On derivative based bounding for simplicial branch and bound

Simplicial based Global Optimization branch and bound methods require tight bounds on the objective function value. Recently, a renewed interest appears on bound calculation based on Interval Arithmetic by Karhbet and Kearfott [ Reliable Comput. 25 (2017) 53–73] and on exploiting second derivative b...

Full description

Saved in:
Bibliographic Details
Published inR.A.I.R.O. Recherche opérationnelle Vol. 55; no. 3; pp. 2023 - 2034
Main Authors Hendrix, Eligius M. T., -Tóth, Boglarka G., Messine, Frederic, Casado, Leocadio G.
Format Journal Article
LanguageEnglish
Published Paris EDP Sciences 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Simplicial based Global Optimization branch and bound methods require tight bounds on the objective function value. Recently, a renewed interest appears on bound calculation based on Interval Arithmetic by Karhbet and Kearfott [ Reliable Comput. 25 (2017) 53–73] and on exploiting second derivative bounds by Mohand [ RAIRO Oper. Res. 55 (2021) S2373–S238]. The investigated question here is how partial derivative ranges can be used to provide bounds of the objective function value over the simplex. Moreover, we provide theoretical properties of how this information can be used from a monotonicity perspective to reduce the search space in simplicial branch and bound.
AbstractList Simplicial based Global Optimization branch and bound methods require tight bounds on the objective function value. Recently, a renewed interest appears on bound calculation based on Interval Arithmetic by Karhbet and Kearfott [ Reliable Comput. 25 (2017) 53–73] and on exploiting second derivative bounds by Mohand [ RAIRO Oper. Res. 55 (2021) S2373–S238]. The investigated question here is how partial derivative ranges can be used to provide bounds of the objective function value over the simplex. Moreover, we provide theoretical properties of how this information can be used from a monotonicity perspective to reduce the search space in simplicial branch and bound.
Simplicial based Global Optimization branch and bound methods require tight bounds on the objective function value. Recently, a renewed interest appears on bound calculation based on Interval Arithmetic by Karhbet and Kearfott [Reliable Comput. 25 (2017) 53–73] and on exploiting second derivative bounds by Mohand [RAIRO Oper. Res. 55 (2021) S2373–S238]. The investigated question here is how partial derivative ranges can be used to provide bounds of the objective function value over the simplex. Moreover, we provide theoretical properties of how this information can be used from a monotonicity perspective to reduce the search space in simplicial branch and bound.
Author Casado, Leocadio G.
Hendrix, Eligius M. T.
Tóth, Boglarka G.
Messine, Frederic
Author_xml – sequence: 1
  givenname: Eligius M. T.
  orcidid: 0000-0003-1572-1436
  surname: Hendrix
  fullname: Hendrix, Eligius M. T.
– sequence: 2
  givenname: Boglarka G.
  orcidid: 0000-0002-0927-111X
  surname: -Tóth
  fullname: -Tóth, Boglarka G.
– sequence: 3
  givenname: Frederic
  surname: Messine
  fullname: Messine, Frederic
– sequence: 4
  givenname: Leocadio G.
  surname: Casado
  fullname: Casado, Leocadio G.
BackLink https://ut3-toulouseinp.hal.science/hal-04834820$$DView record in HAL
BookMark eNpt0MFKAzEQBuAgFWyrF59gwZPC2plks03ASylqhUIPeg_JbtambJOabAu-vVtaPIingeGbn-EfkYEP3hJyi_CIwHESw4QCRRB4QYZIJeRMlGJAhsCkzIFzeUVGKW0AgDHOhuRp5bPaRnfQnTvYzOhk68yEva-d_8yaELPktrvWVU63mYnaV-tM-zO5JpeNbpO9Oc8xeX95_pgv8uXq9W0-W-YVo7LL0YrCVEY0UNsGSyEocmvNdIoomWyAMmr0tNBgSgYWQSP0mNes0gI1G5P7U-pat2oX3VbHbxW0U4vZUh13UAhWCAoH7O3dye5i-Nrb1KlN2EffP6co51MoZCmO6uGkqhhSirb5jUVQxx5VDOrcY4_hD65c17cVfBe1a_87-QEbE3U-
CitedBy_id crossref_primary_10_1007_s10957_024_02480_9
Cites_doi 10.1063/1.5089974
10.1007/BF00130833
10.1007/978-3-662-02598-7
10.1051/ro/2020088
10.1007/978-1-4614-9093-7
10.1007/BF00938542
10.1007/978-3-642-50327-6
10.1016/j.ejor.2007.01.056
10.15388/Informatica.2015.36
ContentType Journal Article
Copyright 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1051/ro/2021081
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1290-3868
EndPage 2034
ExternalDocumentID oai_HAL_hal_04834820v1
10_1051_ro_2021081
GroupedDBID --K
-E.
.FH
0E1
123
1B1
4.4
5VS
74X
74Y
7~V
8FE
8FG
AADXX
AAFWJ
AAOGA
AAOTM
AAYXX
ABGDZ
ABKKG
ABNSH
ABUBZ
ABZDU
ACACO
ACGFS
ACIMK
ACIWK
ACQPF
ACRPL
ACZPN
ADNMO
AEMTW
AFAYI
AFHSK
AFUTZ
AGQPQ
AJPFC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARABE
ASPBG
AVWKF
AZPVJ
BPHCQ
C0O
CITATION
CS3
DC4
EBS
EJD
FAM
HG-
HST
HZ~
I-F
I.6
IHE
IL9
I~P
J36
J38
J3A
K60
K6V
K6~
L6V
L98
LO0
M-V
M41
NIF
O9-
OAV
P62
PQQKQ
PROAC
RCA
ROL
RPZ
RR0
S6-
WQ3
WXU
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c329t-1e84bcb8f0def1688215eeb7711939f0232ba74a0b630e10a10b8f5d3ca81a3
ISSN 0399-0559
IngestDate Thu May 29 08:09:16 EDT 2025
Mon Jun 30 10:12:06 EDT 2025
Tue Jul 01 03:08:44 EDT 2025
Thu Apr 24 23:13:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 90C30
Mathematics Subject Classification. 65K05 90C30 90C34
bound / derivative
Mathematics Subject Classification. 65K05
Simplex / branch
90C34
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c329t-1e84bcb8f0def1688215eeb7711939f0232ba74a0b630e10a10b8f5d3ca81a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1572-1436
0000-0002-0927-111X
0000-0002-6457-3321
OpenAccessLink https://ut3-toulouseinp.hal.science/hal-04834820
PQID 2557049681
PQPubID 626341
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_04834820v1
proquest_journals_2557049681
crossref_primary_10_1051_ro_2021081
crossref_citationtrail_10_1051_ro_2021081
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Paris
PublicationPlace_xml – name: Paris
PublicationTitle R.A.I.R.O. Recherche opérationnelle
PublicationYear 2021
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Aparicio (R1) 2015; 26
R10
R4
R5
R11
Mohand (R9) 2021; 55
Meewella (R7) 1988; 57
Karhbet (R6) 2017; 25
Messine (R8) 1998; 4
Hendrix (R2) 2008; 191
Hendrix (R3) 1991; 1
References_xml – volume: 25
  start-page: 53
  year: 2017
  ident: R6
  publication-title: Reliable Comput.
– ident: R4
  doi: 10.1063/1.5089974
– volume: 1
  start-page: 389
  year: 1991
  ident: R3
  publication-title: J. Global Optim.
  doi: 10.1007/BF00130833
– ident: R5
  doi: 10.1007/978-3-662-02598-7
– volume: 55
  start-page: S2373
  year: 2021
  ident: R9
  publication-title: RAIRO Oper. Res.
  doi: 10.1051/ro/2020088
– ident: R10
  doi: 10.1007/978-1-4614-9093-7
– volume: 57
  start-page: 307
  year: 1988
  ident: R7
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00938542
– volume: 4
  start-page: 589
  year: 1998
  ident: R8
  publication-title: J. Universal Comput. Sci.
– ident: R11
  doi: 10.1007/978-3-642-50327-6
– volume: 191
  start-page: 803
  year: 2008
  ident: R2
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2007.01.056
– volume: 26
  start-page: 17
  year: 2015
  ident: R1
  publication-title: Informatica
  doi: 10.15388/Informatica.2015.36
SSID ssj0003353
Score 2.2237234
Snippet Simplicial based Global Optimization branch and bound methods require tight bounds on the objective function value. Recently, a renewed interest appears on...
SourceID hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2023
SubjectTerms Algorithms
Branch and bound methods
Engineering Sciences
Global optimization
Handbooks
Interval arithmetic
Optimization
Title On derivative based bounding for simplicial branch and bound
URI https://www.proquest.com/docview/2557049681
https://ut3-toulouseinp.hal.science/hal-04834820
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5QIHVF6iUJAFXFBk17t-S1xSRBpQQ6QSpN6sfaVYQnHlJKjiR_CbmfHu2unjUDjEijazeex82Z1df_MNIe-4ZJzKVPuLjAs_VjL284RJn2nKhIbtj27V-adf08n3-MtZcjYY_NliLW3WIpC_b80r-R-vQhv4FbNk_8Gz3ZtCAzwH_8IVPAzXO_l4hkzWpq1Phhx0WJAgnMQ6SY4euapawjieigusoGHS2FqT7aj0NBgFn4PTYBZgGAlehMewvjA30Q1EkA3TY0AvVVNdWlrYebVZDafBcB641_05dj2KzJnNUX2OJCA-PO4Mpki-tcziBuUsKtnfDFlx1Z7fnmhYZ1VVu372bILRngnocrJQ4yCxmt_aTLGsQEVfU0zHzcFGqtdiLdqeUEOTjmwXZxaao88bEz_MLeAtTA0a4xcJTR2Yq_ra19a9jo3Y3odPaNnUpe27Q-4x2HbgvJmPj7uVPYqMqqn7VU7uNqGHTX1o-14JcHZ-IL322irfhi7zPfLQ7jm8kQHQIzLQy8fkwZYS5RPyYbb0eih5LZQ8ByUPoOT1UPIMlDyAkjF5Sr6NP80_TnxbWMOXESvWPtV5LKTIF6HSC5rCJosmWossoxDOFwsYciZ4FvNQpFGoachpCMaJiiTPKY-ekd1lvdTPicdSIVSusogXNFYs5CKTYZFBzBpryaXaJ-_dWJTSas5j6ZOf5c0x3ydvO9sLo7Ryq9UbGNLOAMXRJ6OTEtuwOEIMAe0vMDpwI17av-uqZCg2FxdpTl_c6ZNekvs9pA_I7rrZ6FcQgK7F6xYVfwEOXoCr
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+derivative+based+bounding+for+simplicial+branch+and+bound&rft.jtitle=R.A.I.R.O.+Recherche+op%C3%A9rationnelle&rft.au=Hendrix%2C+Eligius+M.+T.&rft.au=-T%C3%B3th%2C+Boglarka+G.&rft.au=Messine%2C+Frederic&rft.au=Casado%2C+Leocadio+G.&rft.date=2021-05-01&rft.issn=0399-0559&rft.eissn=1290-3868&rft.volume=55&rft.issue=3&rft.spage=2023&rft.epage=2034&rft_id=info:doi/10.1051%2Fro%2F2021081&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_ro_2021081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0399-0559&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0399-0559&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0399-0559&client=summon