On derivative based bounding for simplicial branch and bound
Simplicial based Global Optimization branch and bound methods require tight bounds on the objective function value. Recently, a renewed interest appears on bound calculation based on Interval Arithmetic by Karhbet and Kearfott [ Reliable Comput. 25 (2017) 53–73] and on exploiting second derivative b...
Saved in:
Published in | R.A.I.R.O. Recherche opérationnelle Vol. 55; no. 3; pp. 2023 - 2034 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Paris
EDP Sciences
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Simplicial based Global Optimization branch and bound methods require tight bounds on the objective function value. Recently, a renewed interest appears on bound calculation based on Interval Arithmetic by Karhbet and Kearfott [
Reliable Comput.
25
(2017) 53–73] and on exploiting second derivative bounds by Mohand [
RAIRO Oper. Res.
55
(2021) S2373–S238]. The investigated question here is how partial derivative ranges can be used to provide bounds of the objective function value over the simplex. Moreover, we provide theoretical properties of how this information can be used from a monotonicity perspective to reduce the search space in simplicial branch and bound. |
---|---|
AbstractList | Simplicial based Global Optimization branch and bound methods require tight bounds on the objective function value. Recently, a renewed interest appears on bound calculation based on Interval Arithmetic by Karhbet and Kearfott [
Reliable Comput.
25
(2017) 53–73] and on exploiting second derivative bounds by Mohand [
RAIRO Oper. Res.
55
(2021) S2373–S238]. The investigated question here is how partial derivative ranges can be used to provide bounds of the objective function value over the simplex. Moreover, we provide theoretical properties of how this information can be used from a monotonicity perspective to reduce the search space in simplicial branch and bound. Simplicial based Global Optimization branch and bound methods require tight bounds on the objective function value. Recently, a renewed interest appears on bound calculation based on Interval Arithmetic by Karhbet and Kearfott [Reliable Comput. 25 (2017) 53–73] and on exploiting second derivative bounds by Mohand [RAIRO Oper. Res. 55 (2021) S2373–S238]. The investigated question here is how partial derivative ranges can be used to provide bounds of the objective function value over the simplex. Moreover, we provide theoretical properties of how this information can be used from a monotonicity perspective to reduce the search space in simplicial branch and bound. |
Author | Casado, Leocadio G. Hendrix, Eligius M. T. Tóth, Boglarka G. Messine, Frederic |
Author_xml | – sequence: 1 givenname: Eligius M. T. orcidid: 0000-0003-1572-1436 surname: Hendrix fullname: Hendrix, Eligius M. T. – sequence: 2 givenname: Boglarka G. orcidid: 0000-0002-0927-111X surname: -Tóth fullname: -Tóth, Boglarka G. – sequence: 3 givenname: Frederic surname: Messine fullname: Messine, Frederic – sequence: 4 givenname: Leocadio G. surname: Casado fullname: Casado, Leocadio G. |
BackLink | https://ut3-toulouseinp.hal.science/hal-04834820$$DView record in HAL |
BookMark | eNpt0MFKAzEQBuAgFWyrF59gwZPC2plks03ASylqhUIPeg_JbtambJOabAu-vVtaPIingeGbn-EfkYEP3hJyi_CIwHESw4QCRRB4QYZIJeRMlGJAhsCkzIFzeUVGKW0AgDHOhuRp5bPaRnfQnTvYzOhk68yEva-d_8yaELPktrvWVU63mYnaV-tM-zO5JpeNbpO9Oc8xeX95_pgv8uXq9W0-W-YVo7LL0YrCVEY0UNsGSyEocmvNdIoomWyAMmr0tNBgSgYWQSP0mNes0gI1G5P7U-pat2oX3VbHbxW0U4vZUh13UAhWCAoH7O3dye5i-Nrb1KlN2EffP6co51MoZCmO6uGkqhhSirb5jUVQxx5VDOrcY4_hD65c17cVfBe1a_87-QEbE3U- |
CitedBy_id | crossref_primary_10_1007_s10957_024_02480_9 |
Cites_doi | 10.1063/1.5089974 10.1007/BF00130833 10.1007/978-3-662-02598-7 10.1051/ro/2020088 10.1007/978-1-4614-9093-7 10.1007/BF00938542 10.1007/978-3-642-50327-6 10.1016/j.ejor.2007.01.056 10.15388/Informatica.2015.36 |
ContentType | Journal Article |
Copyright | 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES |
DOI | 10.1051/ro/2021081 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1290-3868 |
EndPage | 2034 |
ExternalDocumentID | oai_HAL_hal_04834820v1 10_1051_ro_2021081 |
GroupedDBID | --K -E. .FH 0E1 123 1B1 4.4 5VS 74X 74Y 7~V 8FE 8FG AADXX AAFWJ AAOGA AAOTM AAYXX ABGDZ ABKKG ABNSH ABUBZ ABZDU ACACO ACGFS ACIMK ACIWK ACQPF ACRPL ACZPN ADNMO AEMTW AFAYI AFHSK AFUTZ AGQPQ AJPFC ALMA_UNASSIGNED_HOLDINGS AMVHM ARABE ASPBG AVWKF AZPVJ BPHCQ C0O CITATION CS3 DC4 EBS EJD FAM HG- HST HZ~ I-F I.6 IHE IL9 I~P J36 J38 J3A K60 K6V K6~ L6V L98 LO0 M-V M41 NIF O9- OAV P62 PQQKQ PROAC RCA ROL RPZ RR0 S6- WQ3 WXU 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES |
ID | FETCH-LOGICAL-c329t-1e84bcb8f0def1688215eeb7711939f0232ba74a0b630e10a10b8f5d3ca81a3 |
ISSN | 0399-0559 |
IngestDate | Thu May 29 08:09:16 EDT 2025 Mon Jun 30 10:12:06 EDT 2025 Tue Jul 01 03:08:44 EDT 2025 Thu Apr 24 23:13:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | 90C30 Mathematics Subject Classification. 65K05 90C30 90C34 bound / derivative Mathematics Subject Classification. 65K05 Simplex / branch 90C34 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c329t-1e84bcb8f0def1688215eeb7711939f0232ba74a0b630e10a10b8f5d3ca81a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1572-1436 0000-0002-0927-111X 0000-0002-6457-3321 |
OpenAccessLink | https://ut3-toulouseinp.hal.science/hal-04834820 |
PQID | 2557049681 |
PQPubID | 626341 |
PageCount | 12 |
ParticipantIDs | hal_primary_oai_HAL_hal_04834820v1 proquest_journals_2557049681 crossref_primary_10_1051_ro_2021081 crossref_citationtrail_10_1051_ro_2021081 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Paris |
PublicationPlace_xml | – name: Paris |
PublicationTitle | R.A.I.R.O. Recherche opérationnelle |
PublicationYear | 2021 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Aparicio (R1) 2015; 26 R10 R4 R5 R11 Mohand (R9) 2021; 55 Meewella (R7) 1988; 57 Karhbet (R6) 2017; 25 Messine (R8) 1998; 4 Hendrix (R2) 2008; 191 Hendrix (R3) 1991; 1 |
References_xml | – volume: 25 start-page: 53 year: 2017 ident: R6 publication-title: Reliable Comput. – ident: R4 doi: 10.1063/1.5089974 – volume: 1 start-page: 389 year: 1991 ident: R3 publication-title: J. Global Optim. doi: 10.1007/BF00130833 – ident: R5 doi: 10.1007/978-3-662-02598-7 – volume: 55 start-page: S2373 year: 2021 ident: R9 publication-title: RAIRO Oper. Res. doi: 10.1051/ro/2020088 – ident: R10 doi: 10.1007/978-1-4614-9093-7 – volume: 57 start-page: 307 year: 1988 ident: R7 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00938542 – volume: 4 start-page: 589 year: 1998 ident: R8 publication-title: J. Universal Comput. Sci. – ident: R11 doi: 10.1007/978-3-642-50327-6 – volume: 191 start-page: 803 year: 2008 ident: R2 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2007.01.056 – volume: 26 start-page: 17 year: 2015 ident: R1 publication-title: Informatica doi: 10.15388/Informatica.2015.36 |
SSID | ssj0003353 |
Score | 2.2237234 |
Snippet | Simplicial based Global Optimization branch and bound methods require tight bounds on the objective function value. Recently, a renewed interest appears on... |
SourceID | hal proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 2023 |
SubjectTerms | Algorithms Branch and bound methods Engineering Sciences Global optimization Handbooks Interval arithmetic Optimization |
Title | On derivative based bounding for simplicial branch and bound |
URI | https://www.proquest.com/docview/2557049681 https://ut3-toulouseinp.hal.science/hal-04834820 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5QIHVF6iUJAFXFBk17t-S1xSRBpQQ6QSpN6sfaVYQnHlJKjiR_CbmfHu2unjUDjEijazeex82Z1df_MNIe-4ZJzKVPuLjAs_VjL284RJn2nKhIbtj27V-adf08n3-MtZcjYY_NliLW3WIpC_b80r-R-vQhv4FbNk_8Gz3ZtCAzwH_8IVPAzXO_l4hkzWpq1Phhx0WJAgnMQ6SY4euapawjieigusoGHS2FqT7aj0NBgFn4PTYBZgGAlehMewvjA30Q1EkA3TY0AvVVNdWlrYebVZDafBcB641_05dj2KzJnNUX2OJCA-PO4Mpki-tcziBuUsKtnfDFlx1Z7fnmhYZ1VVu372bILRngnocrJQ4yCxmt_aTLGsQEVfU0zHzcFGqtdiLdqeUEOTjmwXZxaao88bEz_MLeAtTA0a4xcJTR2Yq_ra19a9jo3Y3odPaNnUpe27Q-4x2HbgvJmPj7uVPYqMqqn7VU7uNqGHTX1o-14JcHZ-IL322irfhi7zPfLQ7jm8kQHQIzLQy8fkwZYS5RPyYbb0eih5LZQ8ByUPoOT1UPIMlDyAkjF5Sr6NP80_TnxbWMOXESvWPtV5LKTIF6HSC5rCJosmWossoxDOFwsYciZ4FvNQpFGoachpCMaJiiTPKY-ekd1lvdTPicdSIVSusogXNFYs5CKTYZFBzBpryaXaJ-_dWJTSas5j6ZOf5c0x3ydvO9sLo7Ryq9UbGNLOAMXRJ6OTEtuwOEIMAe0vMDpwI17av-uqZCg2FxdpTl_c6ZNekvs9pA_I7rrZ6FcQgK7F6xYVfwEOXoCr |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+derivative+based+bounding+for+simplicial+branch+and+bound&rft.jtitle=R.A.I.R.O.+Recherche+op%C3%A9rationnelle&rft.au=Hendrix%2C+Eligius+M.+T.&rft.au=-T%C3%B3th%2C+Boglarka+G.&rft.au=Messine%2C+Frederic&rft.au=Casado%2C+Leocadio+G.&rft.date=2021-05-01&rft.issn=0399-0559&rft.eissn=1290-3868&rft.volume=55&rft.issue=3&rft.spage=2023&rft.epage=2034&rft_id=info:doi/10.1051%2Fro%2F2021081&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_ro_2021081 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0399-0559&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0399-0559&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0399-0559&client=summon |