Phase demodulation method in phase-sensitive OTDR without coherent detection

A phase demodulation method specially developed for direct detection φ-OTDR is proposed and demonstrated. It is the only method to date that can be used for phase demodulation based on pure direct detection system. As a result, this method greatly simplifies the system configuration and lowers the c...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 25; no. 5; p. 4831
Main Authors Sha, Zhou, Feng, Hao, Zeng, Zhoumo
Format Journal Article
LanguageEnglish
Published United States 06.03.2017
Online AccessGet full text

Cover

Loading…
Abstract A phase demodulation method specially developed for direct detection φ-OTDR is proposed and demonstrated. It is the only method to date that can be used for phase demodulation based on pure direct detection system. As a result, this method greatly simplifies the system configuration and lowers the cost. It works by firstly deriving a pair of orthogonal signals from the single-channel intensity and then realizing phase demodulation by means of IQ demodulation. Different forms of PZT induced vibration are applied to the fiber and the phase is correctly demodulated in each case. The experiment results show that this method can effectively perform phase demodulation with extremely simple system configuration.
AbstractList A phase demodulation method specially developed for direct detection φ-OTDR is proposed and demonstrated. It is the only method to date that can be used for phase demodulation based on pure direct detection system. As a result, this method greatly simplifies the system configuration and lowers the cost. It works by firstly deriving a pair of orthogonal signals from the single-channel intensity and then realizing phase demodulation by means of IQ demodulation. Different forms of PZT induced vibration are applied to the fiber and the phase is correctly demodulated in each case. The experiment results show that this method can effectively perform phase demodulation with extremely simple system configuration.
A phase demodulation method specially developed for direct detection φ-OTDR is proposed and demonstrated. It is the only method to date that can be used for phase demodulation based on pure direct detection system. As a result, this method greatly simplifies the system configuration and lowers the cost. It works by firstly deriving a pair of orthogonal signals from the single-channel intensity and then realizing phase demodulation by means of IQ demodulation. Different forms of PZT induced vibration are applied to the fiber and the phase is correctly demodulated in each case. The experiment results show that this method can effectively perform phase demodulation with extremely simple system configuration.A phase demodulation method specially developed for direct detection φ-OTDR is proposed and demonstrated. It is the only method to date that can be used for phase demodulation based on pure direct detection system. As a result, this method greatly simplifies the system configuration and lowers the cost. It works by firstly deriving a pair of orthogonal signals from the single-channel intensity and then realizing phase demodulation by means of IQ demodulation. Different forms of PZT induced vibration are applied to the fiber and the phase is correctly demodulated in each case. The experiment results show that this method can effectively perform phase demodulation with extremely simple system configuration.
Author Zeng, Zhoumo
Sha, Zhou
Feng, Hao
Author_xml – sequence: 1
  givenname: Zhou
  surname: Sha
  fullname: Sha, Zhou
– sequence: 2
  givenname: Hao
  surname: Feng
  fullname: Feng, Hao
– sequence: 3
  givenname: Zhoumo
  surname: Zeng
  fullname: Zeng, Zhoumo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28380752$$D View this record in MEDLINE/PubMed
BookMark eNptkEtLw0AUhQep2IfuXEuWLkydV2YmS6n1AYWIdD9MJzd0JI-amSj-exPbgoire7nnO4fLmaJR3dSA0CXBc8IEv82Wc5rMMeaKkRM0ITjlMcdKjn7tYzT1_g1jwmUqz9CYKqawTOgErV62xkOUQ9XkXWmCa-qogrBt8sjV0W4QYw-1d8F9QJSt71-jT9fLXYhss4UW6tCbA9jBeY5OC1N6uDjMGVo_LNeLp3iVPT4v7laxZTQNMS0sGLwRRmzY8JBUVhaEpKK_FSKnLE0KK3IrBGfUCptgk3ArJVYg8YayGbrex-7a5r0DH3TlvIWyNDU0nddEKa4UTRPSo1cHtNtUkOtd6yrTfuljAT1A94BtG-9bKLR14aeG0BpXaoL10LLOlpomet9yb7r5Yzrm_ot_Az35fHU
CitedBy_id crossref_primary_10_1109_JSEN_2023_3332761
crossref_primary_10_1109_JSEN_2021_3128604
crossref_primary_10_1109_LPT_2020_2979030
crossref_primary_10_1364_OL_43_002022
crossref_primary_10_3390_s22176515
crossref_primary_10_1109_JSEN_2018_2878238
crossref_primary_10_1364_OL_420047
crossref_primary_10_1109_JIOT_2023_3320149
crossref_primary_10_3788_AOS231384
crossref_primary_10_1117_1_OE_56_8_084104
crossref_primary_10_1016_j_ijleo_2020_165020
crossref_primary_10_1109_JLT_2020_2966413
crossref_primary_10_3788_AOS231627
crossref_primary_10_1088_1674_1056_28_8_084205
crossref_primary_10_1364_OE_25_027913
crossref_primary_10_29026_oea_2022_200078
crossref_primary_10_1364_OL_44_000911
crossref_primary_10_1016_j_yofte_2019_101980
crossref_primary_10_1155_2018_3897873
crossref_primary_10_1109_JLT_2020_2996232
crossref_primary_10_1109_JSTQE_2020_2975575
crossref_primary_10_1364_OE_453060
crossref_primary_10_1016_j_optcom_2020_126616
crossref_primary_10_1117_1_OE_63_10_106107
crossref_primary_10_1364_OE_515479
crossref_primary_10_1109_JLT_2021_3128138
crossref_primary_10_1016_j_measurement_2024_114526
crossref_primary_10_1109_JLT_2021_3113082
crossref_primary_10_1016_j_measurement_2021_110279
crossref_primary_10_1109_JSEN_2023_3288971
crossref_primary_10_3390_photonics10121362
crossref_primary_10_3390_s19071709
crossref_primary_10_3390_s19245392
crossref_primary_10_1109_JSEN_2021_3098805
crossref_primary_10_1364_OE_378365
crossref_primary_10_1109_JLT_2023_3322894
crossref_primary_10_3788_AOS231408
crossref_primary_10_1016_j_optlastec_2023_109128
crossref_primary_10_1016_j_yofte_2022_102850
crossref_primary_10_1109_LPT_2024_3414322
crossref_primary_10_29026_oea_2021_200078
crossref_primary_10_1016_j_yofte_2024_103780
crossref_primary_10_1007_s13320_021_0615_8
crossref_primary_10_1016_j_ijleo_2020_165205
crossref_primary_10_1109_LPT_2018_2811411
crossref_primary_10_1364_OL_413763
crossref_primary_10_3390_s24051656
crossref_primary_10_1364_OE_405723
crossref_primary_10_3390_s20226594
crossref_primary_10_1364_AO_57_002679
crossref_primary_10_1016_j_measurement_2019_106869
crossref_primary_10_1109_JLT_2020_3039812
crossref_primary_10_3390_s19173753
crossref_primary_10_1364_OE_414598
crossref_primary_10_3788_AOS230508
crossref_primary_10_1109_ACCESS_2020_2990133
Cites_doi 10.1109/JLT.2015.2414416
10.1088/1054-660X/25/6/065101
10.1016/j.optcom.2015.02.044
10.1117/12.975656
10.1364/OE.24.000853
10.3390/s120708601
10.1109/LPT.2014.2346760
10.1364/AO.46.001968
10.1109/JLT.2008.927778
10.3788/CJL201340.0905003
10.1088/1054-660X/26/9/095101
10.1109/JLT.2015.2421953
10.1364/AO.55.007810
10.1109/LPT.2015.2421354
10.1364/OE.22.013804
10.3390/s150921957
10.1088/1054-660X/24/11/115106
10.1117/12.905657
10.1088/0957-0233/24/8/085204
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1364/OE.25.004831
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 28380752
10_1364_OE_25_004831
Genre Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
NPM
ROP
7X8
ID FETCH-LOGICAL-c329t-2fcea0b6a6b3479778c7f11960b6f6d2395fc6dc66432c6c50a54c7708e70b23
ISSN 1094-4087
IngestDate Fri Jul 11 05:44:01 EDT 2025
Wed Feb 19 02:41:04 EST 2025
Tue Jul 01 03:29:39 EDT 2025
Thu Apr 24 22:56:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://opg.optica.org/policies/opg-tdm-policy.json
https://doi.org/10.1364/OA_License_v1#VOR-OA
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c329t-2fcea0b6a6b3479778c7f11960b6f6d2395fc6dc66432c6c50a54c7708e70b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1364/oe.25.004831
PMID 28380752
PQID 1884882951
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1884882951
pubmed_primary_28380752
crossref_citationtrail_10_1364_OE_25_004831
crossref_primary_10_1364_OE_25_004831
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-06
PublicationDateYYYYMMDD 2017-03-06
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2017
References Juarez (oe-25-5-4831-R7) 2007; 46
Fang (oe-25-5-4831-R15) 2015; 33
Masoudi (oe-25-5-4831-R17) 2013; 24
Alekseev (oe-25-5-4831-R11) 2015; 25
Pan (oe-25-5-4831-R14) 2011; 8311
Lu (oe-25-5-4831-R2) 2010; 28
Wang (oe-25-5-4831-R18) 2015; 346
Pan (oe-25-5-4831-R20) 2012; 8421
Bao (oe-25-5-4831-R1) 2012; 12
Peng (oe-25-5-4831-R8) 2014; 22
Alekseev (oe-25-5-4831-R13) 2014; 24
Tu (oe-25-5-4831-R9) 2015; 27
Taylor (oe-25-5-4831-R16) 2009; 27
Wu (oe-25-5-4831-R5) 2015; 33
Peng (oe-25-5-4831-R6) 2014; 26
Alekseev (oe-25-5-4831-R21) 2016; 26
Shi (oe-25-5-4831-R3) 2015; 15
Zhou (oe-25-5-4831-R19) 2013; 40
Wang (oe-25-5-4831-R12) 2016; 24
Dong (oe-25-5-4831-R10) 2016; 55
Lu (oe-25-5-4831-R4) 2010; 28
References_xml – volume: 33
  start-page: 2811
  year: 2015
  ident: oe-25-5-4831-R15
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2015.2414416
– volume: 25
  start-page: 065101
  year: 2015
  ident: oe-25-5-4831-R11
  publication-title: Laser Phys.
  doi: 10.1088/1054-660X/25/6/065101
– volume: 346
  start-page: 172
  year: 2015
  ident: oe-25-5-4831-R18
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2015.02.044
– volume: 8421
  start-page: 842129
  year: 2012
  ident: oe-25-5-4831-R20
  publication-title: Proc. SPIE
  doi: 10.1117/12.975656
– volume: 24
  start-page: 853
  year: 2016
  ident: oe-25-5-4831-R12
  publication-title: Opt. Express
  doi: 10.1364/OE.24.000853
– volume: 12
  start-page: 8601
  year: 2012
  ident: oe-25-5-4831-R1
  publication-title: Sensors (Basel)
  doi: 10.3390/s120708601
– volume: 26
  start-page: 2055
  year: 2014
  ident: oe-25-5-4831-R6
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2014.2346760
– volume: 46
  start-page: 1968
  year: 2007
  ident: oe-25-5-4831-R7
  publication-title: Appl. Opt.
  doi: 10.1364/AO.46.001968
– volume: 27
  start-page: 901
  year: 2009
  ident: oe-25-5-4831-R16
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2008.927778
– volume: 40
  start-page: 0905003
  year: 2013
  ident: oe-25-5-4831-R19
  publication-title: Chin. J. Lasers
  doi: 10.3788/CJL201340.0905003
– volume: 26
  start-page: 095101
  year: 2016
  ident: oe-25-5-4831-R21
  publication-title: Laser Phys.
  doi: 10.1088/1054-660X/26/9/095101
– volume: 33
  start-page: 3156
  year: 2015
  ident: oe-25-5-4831-R5
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2015.2421953
– volume: 28
  start-page: 3243
  year: 2010
  ident: oe-25-5-4831-R4
  publication-title: J. Lightwave Technol.
– volume: 55
  start-page: 7810
  year: 2016
  ident: oe-25-5-4831-R10
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.007810
– volume: 27
  start-page: 1349
  year: 2015
  ident: oe-25-5-4831-R9
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2015.2421354
– volume: 22
  start-page: 13804
  year: 2014
  ident: oe-25-5-4831-R8
  publication-title: Opt. Express
  doi: 10.1364/OE.22.013804
– volume: 28
  start-page: 3243
  year: 2010
  ident: oe-25-5-4831-R2
  publication-title: J. Lightwave Technol.
– volume: 15
  start-page: 21957
  year: 2015
  ident: oe-25-5-4831-R3
  publication-title: Sensors (Basel)
  doi: 10.3390/s150921957
– volume: 24
  start-page: 115106
  year: 2014
  ident: oe-25-5-4831-R13
  publication-title: Laser Phys.
  doi: 10.1088/1054-660X/24/11/115106
– volume: 8311
  start-page: 83110S
  year: 2011
  ident: oe-25-5-4831-R14
  publication-title: Proc. SPIE
  doi: 10.1117/12.905657
– volume: 24
  start-page: 085204
  year: 2013
  ident: oe-25-5-4831-R17
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/24/8/085204
SSID ssj0014797
Score 2.4842277
Snippet A phase demodulation method specially developed for direct detection φ-OTDR is proposed and demonstrated. It is the only method to date that can be used for...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 4831
Title Phase demodulation method in phase-sensitive OTDR without coherent detection
URI https://www.ncbi.nlm.nih.gov/pubmed/28380752
https://www.proquest.com/docview/1884882951
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA66Ivgi633cdYmgT0vXTpom7eOiI4O4jsgIiy8lt7KC0w5OF8QHf7snJ2mnrg6oL6UkmRTOlzm3nAshz3IJfyCd2cSC_ZPwkk8TVbssMXbqjBQqq7VPTj57J-Yf-Zvz_HzbdQ2zSzp9Yr7_Ma_kf1CFMcDVZ8n-A7LDpjAA74AvPAFheP4Vxu8vQAYdW7dqbezCFTtCY2y4n0w2PkAdw4MWy1cf0O3qI5FNe-GwLpN1HQZjNWMtdbHG4s3u23oI0MAqjqhofoINtgpkYBVz1Q4e6Djkl63asVMBBBX2FAwyITBCMPvAtozCMHLKkKIcT0Q-Ynu8CKz8N36cCQ5EXMxOmHddXV0G1FyvEBtQcnxVZLaVSkOsYD91ndxgYAp4Xnb2YzbcFHFZypjQAB97Mf6UL_Qcf_yr1rHDlECVYrlPbkdbgJ4GYO-Qa665S25iTK7Z3CNvEV46hpcGeOnnhl6Bl3p4aYSX9vDSAd77ZPl6tnw5T2Lzi8RkrOwSVhunUi2U0D7ZV8rCyHoK_BLGamFZVua1EdYIUCmZESZPVc6NlGnhZKpZ9oDsNW3jHhEqQcPPrNJOl5znpSqsUrYsTQocV4M2OiHHPW0qEwvD-_4kXyq87RS8WswqlleBqBPyfFi9DgVRdqx72pO5Ao7lr6FU49rLTTUtCpAaDFT7CXkY6D_s1OP1eOfMAbm1PbCHZK_7eumegF7Y6SP0pxzh8fgJgwhipA
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+demodulation+method+in+phase-sensitive+OTDR+without+coherent+detection&rft.jtitle=Optics+express&rft.au=Sha%2C+Zhou&rft.au=Feng%2C+Hao&rft.au=Zeng%2C+Zhoumo&rft.date=2017-03-06&rft.eissn=1094-4087&rft.volume=25&rft.issue=5&rft.spage=4831&rft_id=info:doi/10.1364%2FOE.25.004831&rft_id=info%3Apmid%2F28380752&rft.externalDocID=28380752
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon