Recovery of wall-shear stress to equilibrium flow conditions after a rough-to-smooth step change in turbulent boundary layers

This paper examines the recovery of the wall-shear stress of a turbulent boundary layer that has undergone a sudden transition from a rough to a smooth surface. Early work of Antonia & Luxton ( J. Fluid Mech. , vol. 53, 1972, pp. 737–757) questioned the reliability of standard smooth-wall method...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 872; pp. 472 - 491
Main Authors Li, Mogeng, de Silva, Charitha M., Rouhi, Amirreza, Baidya, Rio, Chung, Daniel, Marusic, Ivan, Hutchins, Nicholas
Format Journal Article
LanguageEnglish
Published Cambridge Cambridge University Press 10.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper examines the recovery of the wall-shear stress of a turbulent boundary layer that has undergone a sudden transition from a rough to a smooth surface. Early work of Antonia & Luxton ( J. Fluid Mech. , vol. 53, 1972, pp. 737–757) questioned the reliability of standard smooth-wall methods for measuring wall-shear stress in such conditions, and subsequent studies show significant disagreement depending on the approach used to determine the wall-shear stress downstream. Here we address this by utilising a collection of experimental databases at $Re_{\unicode[STIX]{x1D70F}}\approx 4100$ that have access to both ‘direct’ and ‘indirect’ measures of the wall-shear stress to understand the recovery to equilibrium conditions of the new surface. Our results reveal that the viscous region ( $z^{+}\lesssim 4$ ) recovers almost immediately to an equilibrium state with the new wall conditions; however, the buffer region and beyond takes several boundary layer thicknesses before recovering to equilibrium conditions, which is longer than previously thought. A unique direct numerical simulation database of a wall-bounded flow with a rough-to-smooth wall transition is employed to confirm these findings. In doing so, we present evidence that any estimate of the wall-shear stress from the mean velocity profile in the buffer region or further away from the wall tends to underestimate its magnitude in the near vicinity of the rough-to-smooth transition, and this is likely to be partly responsible for the large scatter of recovery lengths to equilibrium conditions reported in the literature. Our results also reveal that smaller energetic scales in the near-wall region recover to an equilibrium state associated with the new wall conditions within one boundary layer thickness downstream of the transition, while larger energetic scales exhibit an over-energised state for several boundary layer thicknesses downstream of the transition. Based on these observations, an alternative approach to estimating the wall-shear stress from the premultiplied energy spectrum is proposed.
AbstractList This paper examines the recovery of the wall-shear stress of a turbulent boundary layer that has undergone a sudden transition from a rough to a smooth surface. Early work of Antonia & Luxton ( J. Fluid Mech. , vol. 53, 1972, pp. 737–757) questioned the reliability of standard smooth-wall methods for measuring wall-shear stress in such conditions, and subsequent studies show significant disagreement depending on the approach used to determine the wall-shear stress downstream. Here we address this by utilising a collection of experimental databases at $Re_{\unicode[STIX]{x1D70F}}\approx 4100$ that have access to both ‘direct’ and ‘indirect’ measures of the wall-shear stress to understand the recovery to equilibrium conditions of the new surface. Our results reveal that the viscous region ( $z^{+}\lesssim 4$ ) recovers almost immediately to an equilibrium state with the new wall conditions; however, the buffer region and beyond takes several boundary layer thicknesses before recovering to equilibrium conditions, which is longer than previously thought. A unique direct numerical simulation database of a wall-bounded flow with a rough-to-smooth wall transition is employed to confirm these findings. In doing so, we present evidence that any estimate of the wall-shear stress from the mean velocity profile in the buffer region or further away from the wall tends to underestimate its magnitude in the near vicinity of the rough-to-smooth transition, and this is likely to be partly responsible for the large scatter of recovery lengths to equilibrium conditions reported in the literature. Our results also reveal that smaller energetic scales in the near-wall region recover to an equilibrium state associated with the new wall conditions within one boundary layer thickness downstream of the transition, while larger energetic scales exhibit an over-energised state for several boundary layer thicknesses downstream of the transition. Based on these observations, an alternative approach to estimating the wall-shear stress from the premultiplied energy spectrum is proposed.
This paper examines the recovery of the wall-shear stress of a turbulent boundary layer that has undergone a sudden transition from a rough to a smooth surface. Early work of Antonia & Luxton (J. Fluid Mech., vol. 53, 1972, pp. 737–757) questioned the reliability of standard smooth-wall methods for measuring wall-shear stress in such conditions, and subsequent studies show significant disagreement depending on the approach used to determine the wall-shear stress downstream. Here we address this by utilising a collection of experimental databases at \(Re_{\unicode[STIX]{x1D70F}}\approx 4100\) that have access to both ‘direct’ and ‘indirect’ measures of the wall-shear stress to understand the recovery to equilibrium conditions of the new surface. Our results reveal that the viscous region (\(z^{+}\lesssim 4\)) recovers almost immediately to an equilibrium state with the new wall conditions; however, the buffer region and beyond takes several boundary layer thicknesses before recovering to equilibrium conditions, which is longer than previously thought. A unique direct numerical simulation database of a wall-bounded flow with a rough-to-smooth wall transition is employed to confirm these findings. In doing so, we present evidence that any estimate of the wall-shear stress from the mean velocity profile in the buffer region or further away from the wall tends to underestimate its magnitude in the near vicinity of the rough-to-smooth transition, and this is likely to be partly responsible for the large scatter of recovery lengths to equilibrium conditions reported in the literature. Our results also reveal that smaller energetic scales in the near-wall region recover to an equilibrium state associated with the new wall conditions within one boundary layer thickness downstream of the transition, while larger energetic scales exhibit an over-energised state for several boundary layer thicknesses downstream of the transition. Based on these observations, an alternative approach to estimating the wall-shear stress from the premultiplied energy spectrum is proposed.
Author Li, Mogeng
Baidya, Rio
de Silva, Charitha M.
Rouhi, Amirreza
Marusic, Ivan
Chung, Daniel
Hutchins, Nicholas
Author_xml – sequence: 1
  givenname: Mogeng
  orcidid: 0000-0002-9875-6468
  surname: Li
  fullname: Li, Mogeng
– sequence: 2
  givenname: Charitha M.
  orcidid: 0000-0001-9517-4318
  surname: de Silva
  fullname: de Silva, Charitha M.
– sequence: 3
  givenname: Amirreza
  orcidid: 0000-0002-7837-418X
  surname: Rouhi
  fullname: Rouhi, Amirreza
– sequence: 4
  givenname: Rio
  orcidid: 0000-0002-6148-602X
  surname: Baidya
  fullname: Baidya, Rio
– sequence: 5
  givenname: Daniel
  orcidid: 0000-0003-3732-364X
  surname: Chung
  fullname: Chung, Daniel
– sequence: 6
  givenname: Ivan
  surname: Marusic
  fullname: Marusic, Ivan
– sequence: 7
  givenname: Nicholas
  surname: Hutchins
  fullname: Hutchins, Nicholas
BookMark eNotkE1LwzAcxoNMcJve_AABr3bmpW3aowzfYCCInkOS_rN2tMmWpI4d_O526Om5PG_8FmjmvAOEbilZUULFw84OK0ZoveIFvUBzmpd1Jsq8mKE5IYxllDJyhRYx7gihnNRijn4-wPhvCCfsLT6qvs9iCyrgmALEiJPHcBi7vtOhGwdse3_ExrumS513ESubIGCFgx-3bZZ8FgfvUzulYY9Nq9wWcOdwGoMee3AJaz-6Rk1rvTpBiNfo0qo-ws2_LtHX89Pn-jXbvL-8rR83meGsThk3qtC8UiXTdW6FKXOtgAGIusqrojKkNKY2Dc2LvLFcU-BGKBBVTiqqi6bhS3T317sP_jBCTHLnx-CmScmYKKuSM0on1_2fywQfYwAr96EbpreSEnkGLCfA8gxYToD5L00pcyo
CitedBy_id crossref_primary_10_1073_pnas_2320216121
crossref_primary_10_1146_annurev_fluid_062520_115127
crossref_primary_10_3390_en16041709
crossref_primary_10_3390_fluids6060208
crossref_primary_10_1080_14685248_2022_2097688
crossref_primary_10_1017_jfm_2021_577
crossref_primary_10_1063_5_0123437
crossref_primary_10_1103_PhysRevFluids_8_084602
crossref_primary_10_1017_jfm_2021_515
crossref_primary_10_3390_fluids8010010
crossref_primary_10_1017_jfm_2023_1006
crossref_primary_10_1016_j_oceaneng_2021_109628
crossref_primary_10_1017_jfm_2022_731
crossref_primary_10_1016_j_ijft_2021_100077
crossref_primary_10_1016_j_oceaneng_2021_108632
crossref_primary_10_1017_jfm_2020_704
crossref_primary_10_1007_s00348_024_03817_w
crossref_primary_10_1016_j_paerosci_2022_100807
crossref_primary_10_1007_s10546_023_00811_3
crossref_primary_10_1007_s10546_020_00535_8
crossref_primary_10_1299_jfst_2024jfst0018
crossref_primary_10_1016_j_taml_2021_100229
crossref_primary_10_1080_14685248_2024_2361738
crossref_primary_10_1063_5_0074428
crossref_primary_10_1063_5_0051345
crossref_primary_10_1017_jfm_2022_608
Cites_doi 10.1007/s10546-004-2122-z
10.2514/3.61193
10.1007/s003480050038
10.1017/S0022112065001301
10.1016/j.ijheatfluidflow.2013.05.014
10.1088/0169-5983/41/2/021404
10.1017/S002211200300733X
10.1007/s10546-008-9330-x
10.1088/0957-0233/7/10/010
10.1088/0957-0233/25/10/105304
10.1029/2003WR002475
10.1063/1.1608010
10.1017/S0022112095003363
10.1007/s00348-011-1167-2
10.1063/1.4823831
10.1017/S0022112009007721
10.1017/jfm.2015.230
10.1017/jfm.2018.119
10.1017/jfm.2015.556
10.1007/BF00120524
10.1017/jfm.2012.531
10.1017/jfm.2016.213
10.1007/s10546-015-0022-z
10.1017/S002211207200045X
10.1146/annurev-fluid-122109-160753
10.1017/jfm.2015.172
10.1007/s00348-010-1003-0
10.1103/PhysRevFluids.3.104607
10.1017/S0022112009007423
10.1017/jfm.2019.84
10.1017/S0022112009006946
10.1175/1520-0469(1974)031<0738:TSOTTD>2.0.CO;2
10.1063/1.4866458
10.1017/jfm.2016.832
10.1016/j.ijheatmasstransfer.2014.06.088
10.1175/1520-0469(1972)029<0304:ANCOAF>2.0.CO;2
10.1029/TR039i006p01048
10.1063/1.2183806
10.1017/jfm.2012.511
10.1016/j.ijheatfluidflow.2018.05.008
10.2514/8.2938
10.1002/qj.49709440111
10.1016/j.ijheatfluidflow.2013.04.003
10.1017/jfm.2014.17
ContentType Journal Article
Copyright 2019 Cambridge University Press
Copyright_xml – notice: 2019 Cambridge University Press
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PQEST
PQQKQ
PQUKI
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2019.351
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database (ProQuest)
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
EndPage 491
ExternalDocumentID 10_1017_jfm_2019_351
GroupedDBID -2P
-DZ
-E.
-~6
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
AAYXX
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABVZP
ABXAU
ABZCX
ACBEA
ACBMC
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CITATION
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
I.7
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WYP
ZE2
ZMEZD
ZYDXJ
~02
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c329t-3ca5b38a62b94f7c64bae2ee7984858c06cc9cd1454df3b1e3c7ae784081b5dd3
IEDL.DBID BENPR
ISSN 0022-1120
IngestDate Thu Oct 10 20:53:45 EDT 2024
Thu Sep 26 17:01:20 EDT 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-3ca5b38a62b94f7c64bae2ee7984858c06cc9cd1454df3b1e3c7ae784081b5dd3
ORCID 0000-0002-7837-418X
0000-0003-3732-364X
0000-0002-9875-6468
0000-0001-9517-4318
0000-0002-6148-602X
PQID 2276863211
PQPubID 34769
PageCount 20
ParticipantIDs proquest_journals_2276863211
crossref_primary_10_1017_jfm_2019_351
PublicationCentury 2000
PublicationDate 2019-08-10
PublicationDateYYYYMMDD 2019-08-10
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-10
  day: 10
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationYear 2019
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References (S0022112019003513_r23) 2015
S0022112019003513_r20
S0022112019003513_r21
S0022112019003513_r22
S0022112019003513_r24
S0022112019003513_r25
S0022112019003513_r26
S0022112019003513_r27
S0022112019003513_r29
Mogeng (S0022112019003513_r28) 2018
S0022112019003513_r30
Yavuzkurt (S0022112019003513_r48) 1984; 106
S0022112019003513_r32
S0022112019003513_r33
S0022112019003513_r34
S0022112019003513_r35
S0022112019003513_r36
S0022112019003513_r37
S0022112019003513_r38
S0022112019003513_r39
S0022112019003513_r40
S0022112019003513_r41
S0022112019003513_r42
S0022112019003513_r43
S0022112019003513_r44
S0022112019003513_r45
S0022112019003513_r46
S0022112019003513_r47
S0022112019003513_r49
Ng (S0022112019003513_r31) 2007
S0022112019003513_r10
S0022112019003513_r11
S0022112019003513_r12
S0022112019003513_r1
S0022112019003513_r2
S0022112019003513_r13
S0022112019003513_r3
S0022112019003513_r14
S0022112019003513_r4
S0022112019003513_r15
S0022112019003513_r16
S0022112019003513_r5
S0022112019003513_r17
S0022112019003513_r6
S0022112019003513_r7
S0022112019003513_r18
S0022112019003513_r8
S0022112019003513_r19
S0022112019003513_r9
References_xml – ident: S0022112019003513_r38
  doi: 10.1007/s10546-004-2122-z
– ident: S0022112019003513_r30
  doi: 10.2514/3.61193
– ident: S0022112019003513_r12
  doi: 10.1007/s003480050038
– ident: S0022112019003513_r34
  doi: 10.1017/S0022112065001301
– ident: S0022112019003513_r47
  doi: 10.1016/j.ijheatfluidflow.2013.05.014
– ident: S0022112019003513_r7
  doi: 10.1088/0169-5983/41/2/021404
– ident: S0022112019003513_r1
  doi: 10.1017/S002211200300733X
– ident: S0022112019003513_r5
  doi: 10.1007/s10546-008-9330-x
– ident: S0022112019003513_r15
  doi: 10.1088/0957-0233/7/10/010
– volume: 106
  start-page: 181
  year: 1984
  ident: S0022112019003513_r48
  article-title: A guide to uncertainty analysis of hot-wire data
  publication-title: Trans. ASME
  contributor:
    fullname: Yavuzkurt
– ident: S0022112019003513_r46
  doi: 10.1088/0957-0233/25/10/105304
– ident: S0022112019003513_r3
  doi: 10.1029/2003WR002475
– ident: S0022112019003513_r49
  doi: 10.1063/1.1608010
– ident: S0022112019003513_r26
  doi: 10.1017/S0022112095003363
– ident: S0022112019003513_r13
  doi: 10.1007/s00348-011-1167-2
– ident: S0022112019003513_r41
  doi: 10.1063/1.4823831
– ident: S0022112019003513_r20
  doi: 10.1017/S0022112009007721
– ident: S0022112019003513_r9
  doi: 10.1017/jfm.2015.230
– ident: S0022112019003513_r22
  doi: 10.1017/jfm.2018.119
– ident: S0022112019003513_r24
  doi: 10.1017/jfm.2015.556
– ident: S0022112019003513_r17
  doi: 10.1007/BF00120524
– ident: S0022112019003513_r19
  doi: 10.1017/jfm.2012.531
– ident: S0022112019003513_r18
  doi: 10.1017/jfm.2016.213
– ident: S0022112019003513_r43
  doi: 10.1007/s10546-015-0022-z
– volume-title: 7th Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion, Melbourne, Australia
  year: 2015
  ident: S0022112019003513_r23
– ident: S0022112019003513_r2
  doi: 10.1017/S002211207200045X
– ident: S0022112019003513_r44
  doi: 10.1146/annurev-fluid-122109-160753
– ident: S0022112019003513_r6
  doi: 10.1017/jfm.2015.172
– ident: S0022112019003513_r8
  doi: 10.1007/s00348-010-1003-0
– ident: S0022112019003513_r16
  doi: 10.1103/PhysRevFluids.3.104607
– ident: S0022112019003513_r29
  doi: 10.1017/S0022112009007423
– ident: S0022112019003513_r36
  doi: 10.1017/jfm.2019.84
– ident: S0022112019003513_r27
  doi: 10.1017/S0022112009006946
– ident: S0022112019003513_r35
  doi: 10.1175/1520-0469(1974)031<0738:TSOTTD>2.0.CO;2
– ident: S0022112019003513_r42
  doi: 10.1063/1.4866458
– ident: S0022112019003513_r45
  doi: 10.1017/jfm.2016.832
– ident: S0022112019003513_r37
  doi: 10.1016/j.ijheatmasstransfer.2014.06.088
– ident: S0022112019003513_r40
  doi: 10.1175/1520-0469(1972)029<0304:ANCOAF>2.0.CO;2
– volume-title: Proc. 16th Australasian Fluid Mechanics Conference, Gold Coast, Australia
  year: 2007
  ident: S0022112019003513_r31
  contributor:
    fullname: Ng
– ident: S0022112019003513_r14
  doi: 10.1029/TR039i006p01048
– ident: S0022112019003513_r32
– ident: S0022112019003513_r39
  doi: 10.1063/1.2183806
– ident: S0022112019003513_r25
  doi: 10.1017/jfm.2012.511
– ident: S0022112019003513_r21
  doi: 10.1016/j.ijheatfluidflow.2018.05.008
– ident: S0022112019003513_r11
  doi: 10.2514/8.2938
– ident: S0022112019003513_r4
  doi: 10.1002/qj.49709440111
– ident: S0022112019003513_r33
  doi: 10.1016/j.ijheatfluidflow.2013.04.003
– volume-title: Proc. 21st Australasian Fluid Mechanics Conference
  year: 2018
  ident: S0022112019003513_r28
  contributor:
    fullname: Mogeng
– ident: S0022112019003513_r10
  doi: 10.1017/jfm.2014.17
SSID ssj0013097
Score 2.4626021
Snippet This paper examines the recovery of the wall-shear stress of a turbulent boundary layer that has undergone a sudden transition from a rough to a smooth...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 472
SubjectTerms Boundary layer thickness
Boundary layer transition
Boundary layers
Buffers
Computational fluid dynamics
Computer simulation
Datasets
Direct numerical simulation
Energy spectra
Equilibrium conditions
Equilibrium flow
Fluid flow
Friction
Geometry
Mathematical models
Measurement methods
Measurement techniques
Recovery
Reliability aspects
Reynolds number
Shear stress
Turbulent boundary layer
Velocity distribution
Velocity profiles
Wall shear stresses
Title Recovery of wall-shear stress to equilibrium flow conditions after a rough-to-smooth step change in turbulent boundary layers
URI https://www.proquest.com/docview/2276863211
Volume 872
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB2aDYH20I9tS9OkYQ7pUalXkj90Kk3JNgQSQmkgN6ORJUjZrDe1l9BD_3tHtpY0l56NLfCTNG-kN_MADjNXBVJllDQGTlCCNsJSXggqvWkKX2jy8Ub3_KI4vdJn1_l1OnDrkqxysycOG3XTunhG_klKJsaF4nzl8-pORNeoeLuaLDS2YFtypiAnsH18cnH5_eEeITPlpl84M4ssSd9j0-ifIRaiz8yRymePg9LjPXkINPOX8DwxRPwyQvoKnvjlFF4ktohpLXZTePZPK8Ep7AxSTte9hj8xo-QJ-hvbgPd2sRBddK3GsSoE-xb93fpmkPqvbzEs2nvknLgZpVs4eIajxcG9R_St6G5bBpPf9iscq4TxZokcqGgdAxbS4MvEoy1sZO9v4Gp-8uPrqUgmC8IpaXqhnM1JVbaQZHQoHaNjvfS-NJWu8splhXPGNTOd6yYomnnlSutLzguZ8OZNo97CZNku_TtAoqygzEpqTNDeE-Wkq-BckF4xEbC78HHzl-vV2EujHkVmZc1o1BGNmtHYhf0NBHVaUV39gP_7_z_eg6fxQ2JoW7sPk_7X2n9g4tDTAWxV828HaY78Ba3Dx4o
link.rule.ids 315,783,787,12779,21402,27938,27939,33387,33758,43614,43819
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BEYIeCiyglhaYAxwN2dj58AkhxLJA21Mr9RZ5HFtqtd1sSVZVD_3vjB2vSi-co8RSnu15Y7-ZB_Ahs7UnWQVJo-cExSstDBWloMrptnSlIhdudI-Oy_mp-nVWnKUDtz7JKjd7Ytyo286GM_LPec7EuJScr3xZXYngGhVuV5OFxkN4pCQHmlApPvtxd4uQ6WrTLZx5RZaE76Fl9IUPZehT_UkW0_sh6f6OHMPM7DnsJH6IX0dAX8ADt5zAs8QVMa3EfgLb_zQSnMDjKOS0_Uu4DfkkT88b7Dxem8VC9MGzGseaEBw6dFfr8yj0X1-iX3TXyBlxOwq3MDqGo8Ho3SOGTvSXHUPJb7sVjjXCeL5EDlO0DuEKKboy8WgLE7j7KzidfT_5NhfJYkFYmetBSGsKkrUpc9LKV5axMS53rtK1qovaZqW12rZTVajWS5o6aSvjKs4Kme4WbStfw9ayW7pdQKKspMzk1GqvnCMqSNXeWp87yTTA7MHHzV9uVmMnjWaUmFUNo9EENBpGYw8ONhA0aT31zR36b_7_-D08mZ8cHTaHP49_78PT8FERG9gewNbwZ-3eMoUY6F2cJ38BJnTILw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recovery+of+wall-shear+stress+to+equilibrium+flow+conditions+after+a+rough-to-smooth+step+change+in+turbulent+boundary+layers&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Li%2C+Mogeng&rft.au=de+Silva%2C+Charitha+M&rft.au=Rouhi%2C+Amirreza&rft.au=Baidya%2C+Rio&rft.date=2019-08-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=872&rft.spage=472&rft.epage=491&rft_id=info:doi/10.1017%2Fjfm.2019.351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon