Phase unwrapping in optical metrology via denoised and convolutional segmentation networks

The interferometry technique is commonly used to obtain the phase information of an object in optical metrology. The obtained wrapped phase is subject to a 2π ambiguity. To remove the ambiguity and obtain the correct phase, phase unwrapping is essential. Conventional phase unwrapping approaches are...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 27; no. 10; p. 14903
Main Authors Zhang, Junchao, Tian, Xiaobo, Shao, Jianbo, Luo, Haibo, Liang, Rongguang
Format Journal Article
LanguageEnglish
Published United States 13.05.2019
Online AccessGet full text
ISSN1094-4087
1094-4087
DOI10.1364/OE.27.014903

Cover

Abstract The interferometry technique is commonly used to obtain the phase information of an object in optical metrology. The obtained wrapped phase is subject to a 2π ambiguity. To remove the ambiguity and obtain the correct phase, phase unwrapping is essential. Conventional phase unwrapping approaches are time-consuming and noise sensitive. To address those issues, we propose a new approach, where we transfer the task of phase unwrapping into a multi-class classification problem and introduce an efficient segmentation network to identify classes. Moreover, a noise-to-noise denoised network is integrated to preprocess noisy wrapped phase. We have demonstrated the proposed method with simulated data and in a real interferometric system.
AbstractList The interferometry technique is commonly used to obtain the phase information of an object in optical metrology. The obtained wrapped phase is subject to a 2π ambiguity. To remove the ambiguity and obtain the correct phase, phase unwrapping is essential. Conventional phase unwrapping approaches are time-consuming and noise sensitive. To address those issues, we propose a new approach, where we transfer the task of phase unwrapping into a multi-class classification problem and introduce an efficient segmentation network to identify classes. Moreover, a noise-to-noise denoised network is integrated to preprocess noisy wrapped phase. We have demonstrated the proposed method with simulated data and in a real interferometric system.The interferometry technique is commonly used to obtain the phase information of an object in optical metrology. The obtained wrapped phase is subject to a 2π ambiguity. To remove the ambiguity and obtain the correct phase, phase unwrapping is essential. Conventional phase unwrapping approaches are time-consuming and noise sensitive. To address those issues, we propose a new approach, where we transfer the task of phase unwrapping into a multi-class classification problem and introduce an efficient segmentation network to identify classes. Moreover, a noise-to-noise denoised network is integrated to preprocess noisy wrapped phase. We have demonstrated the proposed method with simulated data and in a real interferometric system.
The interferometry technique is commonly used to obtain the phase information of an object in optical metrology. The obtained wrapped phase is subject to a 2π ambiguity. To remove the ambiguity and obtain the correct phase, phase unwrapping is essential. Conventional phase unwrapping approaches are time-consuming and noise sensitive. To address those issues, we propose a new approach, where we transfer the task of phase unwrapping into a multi-class classification problem and introduce an efficient segmentation network to identify classes. Moreover, a noise-to-noise denoised network is integrated to preprocess noisy wrapped phase. We have demonstrated the proposed method with simulated data and in a real interferometric system.
Author Shao, Jianbo
Zhang, Junchao
Luo, Haibo
Tian, Xiaobo
Liang, Rongguang
Author_xml – sequence: 1
  givenname: Junchao
  orcidid: 0000-0003-2243-0012
  surname: Zhang
  fullname: Zhang, Junchao
– sequence: 2
  givenname: Xiaobo
  surname: Tian
  fullname: Tian, Xiaobo
– sequence: 3
  givenname: Jianbo
  orcidid: 0000-0003-1253-4096
  surname: Shao
  fullname: Shao, Jianbo
– sequence: 4
  givenname: Haibo
  surname: Luo
  fullname: Luo, Haibo
– sequence: 5
  givenname: Rongguang
  surname: Liang
  fullname: Liang, Rongguang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31163931$$D View this record in MEDLINE/PubMed
BookMark eNpt0DtPwzAUBWALFdEHbMzIIwMtfjWOR4TKQ6pUBlhYLMdxiiGxg5206r8nVQpCiOneK333DGcMBs47A8A5RjNME3a9WswInyHMBKJHYISRYFOGUj74tQ_BOMZ31CEu-AkYUowTKigegdenNxUNbN02qLq2bg2tg75urFYlrEwTfOnXO7ixCubGeRtNDpXLofZu48u2sd51MJp1ZVyj9id0ptn68BFPwXGhymjODnMCXu4Wz7cP0-Xq_vH2ZjnVlIhmSrnIGE9IjrjCqUEEZ0WhDZsTLFjCUkIEL6jARcYFyeccZZplOklTkjGEaE4n4LLPrYP_bE1sZGWjNmWpnPFtlIR2rktLREcvDrTNKpPLOthKhZ387qMDVz3QwccYTPFDMJL7uuVqIQmXfd0dJ3-4tn0LTVC2_P_pC1sNgjQ
CitedBy_id crossref_primary_10_1186_s12968_021_00712_9
crossref_primary_10_1364_AO_458408
crossref_primary_10_1117_1_APN_1_1_014001
crossref_primary_10_1364_OE_423870
crossref_primary_10_1364_OE_470693
crossref_primary_10_1016_j_optlaseng_2021_106941
crossref_primary_10_1016_j_optlaseng_2024_108168
crossref_primary_10_1364_OE_27_028929
crossref_primary_10_1109_JSEN_2021_3101498
crossref_primary_10_1364_AO_414952
crossref_primary_10_1155_2022_5423881
crossref_primary_10_1007_s11227_021_03634_6
crossref_primary_10_1016_j_optlastec_2023_109340
crossref_primary_10_1364_BOE_379533
crossref_primary_10_1016_j_optlastec_2025_112757
crossref_primary_10_1364_AO_506877
crossref_primary_10_1016_j_ejrs_2021_12_001
crossref_primary_10_1364_OE_486984
crossref_primary_10_3390_rs14112607
crossref_primary_10_1364_OL_478603
crossref_primary_10_3390_electronics13020418
crossref_primary_10_1088_1361_6501_ac9544
crossref_primary_10_1364_OE_500139
crossref_primary_10_1088_1361_6501_acd712
crossref_primary_10_3390_photonics11020122
crossref_primary_10_1088_1402_4896_ad5649
crossref_primary_10_1364_AO_443685
crossref_primary_10_3390_app10144974
crossref_primary_10_3390_s22166048
crossref_primary_10_1109_TGRS_2021_3099997
crossref_primary_10_1364_AO_525144
crossref_primary_10_1109_TIP_2020_2977213
crossref_primary_10_1016_j_optlaseng_2024_108585
crossref_primary_10_1364_AO_464585
crossref_primary_10_1364_AO_522713
crossref_primary_10_1109_JSTARS_2025_3542608
crossref_primary_10_1364_OE_465094
crossref_primary_10_1038_s41598_020_76411_9
crossref_primary_10_1364_AO_428181
crossref_primary_10_1016_j_measurement_2021_110663
crossref_primary_10_1109_TIP_2021_3099956
crossref_primary_10_1016_j_optlaseng_2023_107484
crossref_primary_10_1364_OE_505544
crossref_primary_10_1109_JSTARS_2021_3099485
crossref_primary_10_3788_IRLA20230564
crossref_primary_10_1016_j_optlaseng_2024_108114
crossref_primary_10_3788_gzxb20235201_0112003
crossref_primary_10_1088_2515_7647_abf02c
crossref_primary_10_1016_j_optlastec_2024_111872
crossref_primary_10_3390_math11122618
crossref_primary_10_1364_OE_517676
crossref_primary_10_3788_gzxb20245309_0911001
crossref_primary_10_1038_s41377_022_00714_x
crossref_primary_10_1007_s00340_021_07696_5
crossref_primary_10_1016_j_neucom_2024_127493
crossref_primary_10_1364_OE_453112
crossref_primary_10_1364_OE_470534
crossref_primary_10_1038_s41377_023_01340_x
crossref_primary_10_1016_j_optlaseng_2019_105999
crossref_primary_10_3390_rs15092310
crossref_primary_10_3390_s20133691
crossref_primary_10_1109_ACCESS_2023_3303186
crossref_primary_10_1109_TGRS_2021_3121907
crossref_primary_10_1109_TGRS_2021_3121906
crossref_primary_10_1364_OE_444875
crossref_primary_10_3390_photonics11020175
crossref_primary_10_1109_LSP_2022_3157195
crossref_primary_10_1364_OE_446775
crossref_primary_10_37188_lam_2022_013
crossref_primary_10_3389_fenvs_2023_1138399
crossref_primary_10_1364_OE_481949
crossref_primary_10_1016_j_optcom_2023_129817
crossref_primary_10_1016_j_optlaseng_2024_108419
crossref_primary_10_1364_JOSAA_476200
crossref_primary_10_1364_AO_542818
crossref_primary_10_1109_MGRS_2021_3065811
crossref_primary_10_1364_AO_399715
crossref_primary_10_1364_AO_405893
crossref_primary_10_1007_s11082_021_03106_4
crossref_primary_10_1016_j_optlaseng_2022_107409
crossref_primary_10_1038_s41377_024_01453_x
crossref_primary_10_1016_j_optcom_2024_131055
crossref_primary_10_1364_OE_397904
crossref_primary_10_1016_j_optlaseng_2024_108703
crossref_primary_10_1364_OE_410723
crossref_primary_10_3390_photonics8110459
crossref_primary_10_1109_JSTARS_2023_3298989
crossref_primary_10_1016_j_optlaseng_2020_106405
crossref_primary_10_1016_j_optlaseng_2021_106824
crossref_primary_10_1364_OL_446022
crossref_primary_10_3390_rs15194885
crossref_primary_10_1016_j_measurement_2022_111566
crossref_primary_10_1109_TGRS_2021_3128565
crossref_primary_10_1088_2040_8986_acb3df
crossref_primary_10_1364_OE_418430
crossref_primary_10_1109_TSP_2023_3344356
crossref_primary_10_1364_OE_413385
crossref_primary_10_1016_j_optlaseng_2021_106675
crossref_primary_10_1016_j_optcom_2022_128008
crossref_primary_10_3788_IRLA20230126
Cites_doi 10.1364/AO.56.007079
10.1109/LGRS.2016.2535159
10.1364/OE.26.018279
10.1364/JOSAA.11.000107
10.1029/RS023i004p00713
10.1109/TPAMI.2016.2644615
10.1109/LGRS.2010.2076362
10.1016/j.optcom.2013.07.013
10.1364/AO.50.006214
10.1364/AO.53.005439
10.1117/1.OE.53.2.024102
10.1364/AO.55.002418
10.1364/JOSAA.14.002692
10.1109/LSP.2018.2879184
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1364/OE.27.014903
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 31163931
10_1364_OE_27_014903
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
ROP
7X8
ID FETCH-LOGICAL-c329t-379b4762d07a18e021bffce4521946482297f391fb792d570bc4bc6882b4003d3
ISSN 1094-4087
IngestDate Thu Jul 10 16:54:47 EDT 2025
Wed Feb 19 02:34:22 EST 2025
Tue Jul 01 04:04:38 EDT 2025
Thu Apr 24 23:04:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c329t-379b4762d07a18e021bffce4521946482297f391fb792d570bc4bc6882b4003d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1253-4096
0000-0003-2243-0012
OpenAccessLink https://doi.org/10.1364/oe.27.014903
PMID 31163931
PQID 2340052169
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2340052169
pubmed_primary_31163931
crossref_primary_10_1364_OE_27_014903
crossref_citationtrail_10_1364_OE_27_014903
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-13
PublicationDateYYYYMMDD 2019-05-13
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2019
References Zhong (oe-27-10-14903-R4) 2011; 8
Xu (oe-27-10-14903-R6) 2016; 13
Badrinarayanan (oe-27-10-14903-R16) 2017; 39
Nair (oe-27-10-14903-R18) 2010
Juarez-Salazar (oe-27-10-14903-R8) 2014; 53
Martinez-Carranza (oe-27-10-14903-R11) 2017; 56
Goldstein (oe-27-10-14903-R1) 1988; 23
Tian (oe-27-10-14903-R27) 2018; 26
Sawaf (oe-27-10-14903-R23) 2014; 53
Flynn (oe-27-10-14903-R2) 1996; 4
Zhao (oe-27-10-14903-R3) 2011; 50
Schwartzkopf (oe-27-10-14903-R12) 2000
Pandey (oe-27-10-14903-R10) 2016; 55
Zuo (oe-27-10-14903-R9) 2013; 309
Ioffe (oe-27-10-14903-R17) 2015
He (oe-27-10-14903-R21) 2015
Ghiglia (oe-27-10-14903-R7) 1994; 11
Spoorthi (oe-27-10-14903-R15) 2019; 26
Flynn (oe-27-10-14903-R5) 1997; 14
Olaf (oe-27-10-14903-R25) 2015
References_xml – volume: 56
  start-page: 7079
  year: 2017
  ident: oe-27-10-14903-R11
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.007079
– volume: 13
  start-page: 666
  year: 2016
  ident: oe-27-10-14903-R6
  publication-title: IEEE Geosci. Remote. Sens. Lett.
  doi: 10.1109/LGRS.2016.2535159
– volume: 26
  start-page: 18279
  year: 2018
  ident: oe-27-10-14903-R27
  publication-title: Opt. Express
  doi: 10.1364/OE.26.018279
– volume: 11
  start-page: 107
  year: 1994
  ident: oe-27-10-14903-R7
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.11.000107
– start-page: 234
  volume-title: Proceedings of International Conference on Medical Image Computing and Computer-assisted Intervention
  year: 2015
  ident: oe-27-10-14903-R25
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 23
  start-page: 713
  year: 1988
  ident: oe-27-10-14903-R1
  publication-title: Radio Sci.
  doi: 10.1029/RS023i004p00713
– volume: 4
  start-page: 2057
  volume-title: Geoscience and Remote Sensing Symposium
  year: 1996
  ident: oe-27-10-14903-R2
  article-title: Consistent 2-d phase unwrapping guided by a quality map
– volume: 39
  start-page: 2481
  year: 2017
  ident: oe-27-10-14903-R16
  publication-title: IEEE Transactions on Pattern Analysis Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 8
  start-page: 364
  year: 2011
  ident: oe-27-10-14903-R4
  publication-title: IEEE Geosci. Remote. Sens. Lett.
  doi: 10.1109/LGRS.2010.2076362
– volume: 309
  start-page: 221
  year: 2013
  ident: oe-27-10-14903-R9
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2013.07.013
– volume: 50
  start-page: 6214
  year: 2011
  ident: oe-27-10-14903-R3
  publication-title: Appl. Opt.
  doi: 10.1364/AO.50.006214
– volume: 53
  start-page: 5439
  year: 2014
  ident: oe-27-10-14903-R23
  publication-title: Appl. Opt.
  doi: 10.1364/AO.53.005439
– start-page: 448
  volume-title: Proceedings of International Conference on Machine Learning
  year: 2015
  ident: oe-27-10-14903-R17
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– volume: 53
  start-page: 024102
  year: 2014
  ident: oe-27-10-14903-R8
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.53.2.024102
– volume: 55
  start-page: 2418
  year: 2016
  ident: oe-27-10-14903-R10
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.002418
– start-page: 274
  volume-title: Proceedings of IEEE Conference on Image Analysis and Interpretation
  year: 2000
  ident: oe-27-10-14903-R12
  article-title: Two-dimensional phase unwrapping using neural networks
– volume: 14
  start-page: 2692
  year: 1997
  ident: oe-27-10-14903-R5
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.14.002692
– start-page: 1026
  volume-title: Proceedings of IEEE International Conference on Computer Vision
  year: 2015
  ident: oe-27-10-14903-R21
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
– start-page: 807
  volume-title: Proceedings of the 27th international conference on machine learning
  year: 2010
  ident: oe-27-10-14903-R18
  article-title: Rectified linear units improve restricted boltzmann machines
– volume: 26
  start-page: 54
  year: 2019
  ident: oe-27-10-14903-R15
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2018.2879184
SSID ssj0014797
Score 2.5947955
Snippet The interferometry technique is commonly used to obtain the phase information of an object in optical metrology. The obtained wrapped phase is subject to a 2π...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 14903
Title Phase unwrapping in optical metrology via denoised and convolutional segmentation networks
URI https://www.ncbi.nlm.nih.gov/pubmed/31163931
https://www.proquest.com/docview/2340052169
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7jiuCLeHe8LBH0aejYJmk7eRQZGRbXEdyFwZfSpKlbcNOyM13FB3-7p0ma6egsrL6U4TS90PPNuZ8ThF6ReFYAVkQgy1IGLM95wJmKAh6HVHIilDDT9Y8_JotTdrSKV6NROahaajdiKn_u7Sv5H64CDfjadcn-A2f9TYEAv4G_cAQOw_FaPP50Bjpo0urvF3nTuOaUurHR6XPVlaB385Uuq3wC0qWu1qpwbWz60r1X1y2ivp67BiQ90bYqfD20WZeNGeWsfjS-XGMYaT4CzXiW1z4EUNmQ6qrKa-Gpn2GFWQxnt9QPrSEu8srRXPih63iKA9s96iQm-IfghDqtqfbQnJi1IwB6OIUDoQlOmplz8Lc4pwkDHiznU5JOQ79sd2r2H9rM1xiaVF3CsuU8I2lmr76BbpI0Nen8419zn21iqd2Ep39t1yABV78ZPnvXdLnCHzF2yclddMc5FPitRcc9NFL6PrplCnvl-gH6YjCCtxjBlcYOI9hjBANGcI8RDBjBOxjBQ4zgHiMP0en7-cm7ReD20wgkJXwDuoQLBsqvCNM8mimw7gT8QRUDC46zhHWj_9OS8qgUKSdFnIZCMiET8MEESHpa0EfoQNdaPUE4DAVJRDwDC6hkBQMvgPJQgnWpKFHljI3RpP9UmXTD5rs9T75l-9gyRq_96sYOWbli3cv-q2cgBbvUVq5V3a4zQlmX4IgSPkaPLTv8nWgEPgen0dNrPuUZur0F-nN0sLlo1QuwPDfi0ERsDg14fgOZzoOJ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+unwrapping+in+optical+metrology+via+denoised+and+convolutional+segmentation+networks&rft.jtitle=Optics+express&rft.au=Zhang%2C+Junchao&rft.au=Tian%2C+Xiaobo&rft.au=Shao%2C+Jianbo&rft.au=Luo%2C+Haibo&rft.date=2019-05-13&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=27&rft.issue=10&rft.spage=14903&rft_id=info:doi/10.1364%2FOE.27.014903&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_OE_27_014903
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon