Factor-augmented transformation models for interval-censored failure time data
Interval-censored failure time data frequently arise in various scientific studies where each subject experiences periodical examinations for the occurrence of the failure event of interest, and the failure time is only known to lie in a specific time interval. In addition, collected data may includ...
Saved in:
Published in | Biometrics Vol. 80; no. 3 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Interval-censored failure time data frequently arise in various scientific studies where each subject experiences periodical examinations for the occurrence of the failure event of interest, and the failure time is only known to lie in a specific time interval. In addition, collected data may include multiple observed variables with a certain degree of correlation, leading to severe multicollinearity issues. This work proposes a factor-augmented transformation model to analyze interval-censored failure time data while reducing model dimensionality and avoiding multicollinearity elicited by multiple correlated covariates. We provide a joint modeling framework by comprising a factor analysis model to group multiple observed variables into a few latent factors and a class of semiparametric transformation models with the augmented factors to examine their and other covariate effects on the failure event. Furthermore, we propose a nonparametric maximum likelihood estimation approach and develop a computationally stable and reliable expectation-maximization algorithm for its implementation. We establish the asymptotic properties of the proposed estimators and conduct simulation studies to assess the empirical performance of the proposed method. An application to the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study is provided. An R package ICTransCFA is also available for practitioners. Data used in preparation of this article were obtained from the ADNI database. |
---|---|
AbstractList | Interval-censored failure time data frequently arise in various scientific studies where each subject experiences periodical examinations for the occurrence of the failure event of interest, and the failure time is only known to lie in a specific time interval. In addition, collected data may include multiple observed variables with a certain degree of correlation, leading to severe multicollinearity issues. This work proposes a factor-augmented transformation model to analyze interval-censored failure time data while reducing model dimensionality and avoiding multicollinearity elicited by multiple correlated covariates. We provide a joint modeling framework by comprising a factor analysis model to group multiple observed variables into a few latent factors and a class of semiparametric transformation models with the augmented factors to examine their and other covariate effects on the failure event. Furthermore, we propose a nonparametric maximum likelihood estimation approach and develop a computationally stable and reliable expectation-maximization algorithm for its implementation. We establish the asymptotic properties of the proposed estimators and conduct simulation studies to assess the empirical performance of the proposed method. An application to the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study is provided. An R package ICTransCFA is also available for practitioners. Data used in preparation of this article were obtained from the ADNI database. Interval-censored failure time data frequently arise in various scientific studies where each subject experiences periodical examinations for the occurrence of the failure event of interest, and the failure time is only known to lie in a specific time interval. In addition, collected data may include multiple observed variables with a certain degree of correlation, leading to severe multicollinearity issues. This work proposes a factor-augmented transformation model to analyze interval-censored failure time data while reducing model dimensionality and avoiding multicollinearity elicited by multiple correlated covariates. We provide a joint modeling framework by comprising a factor analysis model to group multiple observed variables into a few latent factors and a class of semiparametric transformation models with the augmented factors to examine their and other covariate effects on the failure event. Furthermore, we propose a nonparametric maximum likelihood estimation approach and develop a computationally stable and reliable expectation-maximization algorithm for its implementation. We establish the asymptotic properties of the proposed estimators and conduct simulation studies to assess the empirical performance of the proposed method. An application to the Alzheimer's Disease Neuroimaging Initiative (ADNI) study is provided. An R package ICTransCFA is also available for practitioners. Data used in preparation of this article were obtained from the ADNI database.Interval-censored failure time data frequently arise in various scientific studies where each subject experiences periodical examinations for the occurrence of the failure event of interest, and the failure time is only known to lie in a specific time interval. In addition, collected data may include multiple observed variables with a certain degree of correlation, leading to severe multicollinearity issues. This work proposes a factor-augmented transformation model to analyze interval-censored failure time data while reducing model dimensionality and avoiding multicollinearity elicited by multiple correlated covariates. We provide a joint modeling framework by comprising a factor analysis model to group multiple observed variables into a few latent factors and a class of semiparametric transformation models with the augmented factors to examine their and other covariate effects on the failure event. Furthermore, we propose a nonparametric maximum likelihood estimation approach and develop a computationally stable and reliable expectation-maximization algorithm for its implementation. We establish the asymptotic properties of the proposed estimators and conduct simulation studies to assess the empirical performance of the proposed method. An application to the Alzheimer's Disease Neuroimaging Initiative (ADNI) study is provided. An R package ICTransCFA is also available for practitioners. Data used in preparation of this article were obtained from the ADNI database. |
Author | Li, Shuwei Sun, Liuquan Li, Hongxi Song, Xinyuan |
Author_xml | – sequence: 1 givenname: Hongxi surname: Li fullname: Li, Hongxi email: seslishuw@gzhu.edu.cn – sequence: 2 givenname: Shuwei orcidid: 0000-0002-9400-2722 surname: Li fullname: Li, Shuwei email: seslishuw@gzhu.edu.cn – sequence: 3 givenname: Liuquan orcidid: 0000-0002-8816-942X surname: Sun fullname: Sun, Liuquan – sequence: 4 givenname: Xinyuan orcidid: 0000-0002-4877-3200 surname: Song fullname: Song, Xinyuan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39177025$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtLxDAURoMoOj62LqVLXXTMq48sRXyB6EbBXbhNbyXSNmOSCv57o53ZCOIqJDnfx71nn2yPbkRCjhldMqrEeWPdEM359AZIq3qLLFghWU4lp9tkQSktcyHZyx7ZD-EtXVVB-S7ZE4pVFeXFgjxcg4nO5zC9DjhGbLPoYQyd8wNE68ZscC32IUsPmU3__gP63OAYnE9sB7afPGbRDpi1EOGQ7HTQBzxanwfk-frq6fI2v3-8ubu8uM-N4CrmDFTRgOSl6tIkqhFC1qprKsawKQsKSvBOGMY7KVHWiMaUSJksQIoGkIM4IKdz78q79wlD1IMNBvseRnRT0IKqktcFE3VCT9bo1AzY6pW3A_hPvXGQADkDxrsQPHba2PizfFJhe82o_latZ9V6rTrFlr9im-Y_A2dzwE2r_9gvBpqTGw |
CitedBy_id | crossref_primary_10_1080_03610918_2024_2430733 |
Cites_doi | 10.1002/9781118358887 10.1093/biomet/asx029 10.1177/09622802221074166 10.1002/sim.7174 10.1007/s11682-012-9190-3 10.1007/BF02289447 10.1212/01.wnl.0000281688.77598.35 10.1207/s15327906mbr1002_5 10.1111/biom.12389 10.1093/biomet/asw013 10.1007/978-3-031-12366-5 10.1007/s10985-021-09521-9 10.1080/01621459.2018.1482756 10.1080/01621459.2014.950083 10.1111/1467-9868.00230 10.1007/978-3-7091-6467-9_11 10.3233/JAD-161201 10.1002/9781118619179 10.1111/biom.13734 10.1093/biomet/30.1-2.81 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society. 2024 The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society. 2024 – notice: The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/biomtc/ujae078 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
ExternalDocumentID | 39177025 10_1093_biomtc_ujae078 10.1093/biomtc/ujae078 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NSFC grantid: 12171463 – fundername: GRF grantid: 14302220 – fundername: Nature Science Foundation of Guangdong Province of China grantid: 2022A1515011901 |
GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AANHP AANLZ AAONW AASGY AAUAY AAWIL AAXRX AAYCA AAZKR AAZSN ABAWQ ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABGNP ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACHJO ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNBA ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEOTA AEQDE AEUPB AEUYR AFBPY AFDVO AFEBI AFGKR AFKRA AFVYC AFWVQ AFZJQ AGLNM AGORE AGQPQ AGTJU AHGBF AHMBA AIAGR AIHAF AIURR AIWBW AJAOE AJBDE AJBYB AJNCP AJXKR ALAGY ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PHGZM PHGZT PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX CITATION CGR CUY CVF ECM EIF H13 NPM 7X8 |
ID | FETCH-LOGICAL-c329t-1a95ba4269f9179b33489fb711eb650a932f3c12f44e48eecc6e0145a43bae2a3 |
ISSN | 0006-341X 1541-0420 |
IngestDate | Fri Jul 11 02:36:58 EDT 2025 Mon Jul 21 05:56:11 EDT 2025 Tue Jul 01 00:58:16 EDT 2025 Thu Apr 24 23:06:37 EDT 2025 Mon Jun 30 08:34:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | factor analysis nonparametric maximum likelihood estimation expectation-maximization algorithm interval censoring joint model |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c329t-1a95ba4269f9179b33489fb711eb650a932f3c12f44e48eecc6e0145a43bae2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8816-942X 0000-0002-4877-3200 0000-0002-9400-2722 |
PMID | 39177025 |
PQID | 3096285138 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3096285138 pubmed_primary_39177025 crossref_citationtrail_10_1093_biomtc_ujae078 crossref_primary_10_1093_biomtc_ujae078 oup_primary_10_1093_biomtc_ujae078 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Jul-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-Jul-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biometrics |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Yang (2024082320455115600_bib19) 2022; 31 Li (2024082320455115600_bib11) 2017; 58 Pan (2024082320455115600_bib12) 2015; 110 He (2024082320455115600_bib5) 2017; 36 Park (2024082320455115600_bib13) 2012; 6 Humphreys (2024082320455115600_bib7) 1975; 10 Sun (2024082320455115600_bib15) 2022 Fabrigar (2024082320455115600_bib3) 2012 Zeng (2024082320455115600_bib21) 2008; 18 Wang (2024082320455115600_bib17) 2021; 27 Zeng (2024082320455115600_bib22) 2016; 103 Jamshidian (2024082320455115600_bib9) 2000; 62 Song (2024082320455115600_bib14) 2012 Braak (2024082320455115600_bib2) 1998 Jack (2024082320455115600_bib8) 2008; 70 Kendall (2024082320455115600_bib10) 1938; 30 Horn (2024082320455115600_bib6) 1965; 30 Gao (2024082320455115600_bib4) 2019; 114 Zeng (2024082320455115600_bib20) 2017; 104 Bollen (2024082320455115600_bib1) 1989 Sun (2024082320455115600_bib16) 2022; 79 Wang (2024082320455115600_bib18) 2016; 72 |
References_xml | – volume-title: Basic and Advanced Bayesian Structural Equation Modeling: With Applications in the Medical and Behavioral Sciences year: 2012 ident: 2024082320455115600_bib14 doi: 10.1002/9781118358887 – volume: 104 start-page: 505 year: 2017 ident: 2024082320455115600_bib20 article-title: Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data publication-title: Biometrika doi: 10.1093/biomet/asx029 – volume: 31 start-page: 928 year: 2022 ident: 2024082320455115600_bib19 article-title: Time-varying coefficient additive hazards model with latent variables publication-title: Statistical Methods in Medical Research doi: 10.1177/09622802221074166 – volume-title: Exploratory Factor Analysis year: 2012 ident: 2024082320455115600_bib3 – volume: 36 start-page: 813 year: 2017 ident: 2024082320455115600_bib5 article-title: Analysis of proportional mean residual life model with latent variables publication-title: Statistics in Medicine doi: 10.1002/sim.7174 – volume: 6 start-page: 528 year: 2012 ident: 2024082320455115600_bib13 article-title: Confirmatory factor analysis of the ADNI neuropsychological battery publication-title: Brain Imaging and Behavior doi: 10.1007/s11682-012-9190-3 – volume: 30 start-page: 179 year: 1965 ident: 2024082320455115600_bib6 article-title: A rationale and test for the number of factors in factor analysis publication-title: Psychometrika doi: 10.1007/BF02289447 – volume: 70 start-page: 1740 year: 2008 ident: 2024082320455115600_bib8 article-title: Atrophy rates accelerate in amnestic mild cognitive impairment publication-title: Neurology doi: 10.1212/01.wnl.0000281688.77598.35 – volume: 10 start-page: 193 year: 1975 ident: 2024082320455115600_bib7 article-title: An investigation of the parallel analysis criterion for determining the number of common factors publication-title: Multivariate Behavioral Research doi: 10.1207/s15327906mbr1002_5 – volume: 72 start-page: 222 year: 2016 ident: 2024082320455115600_bib18 article-title: A flexible, computationally efficient method for fitting the proportional hazards model to interval-censored data publication-title: Biometrics doi: 10.1111/biom.12389 – volume: 103 start-page: 253 year: 2016 ident: 2024082320455115600_bib22 article-title: Maximum likelihood estimation for semiparametric transformation models with interval-censored data publication-title: Biometrika doi: 10.1093/biomet/asw013 – volume-title: Emerging Topics in Modeling Interval-Censored Survival Data year: 2022 ident: 2024082320455115600_bib15 doi: 10.1007/978-3-031-12366-5 – volume: 27 start-page: 413 year: 2021 ident: 2024082320455115600_bib17 article-title: Regression analysis of current status data with latent variables publication-title: Lifetime Data Analysis doi: 10.1007/s10985-021-09521-9 – volume: 114 start-page: 1232 year: 2019 ident: 2024082320455115600_bib4 article-title: Semiparametric regression analysis of multiple right- and interval-censored events publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2018.1482756 – volume: 18 start-page: 355 year: 2008 ident: 2024082320455115600_bib21 article-title: Semiparametric transformation models with random effects for clustered failure time data publication-title: Statistica Sinica – volume: 110 start-page: 1148 year: 2015 ident: 2024082320455115600_bib12 article-title: Regression analysis of additive hazards model with latent variables publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2014.950083 – volume: 62 start-page: 257 year: 2000 ident: 2024082320455115600_bib9 article-title: Standard errors for EM estimation publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/1467-9868.00230 – start-page: 127 volume-title: Ageing and Dementia year: 1998 ident: 2024082320455115600_bib2 article-title: Evolution of neuronal changes in the course of Alzheimer’s disease doi: 10.1007/978-3-7091-6467-9_11 – volume: 58 start-page: 361 year: 2017 ident: 2024082320455115600_bib11 article-title: Prediction of conversion to Alzheimer’s disease with longitudinal measures and time-to-event data publication-title: Journal of Alzheimer’s Disease doi: 10.3233/JAD-161201 – volume-title: Structural Equations with Latent Variables year: 1989 ident: 2024082320455115600_bib1 doi: 10.1002/9781118619179 – volume: 79 start-page: 2677 year: 2022 ident: 2024082320455115600_bib16 article-title: Neural network on interval–censored data with application to the prediction of Alzheimer’s disease publication-title: Biometrics doi: 10.1111/biom.13734 – volume: 30 start-page: 81 year: 1938 ident: 2024082320455115600_bib10 article-title: A new measure of rank correlation publication-title: Biometrika doi: 10.1093/biomet/30.1-2.81 |
SSID | ssj0009502 |
Score | 2.4283295 |
Snippet | Interval-censored failure time data frequently arise in various scientific studies where each subject experiences periodical examinations for the occurrence of... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Algorithms Alzheimer Disease Computer Simulation Data Interpretation, Statistical Factor Analysis, Statistical Humans Likelihood Functions Models, Statistical Neuroimaging Time Factors |
Title | Factor-augmented transformation models for interval-censored failure time data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39177025 https://www.proquest.com/docview/3096285138 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCFQeJihfY4AMQuIBeatjp2keEVBNiO2BblLfonNqjyJIx9aIbX89d7aTtvsQHy9R5bix6t_Zuavvfj_GXvcNvhOyfCImmXRC9wGEMSkISWpmyvVM7uV8dvf6Owf60zgdN0LjsbpkbrbK8yvrSv4HVWxDXKlK9h-QbR-KDfgZ8cUrIozXv8J46MVyBNSHnlpzQoIPrRuKsHqZG0-44GkhjnFsUWLcOqOkcwdTSkn36vJvY4na4nyXqvKJvL91uT8HeetZdXg6XW0bfa1_2bZtVIdihmn9s15Y3ihm_o6n1VnTHP9rSHSbl4qvirg_ailwnfeWN9AgxRQNRV25LwfOKmIUIOH2Yf0NbC9I9yzBdPTD46Qwgsx6oRz6Ahd2c-smu5VgWECKFR--JEsky5StFYk51XYYbjsO1mF3mq-v-CArdY2XwgvvZuzfY-sxPuDvAtj32Q1bddntoBh61mV3d1ua3ZMu61CoEJi2H7C9i9bAV62BB2vg2MAvWQOP1sDJGjhZw0N2MPy4_35HRLUMUaoknwsJeWqAKpMd_szcUIl17kwmpTXohgMuOqdKmTitrR5YXLp9S2fKoJUBm4B6xNaqWWWfMI4uvYMsd2lpcm0MwCAbGAuJSuVAS6M3mGjmrygjlTwpmnwvQkqDKsLUF3HqN9ibtv9RIFG5tucrhOOPnV42aBW4GdIJF1R2Vp8UCgPyBGMIhX0eBxjbZzXgP732zibrLIz-GVubH9f2Obqcc_PC29lv-zqGIw |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Factor-augmented+transformation+models+for+interval-censored+failure+time+data&rft.jtitle=Biometrics&rft.au=Li%2C+Hongxi&rft.au=Li%2C+Shuwei&rft.au=Sun%2C+Liuquan&rft.au=Song%2C+Xinyuan&rft.date=2024-07-01&rft.eissn=1541-0420&rft.volume=80&rft.issue=3&rft_id=info:doi/10.1093%2Fbiomtc%2Fujae078&rft_id=info%3Apmid%2F39177025&rft.externalDocID=39177025 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |