Factor-augmented transformation models for interval-censored failure time data

Interval-censored failure time data frequently arise in various scientific studies where each subject experiences periodical examinations for the occurrence of the failure event of interest, and the failure time is only known to lie in a specific time interval. In addition, collected data may includ...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 80; no. 3
Main Authors Li, Hongxi, Li, Shuwei, Sun, Liuquan, Song, Xinyuan
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Interval-censored failure time data frequently arise in various scientific studies where each subject experiences periodical examinations for the occurrence of the failure event of interest, and the failure time is only known to lie in a specific time interval. In addition, collected data may include multiple observed variables with a certain degree of correlation, leading to severe multicollinearity issues. This work proposes a factor-augmented transformation model to analyze interval-censored failure time data while reducing model dimensionality and avoiding multicollinearity elicited by multiple correlated covariates. We provide a joint modeling framework by comprising a factor analysis model to group multiple observed variables into a few latent factors and a class of semiparametric transformation models with the augmented factors to examine their and other covariate effects on the failure event. Furthermore, we propose a nonparametric maximum likelihood estimation approach and develop a computationally stable and reliable expectation-maximization algorithm for its implementation. We establish the asymptotic properties of the proposed estimators and conduct simulation studies to assess the empirical performance of the proposed method. An application to the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study is provided. An R package ICTransCFA is also available for practitioners. Data used in preparation of this article were obtained from the ADNI database.
AbstractList Interval-censored failure time data frequently arise in various scientific studies where each subject experiences periodical examinations for the occurrence of the failure event of interest, and the failure time is only known to lie in a specific time interval. In addition, collected data may include multiple observed variables with a certain degree of correlation, leading to severe multicollinearity issues. This work proposes a factor-augmented transformation model to analyze interval-censored failure time data while reducing model dimensionality and avoiding multicollinearity elicited by multiple correlated covariates. We provide a joint modeling framework by comprising a factor analysis model to group multiple observed variables into a few latent factors and a class of semiparametric transformation models with the augmented factors to examine their and other covariate effects on the failure event. Furthermore, we propose a nonparametric maximum likelihood estimation approach and develop a computationally stable and reliable expectation-maximization algorithm for its implementation. We establish the asymptotic properties of the proposed estimators and conduct simulation studies to assess the empirical performance of the proposed method. An application to the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study is provided. An R package ICTransCFA is also available for practitioners. Data used in preparation of this article were obtained from the ADNI database.
Interval-censored failure time data frequently arise in various scientific studies where each subject experiences periodical examinations for the occurrence of the failure event of interest, and the failure time is only known to lie in a specific time interval. In addition, collected data may include multiple observed variables with a certain degree of correlation, leading to severe multicollinearity issues. This work proposes a factor-augmented transformation model to analyze interval-censored failure time data while reducing model dimensionality and avoiding multicollinearity elicited by multiple correlated covariates. We provide a joint modeling framework by comprising a factor analysis model to group multiple observed variables into a few latent factors and a class of semiparametric transformation models with the augmented factors to examine their and other covariate effects on the failure event. Furthermore, we propose a nonparametric maximum likelihood estimation approach and develop a computationally stable and reliable expectation-maximization algorithm for its implementation. We establish the asymptotic properties of the proposed estimators and conduct simulation studies to assess the empirical performance of the proposed method. An application to the Alzheimer's Disease Neuroimaging Initiative (ADNI) study is provided. An R package ICTransCFA is also available for practitioners. Data used in preparation of this article were obtained from the ADNI database.Interval-censored failure time data frequently arise in various scientific studies where each subject experiences periodical examinations for the occurrence of the failure event of interest, and the failure time is only known to lie in a specific time interval. In addition, collected data may include multiple observed variables with a certain degree of correlation, leading to severe multicollinearity issues. This work proposes a factor-augmented transformation model to analyze interval-censored failure time data while reducing model dimensionality and avoiding multicollinearity elicited by multiple correlated covariates. We provide a joint modeling framework by comprising a factor analysis model to group multiple observed variables into a few latent factors and a class of semiparametric transformation models with the augmented factors to examine their and other covariate effects on the failure event. Furthermore, we propose a nonparametric maximum likelihood estimation approach and develop a computationally stable and reliable expectation-maximization algorithm for its implementation. We establish the asymptotic properties of the proposed estimators and conduct simulation studies to assess the empirical performance of the proposed method. An application to the Alzheimer's Disease Neuroimaging Initiative (ADNI) study is provided. An R package ICTransCFA is also available for practitioners. Data used in preparation of this article were obtained from the ADNI database.
Author Li, Shuwei
Sun, Liuquan
Li, Hongxi
Song, Xinyuan
Author_xml – sequence: 1
  givenname: Hongxi
  surname: Li
  fullname: Li, Hongxi
  email: seslishuw@gzhu.edu.cn
– sequence: 2
  givenname: Shuwei
  orcidid: 0000-0002-9400-2722
  surname: Li
  fullname: Li, Shuwei
  email: seslishuw@gzhu.edu.cn
– sequence: 3
  givenname: Liuquan
  orcidid: 0000-0002-8816-942X
  surname: Sun
  fullname: Sun, Liuquan
– sequence: 4
  givenname: Xinyuan
  orcidid: 0000-0002-4877-3200
  surname: Song
  fullname: Song, Xinyuan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39177025$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtLxDAURoMoOj62LqVLXXTMq48sRXyB6EbBXbhNbyXSNmOSCv57o53ZCOIqJDnfx71nn2yPbkRCjhldMqrEeWPdEM359AZIq3qLLFghWU4lp9tkQSktcyHZyx7ZD-EtXVVB-S7ZE4pVFeXFgjxcg4nO5zC9DjhGbLPoYQyd8wNE68ZscC32IUsPmU3__gP63OAYnE9sB7afPGbRDpi1EOGQ7HTQBzxanwfk-frq6fI2v3-8ubu8uM-N4CrmDFTRgOSl6tIkqhFC1qprKsawKQsKSvBOGMY7KVHWiMaUSJksQIoGkIM4IKdz78q79wlD1IMNBvseRnRT0IKqktcFE3VCT9bo1AzY6pW3A_hPvXGQADkDxrsQPHba2PizfFJhe82o_latZ9V6rTrFlr9im-Y_A2dzwE2r_9gvBpqTGw
CitedBy_id crossref_primary_10_1080_03610918_2024_2430733
Cites_doi 10.1002/9781118358887
10.1093/biomet/asx029
10.1177/09622802221074166
10.1002/sim.7174
10.1007/s11682-012-9190-3
10.1007/BF02289447
10.1212/01.wnl.0000281688.77598.35
10.1207/s15327906mbr1002_5
10.1111/biom.12389
10.1093/biomet/asw013
10.1007/978-3-031-12366-5
10.1007/s10985-021-09521-9
10.1080/01621459.2018.1482756
10.1080/01621459.2014.950083
10.1111/1467-9868.00230
10.1007/978-3-7091-6467-9_11
10.3233/JAD-161201
10.1002/9781118619179
10.1111/biom.13734
10.1093/biomet/30.1-2.81
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society. 2024
The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society. 2024
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/biomtc/ujae078
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
ExternalDocumentID 39177025
10_1093_biomtc_ujae078
10.1093/biomtc/ujae078
Genre Journal Article
GrantInformation_xml – fundername: NSFC
  grantid: 12171463
– fundername: GRF
  grantid: 14302220
– fundername: Nature Science Foundation of Guangdong Province of China
  grantid: 2022A1515011901
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAWIL
AAXRX
AAYCA
AAZKR
AAZSN
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEQDE
AEUPB
AEUYR
AFBPY
AFDVO
AFEBI
AFGKR
AFKRA
AFVYC
AFWVQ
AFZJQ
AGLNM
AGORE
AGQPQ
AGTJU
AHGBF
AHMBA
AIAGR
AIHAF
AIURR
AIWBW
AJAOE
AJBDE
AJBYB
AJNCP
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
H13
NPM
7X8
ID FETCH-LOGICAL-c329t-1a95ba4269f9179b33489fb711eb650a932f3c12f44e48eecc6e0145a43bae2a3
ISSN 0006-341X
1541-0420
IngestDate Fri Jul 11 02:36:58 EDT 2025
Mon Jul 21 05:56:11 EDT 2025
Tue Jul 01 00:58:16 EDT 2025
Thu Apr 24 23:06:37 EDT 2025
Mon Jun 30 08:34:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords factor analysis
nonparametric maximum likelihood estimation
expectation-maximization algorithm
interval censoring
joint model
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c329t-1a95ba4269f9179b33489fb711eb650a932f3c12f44e48eecc6e0145a43bae2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8816-942X
0000-0002-4877-3200
0000-0002-9400-2722
PMID 39177025
PQID 3096285138
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3096285138
pubmed_primary_39177025
crossref_citationtrail_10_1093_biomtc_ujae078
crossref_primary_10_1093_biomtc_ujae078
oup_primary_10_1093_biomtc_ujae078
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Jul-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-Jul-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Yang (2024082320455115600_bib19) 2022; 31
Li (2024082320455115600_bib11) 2017; 58
Pan (2024082320455115600_bib12) 2015; 110
He (2024082320455115600_bib5) 2017; 36
Park (2024082320455115600_bib13) 2012; 6
Humphreys (2024082320455115600_bib7) 1975; 10
Sun (2024082320455115600_bib15) 2022
Fabrigar (2024082320455115600_bib3) 2012
Zeng (2024082320455115600_bib21) 2008; 18
Wang (2024082320455115600_bib17) 2021; 27
Zeng (2024082320455115600_bib22) 2016; 103
Jamshidian (2024082320455115600_bib9) 2000; 62
Song (2024082320455115600_bib14) 2012
Braak (2024082320455115600_bib2) 1998
Jack (2024082320455115600_bib8) 2008; 70
Kendall (2024082320455115600_bib10) 1938; 30
Horn (2024082320455115600_bib6) 1965; 30
Gao (2024082320455115600_bib4) 2019; 114
Zeng (2024082320455115600_bib20) 2017; 104
Bollen (2024082320455115600_bib1) 1989
Sun (2024082320455115600_bib16) 2022; 79
Wang (2024082320455115600_bib18) 2016; 72
References_xml – volume-title: Basic and Advanced Bayesian Structural Equation Modeling: With Applications in the Medical and Behavioral Sciences
  year: 2012
  ident: 2024082320455115600_bib14
  doi: 10.1002/9781118358887
– volume: 104
  start-page: 505
  year: 2017
  ident: 2024082320455115600_bib20
  article-title: Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data
  publication-title: Biometrika
  doi: 10.1093/biomet/asx029
– volume: 31
  start-page: 928
  year: 2022
  ident: 2024082320455115600_bib19
  article-title: Time-varying coefficient additive hazards model with latent variables
  publication-title: Statistical Methods in Medical Research
  doi: 10.1177/09622802221074166
– volume-title: Exploratory Factor Analysis
  year: 2012
  ident: 2024082320455115600_bib3
– volume: 36
  start-page: 813
  year: 2017
  ident: 2024082320455115600_bib5
  article-title: Analysis of proportional mean residual life model with latent variables
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.7174
– volume: 6
  start-page: 528
  year: 2012
  ident: 2024082320455115600_bib13
  article-title: Confirmatory factor analysis of the ADNI neuropsychological battery
  publication-title: Brain Imaging and Behavior
  doi: 10.1007/s11682-012-9190-3
– volume: 30
  start-page: 179
  year: 1965
  ident: 2024082320455115600_bib6
  article-title: A rationale and test for the number of factors in factor analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02289447
– volume: 70
  start-page: 1740
  year: 2008
  ident: 2024082320455115600_bib8
  article-title: Atrophy rates accelerate in amnestic mild cognitive impairment
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000281688.77598.35
– volume: 10
  start-page: 193
  year: 1975
  ident: 2024082320455115600_bib7
  article-title: An investigation of the parallel analysis criterion for determining the number of common factors
  publication-title: Multivariate Behavioral Research
  doi: 10.1207/s15327906mbr1002_5
– volume: 72
  start-page: 222
  year: 2016
  ident: 2024082320455115600_bib18
  article-title: A flexible, computationally efficient method for fitting the proportional hazards model to interval-censored data
  publication-title: Biometrics
  doi: 10.1111/biom.12389
– volume: 103
  start-page: 253
  year: 2016
  ident: 2024082320455115600_bib22
  article-title: Maximum likelihood estimation for semiparametric transformation models with interval-censored data
  publication-title: Biometrika
  doi: 10.1093/biomet/asw013
– volume-title: Emerging Topics in Modeling Interval-Censored Survival Data
  year: 2022
  ident: 2024082320455115600_bib15
  doi: 10.1007/978-3-031-12366-5
– volume: 27
  start-page: 413
  year: 2021
  ident: 2024082320455115600_bib17
  article-title: Regression analysis of current status data with latent variables
  publication-title: Lifetime Data Analysis
  doi: 10.1007/s10985-021-09521-9
– volume: 114
  start-page: 1232
  year: 2019
  ident: 2024082320455115600_bib4
  article-title: Semiparametric regression analysis of multiple right- and interval-censored events
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2018.1482756
– volume: 18
  start-page: 355
  year: 2008
  ident: 2024082320455115600_bib21
  article-title: Semiparametric transformation models with random effects for clustered failure time data
  publication-title: Statistica Sinica
– volume: 110
  start-page: 1148
  year: 2015
  ident: 2024082320455115600_bib12
  article-title: Regression analysis of additive hazards model with latent variables
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2014.950083
– volume: 62
  start-page: 257
  year: 2000
  ident: 2024082320455115600_bib9
  article-title: Standard errors for EM estimation
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/1467-9868.00230
– start-page: 127
  volume-title: Ageing and Dementia
  year: 1998
  ident: 2024082320455115600_bib2
  article-title: Evolution of neuronal changes in the course of Alzheimer’s disease
  doi: 10.1007/978-3-7091-6467-9_11
– volume: 58
  start-page: 361
  year: 2017
  ident: 2024082320455115600_bib11
  article-title: Prediction of conversion to Alzheimer’s disease with longitudinal measures and time-to-event data
  publication-title: Journal of Alzheimer’s Disease
  doi: 10.3233/JAD-161201
– volume-title: Structural Equations with Latent Variables
  year: 1989
  ident: 2024082320455115600_bib1
  doi: 10.1002/9781118619179
– volume: 79
  start-page: 2677
  year: 2022
  ident: 2024082320455115600_bib16
  article-title: Neural network on interval–censored data with application to the prediction of Alzheimer’s disease
  publication-title: Biometrics
  doi: 10.1111/biom.13734
– volume: 30
  start-page: 81
  year: 1938
  ident: 2024082320455115600_bib10
  article-title: A new measure of rank correlation
  publication-title: Biometrika
  doi: 10.1093/biomet/30.1-2.81
SSID ssj0009502
Score 2.4283295
Snippet Interval-censored failure time data frequently arise in various scientific studies where each subject experiences periodical examinations for the occurrence of...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Algorithms
Alzheimer Disease
Computer Simulation
Data Interpretation, Statistical
Factor Analysis, Statistical
Humans
Likelihood Functions
Models, Statistical
Neuroimaging
Time Factors
Title Factor-augmented transformation models for interval-censored failure time data
URI https://www.ncbi.nlm.nih.gov/pubmed/39177025
https://www.proquest.com/docview/3096285138
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCFQeJihfY4AMQuIBeatjp2keEVBNiO2BblLfonNqjyJIx9aIbX89d7aTtvsQHy9R5bix6t_Zuavvfj_GXvcNvhOyfCImmXRC9wGEMSkISWpmyvVM7uV8dvf6Owf60zgdN0LjsbpkbrbK8yvrSv4HVWxDXKlK9h-QbR-KDfgZ8cUrIozXv8J46MVyBNSHnlpzQoIPrRuKsHqZG0-44GkhjnFsUWLcOqOkcwdTSkn36vJvY4na4nyXqvKJvL91uT8HeetZdXg6XW0bfa1_2bZtVIdihmn9s15Y3ihm_o6n1VnTHP9rSHSbl4qvirg_ailwnfeWN9AgxRQNRV25LwfOKmIUIOH2Yf0NbC9I9yzBdPTD46Qwgsx6oRz6Ahd2c-smu5VgWECKFR--JEsky5StFYk51XYYbjsO1mF3mq-v-CArdY2XwgvvZuzfY-sxPuDvAtj32Q1bddntoBh61mV3d1ua3ZMu61CoEJi2H7C9i9bAV62BB2vg2MAvWQOP1sDJGjhZw0N2MPy4_35HRLUMUaoknwsJeWqAKpMd_szcUIl17kwmpTXohgMuOqdKmTitrR5YXLp9S2fKoJUBm4B6xNaqWWWfMI4uvYMsd2lpcm0MwCAbGAuJSuVAS6M3mGjmrygjlTwpmnwvQkqDKsLUF3HqN9ibtv9RIFG5tucrhOOPnV42aBW4GdIJF1R2Vp8UCgPyBGMIhX0eBxjbZzXgP732zibrLIz-GVubH9f2Obqcc_PC29lv-zqGIw
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Factor-augmented+transformation+models+for+interval-censored+failure+time+data&rft.jtitle=Biometrics&rft.au=Li%2C+Hongxi&rft.au=Li%2C+Shuwei&rft.au=Sun%2C+Liuquan&rft.au=Song%2C+Xinyuan&rft.date=2024-07-01&rft.eissn=1541-0420&rft.volume=80&rft.issue=3&rft_id=info:doi/10.1093%2Fbiomtc%2Fujae078&rft_id=info%3Apmid%2F39177025&rft.externalDocID=39177025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon