Adaptive Fine-Grained Predicates Learning for Scene Graph Generation

The performance of current Scene Graph Generation (SGG) models is severely hampered by hard-to-distinguish predicates, e.g., "woman-on/standing on/walking on-beach". As general SGG models tend to predict head predicates and re-balancing strategies prefer tail categories, none of them can a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 45; no. 11; pp. 13921 - 13940
Main Authors Lyu, Xinyu, Gao, Lianli, Zeng, Pengpeng, Shen, Heng Tao, Song, Jingkuan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0162-8828
1939-3539
2160-9292
1939-3539
DOI10.1109/TPAMI.2023.3298356

Cover

Abstract The performance of current Scene Graph Generation (SGG) models is severely hampered by hard-to-distinguish predicates, e.g., "woman-on/standing on/walking on-beach". As general SGG models tend to predict head predicates and re-balancing strategies prefer tail categories, none of them can appropriately handle hard-to-distinguish predicates. To tackle this issue, inspired by fine-grained image classification, which focuses on differentiating hard-to-distinguish objects, we propose an Adaptive Fine-Grained Predicates Learning (FGPL-A) which aims at differentiating hard-to-distinguish predicates for SGG. First, we introduce an Adaptive Predicate Lattice (PL-A) to figure out hard-to-distinguish predicates, which adaptively explores predicate correlations in keeping with model's dynamic learning pace. Practically, PL-A is initialized from SGG dataset, and gets refined by exploring model's predictions of current mini-batch. Utilizing PL-A, we propose an Adaptive Category Discriminating Loss (CDL-A) and an Adaptive Entity Discriminating Loss (EDL-A) , which progressively regularize model's discriminating process with fine-grained supervision concerning model's dynamic learning status, ensuring balanced and efficient learning process. Extensive experimental results show that our proposed model-agnostic strategy significantly boosts performance of benchmark models on VG-SGG and GQA-SGG datasets by up to 175% and 76% on Mean Recall@100 , achieving new state-of-the-art performance. Moreover, experiments on Sentence-to-Graph Retrieval and Image Captioning tasks further demonstrate practicability of our method.
AbstractList The performance of current Scene Graph Generation (SGG) models is severely hampered by hard-to-distinguish predicates, e.g., “woman-on/standing on/walking on-beach”. As general SGG models tend to predict head predicates and re-balancing strategies prefer tail categories, none of them can appropriately handle hard-to-distinguish predicates. To tackle this issue, inspired by fine-grained image classification, which focuses on differentiating hard-to-distinguish objects, we propose an Adaptive Fine-Grained Predicates Learning (FGPL-A) which aims at differentiating hard-to-distinguish predicates for SGG. First, we introduce an Adaptive Predicate Lattice (PL-A) to figure out hard-to-distinguish predicates, which adaptively explores predicate correlations in keeping with model's dynamic learning pace. Practically, PL-A is initialized from SGG dataset, and gets refined by exploring model's predictions of current mini-batch. Utilizing PL-A, we propose an Adaptive Category Discriminating Loss (CDL-A) and an Adaptive Entity Discriminating Loss (EDL-A) , which progressively regularize model's discriminating process with fine-grained supervision concerning model's dynamic learning status, ensuring balanced and efficient learning process. Extensive experimental results show that our proposed model-agnostic strategy significantly boosts performance of benchmark models on VG-SGG and GQA-SGG datasets by up to 175% and 76% on Mean Recall@100 , achieving new state-of-the-art performance. Moreover, experiments on Sentence-to-Graph Retrieval and Image Captioning tasks further demonstrate practicability of our method.
The performance of current Scene Graph Generation (SGG) models is severely hampered by hard-to-distinguish predicates, e.g., "woman-on/standing on/walking on-beach". As general SGG models tend to predict head predicates and re-balancing strategies prefer tail categories, none of them can appropriately handle hard-to-distinguish predicates. To tackle this issue, inspired by fine-grained image classification, which focuses on differentiating hard-to-distinguish objects, we propose an Adaptive Fine-Grained Predicates Learning (FGPL-A) which aims at differentiating hard-to-distinguish predicates for SGG. First, we introduce an Adaptive Predicate Lattice (PL-A) to figure out hard-to-distinguish predicates, which adaptively explores predicate correlations in keeping with model's dynamic learning pace. Practically, PL-A is initialized from SGG dataset, and gets refined by exploring model's predictions of current mini-batch. Utilizing PL-A, we propose an Adaptive Category Discriminating Loss (CDL-A) and an Adaptive Entity Discriminating Loss (EDL-A), which progressively regularize model's discriminating process with fine-grained supervision concerning model's dynamic learning status, ensuring balanced and efficient learning process. Extensive experimental results show that our proposed model-agnostic strategy significantly boosts performance of benchmark models on VG-SGG and GQA-SGG datasets by up to 175% and 76% on Mean Recall@100, achieving new state-of-the-art performance. Moreover, experiments on Sentence-to-Graph Retrieval and Image Captioning tasks further demonstrate practicability of our method.The performance of current Scene Graph Generation (SGG) models is severely hampered by hard-to-distinguish predicates, e.g., "woman-on/standing on/walking on-beach". As general SGG models tend to predict head predicates and re-balancing strategies prefer tail categories, none of them can appropriately handle hard-to-distinguish predicates. To tackle this issue, inspired by fine-grained image classification, which focuses on differentiating hard-to-distinguish objects, we propose an Adaptive Fine-Grained Predicates Learning (FGPL-A) which aims at differentiating hard-to-distinguish predicates for SGG. First, we introduce an Adaptive Predicate Lattice (PL-A) to figure out hard-to-distinguish predicates, which adaptively explores predicate correlations in keeping with model's dynamic learning pace. Practically, PL-A is initialized from SGG dataset, and gets refined by exploring model's predictions of current mini-batch. Utilizing PL-A, we propose an Adaptive Category Discriminating Loss (CDL-A) and an Adaptive Entity Discriminating Loss (EDL-A), which progressively regularize model's discriminating process with fine-grained supervision concerning model's dynamic learning status, ensuring balanced and efficient learning process. Extensive experimental results show that our proposed model-agnostic strategy significantly boosts performance of benchmark models on VG-SGG and GQA-SGG datasets by up to 175% and 76% on Mean Recall@100, achieving new state-of-the-art performance. Moreover, experiments on Sentence-to-Graph Retrieval and Image Captioning tasks further demonstrate practicability of our method.
Author Lyu, Xinyu
Zeng, Pengpeng
Gao, Lianli
Song, Jingkuan
Shen, Heng Tao
Author_xml – sequence: 1
  givenname: Xinyu
  orcidid: 0000-0003-2479-8881
  surname: Lyu
  fullname: Lyu, Xinyu
  email: xinyulyu68@gmail.com
  organization: Center for Future Media and School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
– sequence: 2
  givenname: Lianli
  orcidid: 0000-0002-2522-6394
  surname: Gao
  fullname: Gao, Lianli
  email: lianli.gao@uestc.edu.cn
  organization: Center for Future Media and School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
– sequence: 3
  givenname: Pengpeng
  orcidid: 0000-0002-0672-3790
  surname: Zeng
  fullname: Zeng, Pengpeng
  email: is.pengpengzeng@gmail.com
  organization: Center for Future Media and School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
– sequence: 4
  givenname: Heng Tao
  orcidid: 0000-0002-2999-2088
  surname: Shen
  fullname: Shen, Heng Tao
  email: shenhengtao@hotmail.com
  organization: Center for Future Media and School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
– sequence: 5
  givenname: Jingkuan
  orcidid: 0000-0002-2549-8322
  surname: Song
  fullname: Song, Jingkuan
  email: jingkuan.song@gmail.com
  organization: Center for Future Media and School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
BookMark eNp9kMtKAzEUhoNU7EVfQFwMuHEzNbeZSZal2lqoWLCuh5g50ZRppiZTwbc3vSykC1fnEL7_5Ofro45rHCB0TfCQECzvl4vR82xIMWVDRqVgWX6GepTkOJVU0g7qYZLTVAgquqgfwgpjwjPMLlCXFUV8JrKHHkaV2rT2G5KJdZBOvYqjShYeKqtVCyGZg_LOuo_END551eAgidTmM5nG1avWNu4SnRtVB7g6zgF6mzwux0_p_GU6G4_mqY792pTjjFLgUDCJM61iGx4rCYIJI-8Qy-baGFNUGCrMKs3zLK9UobFm3AitDBugu8PdjW--thDacm2DhrpWDpptKKkoqMCCMhnR2xN01Wy9i-32FOcsEzxS9EBp34TgwZQbb9fK_5QElzvH5d5xuXNcHh3HkDgJadvuPbTRXv1_9OYQtQDw5y8iKcsK9guI64gc
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1145_3708350
Cites_doi 10.1109/CVPR.2017.766
10.1109/CVPR.2017.330
10.1109/CVPR52688.2022.01883
10.1609/aaai.v34i07.6712
10.1109/ICCV.2019.01042
10.1109/TPAMI.2015.2437384
10.1109/CVPR.2019.00550
10.1109/CVPR46437.2021.01096
10.1109/CVPR.2019.01180
10.1109/CVPR.2019.01094
10.1109/CVPR52688.2022.01885
10.1109/CVPR.2019.00632
10.1109/ICME52920.2022.9859970
10.1109/ICCV.2019.00670
10.1145/3394171.3413722
10.1609/aaai.v36i1.19896
10.1109/CVPR52688.2022.00465
10.1007/978-3-319-46454-1_24
10.1109/CVPR46437.2021.01234
10.3115/v1/W14-3348
10.1109/ICCV48922.2021.01512
10.1109/ICCV48922.2021.00340
10.1109/CVPR52688.2022.01884
10.1109/CVPR46437.2021.00957
10.1109/CVPR.2015.7299087
10.1109/TPAMI.2016.2577031
10.1109/CVPR.2019.00527
10.1109/CVPR52688.2022.01882
10.1007/978-3-030-01219-9_20
10.1109/TPAMI.2020.2992222
10.1109/CVPR42600.2020.01168
10.1109/CVPR52688.2022.01887
10.1109/CVPR.2017.120
10.1109/CVPR.2018.00611
10.1109/CVPR.2017.331
10.1109/ICCV.2019.00833
10.1109/CVPR46437.2021.00312
10.1109/CVPR.2019.00678
10.1109/CVPR46437.2021.01372
10.1109/ICCV.2017.324
10.1109/CVPR42600.2020.01100
10.1109/CVPR42600.2020.00380
10.1007/978-3-031-19812-0_16
10.1109/CVPR42600.2020.00377
10.1109/CVPR.2019.00949
10.1109/CVPR46437.2021.01622
10.1109/CVPR.2019.00515
10.1145/3474085.3475297
10.1109/CVPR.2019.00686
10.1109/CVPRW53098.2021.00244
10.1007/978-3-031-19812-0_24
10.1007/978-3-030-58592-1_36
10.1109/CVPR52688.2022.01888
10.1007/978-3-030-01246-5_41
10.1109/TIP.2020.2973812
10.1109/ICCV.2019.01050
10.1109/TMM.2022.3190135
10.24963/ijcai.2021/176
10.1109/CVPR.2017.469
10.1109/CVPR.2019.00315
10.1109/ICCV.2017.121
10.1109/ICCV48922.2021.01558
10.1109/CVPR52688.2022.01830
10.1109/CVPRW50498.2020.00097
10.1109/CVPR.2019.00857
10.1109/TIP.2022.3181511
10.1109/CVPR52688.2022.01515
10.1109/CVPR52688.2022.01886
10.1109/ICCV48922.2021.01607
10.1109/ICME52920.2022.9859711
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2023.3298356
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 13940
ExternalDocumentID 10_1109_TPAMI_2023_3298356
10192357
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62122018; 62020106008; 61772116; 61872064
  funderid: 10.13039/501100001809
– fundername: National Key R&D Program of China
  grantid: 2022YFC2009903/2022YFC2009900
– fundername: Fok Ying Tong Education Foundation; Fok Ying-Tong Education Foundation
  grantid: 171106
  funderid: 10.13039/501100004806
– fundername: SongShan Laboratory
  grantid: YYJC012022019
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c329t-40522e4e73905ca0144001810131be0166cfff7d0ed03dc4656da7c0c34f8caf3
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Thu Jul 10 22:18:57 EDT 2025
Mon Jun 30 06:22:23 EDT 2025
Thu Apr 24 23:13:02 EDT 2025
Tue Jul 01 05:15:29 EDT 2025
Wed Aug 27 02:04:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-40522e4e73905ca0144001810131be0166cfff7d0ed03dc4656da7c0c34f8caf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2999-2088
0000-0002-0672-3790
0000-0002-2549-8322
0000-0003-2479-8881
0000-0002-2522-6394
PMID 37788219
PQID 2872443584
PQPubID 85458
PageCount 20
ParticipantIDs ieee_primary_10192357
proquest_miscellaneous_2872808239
proquest_journals_2872443584
crossref_primary_10_1109_TPAMI_2023_3298356
crossref_citationtrail_10_1109_TPAMI_2023_3298356
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref59
ref14
ref58
papineni (ref68) 2002
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
hildebrandt (ref7) 2020
ref51
ref46
ref45
ref42
ref86
ref41
ref85
ref44
ref43
guo (ref28) 2017
ref49
ren (ref52) 2020
ref4
ref3
ref6
yang (ref48) 2020
tang (ref9) 2020
ref5
ref82
ref81
ref40
ref84
old (ref30) 2003
yu (ref57) 2018
ref80
lin (ref66) 2014
ref35
ref79
ref34
ref37
ref36
ref31
ref75
ref74
ref33
ref77
tang (ref50) 2020
ref32
ref76
cong (ref83) 2022
ref2
ref1
ref39
ref38
cao (ref53) 2019
vaswani (ref8) 2017
yang (ref61) 2021
ref71
ref70
ref73
ref72
ref24
ref23
ref67
ref26
ref25
ref69
menon (ref47) 0
ref20
ref64
ref63
ref22
ref21
ref65
ref27
ref29
chang (ref78) 2022
ref60
ref62
References_xml – ident: ref38
  doi: 10.1109/CVPR.2017.766
– ident: ref10
  doi: 10.1109/CVPR.2017.330
– ident: ref27
  doi: 10.1109/CVPR52688.2022.01883
– ident: ref60
  doi: 10.1609/aaai.v34i07.6712
– ident: ref2
  doi: 10.1109/ICCV.2019.01042
– ident: ref65
  doi: 10.1109/TPAMI.2015.2437384
– start-page: 1567
  year: 2019
  ident: ref53
  article-title: Learning imbalanced datasets with label-distribution-aware margin loss
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref85
  doi: 10.1109/CVPR.2019.00550
– ident: ref18
  doi: 10.1109/CVPR46437.2021.01096
– ident: ref37
  doi: 10.1109/CVPR.2019.01180
– start-page: 574
  year: 2018
  ident: ref57
  article-title: Hierarchical bilinear pooling for fine-grained visual recognition
  publication-title: Proc Eur Conf Comput Vis
– ident: ref3
  doi: 10.1109/CVPR.2019.01094
– ident: ref79
  doi: 10.1109/CVPR52688.2022.01885
– start-page: 4175
  year: 2020
  ident: ref52
  article-title: Balanced meta-softmax for long-tailed visual recognition
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref42
  doi: 10.1109/CVPR.2019.00632
– year: 2020
  ident: ref7
  article-title: Scene graph reasoning for visual question answering
– ident: ref15
  doi: 10.1109/ICME52920.2022.9859970
– ident: ref55
  doi: 10.1109/ICCV.2019.00670
– ident: ref23
  doi: 10.1145/3394171.3413722
– ident: ref22
  doi: 10.1609/aaai.v36i1.19896
– ident: ref62
  doi: 10.1109/CVPR52688.2022.00465
– ident: ref71
  doi: 10.1007/978-3-319-46454-1_24
– start-page: 13
  year: 2003
  ident: ref30
  article-title: An analysis of semantic overlap among English prepositions in Roget's Thesaurus
  publication-title: Proc Assoc Comput Linguistics SIG Semantics Conf
– ident: ref75
  doi: 10.1109/CVPR46437.2021.01234
– ident: ref69
  doi: 10.3115/v1/W14-3348
– ident: ref21
  doi: 10.1109/ICCV48922.2021.01512
– start-page: 1513
  year: 2020
  ident: ref50
  article-title: Long-tailed classification by keeping the good and removing the bad momentum causal effect
  publication-title: Proc Int Conf Neural Inf Process
– year: 0
  ident: ref47
  article-title: Long-tail learning via logit adjustment
  publication-title: arXiv 2007 07314
– ident: ref44
  doi: 10.1109/ICCV48922.2021.00340
– ident: ref25
  doi: 10.1109/CVPR52688.2022.01884
– start-page: 1321
  year: 2017
  ident: ref28
  article-title: On calibration of modern neural networks
  publication-title: Proc Int Conf Mach Learn
– year: 2022
  ident: ref83
  article-title: RelTR: Relation transformer for scene graph generation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref49
  doi: 10.1109/CVPR46437.2021.00957
– ident: ref70
  doi: 10.1109/CVPR.2015.7299087
– ident: ref64
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref34
  doi: 10.1109/CVPR.2019.00527
– ident: ref20
  doi: 10.1109/CVPR52688.2022.01882
– ident: ref40
  doi: 10.1007/978-3-030-01219-9_20
– ident: ref35
  doi: 10.1109/TPAMI.2020.2992222
– ident: ref45
  doi: 10.1109/CVPR42600.2020.01168
– ident: ref82
  doi: 10.1109/CVPR52688.2022.01887
– ident: ref67
  doi: 10.1109/CVPR.2017.120
– ident: ref11
  doi: 10.1109/CVPR.2018.00611
– ident: ref36
  doi: 10.1109/CVPR.2017.331
– ident: ref59
  doi: 10.1109/ICCV.2019.00833
– ident: ref43
  doi: 10.1109/CVPR46437.2021.00312
– ident: ref4
  doi: 10.1109/CVPR.2019.00678
– ident: ref14
  doi: 10.1109/CVPR46437.2021.01372
– ident: ref54
  doi: 10.1109/ICCV.2017.324
– start-page: 6000
  year: 2017
  ident: ref8
  article-title: Attention is all you need
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref46
  doi: 10.1109/CVPR42600.2020.01100
– ident: ref12
  doi: 10.1109/CVPR42600.2020.00380
– ident: ref73
  doi: 10.1007/978-3-031-19812-0_16
– ident: ref41
  doi: 10.1109/CVPR42600.2020.00377
– ident: ref51
  doi: 10.1109/CVPR.2019.00949
– ident: ref29
  doi: 10.1109/CVPR46437.2021.01622
– ident: ref56
  doi: 10.1109/CVPR.2019.00515
– year: 2022
  ident: ref78
  article-title: Biasing like human: A cognitive bias framework for scene graph generation
– ident: ref26
  doi: 10.1145/3474085.3475297
– ident: ref5
  doi: 10.1109/CVPR.2019.00686
– ident: ref39
  doi: 10.1109/CVPRW53098.2021.00244
– ident: ref72
  doi: 10.1007/978-3-031-19812-0_24
– ident: ref86
  doi: 10.1007/978-3-030-58592-1_36
– year: 2021
  ident: ref61
  article-title: Re-rank coarse classification with local region enhanced features for fine-grained image recognition
– ident: ref84
  doi: 10.1109/CVPR52688.2022.01888
– ident: ref80
  doi: 10.1007/978-3-030-01246-5_41
– ident: ref63
  doi: 10.1109/TIP.2020.2973812
– start-page: 740
  year: 2014
  ident: ref66
  article-title: Microsoft COCO: Common objects in context
  publication-title: Proc Eur Conf Comput Vis
– ident: ref13
  doi: 10.1109/ICCV.2019.01050
– ident: ref81
  doi: 10.1109/TMM.2022.3190135
– ident: ref16
  doi: 10.24963/ijcai.2021/176
– start-page: 19290
  year: 2020
  ident: ref48
  article-title: Rethinking the value of labels for improving class-imbalanced learning
  publication-title: Proc Int Conf Neural Inf Process
– year: 2020
  ident: ref9
  article-title: A scene graph generation codebase in PyTorch
– ident: ref33
  doi: 10.1109/CVPR.2017.469
– ident: ref58
  doi: 10.1109/CVPR.2019.00315
– ident: ref32
  doi: 10.1109/ICCV.2017.121
– ident: ref74
  doi: 10.1109/ICCV48922.2021.01558
– start-page: 311
  year: 2002
  ident: ref68
  article-title: BLEU: A method for automatic evaluation of machine translation
  publication-title: Proc Assoc Comput Linguistics
– ident: ref77
  doi: 10.1109/CVPR52688.2022.01830
– ident: ref1
  doi: 10.1109/CVPRW50498.2020.00097
– ident: ref6
  doi: 10.1109/CVPR.2019.00857
– ident: ref24
  doi: 10.1109/TIP.2022.3181511
– ident: ref76
  doi: 10.1109/CVPR52688.2022.01515
– ident: ref31
  doi: 10.1109/CVPR52688.2022.01886
– ident: ref17
  doi: 10.1109/ICCV48922.2021.01607
– ident: ref19
  doi: 10.1109/ICME52920.2022.9859711
SSID ssj0014503
Score 2.489031
Snippet The performance of current Scene Graph Generation (SGG) models is severely hampered by hard-to-distinguish predicates, e.g., "woman-on/standing on/walking...
The performance of current Scene Graph Generation (SGG) models is severely hampered by hard-to-distinguish predicates, e.g., “woman-on/standing on/walking...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13921
SubjectTerms Adaptation models
adaptive learning
Correlation
Datasets
fine-grained learning
Head
Image classification
Learning
Scene graph generation
Tail
Task analysis
Transformers
visual relationship
Visualization
Title Adaptive Fine-Grained Predicates Learning for Scene Graph Generation
URI https://ieeexplore.ieee.org/document/10192357
https://www.proquest.com/docview/2872443584
https://www.proquest.com/docview/2872808239
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB4BJ3rgkaYilKJF4obsrrN-HiNKEpCCOICUm7WP2R5aJQiSC7--M2s7iloVcbPstWXP7Ky_8Xi-D-BSGlryPOrIl6XhMqOOjM1lJDFDaxKXassV3dl9Pn1K7-bZvG1WD70wiBh-PsOYN0Mt3y3tmj-VUYQzHsmKXdiledY0a21KBmkWZJAJwlCIUx7RdcjI6vvjw2h2G7NQeKyGFWEOFi5SBWV_Q2bY2XohBYWVf5bl8K4ZH8J9d5fNLya_4vXKxPbtLwLHDz_GERy0qFOMmmlyDDu46MFhp-gg2gDvwactesLP8GPk9DMvh2JMO6MJq0mgEw8vobhDGFW07Kw_BUFfugqtm2LCDNiiYbNmp_fhaXzzeD2NWtWFyJJxVpRQEiTDFAtVycxqzrhYuS9hYh6DZN7ceu8LJ9FJ5SzzrTldWGlV6kurvfoCe4vlAk9AJJXNndIuQeMpj8TSGZ_RUKWGpc6dGUDSmb62LSU5K2P8rkNqIqs6eK5mz9Wt5wZwtTnnuSHkeHd0n-2_NbIx_QDOOhfXbdC-1pQ8EthRBMkGcLE5TOHGNRS9wOW6GVNydbI6_c-lv8I-30HTr3gGe6uXNX4j4LIy52HC_gFj9-ZD
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB1BOACHFkJR0xZYJG7IZp315zGiTVJoohxSqTdrP2Z7oEqqklz49cys7SgqAnGz7LVlz3h233g87wF8koamPI868mVpuMyoI2NzGUnM0JrEpdpyRXc2z6fX6beb7KZtVg-9MIgYfj7DmDdDLd-t7ZY_lVGEMx7JiqfwjBb-NGvatXZFgzQLQsgEYijIKZPoemRk9WW5GM0uY5YKj9WwItTB0kWqoPxvyBw7e0tS0Fj5Y2IOq834EObdfTY_mfyItxsT21-PKBz_-0FewUGLO8WoeVFewxNc9eGw03QQbYj34eUeQeEbOB85fc8TohjTzmjCehLoxOIhlHcIpYqWn_VWEPilq9DMKSbMgS0aPmt2-xFcjy-WX6dRq7sQWTLOhlJKAmWYYqEqmVnNORdr9yVMzWOQzJtb733hJDqpnGXGNacLK61KfWm1V2-ht1qv8BhEUtncKe0SNJ4ySSyd8RkNVWpY6tyZASSd6WvbkpKzNsZdHZITWdXBczV7rm49N4DPu3PuG0qOf44-YvvvjWxMP4CzzsV1G7Y_a0ofCe4oAmUD-Lg7TAHHVRS9wvW2GVNyfbI6-culP8Dz6XJ2VV9dzr-fwgu-m6Z78Qx6m4ctviMYszHvw8v7G53n6ZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Fine-Grained+Predicates+Learning+for+Scene+Graph+Generation&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Lyu%2C+Xinyu&rft.au=Gao%2C+Lianli&rft.au=Zeng%2C+Pengpeng&rft.au=Shen%2C+Heng+Tao&rft.date=2023-11-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=45&rft.issue=11&rft.spage=13921&rft.epage=13940&rft_id=info:doi/10.1109%2FTPAMI.2023.3298356&rft_id=info%3Apmid%2F37788219&rft.externalDocID=10192357
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon