Phase demodulation method in phase-sensitive OTDR without coherent detection
A phase demodulation method specially developed for direct detection φ-OTDR is proposed and demonstrated. It is the only method to date that can be used for phase demodulation based on pure direct detection system. As a result, this method greatly simplifies the system configuration and lowers the c...
Saved in:
Published in | Optics express Vol. 25; no. 5; p. 4831 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
06.03.2017
|
Online Access | Get full text |
Cover
Loading…
Abstract | A phase demodulation method specially developed for direct detection φ-OTDR is proposed and demonstrated. It is the only method to date that can be used for phase demodulation based on pure direct detection system. As a result, this method greatly simplifies the system configuration and lowers the cost. It works by firstly deriving a pair of orthogonal signals from the single-channel intensity and then realizing phase demodulation by means of IQ demodulation. Different forms of PZT induced vibration are applied to the fiber and the phase is correctly demodulated in each case. The experiment results show that this method can effectively perform phase demodulation with extremely simple system configuration. |
---|---|
AbstractList | A phase demodulation method specially developed for direct detection φ-OTDR is proposed and demonstrated. It is the only method to date that can be used for phase demodulation based on pure direct detection system. As a result, this method greatly simplifies the system configuration and lowers the cost. It works by firstly deriving a pair of orthogonal signals from the single-channel intensity and then realizing phase demodulation by means of IQ demodulation. Different forms of PZT induced vibration are applied to the fiber and the phase is correctly demodulated in each case. The experiment results show that this method can effectively perform phase demodulation with extremely simple system configuration. A phase demodulation method specially developed for direct detection φ-OTDR is proposed and demonstrated. It is the only method to date that can be used for phase demodulation based on pure direct detection system. As a result, this method greatly simplifies the system configuration and lowers the cost. It works by firstly deriving a pair of orthogonal signals from the single-channel intensity and then realizing phase demodulation by means of IQ demodulation. Different forms of PZT induced vibration are applied to the fiber and the phase is correctly demodulated in each case. The experiment results show that this method can effectively perform phase demodulation with extremely simple system configuration.A phase demodulation method specially developed for direct detection φ-OTDR is proposed and demonstrated. It is the only method to date that can be used for phase demodulation based on pure direct detection system. As a result, this method greatly simplifies the system configuration and lowers the cost. It works by firstly deriving a pair of orthogonal signals from the single-channel intensity and then realizing phase demodulation by means of IQ demodulation. Different forms of PZT induced vibration are applied to the fiber and the phase is correctly demodulated in each case. The experiment results show that this method can effectively perform phase demodulation with extremely simple system configuration. |
Author | Zeng, Zhoumo Sha, Zhou Feng, Hao |
Author_xml | – sequence: 1 givenname: Zhou surname: Sha fullname: Sha, Zhou – sequence: 2 givenname: Hao surname: Feng fullname: Feng, Hao – sequence: 3 givenname: Zhoumo surname: Zeng fullname: Zeng, Zhoumo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28380752$$D View this record in MEDLINE/PubMed |
BookMark | eNptkEtLw0AUhQep2IfuXEuWLkydV2YmS6n1AYWIdD9MJzd0JI-amSj-exPbgoire7nnO4fLmaJR3dSA0CXBc8IEv82Wc5rMMeaKkRM0ITjlMcdKjn7tYzT1_g1jwmUqz9CYKqawTOgErV62xkOUQ9XkXWmCa-qogrBt8sjV0W4QYw-1d8F9QJSt71-jT9fLXYhss4UW6tCbA9jBeY5OC1N6uDjMGVo_LNeLp3iVPT4v7laxZTQNMS0sGLwRRmzY8JBUVhaEpKK_FSKnLE0KK3IrBGfUCptgk3ArJVYg8YayGbrex-7a5r0DH3TlvIWyNDU0nddEKa4UTRPSo1cHtNtUkOtd6yrTfuljAT1A94BtG-9bKLR14aeG0BpXaoL10LLOlpomet9yb7r5Yzrm_ot_Az35fHU |
CitedBy_id | crossref_primary_10_1109_JSEN_2023_3332761 crossref_primary_10_1109_JSEN_2021_3128604 crossref_primary_10_1109_LPT_2020_2979030 crossref_primary_10_1364_OL_43_002022 crossref_primary_10_3390_s22176515 crossref_primary_10_1109_JSEN_2018_2878238 crossref_primary_10_1364_OL_420047 crossref_primary_10_1109_JIOT_2023_3320149 crossref_primary_10_3788_AOS231384 crossref_primary_10_1117_1_OE_56_8_084104 crossref_primary_10_1016_j_ijleo_2020_165020 crossref_primary_10_1109_JLT_2020_2966413 crossref_primary_10_3788_AOS231627 crossref_primary_10_1088_1674_1056_28_8_084205 crossref_primary_10_1364_OE_25_027913 crossref_primary_10_29026_oea_2022_200078 crossref_primary_10_1364_OL_44_000911 crossref_primary_10_1016_j_yofte_2019_101980 crossref_primary_10_1155_2018_3897873 crossref_primary_10_1109_JLT_2020_2996232 crossref_primary_10_1109_JSTQE_2020_2975575 crossref_primary_10_1364_OE_453060 crossref_primary_10_1016_j_optcom_2020_126616 crossref_primary_10_1117_1_OE_63_10_106107 crossref_primary_10_1364_OE_515479 crossref_primary_10_1109_JLT_2021_3128138 crossref_primary_10_1016_j_measurement_2024_114526 crossref_primary_10_1109_JLT_2021_3113082 crossref_primary_10_1016_j_measurement_2021_110279 crossref_primary_10_1109_JSEN_2023_3288971 crossref_primary_10_3390_photonics10121362 crossref_primary_10_3390_s19071709 crossref_primary_10_3390_s19245392 crossref_primary_10_1109_JSEN_2021_3098805 crossref_primary_10_1364_OE_378365 crossref_primary_10_1109_JLT_2023_3322894 crossref_primary_10_3788_AOS231408 crossref_primary_10_1016_j_optlastec_2023_109128 crossref_primary_10_1016_j_yofte_2022_102850 crossref_primary_10_1109_LPT_2024_3414322 crossref_primary_10_29026_oea_2021_200078 crossref_primary_10_1016_j_yofte_2024_103780 crossref_primary_10_1007_s13320_021_0615_8 crossref_primary_10_1016_j_ijleo_2020_165205 crossref_primary_10_1109_LPT_2018_2811411 crossref_primary_10_1364_OL_413763 crossref_primary_10_3390_s24051656 crossref_primary_10_1364_OE_405723 crossref_primary_10_3390_s20226594 crossref_primary_10_1364_AO_57_002679 crossref_primary_10_1016_j_measurement_2019_106869 crossref_primary_10_1109_JLT_2020_3039812 crossref_primary_10_3390_s19173753 crossref_primary_10_1364_OE_414598 crossref_primary_10_3788_AOS230508 crossref_primary_10_1109_ACCESS_2020_2990133 |
Cites_doi | 10.1109/JLT.2015.2414416 10.1088/1054-660X/25/6/065101 10.1016/j.optcom.2015.02.044 10.1117/12.975656 10.1364/OE.24.000853 10.3390/s120708601 10.1109/LPT.2014.2346760 10.1364/AO.46.001968 10.1109/JLT.2008.927778 10.3788/CJL201340.0905003 10.1088/1054-660X/26/9/095101 10.1109/JLT.2015.2421953 10.1364/AO.55.007810 10.1109/LPT.2015.2421354 10.1364/OE.22.013804 10.3390/s150921957 10.1088/1054-660X/24/11/115106 10.1117/12.905657 10.1088/0957-0233/24/8/085204 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1364/OE.25.004831 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1094-4087 |
ExternalDocumentID | 28380752 10_1364_OE_25_004831 |
Genre | Journal Article |
GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS EJD F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB NPM ROP 7X8 |
ID | FETCH-LOGICAL-c329t-2fcea0b6a6b3479778c7f11960b6f6d2395fc6dc66432c6c50a54c7708e70b23 |
ISSN | 1094-4087 |
IngestDate | Fri Jul 11 05:44:01 EDT 2025 Wed Feb 19 02:41:04 EST 2025 Tue Jul 01 03:29:39 EDT 2025 Thu Apr 24 22:56:57 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://opg.optica.org/policies/opg-tdm-policy.json https://doi.org/10.1364/OA_License_v1#VOR-OA |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c329t-2fcea0b6a6b3479778c7f11960b6f6d2395fc6dc66432c6c50a54c7708e70b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1364/oe.25.004831 |
PMID | 28380752 |
PQID | 1884882951 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_1884882951 pubmed_primary_28380752 crossref_citationtrail_10_1364_OE_25_004831 crossref_primary_10_1364_OE_25_004831 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-06 |
PublicationDateYYYYMMDD | 2017-03-06 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Optics express |
PublicationTitleAlternate | Opt Express |
PublicationYear | 2017 |
References | Juarez (oe-25-5-4831-R7) 2007; 46 Fang (oe-25-5-4831-R15) 2015; 33 Masoudi (oe-25-5-4831-R17) 2013; 24 Alekseev (oe-25-5-4831-R11) 2015; 25 Pan (oe-25-5-4831-R14) 2011; 8311 Lu (oe-25-5-4831-R2) 2010; 28 Wang (oe-25-5-4831-R18) 2015; 346 Pan (oe-25-5-4831-R20) 2012; 8421 Bao (oe-25-5-4831-R1) 2012; 12 Peng (oe-25-5-4831-R8) 2014; 22 Alekseev (oe-25-5-4831-R13) 2014; 24 Tu (oe-25-5-4831-R9) 2015; 27 Taylor (oe-25-5-4831-R16) 2009; 27 Wu (oe-25-5-4831-R5) 2015; 33 Peng (oe-25-5-4831-R6) 2014; 26 Alekseev (oe-25-5-4831-R21) 2016; 26 Shi (oe-25-5-4831-R3) 2015; 15 Zhou (oe-25-5-4831-R19) 2013; 40 Wang (oe-25-5-4831-R12) 2016; 24 Dong (oe-25-5-4831-R10) 2016; 55 Lu (oe-25-5-4831-R4) 2010; 28 |
References_xml | – volume: 33 start-page: 2811 year: 2015 ident: oe-25-5-4831-R15 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2015.2414416 – volume: 25 start-page: 065101 year: 2015 ident: oe-25-5-4831-R11 publication-title: Laser Phys. doi: 10.1088/1054-660X/25/6/065101 – volume: 346 start-page: 172 year: 2015 ident: oe-25-5-4831-R18 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2015.02.044 – volume: 8421 start-page: 842129 year: 2012 ident: oe-25-5-4831-R20 publication-title: Proc. SPIE doi: 10.1117/12.975656 – volume: 24 start-page: 853 year: 2016 ident: oe-25-5-4831-R12 publication-title: Opt. Express doi: 10.1364/OE.24.000853 – volume: 12 start-page: 8601 year: 2012 ident: oe-25-5-4831-R1 publication-title: Sensors (Basel) doi: 10.3390/s120708601 – volume: 26 start-page: 2055 year: 2014 ident: oe-25-5-4831-R6 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2014.2346760 – volume: 46 start-page: 1968 year: 2007 ident: oe-25-5-4831-R7 publication-title: Appl. Opt. doi: 10.1364/AO.46.001968 – volume: 27 start-page: 901 year: 2009 ident: oe-25-5-4831-R16 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2008.927778 – volume: 40 start-page: 0905003 year: 2013 ident: oe-25-5-4831-R19 publication-title: Chin. J. Lasers doi: 10.3788/CJL201340.0905003 – volume: 26 start-page: 095101 year: 2016 ident: oe-25-5-4831-R21 publication-title: Laser Phys. doi: 10.1088/1054-660X/26/9/095101 – volume: 33 start-page: 3156 year: 2015 ident: oe-25-5-4831-R5 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2015.2421953 – volume: 28 start-page: 3243 year: 2010 ident: oe-25-5-4831-R4 publication-title: J. Lightwave Technol. – volume: 55 start-page: 7810 year: 2016 ident: oe-25-5-4831-R10 publication-title: Appl. Opt. doi: 10.1364/AO.55.007810 – volume: 27 start-page: 1349 year: 2015 ident: oe-25-5-4831-R9 publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2015.2421354 – volume: 22 start-page: 13804 year: 2014 ident: oe-25-5-4831-R8 publication-title: Opt. Express doi: 10.1364/OE.22.013804 – volume: 28 start-page: 3243 year: 2010 ident: oe-25-5-4831-R2 publication-title: J. Lightwave Technol. – volume: 15 start-page: 21957 year: 2015 ident: oe-25-5-4831-R3 publication-title: Sensors (Basel) doi: 10.3390/s150921957 – volume: 24 start-page: 115106 year: 2014 ident: oe-25-5-4831-R13 publication-title: Laser Phys. doi: 10.1088/1054-660X/24/11/115106 – volume: 8311 start-page: 83110S year: 2011 ident: oe-25-5-4831-R14 publication-title: Proc. SPIE doi: 10.1117/12.905657 – volume: 24 start-page: 085204 year: 2013 ident: oe-25-5-4831-R17 publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/24/8/085204 |
SSID | ssj0014797 |
Score | 2.4842277 |
Snippet | A phase demodulation method specially developed for direct detection φ-OTDR is proposed and demonstrated. It is the only method to date that can be used for... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 4831 |
Title | Phase demodulation method in phase-sensitive OTDR without coherent detection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28380752 https://www.proquest.com/docview/1884882951 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA66Ivgi633cdYmgT0vXTpom7eOiI4O4jsgIiy8lt7KC0w5OF8QHf7snJ2mnrg6oL6UkmRTOlzm3nAshz3IJfyCd2cSC_ZPwkk8TVbssMXbqjBQqq7VPTj57J-Yf-Zvz_HzbdQ2zSzp9Yr7_Ma_kf1CFMcDVZ8n-A7LDpjAA74AvPAFheP4Vxu8vQAYdW7dqbezCFTtCY2y4n0w2PkAdw4MWy1cf0O3qI5FNe-GwLpN1HQZjNWMtdbHG4s3u23oI0MAqjqhofoINtgpkYBVz1Q4e6Djkl63asVMBBBX2FAwyITBCMPvAtozCMHLKkKIcT0Q-Ynu8CKz8N36cCQ5EXMxOmHddXV0G1FyvEBtQcnxVZLaVSkOsYD91ndxgYAp4Xnb2YzbcFHFZypjQAB97Mf6UL_Qcf_yr1rHDlECVYrlPbkdbgJ4GYO-Qa665S25iTK7Z3CNvEV46hpcGeOnnhl6Bl3p4aYSX9vDSAd77ZPl6tnw5T2Lzi8RkrOwSVhunUi2U0D7ZV8rCyHoK_BLGamFZVua1EdYIUCmZESZPVc6NlGnhZKpZ9oDsNW3jHhEqQcPPrNJOl5znpSqsUrYsTQocV4M2OiHHPW0qEwvD-_4kXyq87RS8WswqlleBqBPyfFi9DgVRdqx72pO5Ao7lr6FU49rLTTUtCpAaDFT7CXkY6D_s1OP1eOfMAbm1PbCHZK_7eumegF7Y6SP0pxzh8fgJgwhipA |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+demodulation+method+in+phase-sensitive+OTDR+without+coherent+detection&rft.jtitle=Optics+express&rft.au=Sha%2C+Zhou&rft.au=Feng%2C+Hao&rft.au=Zeng%2C+Zhoumo&rft.date=2017-03-06&rft.eissn=1094-4087&rft.volume=25&rft.issue=5&rft.spage=4831&rft_id=info:doi/10.1364%2FOE.25.004831&rft_id=info%3Apmid%2F28380752&rft.externalDocID=28380752 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |