ref25) 2016; 536
Yang (2024112109522435900_ref85) 2019; 13
Mantini (2024112109522435900_ref53) 2011; 31
Mesulam (2024112109522435900_ref56) 1998; 121
Van Essen (2024112109522435900_ref76) 2012; 62
Wang (2024112109522435900_ref82) 2023; 33
Bajada (2024112109522435900_ref5) 2019; 186
Wu (2024112109522435900_ref84) 2015; 287
Bullmore (2024112109522435900_ref10) 2012; 13
Jiang (2024112109522435900_ref38)
Yeo (2024112109522435900_ref87) 2011; 106
Sporns (2024112109522435900_ref70) 2004; 8
Eickhoff (2024112109522435900_ref19) 2018; 170
Fischl (2024112109522435900_ref20) 2012; 62
Zhang (2024112109522435900_ref93) 2022; 43
Mountcastle (2024112109522435900_ref58) 1997; 120
Ribas (2024112109522435900_ref62) 2010; 28
He (2024112109522435900_ref29) 2023
Zhang (2024112109522435900_ref89) 2017; 364
Milham (2024112109522435900_ref57) 2018; 100
Charest (2024112109522435900_ref13) 2015; 30
Brincat (2024112109522435900_ref9) 2004; 7
Barch (2024112109522435900_ref6) 2013; 80
Deng (2024112109522435900_ref16) 2014; 219
Roland (2024112109522435900_ref63) 1998; 26
Li (2024112109522435900_ref42) 2013
Liska (2024112109522435900_ref44) 2015; 115
Yen (2024112109522435900_ref86) 2008
Li (2024112109522435900_ref43) 2017; 222
Van Essen (2024112109522435900_ref77) 2013; 80
Koechlin (2024112109522435900_ref41) 2003; 302
Sepulcre (2024112109522435900_ref66) 2012; 32
Zhang (2024112109522435900_ref88) 2014; 18
Fischl (2024112109522435900_ref22) 2008; 18
Jiang (2024112109522435900_ref36) 2015; 36
Vos de Wael (2024112109522435900_ref79) 2020; 3
Uylings (2024112109522435900_ref74) 2010; 183
Liu (2024112109522435900_ref46) 2019; 29
Hasnain (2024112109522435900_ref27) 2001; 11
Capogna (2024112109522435900_ref11) 2023; 33
Belcher (2024112109522435900_ref8) 2016; 10
Dux (2024112109522435900_ref17) 2009; 63
Huntenburg (2024112109522435900_ref33) 2018; 22
Tian (2024112109522435900_ref71) 2022; 13
Amunts (2024112109522435900_ref2) 2015; 88
Sporns (2024112109522435900_ref69) 2000; 13
Caspers (2024112109522435900_ref12) 2006; 33
Bassett (2024112109522435900_ref7) 2006; 12
Jiang (2024112109522435900_ref37) 2018; 12
Armentano (2024112109522435900_ref4) 2007; 10
Vu (2024112109522435900_ref80) 2015; 122
Margulies (2024112109522435900_ref55) 2016; 113
Glasser (2024112109522435900_ref24) 2013; 80
Amunts (2024112109522435900_ref3) 2000; 38
Iturria-Medina (2024112109522435900_ref34) 2008; 40
Vogt (2024112109522435900_ref78) 1919
Honey (2024112109522435900_ref32) 2010; 52
Zhang (2024112109522435900_ref91) 2020; 14
Luppi (2024112109522435900_ref50) 2022; 25
Jenkinson (2024112109522435900_ref35) 2012; 62
Van Den Heuvel (2024112109522435900_ref75) 2011; 31
References_xml – volume: 69
  year: 2021
  ident: 2024112109522435900_ref52
  article-title: Neuronal excitation/inhibition imbalance: core element of a translational perspective on Alzheimer pathophysiology
  publication-title: Ageing Res Rev
  doi: 10.1016/j.arr.2021.101372
– volume: 15
  start-page: 724391
  year: 2021
  ident: 2024112109522435900_ref92
  article-title: Joint analysis of functional and structural connectomes between preterm and term infant brains via canonical correlation analysis with locality preserving projection
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2021.724391
– volume: 33
  start-page: 933
  year: 2023
  ident: 2024112109522435900_ref82
  article-title: Modeling functional difference between gyri and sulci within intrinsic connectivity networks
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhac111
– volume: 88
  start-page: 1086
  year: 2015
  ident: 2024112109522435900_ref2
  article-title: Architectonic mapping of the human brain beyond Brodmann
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.12.001
– volume: 21
  start-page: 5
  year: 2006
  ident: 2024112109522435900_ref14
  article-title: Diffusion maps
  publication-title: Appl Comput Harmon Anal
  doi: 10.1016/j.acha.2006.04.006
– volume: 12
  start-page: 23
  year: 2016
  ident: 2024112109522435900_ref95
  article-title: Connectome-scale group-wise consistent resting-state network analysis in autism spectrum disorder
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2016.06.004
– volume: 13
  start-page: 336
  year: 2012
  ident: 2024112109522435900_ref10
  article-title: The economy of brain network organization
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3214
– volume: 22
  start-page: 21
  year: 2018
  ident: 2024112109522435900_ref33
  article-title: Large-scale gradients in human cortical organization
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2017.11.002
– volume: 18
  start-page: 795
  year: 2014
  ident: 2024112109522435900_ref88
  article-title: Characterization of u-shape streamline fibers: methods and applications
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2014.04.005
– volume: 219
  start-page: 1473
  year: 2014
  ident: 2024112109522435900_ref16
  article-title: A functional model of cortical gyri and sulci
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-013-0581-z
– start-page: 12436
  volume-title: Machine Learning in Medical Imaging: 11th International Workshop, MLMI 2020, Held in Conjunction with MICCAI 2020.
  ident: 2024112109522435900_ref38
  article-title: Exploring functional difference between gyri and sulci via region-specific 1d convolutional neural networks
  doi: 10.1007/978-3-030-59861-7_26
– volume: 222
  start-page: 2127
  year: 2017
  ident: 2024112109522435900_ref43
  article-title: Commonly preserved and species-specific gyral folding patterns across primate brains
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-016-1329-3
– volume: 120
  start-page: 701
  year: 1997
  ident: 2024112109522435900_ref58
  article-title: The columnar organization of the neocortex
  publication-title: Brain J Neurol
  doi: 10.1093/brain/120.4.701
– volume: 101
  start-page: 738
  year: 2014
  ident: 2024112109522435900_ref68
  article-title: Group-PCA for very large fMRI datasets
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.07.051
– volume: 106
  start-page: 1125
  year: 2011
  ident: 2024112109522435900_ref87
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00338.2011
– volume: 80
  start-page: 105
  year: 2013
  ident: 2024112109522435900_ref24
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.127
– start-page: 785
  volume-title: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining
  year: 2008
  ident: 2024112109522435900_ref86
  article-title: A family of dissimilarity measures between nodes generalizing both the shortest-path and the commute-time distances
  doi: 10.1145/1401890.1401984
– volume: 536
  start-page: 171
  year: 2016
  ident: 2024112109522435900_ref25
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
  doi: 10.1038/nature18933
– start-page: 548
  volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
  year: 2023
  ident: 2024112109522435900_ref29
  article-title: H 2 gm: a hierarchical hypergraph matching framework for brain landmark alignment
  doi: 10.1007/978-3-031-43999-5_52
– volume: 154
  start-page: 23
  year: 2017
  ident: 2024112109522435900_ref81
  article-title: Tradeoffs in pushing the spatial resolution of fMRI for the 7T Human Connectome Project
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.11.049
– volume: 115
  start-page: 281
  year: 2015
  ident: 2024112109522435900_ref44
  article-title: Functional connectivity hubs of the mouse brain
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.04.033
– volume: 28
  start-page: E2
  year: 2010
  ident: 2024112109522435900_ref62
  article-title: The cerebral sulci and gyri
  publication-title: Neurosurg Focus
  doi: 10.3171/2009.11.FOCUS09245
– volume: 27
  start-page: 386
  year: 2017
  ident: 2024112109522435900_ref26
  article-title: Individual variability of the system-level organization of the human brain
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhv239
– volume: 183
  start-page: 1
  year: 2010
  ident: 2024112109522435900_ref74
  article-title: 3-d cytoarchitectonic parcellation of human orbitofrontal cortex: correlation with postmortem mri
  publication-title: Psychiatry Res Neuroimaging
  doi: 10.1016/j.pscychresns.2010.04.012
– start-page: 8159
  volume-title: Multimodal Brain Image Analysis: Third International Workshop, MBIA 2013, Held in Conjunction with MICCAI 2013.
  year: 2013
  ident: 2024112109522435900_ref42
  article-title: Assessing structural organization and functional interaction in gyral, sulcal and cortical networks
  doi: 10.1007/978-3-319-02126-3_2
– volume: 14
  start-page: 2512
  year: 2020
  ident: 2024112109522435900_ref91
  article-title: Cortical 3-hinges could serve as hubs in cortico-cortical connective network
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-019-00204-6
– volume: 62
  start-page: 782
  year: 2012
  ident: 2024112109522435900_ref35
  article-title: FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 11
  start-page: 702
  year: 2001
  ident: 2024112109522435900_ref27
  article-title: Structure–function spatial covariance in the human visual cortex
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/11.8.702
– volume: 52
  start-page: 766
  year: 2010
  ident: 2024112109522435900_ref32
  article-title: Can structure predict function in the human brain?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.01.071
– volume-title: Allgemeine ergebnisse unserer hirnforschung
  year: 1919
  ident: 2024112109522435900_ref78
– volume: 80
  start-page: 62
  year: 2013
  ident: 2024112109522435900_ref77
  article-title: The Wu-Minn Human Connectome Project: an overview
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 13
  start-page: 7416
  year: 2022
  ident: 2024112109522435900_ref71
  article-title: An integrated resource for functional and structural connectivity of the marmoset brain
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-35197-2
– volume: 1672
  start-page: 81
  year: 2017
  ident: 2024112109522435900_ref45
  article-title: Elucidating functional differences between cortical gyri and sulci via sparse representation hcp grayordinate fMRI data
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2017.07.018
– volume: 29
  start-page: 4238
  year: 2019
  ident: 2024112109522435900_ref46
  article-title: The cerebral cortex is bisectionally segregated into two fundamentally different functional units of gyri and sulci
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhy305
– volume: 8
  start-page: 418
  year: 2004
  ident: 2024112109522435900_ref70
  article-title: Organization, development and function of complex brain networks
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2004.07.008
– volume: 26
  start-page: 87
  year: 1998
  ident: 2024112109522435900_ref63
  article-title: Structural divisions and functional fields in the human cerebral cortex
  publication-title: Brain Res Rev
  doi: 10.1016/S0165-0173(97)00058-1
– volume: 13
  start-page: 909
  year: 2000
  ident: 2024112109522435900_ref69
  article-title: Connectivity and complexity: the relationship between neuroanatomy and brain dynamics
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(00)00053-8
– volume: 7
  start-page: 18
  year: 1997
  ident: 2024112109522435900_ref83
  article-title: Structure of the human sensorimotor system. I: morphology and cytoarchitecture of the central sulcus
  publication-title: Cereb Cortex (New York, NY: 1991)
  doi: 10.1093/cercor/7.1.18
– volume: 5
  start-page: 4
  year: 2011
  ident: 2024112109522435900_ref54
  article-title: Informatics and data mining tools and strategies for the Human Connectome Project
  publication-title: Frontiers in neuroinformatics
  doi: 10.3389/fninf.2011.00004
– volume: 224
  start-page: 117429
  year: 2021
  ident: 2024112109522435900_ref60
  article-title: Signal diffusion along connectome gradients and inter-hub routing differentially contribute to dynamic human brain function
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117429
– volume: 50
  start-page: 202
  year: 2008
  ident: 2024112109522435900_ref67
  article-title: Neuropsychology of prefrontal cortex
  publication-title: Indian J Psychiatry
  doi: 10.4103/0019-5545.43634
– volume: 31
  start-page: 15775
  year: 2011
  ident: 2024112109522435900_ref75
  article-title: Rich-club organization of the human connectome
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3539-11.2011
– volume: 121
  start-page: 1013
  year: 1998
  ident: 2024112109522435900_ref56
  article-title: From sensation to cognition
  publication-title: Brain J Neurol
  doi: 10.1093/brain/121.6.1013
– volume: 364
  start-page: 1
  year: 2017
  ident: 2024112109522435900_ref89
  article-title: Connectome-scale functional intrinsic connectivity networks in macaques
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2017.08.022
– volume: 30
  start-page: 367
  year: 2015
  ident: 2024112109522435900_ref13
  article-title: The brain of the beholder: honouring individual representational idiosyncrasies
  publication-title: Lang Cogn Neurosci
  doi: 10.1080/23273798.2014.1002505
– volume: 12
  start-page: RP90182
  year: 2024
  ident: 2024112109522435900_ref94
  article-title: Species-shared and-unique gyral peaks on human and macaque brains
  publication-title: elife
  doi: 10.7554/eLife.90182.3
– volume: 32
  start-page: 3359
  year: 2022
  ident: 2024112109522435900_ref28
  article-title: Gyral hinges account for the highest cost and the highest communication capacity in a corticocortical network
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhab420
– volume: 618
  start-page: 566
  year: 2023
  ident: 2024112109522435900_ref59
  article-title: Geometric constraints on human brain function
  publication-title: Nature
  doi: 10.1038/s41586-023-06098-1
– volume: 38
  start-page: 304
  year: 2000
  ident: 2024112109522435900_ref3
  article-title: Interhemispheric asymmetry of the human motor cortex related to handedness and gender
  publication-title: Neuropsychologia
  doi: 10.1016/S0028-3932(99)00075-5
– volume: 130
  start-page: 1101
  year: 2003
  ident: 2024112109522435900_ref31
  article-title: Fgf signaling through fgfr1 is required for olfactory bulb morphogenesis
  publication-title: Development
  doi: 10.1242/dev.00334
– volume: 7
  start-page: 880
  year: 2004
  ident: 2024112109522435900_ref9
  article-title: Underlying principles of visual shape selectivity in posterior inferotemporal cortex
  publication-title: Nat Neurosci
  doi: 10.1038/nn1278
– volume: 36
  start-page: 5301
  year: 2015
  ident: 2024112109522435900_ref36
  article-title: Sparse representation of hcp grayordinate data reveals novel functional architecture of cerebral cortex
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23013
– volume: 31
  start-page: 12954
  year: 2011
  ident: 2024112109522435900_ref53
  article-title: Default mode of brain function in monkeys
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2318-11.2011
– volume: 3
  start-page: 103
  year: 2020
  ident: 2024112109522435900_ref79
  article-title: BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets
  publication-title: Commun Biol
  doi: 10.1038/s42003-020-0794-7
– volume: 113
  start-page: 12574
  year: 2016
  ident: 2024112109522435900_ref55
  article-title: Situating the default-mode network along a principal gradient of macroscale cortical organization
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1608282113
– volume: 33
  start-page: 430
  year: 2006
  ident: 2024112109522435900_ref12
  article-title: The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.06.054
– volume: 40
  start-page: 1064
  year: 2008
  ident: 2024112109522435900_ref34
  article-title: Studying the human brain anatomical network via diffusion-weighted MRI and graph theory
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.10.060
– volume: 112
  start-page: E2820
  year: 2015
  ident: 2024112109522435900_ref61
  article-title: Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion mr tractography
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1418198112
– volume: 62
  start-page: 774
  year: 2012
  ident: 2024112109522435900_ref20
  article-title: FreeSurfer
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.021
– start-page: 265
  volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
  year: 2024
  ident: 2024112109522435900_ref30
  article-title: F2TNet: fMRI to T1w MRI knowledge transfer network for brain multi-phenotype prediction
  doi: 10.1007/978-3-031-72120-5_25
– volume: 33
  start-page: 68
  year: 2023
  ident: 2024112109522435900_ref11
  article-title: Whole-brain connectivity during encoding: age-related differences and associations with cognitive and brain structural decline
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhac053
– start-page: 486
  volume-title: Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004.
  year: 2004
  ident: 2024112109522435900_ref64
  article-title: Estimating curvatures and their derivatives on triangle meshes
– volume: 27
  start-page: 886
  year: 2023
  ident: 2024112109522435900_ref49
  article-title: How does brain geometry influence human brain function?
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2023.08.005
– volume: 63
  start-page: 127
  year: 2009
  ident: 2024112109522435900_ref17
  article-title: Training improves multitasking performance by increasing the speed of information processing in human prefrontal cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.06.005
– volume: 66
  start-page: 1297
  year: 2018
  ident: 2024112109522435900_ref90
  article-title: Deep learning models unveiled functional difference between cortical gyri and sulci
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2872726
– volume: 302
  start-page: 1181
  year: 2003
  ident: 2024112109522435900_ref41
  article-title: The architecture of cognitive control in the human prefrontal cortex
  publication-title: Science
  doi: 10.1126/science.1088545
– start-page: 1585
  volume-title: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
  year: 2019
  ident: 2024112109522435900_ref23
  article-title: Exploring intrinsic functional differences of gyri, sulci and 2-hinge, 3-hinge joints on cerebral cortex
  doi: 10.1109/ISBI.2019.8759395
– volume: 226
  start-page: 117620
  year: 2021
  ident: 2024112109522435900_ref47
  article-title: Marmoset brain mapping v3: population multi-modal standard volumetric and surface-based templates
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117620
– volume: 13
  start-page: 6584
  year: 2022
  ident: 2024112109522435900_ref72
  article-title: Multimodal analysis demonstrating the shaping of functional gradients in the marmoset brain
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-34371-w
– volume: 10
  start-page: 1277
  year: 2007
  ident: 2024112109522435900_ref4
  article-title: COUP-TFI regulates the balance of cortical patterning between frontal/motor and sensory areas
  publication-title: Nat Neurosci
  doi: 10.1038/nn1958
– volume: 25
  start-page: 771
  year: 2022
  ident: 2024112109522435900_ref50
  article-title: A synergistic core for human brain evolution and cognition
  publication-title: Nat Neurosci
  doi: 10.1038/s41593-022-01070-0
– volume: 9
  start-page: 19290
  year: 2019
  ident: 2024112109522435900_ref1
  article-title: Determining the hierarchical architecture of the human brain using subject-level clustering of functional networks
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-55738-y
– volume: 186
  start-page: 164
  year: 2019
  ident: 2024112109522435900_ref5
  article-title: Fiber length profiling: a novel approach to structural brain organization
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.10.070
– volume: 100
  start-page: 61
  year: 2018
  ident: 2024112109522435900_ref57
  article-title: An open resource for non-human primate imaging
  publication-title: Neuron
  doi: 10.1016/j.neuron.2018.08.039
– volume: 62
  start-page: 2222
  year: 2012
  ident: 2024112109522435900_ref76
  article-title: The Human Connectome Project: a data acquisition perspective
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.02.018
– volume: 122
  start-page: 318
  year: 2015
  ident: 2024112109522435900_ref80
  article-title: High resolution whole brain diffusion imaging at 7T for the Human Connectome Project
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.08.004
– volume: 12
  start-page: 575
  year: 2018
  ident: 2024112109522435900_ref37
  article-title: A cortical folding pattern-guided model of intrinsic functional brain networks in emotion processing
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2018.00575
– volume: 13
  start-page: 36
  year: 2019
  ident: 2024112109522435900_ref85
  article-title: Temporal variability of cortical gyral-sulcal resting state functional activity correlates with fluid intelligence
  publication-title: Front Neural Circuits
  doi: 10.3389/fncir.2019.00036
– volume: 80
  start-page: 169
  year: 2013
  ident: 2024112109522435900_ref6
  article-title: Function in the human connectome: task-fMRI and individual differences in behavior
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.033
– volume: 1
  start-page: 23
  year: 2021
  ident: 2024112109522435900_ref39
  article-title: Fundamental functional differences between gyri and sulci: implications for brain function, cognition, and behavior
  publication-title: Psychoradiology
  doi: 10.1093/psyrad/kkab002
– volume: 20
  start-page: 2636
  year: 2010
  ident: 2024112109522435900_ref73
  article-title: Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhq011
– volume: 94
  start-page: 018102
  year: 2005
  ident: 2024112109522435900_ref18
  article-title: Scale-free brain functional networks
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.94.018102
– volume: 8
  start-page: 272
  year: 1999
  ident: 2024112109522435900_ref21
  article-title: High-resolution intersubject averaging and a coordinate system for the cortical surface
  publication-title: Hum Brain Mapp
  doi: 10.1002/(sici)1097-0193(1999)8:4<272::aid-hbm10>3.0.co;2-4
– volume: 18
  start-page: 1973
  year: 2008
  ident: 2024112109522435900_ref22
  article-title: Cortical folding patterns and predicting cytoarchitecture
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhm225
– volume: 43
  start-page: 4540
  year: 2022
  ident: 2024112109522435900_ref93
  article-title: Gyral peaks: novel gyral landmarks in developing macaque brains
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.25971
– volume: 44
  start-page: 107
  year: 1997
  ident: 2024112109522435900_ref40
  article-title: Topographic maps are fundamental to sensory processing
  publication-title: Brain Res Bull
  doi: 10.1016/S0361-9230(97)00094-4
– volume: 39
  start-page: 3627
  year: 2019
  ident: 2024112109522435900_ref48
  article-title: The human ventromedial prefrontal cortex: sulcal morphology and its influence on functional organization
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2060-18.2019
– volume: 12
  start-page: 512
  year: 2006
  ident: 2024112109522435900_ref7
  article-title: Small-world brain networks
  publication-title: Neuroscientist
  doi: 10.1177/1073858406293182
– volume: 34
  start-page: 1859
  year: 2015
  ident: 2024112109522435900_ref15
  article-title: Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly
  publication-title: EMBO J
  doi: 10.15252/embj.201591176
– volume: 170
  start-page: 332
  year: 2018
  ident: 2024112109522435900_ref19
  article-title: Topographic organization of the cerebral cortex and brain cartography
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.02.018
– volume: 62
  start-page: 1120
  year: 2014
  ident: 2024112109522435900_ref51
  article-title: Holistic atlases of functional networks and interactions reveal reciprocal organizational architecture of cortical function
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2369495
– volume: 10
  start-page: 9
  year: 2016
  ident: 2024112109522435900_ref8
  article-title: Functional connectivity hubs and networks in the awake marmoset brain
  publication-title: Front Integr Neurosci
  doi: 10.3389/fnint.2016.00009
– volume: 1
  start-page: a002519
  year: 2009
  ident: 2024112109522435900_ref65
  article-title: Gradients in the brain: the control of the development of form and function in the cerebral cortex
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a002519
– volume: 32
  start-page: 10649
  year: 2012
  ident: 2024112109522435900_ref66
  article-title: Stepwise connectivity of the modal cortex reveals the multimodal organization of the human brain
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0759-12.2012
– volume: 287
  start-page: 175
  year: 2015
  ident: 2024112109522435900_ref84
  article-title: Neuronal networks and energy bursts in epilepsy
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2014.06.046
SSID ssj0017252
Score 2.4715142
Snippet Cortical folding is closely linked to brain functions, with gyri acting more like local functional “hubs” to integrate information than sulci do. However,...
Cortical folding is closely linked to brain functions, with gyri acting more like local functional "hubs" to integrate information than sulci do. However,...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Adult
Brain - anatomy & histology
Brain - diagnostic imaging
Brain - physiology
Brain Mapping - methods
Cerebral Cortex - diagnostic imaging
Cerebral Cortex - physiology
Female
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Male
Title Brain functional gradients are related to cortical folding gradient
URI https://www.ncbi.nlm.nih.gov/pubmed/39569627
https://www.proquest.com/docview/3131501793
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFB60gvgi2nqJN0YRfQhrd3cum32swRKUCoUIfVtmJjNtoO5KugHjr_fMZWe3NsXqyxKGk0mY8-2Zcz8IvV0wpRmnMil4oRMKd0Ai2YQkmrNSpqUiTFiH_tFXPvtGP5-wkz6C76pLWvlB_dpaV_I_XIU14Kutkv0HzsZNYQE-A3_hCRyG5414_NHOdxjbqyl49E5XLoOrvRjbhC5XpwIKJaiXYGN2xYou2hQph8rpVK9sGPncUeuf2wb1jG0O08B7MPPRjbOlXEaURR_0fN30_nq_dLzcrK_6qpv6dCOaoQMip64Sj_Xm6vbCxoFMtc0gSB5kqvZrlKcJCMtyKIiDVzMALtsq4H3zK6VXynozDuWZ0NR3G_6jbfb1xLfRnbwoXEz_y3EfcipylnetK-y_jR0-yb7fYT98_5IGc6kq8opx4pSU-QN0P1gX-MBD5SG6petdtHdQi7b5vsHvsMv3dYGUXXT3KKRV7KGpAxLugYQjkDAACQcg4bbBHZBwAFKkfITmh5_m01kSpmskiuRlm1CuM8UzlREqiREGdMmJYqUWaWoyO2SBGCI1N8q-ylIIJakhoK8bkkvNJHmMduqm1k8RhsW04CUvlFGUlVSalBI9WSwkXZiMmxFKugOrVOg8bwegnFc-A4JU_oCrcMAj9D7S__A9V66lfAPn_1ei1x17KpCdNiAmat2sLyqSEbCH7BU1Qk883-JepGTcDqZ6dpOfeI7u9W_GC7TTrtb6JSirrXzlQPYbOpeW4Q
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+functional+gradients+are+related+to+cortical+folding+gradient&rft.jtitle=Cerebral+cortex+%28New+York%2C+N.Y.+1991%29&rft.au=He%2C+Zhibin&rft.au=Zhang%2C+Tuo&rft.au=Wang%2C+Qiyu&rft.au=Zhang%2C+Songyao&rft.date=2024-11-05&rft.pub=Oxford+University+Press&rft.issn=1047-3211&rft.eissn=1460-2199&rft.volume=34&rft.issue=11&rft_id=info:doi/10.1093%2Fcercor%2Fbhae453&rft.externalDocID=10.1093%2Fcercor%2Fbhae453
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3211&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3211&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3211&client=summon