Adaptive Fine-Grained Predicates Learning for Scene Graph Generation
The performance of current Scene Graph Generation (SGG) models is severely hampered by hard-to-distinguish predicates, e.g., "woman-on/standing on/walking on-beach". As general SGG models tend to predict head predicates and re-balancing strategies prefer tail categories, none of them can a...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 45; no. 11; pp. 13921 - 13940 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0162-8828 1939-3539 2160-9292 1939-3539 |
DOI | 10.1109/TPAMI.2023.3298356 |
Cover
Abstract | The performance of current Scene Graph Generation (SGG) models is severely hampered by hard-to-distinguish predicates, e.g., "woman-on/standing on/walking on-beach". As general SGG models tend to predict head predicates and re-balancing strategies prefer tail categories, none of them can appropriately handle hard-to-distinguish predicates. To tackle this issue, inspired by fine-grained image classification, which focuses on differentiating hard-to-distinguish objects, we propose an Adaptive Fine-Grained Predicates Learning (FGPL-A) which aims at differentiating hard-to-distinguish predicates for SGG. First, we introduce an Adaptive Predicate Lattice (PL-A) to figure out hard-to-distinguish predicates, which adaptively explores predicate correlations in keeping with model's dynamic learning pace. Practically, PL-A is initialized from SGG dataset, and gets refined by exploring model's predictions of current mini-batch. Utilizing PL-A, we propose an Adaptive Category Discriminating Loss (CDL-A) and an Adaptive Entity Discriminating Loss (EDL-A) , which progressively regularize model's discriminating process with fine-grained supervision concerning model's dynamic learning status, ensuring balanced and efficient learning process. Extensive experimental results show that our proposed model-agnostic strategy significantly boosts performance of benchmark models on VG-SGG and GQA-SGG datasets by up to 175% and 76% on Mean Recall@100 , achieving new state-of-the-art performance. Moreover, experiments on Sentence-to-Graph Retrieval and Image Captioning tasks further demonstrate practicability of our method. |
---|---|
AbstractList | The performance of current Scene Graph Generation (SGG) models is severely hampered by hard-to-distinguish predicates, e.g., “woman-on/standing on/walking on-beach”. As general SGG models tend to predict head predicates and re-balancing strategies prefer tail categories, none of them can appropriately handle hard-to-distinguish predicates. To tackle this issue, inspired by fine-grained image classification, which focuses on differentiating hard-to-distinguish objects, we propose an Adaptive Fine-Grained Predicates Learning (FGPL-A) which aims at differentiating hard-to-distinguish predicates for SGG. First, we introduce an Adaptive Predicate Lattice (PL-A) to figure out hard-to-distinguish predicates, which adaptively explores predicate correlations in keeping with model's dynamic learning pace. Practically, PL-A is initialized from SGG dataset, and gets refined by exploring model's predictions of current mini-batch. Utilizing PL-A, we propose an Adaptive Category Discriminating Loss (CDL-A) and an Adaptive Entity Discriminating Loss (EDL-A) , which progressively regularize model's discriminating process with fine-grained supervision concerning model's dynamic learning status, ensuring balanced and efficient learning process. Extensive experimental results show that our proposed model-agnostic strategy significantly boosts performance of benchmark models on VG-SGG and GQA-SGG datasets by up to 175% and 76% on Mean Recall@100 , achieving new state-of-the-art performance. Moreover, experiments on Sentence-to-Graph Retrieval and Image Captioning tasks further demonstrate practicability of our method. The performance of current Scene Graph Generation (SGG) models is severely hampered by hard-to-distinguish predicates, e.g., "woman-on/standing on/walking on-beach". As general SGG models tend to predict head predicates and re-balancing strategies prefer tail categories, none of them can appropriately handle hard-to-distinguish predicates. To tackle this issue, inspired by fine-grained image classification, which focuses on differentiating hard-to-distinguish objects, we propose an Adaptive Fine-Grained Predicates Learning (FGPL-A) which aims at differentiating hard-to-distinguish predicates for SGG. First, we introduce an Adaptive Predicate Lattice (PL-A) to figure out hard-to-distinguish predicates, which adaptively explores predicate correlations in keeping with model's dynamic learning pace. Practically, PL-A is initialized from SGG dataset, and gets refined by exploring model's predictions of current mini-batch. Utilizing PL-A, we propose an Adaptive Category Discriminating Loss (CDL-A) and an Adaptive Entity Discriminating Loss (EDL-A), which progressively regularize model's discriminating process with fine-grained supervision concerning model's dynamic learning status, ensuring balanced and efficient learning process. Extensive experimental results show that our proposed model-agnostic strategy significantly boosts performance of benchmark models on VG-SGG and GQA-SGG datasets by up to 175% and 76% on Mean Recall@100, achieving new state-of-the-art performance. Moreover, experiments on Sentence-to-Graph Retrieval and Image Captioning tasks further demonstrate practicability of our method.The performance of current Scene Graph Generation (SGG) models is severely hampered by hard-to-distinguish predicates, e.g., "woman-on/standing on/walking on-beach". As general SGG models tend to predict head predicates and re-balancing strategies prefer tail categories, none of them can appropriately handle hard-to-distinguish predicates. To tackle this issue, inspired by fine-grained image classification, which focuses on differentiating hard-to-distinguish objects, we propose an Adaptive Fine-Grained Predicates Learning (FGPL-A) which aims at differentiating hard-to-distinguish predicates for SGG. First, we introduce an Adaptive Predicate Lattice (PL-A) to figure out hard-to-distinguish predicates, which adaptively explores predicate correlations in keeping with model's dynamic learning pace. Practically, PL-A is initialized from SGG dataset, and gets refined by exploring model's predictions of current mini-batch. Utilizing PL-A, we propose an Adaptive Category Discriminating Loss (CDL-A) and an Adaptive Entity Discriminating Loss (EDL-A), which progressively regularize model's discriminating process with fine-grained supervision concerning model's dynamic learning status, ensuring balanced and efficient learning process. Extensive experimental results show that our proposed model-agnostic strategy significantly boosts performance of benchmark models on VG-SGG and GQA-SGG datasets by up to 175% and 76% on Mean Recall@100, achieving new state-of-the-art performance. Moreover, experiments on Sentence-to-Graph Retrieval and Image Captioning tasks further demonstrate practicability of our method. |
Author | Lyu, Xinyu Zeng, Pengpeng Gao, Lianli Song, Jingkuan Shen, Heng Tao |
Author_xml | – sequence: 1 givenname: Xinyu orcidid: 0000-0003-2479-8881 surname: Lyu fullname: Lyu, Xinyu email: xinyulyu68@gmail.com organization: Center for Future Media and School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China – sequence: 2 givenname: Lianli orcidid: 0000-0002-2522-6394 surname: Gao fullname: Gao, Lianli email: lianli.gao@uestc.edu.cn organization: Center for Future Media and School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China – sequence: 3 givenname: Pengpeng orcidid: 0000-0002-0672-3790 surname: Zeng fullname: Zeng, Pengpeng email: is.pengpengzeng@gmail.com organization: Center for Future Media and School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China – sequence: 4 givenname: Heng Tao orcidid: 0000-0002-2999-2088 surname: Shen fullname: Shen, Heng Tao email: shenhengtao@hotmail.com organization: Center for Future Media and School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China – sequence: 5 givenname: Jingkuan orcidid: 0000-0002-2549-8322 surname: Song fullname: Song, Jingkuan email: jingkuan.song@gmail.com organization: Center for Future Media and School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China |
BookMark | eNp9kMtKAzEUhoNU7EVfQFwMuHEzNbeZSZal2lqoWLCuh5g50ZRppiZTwbc3vSykC1fnEL7_5Ofro45rHCB0TfCQECzvl4vR82xIMWVDRqVgWX6GepTkOJVU0g7qYZLTVAgquqgfwgpjwjPMLlCXFUV8JrKHHkaV2rT2G5KJdZBOvYqjShYeKqtVCyGZg_LOuo_END551eAgidTmM5nG1avWNu4SnRtVB7g6zgF6mzwux0_p_GU6G4_mqY792pTjjFLgUDCJM61iGx4rCYIJI-8Qy-baGFNUGCrMKs3zLK9UobFm3AitDBugu8PdjW--thDacm2DhrpWDpptKKkoqMCCMhnR2xN01Wy9i-32FOcsEzxS9EBp34TgwZQbb9fK_5QElzvH5d5xuXNcHh3HkDgJadvuPbTRXv1_9OYQtQDw5y8iKcsK9guI64gc |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1145_3708350 |
Cites_doi | 10.1109/CVPR.2017.766 10.1109/CVPR.2017.330 10.1109/CVPR52688.2022.01883 10.1609/aaai.v34i07.6712 10.1109/ICCV.2019.01042 10.1109/TPAMI.2015.2437384 10.1109/CVPR.2019.00550 10.1109/CVPR46437.2021.01096 10.1109/CVPR.2019.01180 10.1109/CVPR.2019.01094 10.1109/CVPR52688.2022.01885 10.1109/CVPR.2019.00632 10.1109/ICME52920.2022.9859970 10.1109/ICCV.2019.00670 10.1145/3394171.3413722 10.1609/aaai.v36i1.19896 10.1109/CVPR52688.2022.00465 10.1007/978-3-319-46454-1_24 10.1109/CVPR46437.2021.01234 10.3115/v1/W14-3348 10.1109/ICCV48922.2021.01512 10.1109/ICCV48922.2021.00340 10.1109/CVPR52688.2022.01884 10.1109/CVPR46437.2021.00957 10.1109/CVPR.2015.7299087 10.1109/TPAMI.2016.2577031 10.1109/CVPR.2019.00527 10.1109/CVPR52688.2022.01882 10.1007/978-3-030-01219-9_20 10.1109/TPAMI.2020.2992222 10.1109/CVPR42600.2020.01168 10.1109/CVPR52688.2022.01887 10.1109/CVPR.2017.120 10.1109/CVPR.2018.00611 10.1109/CVPR.2017.331 10.1109/ICCV.2019.00833 10.1109/CVPR46437.2021.00312 10.1109/CVPR.2019.00678 10.1109/CVPR46437.2021.01372 10.1109/ICCV.2017.324 10.1109/CVPR42600.2020.01100 10.1109/CVPR42600.2020.00380 10.1007/978-3-031-19812-0_16 10.1109/CVPR42600.2020.00377 10.1109/CVPR.2019.00949 10.1109/CVPR46437.2021.01622 10.1109/CVPR.2019.00515 10.1145/3474085.3475297 10.1109/CVPR.2019.00686 10.1109/CVPRW53098.2021.00244 10.1007/978-3-031-19812-0_24 10.1007/978-3-030-58592-1_36 10.1109/CVPR52688.2022.01888 10.1007/978-3-030-01246-5_41 10.1109/TIP.2020.2973812 10.1109/ICCV.2019.01050 10.1109/TMM.2022.3190135 10.24963/ijcai.2021/176 10.1109/CVPR.2017.469 10.1109/CVPR.2019.00315 10.1109/ICCV.2017.121 10.1109/ICCV48922.2021.01558 10.1109/CVPR52688.2022.01830 10.1109/CVPRW50498.2020.00097 10.1109/CVPR.2019.00857 10.1109/TIP.2022.3181511 10.1109/CVPR52688.2022.01515 10.1109/CVPR52688.2022.01886 10.1109/ICCV48922.2021.01607 10.1109/ICME52920.2022.9859711 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TPAMI.2023.3298356 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 13940 |
ExternalDocumentID | 10_1109_TPAMI_2023_3298356 10192357 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62122018; 62020106008; 61772116; 61872064 funderid: 10.13039/501100001809 – fundername: National Key R&D Program of China grantid: 2022YFC2009903/2022YFC2009900 – fundername: Fok Ying Tong Education Foundation; Fok Ying-Tong Education Foundation grantid: 171106 funderid: 10.13039/501100004806 – fundername: SongShan Laboratory grantid: YYJC012022019 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c329t-40522e4e73905ca0144001810131be0166cfff7d0ed03dc4656da7c0c34f8caf3 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Thu Jul 10 22:18:57 EDT 2025 Mon Jun 30 06:22:23 EDT 2025 Thu Apr 24 23:13:02 EDT 2025 Tue Jul 01 05:15:29 EDT 2025 Wed Aug 27 02:04:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c329t-40522e4e73905ca0144001810131be0166cfff7d0ed03dc4656da7c0c34f8caf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2999-2088 0000-0002-0672-3790 0000-0002-2549-8322 0000-0003-2479-8881 0000-0002-2522-6394 |
PMID | 37788219 |
PQID | 2872443584 |
PQPubID | 85458 |
PageCount | 20 |
ParticipantIDs | ieee_primary_10192357 proquest_miscellaneous_2872808239 proquest_journals_2872443584 crossref_primary_10_1109_TPAMI_2023_3298356 crossref_citationtrail_10_1109_TPAMI_2023_3298356 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref56 ref15 ref59 ref14 ref58 papineni (ref68) 2002 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 hildebrandt (ref7) 2020 ref51 ref46 ref45 ref42 ref86 ref41 ref85 ref44 ref43 guo (ref28) 2017 ref49 ren (ref52) 2020 ref4 ref3 ref6 yang (ref48) 2020 tang (ref9) 2020 ref5 ref82 ref81 ref40 ref84 old (ref30) 2003 yu (ref57) 2018 ref80 lin (ref66) 2014 ref35 ref79 ref34 ref37 ref36 ref31 ref75 ref74 ref33 ref77 tang (ref50) 2020 ref32 ref76 cong (ref83) 2022 ref2 ref1 ref39 ref38 cao (ref53) 2019 vaswani (ref8) 2017 yang (ref61) 2021 ref71 ref70 ref73 ref72 ref24 ref23 ref67 ref26 ref25 ref69 menon (ref47) 0 ref20 ref64 ref63 ref22 ref21 ref65 ref27 ref29 chang (ref78) 2022 ref60 ref62 |
References_xml | – ident: ref38 doi: 10.1109/CVPR.2017.766 – ident: ref10 doi: 10.1109/CVPR.2017.330 – ident: ref27 doi: 10.1109/CVPR52688.2022.01883 – ident: ref60 doi: 10.1609/aaai.v34i07.6712 – ident: ref2 doi: 10.1109/ICCV.2019.01042 – ident: ref65 doi: 10.1109/TPAMI.2015.2437384 – start-page: 1567 year: 2019 ident: ref53 article-title: Learning imbalanced datasets with label-distribution-aware margin loss publication-title: Proc Int Conf Neural Inf Process – ident: ref85 doi: 10.1109/CVPR.2019.00550 – ident: ref18 doi: 10.1109/CVPR46437.2021.01096 – ident: ref37 doi: 10.1109/CVPR.2019.01180 – start-page: 574 year: 2018 ident: ref57 article-title: Hierarchical bilinear pooling for fine-grained visual recognition publication-title: Proc Eur Conf Comput Vis – ident: ref3 doi: 10.1109/CVPR.2019.01094 – ident: ref79 doi: 10.1109/CVPR52688.2022.01885 – start-page: 4175 year: 2020 ident: ref52 article-title: Balanced meta-softmax for long-tailed visual recognition publication-title: Proc Int Conf Neural Inf Process – ident: ref42 doi: 10.1109/CVPR.2019.00632 – year: 2020 ident: ref7 article-title: Scene graph reasoning for visual question answering – ident: ref15 doi: 10.1109/ICME52920.2022.9859970 – ident: ref55 doi: 10.1109/ICCV.2019.00670 – ident: ref23 doi: 10.1145/3394171.3413722 – ident: ref22 doi: 10.1609/aaai.v36i1.19896 – ident: ref62 doi: 10.1109/CVPR52688.2022.00465 – ident: ref71 doi: 10.1007/978-3-319-46454-1_24 – start-page: 13 year: 2003 ident: ref30 article-title: An analysis of semantic overlap among English prepositions in Roget's Thesaurus publication-title: Proc Assoc Comput Linguistics SIG Semantics Conf – ident: ref75 doi: 10.1109/CVPR46437.2021.01234 – ident: ref69 doi: 10.3115/v1/W14-3348 – ident: ref21 doi: 10.1109/ICCV48922.2021.01512 – start-page: 1513 year: 2020 ident: ref50 article-title: Long-tailed classification by keeping the good and removing the bad momentum causal effect publication-title: Proc Int Conf Neural Inf Process – year: 0 ident: ref47 article-title: Long-tail learning via logit adjustment publication-title: arXiv 2007 07314 – ident: ref44 doi: 10.1109/ICCV48922.2021.00340 – ident: ref25 doi: 10.1109/CVPR52688.2022.01884 – start-page: 1321 year: 2017 ident: ref28 article-title: On calibration of modern neural networks publication-title: Proc Int Conf Mach Learn – year: 2022 ident: ref83 article-title: RelTR: Relation transformer for scene graph generation publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref49 doi: 10.1109/CVPR46437.2021.00957 – ident: ref70 doi: 10.1109/CVPR.2015.7299087 – ident: ref64 doi: 10.1109/TPAMI.2016.2577031 – ident: ref34 doi: 10.1109/CVPR.2019.00527 – ident: ref20 doi: 10.1109/CVPR52688.2022.01882 – ident: ref40 doi: 10.1007/978-3-030-01219-9_20 – ident: ref35 doi: 10.1109/TPAMI.2020.2992222 – ident: ref45 doi: 10.1109/CVPR42600.2020.01168 – ident: ref82 doi: 10.1109/CVPR52688.2022.01887 – ident: ref67 doi: 10.1109/CVPR.2017.120 – ident: ref11 doi: 10.1109/CVPR.2018.00611 – ident: ref36 doi: 10.1109/CVPR.2017.331 – ident: ref59 doi: 10.1109/ICCV.2019.00833 – ident: ref43 doi: 10.1109/CVPR46437.2021.00312 – ident: ref4 doi: 10.1109/CVPR.2019.00678 – ident: ref14 doi: 10.1109/CVPR46437.2021.01372 – ident: ref54 doi: 10.1109/ICCV.2017.324 – start-page: 6000 year: 2017 ident: ref8 article-title: Attention is all you need publication-title: Proc Int Conf Neural Inf Process – ident: ref46 doi: 10.1109/CVPR42600.2020.01100 – ident: ref12 doi: 10.1109/CVPR42600.2020.00380 – ident: ref73 doi: 10.1007/978-3-031-19812-0_16 – ident: ref41 doi: 10.1109/CVPR42600.2020.00377 – ident: ref51 doi: 10.1109/CVPR.2019.00949 – ident: ref29 doi: 10.1109/CVPR46437.2021.01622 – ident: ref56 doi: 10.1109/CVPR.2019.00515 – year: 2022 ident: ref78 article-title: Biasing like human: A cognitive bias framework for scene graph generation – ident: ref26 doi: 10.1145/3474085.3475297 – ident: ref5 doi: 10.1109/CVPR.2019.00686 – ident: ref39 doi: 10.1109/CVPRW53098.2021.00244 – ident: ref72 doi: 10.1007/978-3-031-19812-0_24 – ident: ref86 doi: 10.1007/978-3-030-58592-1_36 – year: 2021 ident: ref61 article-title: Re-rank coarse classification with local region enhanced features for fine-grained image recognition – ident: ref84 doi: 10.1109/CVPR52688.2022.01888 – ident: ref80 doi: 10.1007/978-3-030-01246-5_41 – ident: ref63 doi: 10.1109/TIP.2020.2973812 – start-page: 740 year: 2014 ident: ref66 article-title: Microsoft COCO: Common objects in context publication-title: Proc Eur Conf Comput Vis – ident: ref13 doi: 10.1109/ICCV.2019.01050 – ident: ref81 doi: 10.1109/TMM.2022.3190135 – ident: ref16 doi: 10.24963/ijcai.2021/176 – start-page: 19290 year: 2020 ident: ref48 article-title: Rethinking the value of labels for improving class-imbalanced learning publication-title: Proc Int Conf Neural Inf Process – year: 2020 ident: ref9 article-title: A scene graph generation codebase in PyTorch – ident: ref33 doi: 10.1109/CVPR.2017.469 – ident: ref58 doi: 10.1109/CVPR.2019.00315 – ident: ref32 doi: 10.1109/ICCV.2017.121 – ident: ref74 doi: 10.1109/ICCV48922.2021.01558 – start-page: 311 year: 2002 ident: ref68 article-title: BLEU: A method for automatic evaluation of machine translation publication-title: Proc Assoc Comput Linguistics – ident: ref77 doi: 10.1109/CVPR52688.2022.01830 – ident: ref1 doi: 10.1109/CVPRW50498.2020.00097 – ident: ref6 doi: 10.1109/CVPR.2019.00857 – ident: ref24 doi: 10.1109/TIP.2022.3181511 – ident: ref76 doi: 10.1109/CVPR52688.2022.01515 – ident: ref31 doi: 10.1109/CVPR52688.2022.01886 – ident: ref17 doi: 10.1109/ICCV48922.2021.01607 – ident: ref19 doi: 10.1109/ICME52920.2022.9859711 |
SSID | ssj0014503 |
Score | 2.489031 |
Snippet | The performance of current Scene Graph Generation (SGG) models is severely hampered by hard-to-distinguish predicates, e.g., "woman-on/standing on/walking... The performance of current Scene Graph Generation (SGG) models is severely hampered by hard-to-distinguish predicates, e.g., “woman-on/standing on/walking... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 13921 |
SubjectTerms | Adaptation models adaptive learning Correlation Datasets fine-grained learning Head Image classification Learning Scene graph generation Tail Task analysis Transformers visual relationship Visualization |
Title | Adaptive Fine-Grained Predicates Learning for Scene Graph Generation |
URI | https://ieeexplore.ieee.org/document/10192357 https://www.proquest.com/docview/2872443584 https://www.proquest.com/docview/2872808239 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4BJ3rgkaYilKJF4obsrrN-HiNKEpCCOICUm7WP2R5aJQiSC7--M2s7iloVcbPstWXP7Ky_8Xi-D-BSGlryPOrIl6XhMqOOjM1lJDFDaxKXassV3dl9Pn1K7-bZvG1WD70wiBh-PsOYN0Mt3y3tmj-VUYQzHsmKXdiledY0a21KBmkWZJAJwlCIUx7RdcjI6vvjw2h2G7NQeKyGFWEOFi5SBWV_Q2bY2XohBYWVf5bl8K4ZH8J9d5fNLya_4vXKxPbtLwLHDz_GERy0qFOMmmlyDDu46MFhp-gg2gDvwactesLP8GPk9DMvh2JMO6MJq0mgEw8vobhDGFW07Kw_BUFfugqtm2LCDNiiYbNmp_fhaXzzeD2NWtWFyJJxVpRQEiTDFAtVycxqzrhYuS9hYh6DZN7ceu8LJ9FJ5SzzrTldWGlV6kurvfoCe4vlAk9AJJXNndIuQeMpj8TSGZ_RUKWGpc6dGUDSmb62LSU5K2P8rkNqIqs6eK5mz9Wt5wZwtTnnuSHkeHd0n-2_NbIx_QDOOhfXbdC-1pQ8EthRBMkGcLE5TOHGNRS9wOW6GVNydbI6_c-lv8I-30HTr3gGe6uXNX4j4LIy52HC_gFj9-ZD |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB1BOACHFkJR0xZYJG7IZp315zGiTVJoohxSqTdrP2Z7oEqqklz49cys7SgqAnGz7LVlz3h233g87wF8koamPI868mVpuMyoI2NzGUnM0JrEpdpyRXc2z6fX6beb7KZtVg-9MIgYfj7DmDdDLd-t7ZY_lVGEMx7JiqfwjBb-NGvatXZFgzQLQsgEYijIKZPoemRk9WW5GM0uY5YKj9WwItTB0kWqoPxvyBw7e0tS0Fj5Y2IOq834EObdfTY_mfyItxsT21-PKBz_-0FewUGLO8WoeVFewxNc9eGw03QQbYj34eUeQeEbOB85fc8TohjTzmjCehLoxOIhlHcIpYqWn_VWEPilq9DMKSbMgS0aPmt2-xFcjy-WX6dRq7sQWTLOhlJKAmWYYqEqmVnNORdr9yVMzWOQzJtb733hJDqpnGXGNacLK61KfWm1V2-ht1qv8BhEUtncKe0SNJ4ySSyd8RkNVWpY6tyZASSd6WvbkpKzNsZdHZITWdXBczV7rm49N4DPu3PuG0qOf44-YvvvjWxMP4CzzsV1G7Y_a0ofCe4oAmUD-Lg7TAHHVRS9wvW2GVNyfbI6-culP8Dz6XJ2VV9dzr-fwgu-m6Z78Qx6m4ctviMYszHvw8v7G53n6ZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Fine-Grained+Predicates+Learning+for+Scene+Graph+Generation&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Lyu%2C+Xinyu&rft.au=Gao%2C+Lianli&rft.au=Zeng%2C+Pengpeng&rft.au=Shen%2C+Heng+Tao&rft.date=2023-11-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=45&rft.issue=11&rft.spage=13921&rft.epage=13940&rft_id=info:doi/10.1109%2FTPAMI.2023.3298356&rft_id=info%3Apmid%2F37788219&rft.externalDocID=10192357 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |