Phase unwrapping in optical metrology via denoised and convolutional segmentation networks
The interferometry technique is commonly used to obtain the phase information of an object in optical metrology. The obtained wrapped phase is subject to a 2π ambiguity. To remove the ambiguity and obtain the correct phase, phase unwrapping is essential. Conventional phase unwrapping approaches are...
Saved in:
Published in | Optics express Vol. 27; no. 10; p. 14903 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
13.05.2019
|
Online Access | Get full text |
ISSN | 1094-4087 1094-4087 |
DOI | 10.1364/OE.27.014903 |
Cover
Abstract | The interferometry technique is commonly used to obtain the phase information of an object in optical metrology. The obtained wrapped phase is subject to a 2π ambiguity. To remove the ambiguity and obtain the correct phase, phase unwrapping is essential. Conventional phase unwrapping approaches are time-consuming and noise sensitive. To address those issues, we propose a new approach, where we transfer the task of phase unwrapping into a multi-class classification problem and introduce an efficient segmentation network to identify classes. Moreover, a noise-to-noise denoised network is integrated to preprocess noisy wrapped phase. We have demonstrated the proposed method with simulated data and in a real interferometric system. |
---|---|
AbstractList | The interferometry technique is commonly used to obtain the phase information of an object in optical metrology. The obtained wrapped phase is subject to a 2π ambiguity. To remove the ambiguity and obtain the correct phase, phase unwrapping is essential. Conventional phase unwrapping approaches are time-consuming and noise sensitive. To address those issues, we propose a new approach, where we transfer the task of phase unwrapping into a multi-class classification problem and introduce an efficient segmentation network to identify classes. Moreover, a noise-to-noise denoised network is integrated to preprocess noisy wrapped phase. We have demonstrated the proposed method with simulated data and in a real interferometric system.The interferometry technique is commonly used to obtain the phase information of an object in optical metrology. The obtained wrapped phase is subject to a 2π ambiguity. To remove the ambiguity and obtain the correct phase, phase unwrapping is essential. Conventional phase unwrapping approaches are time-consuming and noise sensitive. To address those issues, we propose a new approach, where we transfer the task of phase unwrapping into a multi-class classification problem and introduce an efficient segmentation network to identify classes. Moreover, a noise-to-noise denoised network is integrated to preprocess noisy wrapped phase. We have demonstrated the proposed method with simulated data and in a real interferometric system. The interferometry technique is commonly used to obtain the phase information of an object in optical metrology. The obtained wrapped phase is subject to a 2π ambiguity. To remove the ambiguity and obtain the correct phase, phase unwrapping is essential. Conventional phase unwrapping approaches are time-consuming and noise sensitive. To address those issues, we propose a new approach, where we transfer the task of phase unwrapping into a multi-class classification problem and introduce an efficient segmentation network to identify classes. Moreover, a noise-to-noise denoised network is integrated to preprocess noisy wrapped phase. We have demonstrated the proposed method with simulated data and in a real interferometric system. |
Author | Shao, Jianbo Zhang, Junchao Luo, Haibo Tian, Xiaobo Liang, Rongguang |
Author_xml | – sequence: 1 givenname: Junchao orcidid: 0000-0003-2243-0012 surname: Zhang fullname: Zhang, Junchao – sequence: 2 givenname: Xiaobo surname: Tian fullname: Tian, Xiaobo – sequence: 3 givenname: Jianbo orcidid: 0000-0003-1253-4096 surname: Shao fullname: Shao, Jianbo – sequence: 4 givenname: Haibo surname: Luo fullname: Luo, Haibo – sequence: 5 givenname: Rongguang surname: Liang fullname: Liang, Rongguang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31163931$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0DtPwzAUBWALFdEHbMzIIwMtfjWOR4TKQ6pUBlhYLMdxiiGxg5206r8nVQpCiOneK333DGcMBs47A8A5RjNME3a9WswInyHMBKJHYISRYFOGUj74tQ_BOMZ31CEu-AkYUowTKigegdenNxUNbN02qLq2bg2tg75urFYlrEwTfOnXO7ixCubGeRtNDpXLofZu48u2sd51MJp1ZVyj9id0ptn68BFPwXGhymjODnMCXu4Wz7cP0-Xq_vH2ZjnVlIhmSrnIGE9IjrjCqUEEZ0WhDZsTLFjCUkIEL6jARcYFyeccZZplOklTkjGEaE4n4LLPrYP_bE1sZGWjNmWpnPFtlIR2rktLREcvDrTNKpPLOthKhZ387qMDVz3QwccYTPFDMJL7uuVqIQmXfd0dJ3-4tn0LTVC2_P_pC1sNgjQ |
CitedBy_id | crossref_primary_10_1186_s12968_021_00712_9 crossref_primary_10_1364_AO_458408 crossref_primary_10_1117_1_APN_1_1_014001 crossref_primary_10_1364_OE_423870 crossref_primary_10_1364_OE_470693 crossref_primary_10_1016_j_optlaseng_2021_106941 crossref_primary_10_1016_j_optlaseng_2024_108168 crossref_primary_10_1364_OE_27_028929 crossref_primary_10_1109_JSEN_2021_3101498 crossref_primary_10_1364_AO_414952 crossref_primary_10_1155_2022_5423881 crossref_primary_10_1007_s11227_021_03634_6 crossref_primary_10_1016_j_optlastec_2023_109340 crossref_primary_10_1364_BOE_379533 crossref_primary_10_1016_j_optlastec_2025_112757 crossref_primary_10_1364_AO_506877 crossref_primary_10_1016_j_ejrs_2021_12_001 crossref_primary_10_1364_OE_486984 crossref_primary_10_3390_rs14112607 crossref_primary_10_1364_OL_478603 crossref_primary_10_3390_electronics13020418 crossref_primary_10_1088_1361_6501_ac9544 crossref_primary_10_1364_OE_500139 crossref_primary_10_1088_1361_6501_acd712 crossref_primary_10_3390_photonics11020122 crossref_primary_10_1088_1402_4896_ad5649 crossref_primary_10_1364_AO_443685 crossref_primary_10_3390_app10144974 crossref_primary_10_3390_s22166048 crossref_primary_10_1109_TGRS_2021_3099997 crossref_primary_10_1364_AO_525144 crossref_primary_10_1109_TIP_2020_2977213 crossref_primary_10_1016_j_optlaseng_2024_108585 crossref_primary_10_1364_AO_464585 crossref_primary_10_1364_AO_522713 crossref_primary_10_1109_JSTARS_2025_3542608 crossref_primary_10_1364_OE_465094 crossref_primary_10_1038_s41598_020_76411_9 crossref_primary_10_1364_AO_428181 crossref_primary_10_1016_j_measurement_2021_110663 crossref_primary_10_1109_TIP_2021_3099956 crossref_primary_10_1016_j_optlaseng_2023_107484 crossref_primary_10_1364_OE_505544 crossref_primary_10_1109_JSTARS_2021_3099485 crossref_primary_10_3788_IRLA20230564 crossref_primary_10_1016_j_optlaseng_2024_108114 crossref_primary_10_3788_gzxb20235201_0112003 crossref_primary_10_1088_2515_7647_abf02c crossref_primary_10_1016_j_optlastec_2024_111872 crossref_primary_10_3390_math11122618 crossref_primary_10_1364_OE_517676 crossref_primary_10_3788_gzxb20245309_0911001 crossref_primary_10_1038_s41377_022_00714_x crossref_primary_10_1007_s00340_021_07696_5 crossref_primary_10_1016_j_neucom_2024_127493 crossref_primary_10_1364_OE_453112 crossref_primary_10_1364_OE_470534 crossref_primary_10_1038_s41377_023_01340_x crossref_primary_10_1016_j_optlaseng_2019_105999 crossref_primary_10_3390_rs15092310 crossref_primary_10_3390_s20133691 crossref_primary_10_1109_ACCESS_2023_3303186 crossref_primary_10_1109_TGRS_2021_3121907 crossref_primary_10_1109_TGRS_2021_3121906 crossref_primary_10_1364_OE_444875 crossref_primary_10_3390_photonics11020175 crossref_primary_10_1109_LSP_2022_3157195 crossref_primary_10_1364_OE_446775 crossref_primary_10_37188_lam_2022_013 crossref_primary_10_3389_fenvs_2023_1138399 crossref_primary_10_1364_OE_481949 crossref_primary_10_1016_j_optcom_2023_129817 crossref_primary_10_1016_j_optlaseng_2024_108419 crossref_primary_10_1364_JOSAA_476200 crossref_primary_10_1364_AO_542818 crossref_primary_10_1109_MGRS_2021_3065811 crossref_primary_10_1364_AO_399715 crossref_primary_10_1364_AO_405893 crossref_primary_10_1007_s11082_021_03106_4 crossref_primary_10_1016_j_optlaseng_2022_107409 crossref_primary_10_1038_s41377_024_01453_x crossref_primary_10_1016_j_optcom_2024_131055 crossref_primary_10_1364_OE_397904 crossref_primary_10_1016_j_optlaseng_2024_108703 crossref_primary_10_1364_OE_410723 crossref_primary_10_3390_photonics8110459 crossref_primary_10_1109_JSTARS_2023_3298989 crossref_primary_10_1016_j_optlaseng_2020_106405 crossref_primary_10_1016_j_optlaseng_2021_106824 crossref_primary_10_1364_OL_446022 crossref_primary_10_3390_rs15194885 crossref_primary_10_1016_j_measurement_2022_111566 crossref_primary_10_1109_TGRS_2021_3128565 crossref_primary_10_1088_2040_8986_acb3df crossref_primary_10_1364_OE_418430 crossref_primary_10_1109_TSP_2023_3344356 crossref_primary_10_1364_OE_413385 crossref_primary_10_1016_j_optlaseng_2021_106675 crossref_primary_10_1016_j_optcom_2022_128008 crossref_primary_10_3788_IRLA20230126 |
Cites_doi | 10.1364/AO.56.007079 10.1109/LGRS.2016.2535159 10.1364/OE.26.018279 10.1364/JOSAA.11.000107 10.1029/RS023i004p00713 10.1109/TPAMI.2016.2644615 10.1109/LGRS.2010.2076362 10.1016/j.optcom.2013.07.013 10.1364/AO.50.006214 10.1364/AO.53.005439 10.1117/1.OE.53.2.024102 10.1364/AO.55.002418 10.1364/JOSAA.14.002692 10.1109/LSP.2018.2879184 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1364/OE.27.014903 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1094-4087 |
ExternalDocumentID | 31163931 10_1364_OE_27_014903 |
Genre | Journal Article |
GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS EJD F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB NPM ROP 7X8 |
ID | FETCH-LOGICAL-c329t-379b4762d07a18e021bffce4521946482297f391fb792d570bc4bc6882b4003d3 |
ISSN | 1094-4087 |
IngestDate | Thu Jul 10 16:54:47 EDT 2025 Wed Feb 19 02:34:22 EST 2025 Tue Jul 01 04:04:38 EDT 2025 Thu Apr 24 23:04:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c329t-379b4762d07a18e021bffce4521946482297f391fb792d570bc4bc6882b4003d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1253-4096 0000-0003-2243-0012 |
OpenAccessLink | https://doi.org/10.1364/oe.27.014903 |
PMID | 31163931 |
PQID | 2340052169 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2340052169 pubmed_primary_31163931 crossref_primary_10_1364_OE_27_014903 crossref_citationtrail_10_1364_OE_27_014903 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-13 |
PublicationDateYYYYMMDD | 2019-05-13 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Optics express |
PublicationTitleAlternate | Opt Express |
PublicationYear | 2019 |
References | Zhong (oe-27-10-14903-R4) 2011; 8 Xu (oe-27-10-14903-R6) 2016; 13 Badrinarayanan (oe-27-10-14903-R16) 2017; 39 Nair (oe-27-10-14903-R18) 2010 Juarez-Salazar (oe-27-10-14903-R8) 2014; 53 Martinez-Carranza (oe-27-10-14903-R11) 2017; 56 Goldstein (oe-27-10-14903-R1) 1988; 23 Tian (oe-27-10-14903-R27) 2018; 26 Sawaf (oe-27-10-14903-R23) 2014; 53 Flynn (oe-27-10-14903-R2) 1996; 4 Zhao (oe-27-10-14903-R3) 2011; 50 Schwartzkopf (oe-27-10-14903-R12) 2000 Pandey (oe-27-10-14903-R10) 2016; 55 Zuo (oe-27-10-14903-R9) 2013; 309 Ioffe (oe-27-10-14903-R17) 2015 He (oe-27-10-14903-R21) 2015 Ghiglia (oe-27-10-14903-R7) 1994; 11 Spoorthi (oe-27-10-14903-R15) 2019; 26 Flynn (oe-27-10-14903-R5) 1997; 14 Olaf (oe-27-10-14903-R25) 2015 |
References_xml | – volume: 56 start-page: 7079 year: 2017 ident: oe-27-10-14903-R11 publication-title: Appl. Opt. doi: 10.1364/AO.56.007079 – volume: 13 start-page: 666 year: 2016 ident: oe-27-10-14903-R6 publication-title: IEEE Geosci. Remote. Sens. Lett. doi: 10.1109/LGRS.2016.2535159 – volume: 26 start-page: 18279 year: 2018 ident: oe-27-10-14903-R27 publication-title: Opt. Express doi: 10.1364/OE.26.018279 – volume: 11 start-page: 107 year: 1994 ident: oe-27-10-14903-R7 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.11.000107 – start-page: 234 volume-title: Proceedings of International Conference on Medical Image Computing and Computer-assisted Intervention year: 2015 ident: oe-27-10-14903-R25 article-title: U-net: Convolutional networks for biomedical image segmentation – volume: 23 start-page: 713 year: 1988 ident: oe-27-10-14903-R1 publication-title: Radio Sci. doi: 10.1029/RS023i004p00713 – volume: 4 start-page: 2057 volume-title: Geoscience and Remote Sensing Symposium year: 1996 ident: oe-27-10-14903-R2 article-title: Consistent 2-d phase unwrapping guided by a quality map – volume: 39 start-page: 2481 year: 2017 ident: oe-27-10-14903-R16 publication-title: IEEE Transactions on Pattern Analysis Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – volume: 8 start-page: 364 year: 2011 ident: oe-27-10-14903-R4 publication-title: IEEE Geosci. Remote. Sens. Lett. doi: 10.1109/LGRS.2010.2076362 – volume: 309 start-page: 221 year: 2013 ident: oe-27-10-14903-R9 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2013.07.013 – volume: 50 start-page: 6214 year: 2011 ident: oe-27-10-14903-R3 publication-title: Appl. Opt. doi: 10.1364/AO.50.006214 – volume: 53 start-page: 5439 year: 2014 ident: oe-27-10-14903-R23 publication-title: Appl. Opt. doi: 10.1364/AO.53.005439 – start-page: 448 volume-title: Proceedings of International Conference on Machine Learning year: 2015 ident: oe-27-10-14903-R17 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – volume: 53 start-page: 024102 year: 2014 ident: oe-27-10-14903-R8 publication-title: Opt. Eng. doi: 10.1117/1.OE.53.2.024102 – volume: 55 start-page: 2418 year: 2016 ident: oe-27-10-14903-R10 publication-title: Appl. Opt. doi: 10.1364/AO.55.002418 – start-page: 274 volume-title: Proceedings of IEEE Conference on Image Analysis and Interpretation year: 2000 ident: oe-27-10-14903-R12 article-title: Two-dimensional phase unwrapping using neural networks – volume: 14 start-page: 2692 year: 1997 ident: oe-27-10-14903-R5 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.14.002692 – start-page: 1026 volume-title: Proceedings of IEEE International Conference on Computer Vision year: 2015 ident: oe-27-10-14903-R21 article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification – start-page: 807 volume-title: Proceedings of the 27th international conference on machine learning year: 2010 ident: oe-27-10-14903-R18 article-title: Rectified linear units improve restricted boltzmann machines – volume: 26 start-page: 54 year: 2019 ident: oe-27-10-14903-R15 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2018.2879184 |
SSID | ssj0014797 |
Score | 2.5947955 |
Snippet | The interferometry technique is commonly used to obtain the phase information of an object in optical metrology. The obtained wrapped phase is subject to a 2π... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 14903 |
Title | Phase unwrapping in optical metrology via denoised and convolutional segmentation networks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31163931 https://www.proquest.com/docview/2340052169 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7jiuCLeHe8LBH0aejYJmk7eRQZGRbXEdyFwZfSpKlbcNOyM13FB3-7p0ma6egsrL6U4TS90PPNuZ8ThF6ReFYAVkQgy1IGLM95wJmKAh6HVHIilDDT9Y8_JotTdrSKV6NROahaajdiKn_u7Sv5H64CDfjadcn-A2f9TYEAv4G_cAQOw_FaPP50Bjpo0urvF3nTuOaUurHR6XPVlaB385Uuq3wC0qWu1qpwbWz60r1X1y2ivp67BiQ90bYqfD20WZeNGeWsfjS-XGMYaT4CzXiW1z4EUNmQ6qrKa-Gpn2GFWQxnt9QPrSEu8srRXPih63iKA9s96iQm-IfghDqtqfbQnJi1IwB6OIUDoQlOmplz8Lc4pwkDHiznU5JOQ79sd2r2H9rM1xiaVF3CsuU8I2lmr76BbpI0Nen8419zn21iqd2Ep39t1yABV78ZPnvXdLnCHzF2yclddMc5FPitRcc9NFL6PrplCnvl-gH6YjCCtxjBlcYOI9hjBANGcI8RDBjBOxjBQ4zgHiMP0en7-cm7ReD20wgkJXwDuoQLBsqvCNM8mimw7gT8QRUDC46zhHWj_9OS8qgUKSdFnIZCMiET8MEESHpa0EfoQNdaPUE4DAVJRDwDC6hkBQMvgPJQgnWpKFHljI3RpP9UmXTD5rs9T75l-9gyRq_96sYOWbli3cv-q2cgBbvUVq5V3a4zQlmX4IgSPkaPLTv8nWgEPgen0dNrPuUZur0F-nN0sLlo1QuwPDfi0ERsDg14fgOZzoOJ |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+unwrapping+in+optical+metrology+via+denoised+and+convolutional+segmentation+networks&rft.jtitle=Optics+express&rft.au=Zhang%2C+Junchao&rft.au=Tian%2C+Xiaobo&rft.au=Shao%2C+Jianbo&rft.au=Luo%2C+Haibo&rft.date=2019-05-13&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=27&rft.issue=10&rft.spage=14903&rft_id=info:doi/10.1364%2FOE.27.014903&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_OE_27_014903 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |