Transformers in Vision: A Survey

Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processin...

Full description

Saved in:
Bibliographic Details
Published inACM computing surveys Vol. 54; no. 10s; pp. 1 - 41
Main Authors Khan, Salman, Naseer, Muzammal, Hayat, Munawar, Zamir, Syed Waqas, Khan, Fahad Shahbaz, Shah, Mubarak
Format Journal Article
LanguageEnglish
Published 31.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence as compared to recurrent networks, e.g., Long short-term memory. Different from convolutional networks, Transformers require minimal inductive biases for their design and are naturally suited as set-functions. Furthermore, the straightforward design of Transformers allows processing multiple modalities (e.g., images, videos, text, and speech) using similar processing blocks and demonstrates excellent scalability to very large capacity networks and huge datasets. These strengths have led to exciting progress on a number of vision tasks using Transformer networks. This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline. We start with an introduction to fundamental concepts behind the success of Transformers, i.e., self-attention, large-scale pre-training, and bidirectional feature encoding. We then cover extensive applications of transformers in vision including popular recognition tasks (e.g., image classification, object detection, action recognition, and segmentation), generative modeling, multi-modal tasks (e.g., visual-question answering, visual reasoning, and visual grounding), video processing (e.g., activity recognition, video forecasting), low-level vision (e.g., image super-resolution, image enhancement, and colorization), and three-dimensional analysis (e.g., point cloud classification and segmentation). We compare the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value. Finally, we provide an analysis on open research directions and possible future works. We hope this effort will ignite further interest in the community to solve current challenges toward the application of transformer models in computer vision.
AbstractList Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence as compared to recurrent networks, e.g., Long short-term memory. Different from convolutional networks, Transformers require minimal inductive biases for their design and are naturally suited as set-functions. Furthermore, the straightforward design of Transformers allows processing multiple modalities (e.g., images, videos, text, and speech) using similar processing blocks and demonstrates excellent scalability to very large capacity networks and huge datasets. These strengths have led to exciting progress on a number of vision tasks using Transformer networks. This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline. We start with an introduction to fundamental concepts behind the success of Transformers, i.e., self-attention, large-scale pre-training, and bidirectional feature encoding. We then cover extensive applications of transformers in vision including popular recognition tasks (e.g., image classification, object detection, action recognition, and segmentation), generative modeling, multi-modal tasks (e.g., visual-question answering, visual reasoning, and visual grounding), video processing (e.g., activity recognition, video forecasting), low-level vision (e.g., image super-resolution, image enhancement, and colorization), and three-dimensional analysis (e.g., point cloud classification and segmentation). We compare the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value. Finally, we provide an analysis on open research directions and possible future works. We hope this effort will ignite further interest in the community to solve current challenges toward the application of transformer models in computer vision.
Author Naseer, Muzammal
Zamir, Syed Waqas
Hayat, Munawar
Shah, Mubarak
Khan, Salman
Khan, Fahad Shahbaz
Author_xml – sequence: 1
  givenname: Salman
  orcidid: 0000-0002-9502-1749
  surname: Khan
  fullname: Khan, Salman
  organization: MBZUAI, UAE and Australian National University, Canberra, ACT, AU
– sequence: 2
  givenname: Muzammal
  orcidid: 0000-0001-7663-7161
  surname: Naseer
  fullname: Naseer, Muzammal
  organization: MBZUAI, UAE and Australian National University, Canberra, ACT, AU
– sequence: 3
  givenname: Munawar
  orcidid: 0000-0002-2706-5985
  surname: Hayat
  fullname: Hayat, Munawar
  organization: Department of DSAI, Faculty of IT, Monash University, Clayton, Victoria, AU
– sequence: 4
  givenname: Syed Waqas
  orcidid: 0000-0002-7198-0187
  surname: Zamir
  fullname: Zamir, Syed Waqas
  organization: Inception Institute of Artificial Intelligence, Masdar City, Abu Dhabi, UAE
– sequence: 5
  givenname: Fahad Shahbaz
  orcidid: 0000-0002-4263-3143
  surname: Khan
  fullname: Khan, Fahad Shahbaz
  organization: MBZUAI, UAE and CVL, Linköping University, Linköping, Sweden
– sequence: 6
  givenname: Mubarak
  orcidid: 0000-0001-6172-5572
  surname: Shah
  fullname: Shah, Mubarak
  organization: CRCV, University of Central Florida, Orlando, FL, USA
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-190366$$DView record from Swedish Publication Index
BookMark eNplkDFPwzAUhC1UJNKC-AvZmALvxc9xwxYVCkiVGChdLTtxkFGaVHYC6r8nqFUZmG757nR3UzZpu9Yydo1wi0jijgsQKdEZi1AImUhOOGER8AwS4AAXbBrCJwCkhFnE4rXXbag7v7U-xK6NNy64rr2Pi_ht8F92f8nOa90Ee3XUGXtfPq4Xz8nq9ellUaySkqd5n-BcpzLTKEyaVzkBZQiiSgUQaaqNmZPJQXIrZYkZ1boyY08QuRUVoeGSz1hyyA3fdjcYtfNuq_1eddqpB7cpVOc_VOMGhfm4JRv5mwNf-i4Eb-uTA0H9HqGOR_wln8jS9bofV_Zeu-Yf_wNswl1X
CitedBy_id crossref_primary_10_3390_jimaging11020059
crossref_primary_10_3390_electronics12173643
crossref_primary_10_3389_fncom_2023_1153572
crossref_primary_10_3390_jimaging9100226
crossref_primary_10_3390_electronics12102202
crossref_primary_10_1109_JSEN_2024_3401771
crossref_primary_10_1145_3699713
crossref_primary_10_2196_67144
crossref_primary_10_3390_ijms25147978
crossref_primary_10_1016_j_ndteint_2023_103033
crossref_primary_10_3390_drones9010011
crossref_primary_10_3390_rs16173131
crossref_primary_10_1007_s11760_024_03696_y
crossref_primary_10_3389_fpubh_2024_1337395
crossref_primary_10_1109_ACCESS_2024_3369900
crossref_primary_10_1109_JBHI_2023_3271815
crossref_primary_10_1038_s42949_023_00125_w
crossref_primary_10_1109_ACCESS_2024_3419004
crossref_primary_10_1186_s40942_024_00555_3
crossref_primary_10_1016_j_jvcir_2024_104363
crossref_primary_10_1109_ACCESS_2023_3329952
crossref_primary_10_1109_ACCESS_2023_3348450
crossref_primary_10_1038_s41598_024_67186_4
crossref_primary_10_1038_s42256_024_00800_2
crossref_primary_10_1109_OJCOMS_2024_3472094
crossref_primary_10_1016_j_compbiomed_2024_108313
crossref_primary_10_3390_app12136387
crossref_primary_10_3390_jimaging11030091
crossref_primary_10_1007_s13369_023_08012_3
crossref_primary_10_1016_j_brainres_2024_149302
crossref_primary_10_1631_FITEE_2300389
crossref_primary_10_1016_j_engappai_2023_107590
crossref_primary_10_1016_j_neucom_2025_129745
crossref_primary_10_1016_j_knosys_2024_112170
crossref_primary_10_1109_TGRS_2023_3344116
crossref_primary_10_1007_s00371_023_02965_0
crossref_primary_10_1038_s44325_024_00040_8
crossref_primary_10_1021_acsami_4c01765
crossref_primary_10_3390_bioengineering11070729
crossref_primary_10_1109_JBHI_2023_3271808
crossref_primary_10_1016_j_eswa_2024_125377
crossref_primary_10_1016_j_autcon_2023_105166
crossref_primary_10_1007_s11042_023_15112_7
crossref_primary_10_1053_j_gastro_2024_03_039
crossref_primary_10_3390_app14114447
crossref_primary_10_1109_TPAMI_2023_3243465
crossref_primary_10_1016_j_jwpe_2025_107164
crossref_primary_10_1109_JSEN_2023_3327552
crossref_primary_10_3390_computers12050106
crossref_primary_10_61186_crpase_9_4_2876
crossref_primary_10_3390_app14125103
crossref_primary_10_3390_rs14225853
crossref_primary_10_1007_s11042_024_19731_6
crossref_primary_10_1007_s13349_024_00858_x
crossref_primary_10_1016_j_rineng_2024_102651
crossref_primary_10_1016_j_neunet_2025_107123
crossref_primary_10_1007_s00376_024_3191_1
crossref_primary_10_1109_ACCESS_2024_3455369
crossref_primary_10_1109_ACCESS_2023_3324042
crossref_primary_10_1109_ACCESS_2023_3324044
crossref_primary_10_1038_s41524_024_01488_z
crossref_primary_10_1109_TGRS_2024_3410977
crossref_primary_10_3390_biom13040611
crossref_primary_10_1016_j_patcog_2025_111355
crossref_primary_10_1587_essfr_15_4_258
crossref_primary_10_1109_TCYB_2022_3213537
crossref_primary_10_3390_rs15184401
crossref_primary_10_1007_s10489_025_06427_z
crossref_primary_10_1109_ACCESS_2022_3146059
crossref_primary_10_3390_rs14225861
crossref_primary_10_1109_TPAMI_2024_3397461
crossref_primary_10_1109_ACCESS_2022_3206449
crossref_primary_10_3390_s21175694
crossref_primary_10_1016_j_knosys_2024_112397
crossref_primary_10_3390_app15052704
crossref_primary_10_3390_a15120449
crossref_primary_10_1109_TCSVT_2023_3300731
crossref_primary_10_3390_agronomy13061503
crossref_primary_10_3390_s24186063
crossref_primary_10_1016_j_neunet_2025_107384
crossref_primary_10_7717_peerj_16125
crossref_primary_10_1109_TNNLS_2022_3201830
crossref_primary_10_3390_app14072741
crossref_primary_10_1016_j_patrec_2024_05_001
crossref_primary_10_1111_ele_14123
crossref_primary_10_1007_s13042_023_01999_z
crossref_primary_10_1093_bib_bbae719
crossref_primary_10_1016_j_jnlssr_2023_06_002
crossref_primary_10_1117_1_JEI_33_1_013033
crossref_primary_10_1016_j_cmpb_2025_108724
crossref_primary_10_1007_s10489_024_05617_5
crossref_primary_10_1007_s13735_024_00326_8
crossref_primary_10_1016_j_survophthal_2024_07_005
crossref_primary_10_1109_TMM_2023_3333190
crossref_primary_10_1007_s42835_024_02032_1
crossref_primary_10_1109_ACCESS_2023_3302253
crossref_primary_10_3390_su15042927
crossref_primary_10_1016_j_engappai_2023_107304
crossref_primary_10_1007_s11760_024_03530_5
crossref_primary_10_1016_j_neucom_2021_12_093
crossref_primary_10_1145_3639470
crossref_primary_10_1016_j_displa_2023_102467
crossref_primary_10_1016_j_iot_2024_101153
crossref_primary_10_1016_j_procs_2024_04_324
crossref_primary_10_1016_j_procs_2024_10_315
crossref_primary_10_1007_s12145_024_01281_y
crossref_primary_10_1016_j_eswa_2024_124297
crossref_primary_10_1016_j_engappai_2023_106669
crossref_primary_10_1111_exsy_13518
crossref_primary_10_1109_TIP_2023_3249579
crossref_primary_10_3390_ai5030063
crossref_primary_10_1007_s00138_022_01307_9
crossref_primary_10_1016_j_jspr_2024_102294
crossref_primary_10_1016_j_iot_2024_101167
crossref_primary_10_1016_j_procir_2024_10_264
crossref_primary_10_3390_agronomy15010077
crossref_primary_10_3390_app13042460
crossref_primary_10_3168_jds_2023_24601
crossref_primary_10_1007_s11063_024_11539_7
crossref_primary_10_1016_j_patcog_2024_110394
crossref_primary_10_1073_pnas_2407652121
crossref_primary_10_1109_TMM_2023_3268870
crossref_primary_10_1007_s10489_024_06014_8
crossref_primary_10_1007_s11227_025_07041_z
crossref_primary_10_1007_s40747_023_01024_4
crossref_primary_10_1016_j_autcon_2023_105197
crossref_primary_10_1109_JSTARS_2024_3379350
crossref_primary_10_1109_TIP_2023_3335822
crossref_primary_10_3390_rs15020347
crossref_primary_10_1109_JIOT_2024_3483232
crossref_primary_10_1109_TASE_2023_3303175
crossref_primary_10_1109_ACCESS_2024_3413717
crossref_primary_10_1109_ACCESS_2023_3295893
crossref_primary_10_3390_s24186054
crossref_primary_10_1109_TGRS_2024_3368079
crossref_primary_10_4018_IJDST_317937
crossref_primary_10_1016_j_bspc_2023_105534
crossref_primary_10_1109_TCBB_2022_3165592
crossref_primary_10_1109_JSTARS_2023_3337132
crossref_primary_10_1016_j_engappai_2025_110057
crossref_primary_10_1016_j_simpat_2023_102754
crossref_primary_10_1109_TCSVT_2023_3295084
crossref_primary_10_1109_JETCAS_2023_3330432
crossref_primary_10_1016_j_ymssp_2025_112336
crossref_primary_10_1109_TGRS_2023_3242346
crossref_primary_10_1016_j_geoen_2023_211920
crossref_primary_10_3390_geomatics5010009
crossref_primary_10_1007_s00530_024_01463_0
crossref_primary_10_1109_ACCESS_2024_3397775
crossref_primary_10_1016_j_aei_2024_102911
crossref_primary_10_1109_TITS_2022_3157463
crossref_primary_10_3390_app14072785
crossref_primary_10_1016_j_cosrev_2024_100645
crossref_primary_10_1109_JBHI_2022_3213595
crossref_primary_10_1007_s13369_023_08043_w
crossref_primary_10_1109_ACCESS_2023_3280992
crossref_primary_10_1109_JBHI_2023_3330289
crossref_primary_10_3390_diagnostics13182884
crossref_primary_10_1109_ACCESS_2022_3212767
crossref_primary_10_1109_TMI_2023_3326188
crossref_primary_10_1109_ACCESS_2022_3207161
crossref_primary_10_1109_TASE_2024_3431128
crossref_primary_10_1016_j_bspc_2023_105911
crossref_primary_10_1109_TMC_2023_3309633
crossref_primary_10_1016_j_media_2024_103224
crossref_primary_10_1109_TITS_2022_3219593
crossref_primary_10_3390_rs14091956
crossref_primary_10_1016_j_artmed_2024_102863
crossref_primary_10_1109_JSTARS_2023_3338448
crossref_primary_10_1186_s12911_024_02616_x
crossref_primary_10_1016_j_compag_2024_109090
crossref_primary_10_3390_app12136782
crossref_primary_10_1109_ACCESS_2023_3292966
crossref_primary_10_1007_s11263_024_02043_5
crossref_primary_10_3390_s24030867
crossref_primary_10_1016_j_eswa_2023_122419
crossref_primary_10_1109_TGRS_2023_3296383
crossref_primary_10_1016_j_ejmech_2023_115199
crossref_primary_10_1109_ACCESS_2023_3268638
crossref_primary_10_1007_s10278_024_01226_3
crossref_primary_10_1016_j_knosys_2025_113120
crossref_primary_10_3390_drones8110607
crossref_primary_10_1016_j_csbj_2024_06_019
crossref_primary_10_1016_j_pmcj_2023_101846
crossref_primary_10_3390_ani13193134
crossref_primary_10_1016_j_engappai_2023_107718
crossref_primary_10_1109_ACCESS_2024_3375767
crossref_primary_10_1186_s40561_025_00374_5
crossref_primary_10_1016_j_compbiomed_2024_109014
crossref_primary_10_1007_s11042_024_18550_z
crossref_primary_10_1109_ACCESS_2024_3411109
crossref_primary_10_1128_msystems_01058_21
crossref_primary_10_3390_rs14030592
crossref_primary_10_1007_s11517_024_03278_7
crossref_primary_10_3390_rs16111988
crossref_primary_10_1063_5_0152779
crossref_primary_10_3390_analytics2030039
crossref_primary_10_3390_biology12071033
crossref_primary_10_1007_s11704_024_40387_w
crossref_primary_10_1038_s41598_024_52240_y
crossref_primary_10_1109_TGRS_2025_3535529
crossref_primary_10_1109_TGRS_2024_3418850
crossref_primary_10_1016_j_patcog_2024_110362
crossref_primary_10_1109_ACCESS_2022_3193248
crossref_primary_10_1109_TBC_2023_3345657
crossref_primary_10_1117_1_JRS_16_046509
crossref_primary_10_3390_rs16132427
crossref_primary_10_1016_j_jmr_2022_107151
crossref_primary_10_1007_s10845_022_01963_8
crossref_primary_10_3390_bioengineering10111333
crossref_primary_10_1109_TBIOM_2024_3352164
crossref_primary_10_7717_peerj_cs_1400
crossref_primary_10_3389_fpubh_2023_1025746
crossref_primary_10_1007_s12539_024_00630_1
crossref_primary_10_1109_ACCESS_2023_3329985
crossref_primary_10_3390_bioengineering10040450
crossref_primary_10_1109_TGRS_2022_3227405
crossref_primary_10_1109_TIM_2024_3369132
crossref_primary_10_3390_land13122054
crossref_primary_10_1371_journal_pone_0305561
crossref_primary_10_1049_ipr2_12370
crossref_primary_10_3390_s23198235
crossref_primary_10_1109_ACCESS_2024_3446663
crossref_primary_10_1016_j_catena_2024_108263
crossref_primary_10_7717_peerj_cs_2564
crossref_primary_10_1007_s00371_023_03180_7
crossref_primary_10_1109_TIM_2022_3219500
crossref_primary_10_1007_s12559_024_10320_1
crossref_primary_10_1109_JSTARS_2024_3361444
crossref_primary_10_1109_TPAMI_2024_3404422
crossref_primary_10_1364_BOE_486276
crossref_primary_10_3390_s22134703
crossref_primary_10_1038_s41598_022_16302_3
crossref_primary_10_1080_01431161_2024_2343139
crossref_primary_10_3390_electronics12112431
crossref_primary_10_1007_s00521_023_08966_3
crossref_primary_10_1088_2632_2153_ad5fdc
crossref_primary_10_1109_TIM_2023_3238059
crossref_primary_10_3390_technologies13010032
crossref_primary_10_1109_TPAMI_2024_3434373
crossref_primary_10_1145_3715098
crossref_primary_10_1007_s11263_021_01547_8
crossref_primary_10_1038_s41598_024_72254_w
crossref_primary_10_1016_j_jvcir_2025_104412
crossref_primary_10_1109_TFUZZ_2024_3410929
crossref_primary_10_1088_1361_6560_ad6ede
crossref_primary_10_1109_LGRS_2024_3490534
crossref_primary_10_1038_s41598_024_84783_5
crossref_primary_10_1007_s10044_024_01393_7
crossref_primary_10_3390_s24237753
crossref_primary_10_1007_s00500_023_09292_5
crossref_primary_10_1016_j_cogsys_2024_101244
crossref_primary_10_3390_pr12122946
crossref_primary_10_3390_rs16214103
crossref_primary_10_1007_s00530_024_01478_7
crossref_primary_10_1364_JOSAB_525182
crossref_primary_10_3390_app13179751
crossref_primary_10_1007_s11042_022_12670_0
crossref_primary_10_1016_j_eswa_2023_122666
crossref_primary_10_1039_D3RA07708J
crossref_primary_10_1109_TVCG_2022_3225114
crossref_primary_10_3390_make6010033
crossref_primary_10_1061_JCCEE5_CPENG_6137
crossref_primary_10_3390_technologies13020053
crossref_primary_10_1038_s41598_024_66346_w
crossref_primary_10_1007_s00371_023_02941_8
crossref_primary_10_1007_s00376_023_3255_7
crossref_primary_10_1109_LRA_2023_3338515
crossref_primary_10_1002_cjce_25507
crossref_primary_10_1007_s11042_024_19866_6
crossref_primary_10_1016_j_patter_2024_101046
crossref_primary_10_1117_1_JMI_11_1_014503
crossref_primary_10_1007_s42979_022_01407_3
crossref_primary_10_1016_j_eswa_2025_126397
crossref_primary_10_4103_sjopt_sjopt_91_23
crossref_primary_10_3390_s23218809
crossref_primary_10_1007_s10462_023_10595_0
crossref_primary_10_1051_0004_6361_202347994
crossref_primary_10_1016_j_wasman_2024_04_040
crossref_primary_10_1063_5_0243174
crossref_primary_10_1111_cgf_14733
crossref_primary_10_1109_JSTARS_2023_3289583
crossref_primary_10_1016_j_compbiomed_2023_107841
crossref_primary_10_3390_biomedicines11051333
crossref_primary_10_3390_diagnostics13193159
crossref_primary_10_1061_JPEODX_PVENG_1503
crossref_primary_10_1016_j_inffus_2024_102248
crossref_primary_10_1016_j_cmpb_2025_108596
crossref_primary_10_1088_1361_6560_accdb1
crossref_primary_10_1109_OJCS_2024_3500032
crossref_primary_10_1109_TGRS_2023_3286826
crossref_primary_10_1007_s10462_023_10486_4
crossref_primary_10_46810_tdfd_1442556
crossref_primary_10_1016_j_neunet_2023_01_048
crossref_primary_10_1145_3608112
crossref_primary_10_3390_biomedicines10071551
crossref_primary_10_1016_j_cma_2024_116876
crossref_primary_10_1016_j_ailsci_2023_100084
crossref_primary_10_1109_TPDS_2023_3247883
crossref_primary_10_1155_2024_8334358
crossref_primary_10_1007_s10489_022_04197_6
crossref_primary_10_3390_electronics12122631
crossref_primary_10_1016_j_cmpbup_2021_100042
crossref_primary_10_3390_rs17010052
crossref_primary_10_1109_TMI_2022_3149281
crossref_primary_10_1016_j_jobe_2024_110918
crossref_primary_10_1109_TASE_2024_3430896
crossref_primary_10_1016_j_knosys_2024_111611
crossref_primary_10_7717_peerj_cs_1490
crossref_primary_10_1016_j_patcog_2024_110883
crossref_primary_10_1109_TKDE_2022_3178211
crossref_primary_10_11834_jig_220895
crossref_primary_10_32604_cmc_2024_047093
crossref_primary_10_1016_j_bbe_2024_08_011
crossref_primary_10_1109_ACCESS_2025_3535791
crossref_primary_10_3390_stats7040090
crossref_primary_10_3390_math12132020
crossref_primary_10_1155_2024_3026500
crossref_primary_10_1109_TIM_2023_3309399
crossref_primary_10_1109_TUFFC_2023_3255843
crossref_primary_10_1016_j_aei_2024_102508
crossref_primary_10_1038_s41598_024_63575_x
crossref_primary_10_1093_ijlct_ctae162
crossref_primary_10_1007_s40123_024_00900_7
crossref_primary_10_1016_j_autcon_2023_104983
crossref_primary_10_1016_j_crmeth_2023_100557
crossref_primary_10_1145_3687234_3687237
crossref_primary_10_1007_s00371_023_02797_y
crossref_primary_10_1093_ve_veae086
crossref_primary_10_1109_TPAMI_2024_3377192
crossref_primary_10_1016_j_eij_2024_100523
crossref_primary_10_1109_ACCESS_2023_3298440
crossref_primary_10_46810_tdfd_1487442
crossref_primary_10_1007_s00521_024_10769_z
crossref_primary_10_3390_app14062237
crossref_primary_10_1016_j_compag_2024_109824
crossref_primary_10_1049_ipr2_12875
crossref_primary_10_3389_fpls_2024_1442968
crossref_primary_10_1088_1748_9326_ad6fb7
crossref_primary_10_1109_JSTARS_2024_3439592
crossref_primary_10_3389_fmed_2023_1114571
crossref_primary_10_1109_JSTARS_2025_3526982
crossref_primary_10_3389_fpls_2023_1256773
crossref_primary_10_1109_ACCESS_2023_3277535
crossref_primary_10_1109_OJAP_2023_3292108
crossref_primary_10_1016_j_bspc_2025_107746
crossref_primary_10_1109_TCSS_2024_3403872
crossref_primary_10_1007_s00371_024_03518_9
crossref_primary_10_1109_TGRS_2024_3389780
crossref_primary_10_3390_s24082491
crossref_primary_10_1007_s00521_023_08269_7
crossref_primary_10_1016_j_media_2024_103421
crossref_primary_10_1016_j_sciaf_2023_e01809
crossref_primary_10_1016_j_compbiomed_2024_107939
crossref_primary_10_1038_s41598_023_48004_9
crossref_primary_10_1016_j_neucom_2025_130014
crossref_primary_10_1109_ACCESS_2024_3436585
crossref_primary_10_1109_TPAMI_2024_3410032
crossref_primary_10_3390_app132111657
crossref_primary_10_1007_s11042_023_17309_2
crossref_primary_10_1109_LRA_2024_3350979
crossref_primary_10_1016_j_eswa_2024_124614
crossref_primary_10_3390_biomedinformatics3030034
crossref_primary_10_1109_ACCESS_2023_3243911
crossref_primary_10_1016_j_eswa_2024_125947
crossref_primary_10_1109_ACCESS_2022_3162827
crossref_primary_10_3390_rs13224573
crossref_primary_10_1016_j_engappai_2024_108339
crossref_primary_10_1109_ACCESS_2023_3277785
crossref_primary_10_1016_j_ecoinf_2023_102334
crossref_primary_10_1016_j_neucom_2024_128630
crossref_primary_10_1007_s42979_023_02204_2
crossref_primary_10_1016_j_media_2024_103414
crossref_primary_10_1016_j_measurement_2024_116045
crossref_primary_10_3390_app122312503
crossref_primary_10_3390_diagnostics13152614
crossref_primary_10_1007_s11042_023_16910_9
crossref_primary_10_3390_su15054341
crossref_primary_10_1007_s13735_023_00268_7
crossref_primary_10_1109_TPAMI_2024_3428546
crossref_primary_10_4236_jcc_2024_129011
crossref_primary_10_1364_OE_514466
crossref_primary_10_1002_ima_23124
crossref_primary_10_1016_j_engappai_2024_109215
crossref_primary_10_1109_JSTARS_2024_3438246
crossref_primary_10_3390_rs16234583
crossref_primary_10_1016_j_inffus_2024_102493
crossref_primary_10_3390_app12157474
crossref_primary_10_1016_j_neucom_2024_127317
crossref_primary_10_1002_fhu2_11
crossref_primary_10_1007_s10664_024_10549_2
crossref_primary_10_1145_3534932
crossref_primary_10_1007_s00170_024_14842_8
crossref_primary_10_1016_j_patcog_2024_110600
crossref_primary_10_3390_biomedinformatics3040058
crossref_primary_10_1134_S1054661822020171
crossref_primary_10_1007_s00521_024_09633_x
crossref_primary_10_3390_rs17010086
crossref_primary_10_1109_TMI_2022_3209648
crossref_primary_10_3389_fphy_2024_1334298
crossref_primary_10_1007_s00138_024_01521_7
crossref_primary_10_1109_TGRS_2022_3141217
crossref_primary_10_1007_s00521_023_08937_8
crossref_primary_10_1007_s00521_024_10516_4
crossref_primary_10_1016_j_ibmed_2024_100192
crossref_primary_10_3390_drones7050287
crossref_primary_10_3390_math12142256
crossref_primary_10_1007_s00530_024_01507_5
crossref_primary_10_1007_s00521_024_10956_y
crossref_primary_10_1109_TGRS_2023_3268159
crossref_primary_10_1109_TIM_2023_3312755
crossref_primary_10_1016_j_jag_2024_103765
crossref_primary_10_1109_ACCESS_2024_3524729
crossref_primary_10_3390_rs16152825
crossref_primary_10_3390_app131911103
crossref_primary_10_1109_LGRS_2022_3228518
crossref_primary_10_1109_TGRS_2024_3389981
crossref_primary_10_3390_cancers17030449
crossref_primary_10_1007_s13042_024_02177_5
crossref_primary_10_3390_rs15225409
crossref_primary_10_1016_j_compag_2025_109930
crossref_primary_10_1109_TGRS_2024_3367709
crossref_primary_10_3390_e26060469
crossref_primary_10_1109_TGRS_2024_3359095
crossref_primary_10_3390_electronics14010009
crossref_primary_10_3390_rs16152837
crossref_primary_10_1109_JBHI_2023_3336372
crossref_primary_10_1109_TGRS_2023_3344083
crossref_primary_10_3390_machines13010011
crossref_primary_10_1109_ACCESS_2023_3300793
crossref_primary_10_1109_TBC_2022_3231101
crossref_primary_10_3390_electronics13050976
crossref_primary_10_1007_s10278_024_01131_9
crossref_primary_10_1016_j_knosys_2024_111482
crossref_primary_10_1007_s42417_024_01749_7
crossref_primary_10_3390_electronics11091422
crossref_primary_10_1016_j_compbiomed_2023_107450
crossref_primary_10_1016_j_nlp_2023_100047
crossref_primary_10_21923_jesd_1553326
crossref_primary_10_34133_cbsystems_0100
crossref_primary_10_3390_machines13010049
crossref_primary_10_1109_TGRS_2023_3324025
crossref_primary_10_1007_s00521_022_08094_4
crossref_primary_10_3390_rs17060953
crossref_primary_10_1016_j_isprsjprs_2022_07_016
crossref_primary_10_1038_s41598_023_27478_7
crossref_primary_10_1007_s41095_022_0271_y
crossref_primary_10_3389_fnbot_2023_1119231
crossref_primary_10_1103_PhysRevAccelBeams_26_052801
crossref_primary_10_1109_TGRS_2024_3367725
crossref_primary_10_1142_S0129065724500242
crossref_primary_10_1007_s11263_022_01606_8
crossref_primary_10_1007_s00521_024_09802_y
crossref_primary_10_1109_TGCN_2022_3171680
crossref_primary_10_5715_jnlp_29_1198
crossref_primary_10_1007_s10462_023_10588_z
crossref_primary_10_1007_s11227_022_04895_5
crossref_primary_10_1007_s11548_022_02785_y
crossref_primary_10_3390_math12192998
crossref_primary_10_7717_peerj_cs_2187
crossref_primary_10_1016_j_compag_2024_109676
crossref_primary_10_2174_0115748936283134240109054157
crossref_primary_10_1109_TIP_2024_3385980
crossref_primary_10_1007_s40747_024_01595_w
crossref_primary_10_3390_s25020471
crossref_primary_10_1002_isaf_1549
crossref_primary_10_3390_math11081933
crossref_primary_10_1109_TNNLS_2022_3227717
crossref_primary_10_1109_JSTARS_2024_3354310
crossref_primary_10_1109_TASE_2024_3378010
crossref_primary_10_3390_machines13010036
crossref_primary_10_3390_drones8030084
crossref_primary_10_1016_j_jag_2023_103496
crossref_primary_10_1038_s41746_023_00840_9
crossref_primary_10_1109_TMI_2022_3170701
crossref_primary_10_3389_frobt_2024_1424883
crossref_primary_10_1109_TC_2024_3504263
crossref_primary_10_3390_rs14163979
crossref_primary_10_1007_s10489_023_04570_z
crossref_primary_10_1016_j_inffus_2025_102951
crossref_primary_10_1061_JCCEE5_CPENG_5997
crossref_primary_10_1109_TAI_2024_3404910
crossref_primary_10_1016_j_neuroimage_2025_121080
crossref_primary_10_3389_fcpxs_2024_1347930
crossref_primary_10_1016_j_compag_2024_109611
crossref_primary_10_1016_j_media_2021_102299
crossref_primary_10_1002_cpe_7824
crossref_primary_10_1093_bioadv_vbad001
crossref_primary_10_3389_fpls_2023_1273029
crossref_primary_10_3390_jtaer18040110
crossref_primary_10_1108_CFRI_01_2024_0032
crossref_primary_10_1109_TSP_2024_3381749
crossref_primary_10_1109_TMM_2024_3353544
crossref_primary_10_3390_agronomy12112659
crossref_primary_10_3390_app14104316
crossref_primary_10_3390_computers13050116
crossref_primary_10_1080_01431161_2023_2257860
crossref_primary_10_3390_rs15071860
crossref_primary_10_1109_TVCG_2023_3261935
crossref_primary_10_3390_fishes10020081
crossref_primary_10_3390_s24113484
crossref_primary_10_1016_j_ins_2024_120338
crossref_primary_10_3390_s22186821
crossref_primary_10_3389_fphy_2023_1259273
crossref_primary_10_62520_fujece_1454309
crossref_primary_10_1007_s11633_022_1364_x
crossref_primary_10_1016_j_compag_2025_109919
crossref_primary_10_1109_JSTARS_2022_3143532
crossref_primary_10_1109_TGRS_2024_3365990
crossref_primary_10_1109_ACCESS_2025_3548418
crossref_primary_10_1007_s12161_024_02654_1
crossref_primary_10_1016_j_compbiomed_2023_107028
crossref_primary_10_1038_s41598_022_13039_x
crossref_primary_10_1016_j_compeleceng_2025_110099
crossref_primary_10_1002_nafm_11039
crossref_primary_10_1016_j_apenergy_2024_122967
crossref_primary_10_1134_S2070048224020157
crossref_primary_10_1007_s10489_022_04100_3
crossref_primary_10_1016_j_autcon_2024_105770
crossref_primary_10_1093_bjrai_ubae011
crossref_primary_10_1109_TCSVT_2021_3135013
crossref_primary_10_1016_j_compeleceng_2025_110087
crossref_primary_10_1016_j_eng_2025_02_018
crossref_primary_10_4103_tjo_TJO_D_23_00068
crossref_primary_10_1016_j_cmpb_2024_108037
crossref_primary_10_1109_ACCESS_2024_3358452
crossref_primary_10_1109_TGRS_2023_3317305
crossref_primary_10_1016_j_compbiomed_2023_107034
crossref_primary_10_1007_s11571_025_10224_2
crossref_primary_10_1088_1361_6501_ad7bde
crossref_primary_10_3103_S1060992X2306005X
crossref_primary_10_1016_j_compmedimag_2023_102307
crossref_primary_10_1007_s10489_022_03543_y
crossref_primary_10_1109_TMI_2022_3180228
crossref_primary_10_1016_j_media_2021_102258
crossref_primary_10_1007_s00779_023_01776_3
crossref_primary_10_1016_j_bspc_2022_104276
crossref_primary_10_1016_j_engappai_2023_107697
crossref_primary_10_1109_TGRS_2023_3309245
crossref_primary_10_1016_j_bspc_2023_105880
crossref_primary_10_3390_rs13173527
crossref_primary_10_3390_rs15102631
crossref_primary_10_3390_rs16071216
crossref_primary_10_1093_bib_bbad306
crossref_primary_10_1109_JSTARS_2024_3483786
crossref_primary_10_1007_s00500_025_10463_9
crossref_primary_10_1186_s43067_023_00123_z
crossref_primary_10_3390_rs14092088
crossref_primary_10_1002_ps_8473
crossref_primary_10_3390_electronics11182810
crossref_primary_10_3389_fmolb_2024_1390858
crossref_primary_10_1145_3584984
crossref_primary_10_1016_j_jhydrol_2023_129561
crossref_primary_10_1088_1367_2630_ad6f3d
crossref_primary_10_1109_TITS_2024_3365296
crossref_primary_10_3390_biomimetics9110695
crossref_primary_10_3390_electronics13163125
crossref_primary_10_1109_JSTARS_2023_3260006
crossref_primary_10_1007_s11042_024_19218_4
crossref_primary_10_1016_j_compag_2024_109123
crossref_primary_10_3390_s21165312
crossref_primary_10_3390_electronics13030617
crossref_primary_10_1109_ACCESS_2024_3502542
crossref_primary_10_3389_fnbot_2023_1275645
crossref_primary_10_1109_TGRS_2023_3324404
crossref_primary_10_1142_S012906572350065X
crossref_primary_10_1016_j_eswa_2025_126863
crossref_primary_10_1007_s11263_023_01861_3
crossref_primary_10_1016_j_compbiomed_2024_109531
crossref_primary_10_1079_cabireviews_2025_0009
crossref_primary_10_1007_s00521_024_10420_x
crossref_primary_10_1007_s10489_023_04950_5
crossref_primary_10_1007_s00500_023_08723_7
crossref_primary_10_1186_s40708_024_00238_7
crossref_primary_10_3390_agronomy12081843
crossref_primary_10_3389_frsip_2023_1193523
crossref_primary_10_1007_s10462_024_10717_2
crossref_primary_10_1177_20552076241293498
crossref_primary_10_1109_JTEHM_2022_3221918
crossref_primary_10_1007_s00521_024_10662_9
crossref_primary_10_1016_j_eswa_2024_124159
crossref_primary_10_3390_rs16173218
crossref_primary_10_3390_conservation4040041
crossref_primary_10_1109_ACCESS_2024_3434559
crossref_primary_10_1007_s00784_025_06216_5
crossref_primary_10_3390_rs13183585
crossref_primary_10_3390_s23073439
crossref_primary_10_1016_j_eja_2024_127477
crossref_primary_10_1016_j_envsoft_2025_106402
crossref_primary_10_1109_JSTARS_2023_3339235
crossref_primary_10_12677_mos_2024_133186
crossref_primary_10_3390_electronics12081791
crossref_primary_10_3390_jimaging10120332
crossref_primary_10_1109_TIV_2023_3292513
crossref_primary_10_1109_TIV_2024_3350669
crossref_primary_10_1109_JBHI_2022_3153902
crossref_primary_10_1109_TGRS_2023_3333375
crossref_primary_10_1109_TLT_2023_3259013
crossref_primary_10_1016_j_eswa_2024_124153
crossref_primary_10_3390_jrfm16100440
crossref_primary_10_1007_s10462_023_10557_6
crossref_primary_10_1016_j_jbi_2021_103982
crossref_primary_10_1016_j_measurement_2024_114303
crossref_primary_10_1029_2024GL108889
crossref_primary_10_1109_ACCESS_2023_3273736
crossref_primary_10_1109_ACCESS_2024_3514322
crossref_primary_10_1145_3665869
crossref_primary_10_1109_TRPMS_2024_3397318
crossref_primary_10_1016_j_imed_2023_01_004
crossref_primary_10_3390_app13053213
crossref_primary_10_1016_j_neucom_2023_126835
crossref_primary_10_1007_s11042_023_18091_x
crossref_primary_10_1016_j_jag_2023_103286
crossref_primary_10_1007_s10462_023_10677_z
crossref_primary_10_3390_s24051467
crossref_primary_10_7717_peerj_cs_1755
crossref_primary_10_1016_j_eswa_2023_121638
crossref_primary_10_1007_s00138_024_01560_0
crossref_primary_10_1109_ACCESS_2023_3263931
crossref_primary_10_1021_acs_jcim_3c02070
crossref_primary_10_1007_s00530_023_01195_7
crossref_primary_10_1007_s00530_025_01746_0
crossref_primary_10_1016_j_patcog_2025_111413
crossref_primary_10_3390_app142311327
crossref_primary_10_1002_mp_17430
crossref_primary_10_1364_OE_522516
crossref_primary_10_1142_S0218001423560268
crossref_primary_10_1016_j_compbiomed_2024_109325
crossref_primary_10_1109_TMI_2023_3287256
crossref_primary_10_1016_j_pacs_2024_100674
crossref_primary_10_1016_j_mineng_2024_108599
crossref_primary_10_1109_JIOT_2024_3403844
crossref_primary_10_1103_PhysRevResearch_6_023250
crossref_primary_10_1186_s13321_023_00789_7
crossref_primary_10_1021_acs_jpca_4c05665
crossref_primary_10_1016_j_neucom_2024_128077
crossref_primary_10_1007_s12145_023_01208_z
crossref_primary_10_1016_j_phrs_2023_106984
crossref_primary_10_1007_s40192_024_00369_z
crossref_primary_10_1016_j_neuroimage_2024_120652
crossref_primary_10_1016_j_engappai_2023_106545
crossref_primary_10_1088_2057_1976_ad5bed
crossref_primary_10_3390_electronics12041024
crossref_primary_10_1002_mp_16135
crossref_primary_10_1016_j_eswa_2023_119774
crossref_primary_10_1016_j_infrared_2022_104522
crossref_primary_10_3390_en17184734
crossref_primary_10_1016_j_media_2025_103487
crossref_primary_10_1109_TCAD_2024_3483092
crossref_primary_10_1007_s11760_024_03259_1
crossref_primary_10_1016_j_compmedimag_2024_102337
crossref_primary_10_1109_ACCESS_2023_3234519
crossref_primary_10_1016_j_neucom_2024_128086
crossref_primary_10_1109_TGRS_2023_3240296
crossref_primary_10_1016_j_jvcir_2024_104066
crossref_primary_10_3389_fnins_2024_1340345
crossref_primary_10_1016_j_ymssp_2024_112160
crossref_primary_10_1190_geo2023_0508_1
crossref_primary_10_1109_TGRS_2022_3194505
crossref_primary_10_1021_acsphotonics_3c01349
crossref_primary_10_14778_3494124_3494136
crossref_primary_10_3390_wevj15030104
crossref_primary_10_3390_jmse13030425
crossref_primary_10_1016_j_bspc_2024_106801
crossref_primary_10_1007_s11831_024_10176_6
crossref_primary_10_26599_CVM_2025_9450383
crossref_primary_10_1016_j_media_2024_103198
crossref_primary_10_1016_j_cmpb_2025_108613
crossref_primary_10_1016_j_eswa_2023_122717
crossref_primary_10_1109_ACCESS_2023_3314573
crossref_primary_10_3390_s23187844
crossref_primary_10_3390_e24081062
crossref_primary_10_1002_wics_1631
crossref_primary_10_3390_rs17061066
crossref_primary_10_3390_jimaging8050143
crossref_primary_10_1007_s00701_022_05446_w
crossref_primary_10_1177_1088467X251324336
crossref_primary_10_1148_ryai_220067
crossref_primary_10_1016_j_engappai_2023_107618
crossref_primary_10_1109_TGRS_2024_3482277
crossref_primary_10_1016_j_neucom_2022_11_020
crossref_primary_10_3390_rs16061013
crossref_primary_10_1109_ACCESS_2023_3288112
crossref_primary_10_1109_TNSM_2024_3485545
crossref_primary_10_1002_cav_2270
crossref_primary_10_1007_s10462_024_11089_3
crossref_primary_10_3390_rs16163045
crossref_primary_10_1016_j_mineng_2024_108790
crossref_primary_10_1109_ACCESS_2025_3544515
crossref_primary_10_1002_brx2_23
crossref_primary_10_1007_s11263_022_01611_x
crossref_primary_10_1177_02783649241281508
crossref_primary_10_1145_3636424
crossref_primary_10_3390_info15050253
crossref_primary_10_1002_brx2_29
crossref_primary_10_1016_j_ajpath_2024_01_009
crossref_primary_10_3390_agronomy14020363
crossref_primary_10_1109_JSTARS_2022_3204191
crossref_primary_10_1145_3586074
crossref_primary_10_1029_2023MS004095
crossref_primary_10_3390_mi14061265
crossref_primary_10_1016_j_aej_2024_11_003
crossref_primary_10_3390_robotics12060167
crossref_primary_10_1038_s41598_024_84795_1
crossref_primary_10_1016_j_ymeth_2025_01_008
crossref_primary_10_1109_TGRS_2024_3425491
crossref_primary_10_1109_ACCESS_2023_3329678
crossref_primary_10_3390_app15052697
crossref_primary_10_1109_TCAD_2023_3317169
crossref_primary_10_1029_2024EA003544
crossref_primary_10_1364_AO_550755
crossref_primary_10_1016_j_advwatres_2022_104169
crossref_primary_10_3390_insects15090667
crossref_primary_10_3390_s23031616
crossref_primary_10_1016_j_compag_2025_110016
crossref_primary_10_1007_s40747_025_01842_8
crossref_primary_10_1109_ACCESS_2024_3468368
crossref_primary_10_1007_s44244_024_00020_y
crossref_primary_10_1016_j_conbuildmat_2023_134134
crossref_primary_10_1007_s00259_022_06097_w
crossref_primary_10_1016_j_cviu_2025_104326
crossref_primary_10_1016_j_eswa_2024_126150
crossref_primary_10_1007_s10846_021_01540_w
crossref_primary_10_1109_TPAMI_2021_3117837
crossref_primary_10_61186_joc_17_2_1
crossref_primary_10_1109_TBIOM_2023_3317303
crossref_primary_10_1016_j_measurement_2023_114000
crossref_primary_10_1371_journal_pone_0289499
crossref_primary_10_3389_fpls_2023_1327163
crossref_primary_10_3390_biom11121793
crossref_primary_10_1109_JSTARS_2023_3316302
crossref_primary_10_1109_TGRS_2021_3119537
crossref_primary_10_1002_mp_16574
crossref_primary_10_1109_TNNLS_2023_3301007
crossref_primary_10_1109_TGRS_2025_3526933
crossref_primary_10_1016_j_apenergy_2023_122282
crossref_primary_10_1007_s10462_024_11067_9
crossref_primary_10_1016_j_procs_2024_04_074
crossref_primary_10_1016_j_jpha_2024_101081
crossref_primary_10_1128_msystems_00697_24
crossref_primary_10_1109_TGRS_2022_3168697
crossref_primary_10_3390_info14100527
crossref_primary_10_1016_j_neucom_2022_05_093
crossref_primary_10_1007_s13132_024_01814_2
crossref_primary_10_1016_j_bspc_2024_107252
crossref_primary_10_1016_j_compbiomed_2024_108057
crossref_primary_10_1051_0004_6361_202449929
crossref_primary_10_1038_s41598_024_78414_2
crossref_primary_10_1109_TPAMI_2023_3298925
crossref_primary_10_1016_j_cja_2024_03_017
crossref_primary_10_1038_s41598_025_90482_6
crossref_primary_10_1002_mp_17655
crossref_primary_10_3390_app13169419
crossref_primary_10_1007_s11042_024_19297_3
crossref_primary_10_1109_JSTARS_2024_3472296
crossref_primary_10_1109_TCE_2024_3360211
crossref_primary_10_3390_hydrology10060116
crossref_primary_10_3390_electronics10151808
crossref_primary_10_1515_revneuro_2024_0088
crossref_primary_10_3390_math11071744
crossref_primary_10_1038_s41597_023_02182_3
crossref_primary_10_1007_s11831_024_10108_4
crossref_primary_10_1016_j_compag_2023_107957
crossref_primary_10_1109_TGRS_2024_3428551
crossref_primary_10_1016_j_artmed_2024_102952
crossref_primary_10_1109_TGRS_2022_3144894
crossref_primary_10_3390_jpm13101496
crossref_primary_10_2139_ssrn_4609920
crossref_primary_10_1007_s00066_024_02262_2
crossref_primary_10_1016_j_enss_2024_02_004
crossref_primary_10_1109_TGRS_2023_3323507
crossref_primary_10_3934_mbe_2023668
crossref_primary_10_4018_JDM_306188
crossref_primary_10_1038_s41598_023_27616_1
crossref_primary_10_1016_j_compmedimag_2024_102382
crossref_primary_10_1109_TNNLS_2023_3298638
crossref_primary_10_3389_fnbot_2023_1323188
crossref_primary_10_1016_j_mlwa_2024_100550
crossref_primary_10_1007_s10462_024_10730_5
crossref_primary_10_3390_rs14236017
crossref_primary_10_1007_s11633_022_1410_8
crossref_primary_10_1016_j_eswa_2024_123923
crossref_primary_10_1016_j_displa_2025_102980
crossref_primary_10_1080_01431161_2023_2179897
crossref_primary_10_1016_j_cageo_2024_105664
crossref_primary_10_1109_TVT_2024_3396286
crossref_primary_10_1007_s42979_024_03271_9
crossref_primary_10_1016_j_inffus_2023_101847
crossref_primary_10_3390_diagnostics12051278
crossref_primary_10_1016_j_cmpb_2023_107591
crossref_primary_10_3390_ai5040141
crossref_primary_10_1186_s13014_024_02467_w
crossref_primary_10_3390_electronics12183904
crossref_primary_10_1145_3721432
crossref_primary_10_3390_ai5040101
crossref_primary_10_1016_j_rcim_2025_102982
crossref_primary_10_1038_s42256_022_00600_6
crossref_primary_10_1109_TSMC_2024_3355101
crossref_primary_10_2139_ssrn_4755445
crossref_primary_10_1109_TPAMI_2022_3233482
crossref_primary_10_1109_TASLP_2023_3282092
crossref_primary_10_3390_rs13193953
crossref_primary_10_1109_TPAMI_2024_3392941
crossref_primary_10_1016_j_ymssp_2024_111912
crossref_primary_10_1002_ima_70039
crossref_primary_10_1007_s00366_022_01648_z
crossref_primary_10_1016_j_media_2024_103360
crossref_primary_10_1007_s44196_024_00423_w
crossref_primary_10_3390_mca28020061
crossref_primary_10_1016_j_cjca_2024_07_014
crossref_primary_10_1016_j_eswa_2023_121692
crossref_primary_10_17694_bajece_1345993
crossref_primary_10_1016_j_animal_2024_101079
crossref_primary_10_1109_JSTARS_2024_3444773
crossref_primary_10_1007_s00521_024_10353_5
crossref_primary_10_1109_ACCESS_2023_3271748
crossref_primary_10_3390_app112411991
crossref_primary_10_1016_j_future_2024_107693
crossref_primary_10_1109_TGRS_2024_3355037
crossref_primary_10_1007_s10489_024_05299_z
crossref_primary_10_1007_s10845_024_02416_0
crossref_primary_10_1007_s11390_022_2158_x
crossref_primary_10_1016_j_cviu_2024_104010
crossref_primary_10_3390_electronics12051218
crossref_primary_10_3390_sci5040046
crossref_primary_10_3390_rs16132355
crossref_primary_10_1016_j_media_2024_103356
crossref_primary_10_1007_s00371_024_03728_1
crossref_primary_10_1080_10426914_2023_2199499
crossref_primary_10_3390_buildings15020176
crossref_primary_10_1007_s10044_023_01130_6
crossref_primary_10_1016_j_patcog_2023_110140
crossref_primary_10_1109_TPAMI_2022_3199617
crossref_primary_10_3390_s22176554
crossref_primary_10_1109_TPAMI_2022_3207091
crossref_primary_10_1145_3723358
crossref_primary_10_1145_3670854
crossref_primary_10_5909_JBE_2024_29_6_931
crossref_primary_10_1117_1_JEI_33_5_053017
crossref_primary_10_1016_j_apenergy_2024_124442
crossref_primary_10_1016_j_neucom_2024_128701
crossref_primary_10_1109_TVCG_2023_3337870
crossref_primary_10_1109_TPAMI_2024_3411045
crossref_primary_10_3390_app14156741
crossref_primary_10_3390_app13137577
crossref_primary_10_1007_s10462_024_10941_w
crossref_primary_10_1109_TITS_2022_3186613
crossref_primary_10_1109_ACCESS_2022_3224588
crossref_primary_10_3390_s23052385
crossref_primary_10_1021_acssensors_4c00149
crossref_primary_10_1109_ACCESS_2022_3225689
crossref_primary_10_1049_cvi2_12266
crossref_primary_10_1016_j_compag_2024_108839
crossref_primary_10_1016_j_ymssp_2022_109050
crossref_primary_10_1088_2632_2153_ad6832
crossref_primary_10_1145_3657632
crossref_primary_10_1109_TCSVT_2022_3207148
crossref_primary_10_1007_s13735_022_00228_7
crossref_primary_10_1007_s42979_024_03398_9
crossref_primary_10_1109_TPAMI_2022_3211006
crossref_primary_10_1016_j_eswa_2023_123107
crossref_primary_10_1038_s41598_024_78699_3
crossref_primary_10_1109_TPAMI_2023_3322604
crossref_primary_10_3390_s24134089
crossref_primary_10_1371_journal_pone_0319027
crossref_primary_10_1109_JIOT_2024_3394050
crossref_primary_10_1016_j_cma_2023_116276
crossref_primary_10_1016_j_compag_2024_109719
crossref_primary_10_1111_risa_14666
crossref_primary_10_1080_10630732_2024_2402676
crossref_primary_10_1109_TGRS_2023_3331751
crossref_primary_10_1109_TMM_2022_3198011
crossref_primary_10_1016_j_patcog_2024_110519
crossref_primary_10_3390_app132312905
crossref_primary_10_1109_TMI_2023_3337253
crossref_primary_10_1109_ACCESS_2024_3398806
crossref_primary_10_1109_LGRS_2022_3183467
crossref_primary_10_1038_s41598_023_47936_6
crossref_primary_10_1007_s00521_023_08640_8
crossref_primary_10_3390_diagnostics13050825
crossref_primary_10_1088_2632_2153_ad4e03
crossref_primary_10_1016_j_imavis_2024_105055
crossref_primary_10_1016_j_media_2023_103000
crossref_primary_10_1088_1361_6560_aced79
crossref_primary_10_1016_j_epsr_2024_111403
crossref_primary_10_1002_smll_202204941
crossref_primary_10_1007_s40747_023_01296_w
crossref_primary_10_3390_app131910980
crossref_primary_10_3390_app13084821
crossref_primary_10_1016_j_csbj_2025_03_021
crossref_primary_10_1016_j_taml_2024_100527
crossref_primary_10_1109_ACCESS_2025_3547416
crossref_primary_10_3390_electronics13204116
crossref_primary_10_3390_s25051478
crossref_primary_10_1016_j_sigpro_2024_109683
crossref_primary_10_3390_app14209488
crossref_primary_10_1108_IJWIS_08_2023_0131
crossref_primary_10_1016_j_heliyon_2024_e39329
crossref_primary_10_1109_JSSC_2024_3402174
crossref_primary_10_11834_jig_230323
crossref_primary_10_1007_s00138_025_01661_4
crossref_primary_10_1007_s10586_024_04355_0
crossref_primary_10_1016_j_bspc_2024_106490
crossref_primary_10_1007_s00138_024_01557_9
crossref_primary_10_1016_j_geoderma_2023_116555
crossref_primary_10_1007_s41870_023_01635_7
crossref_primary_10_3390_s23218727
crossref_primary_10_1016_j_bspc_2024_106497
crossref_primary_10_1016_j_autcon_2023_104894
crossref_primary_10_1016_j_bspc_2025_107620
crossref_primary_10_1016_j_neucom_2024_128745
crossref_primary_10_46578_humder_1333782
crossref_primary_10_1093_noajnl_vdae205
crossref_primary_10_3390_app13116839
crossref_primary_10_1016_j_jgsce_2024_205469
crossref_primary_10_3847_1538_4357_adb41a
crossref_primary_10_1038_s41467_024_45578_4
crossref_primary_10_1007_s00371_024_03383_6
crossref_primary_10_1007_s11227_022_05009_x
crossref_primary_10_11834_jig_220799
crossref_primary_10_1007_s13534_025_00469_5
crossref_primary_10_1007_s11207_024_02284_0
crossref_primary_10_1016_j_engappai_2024_108458
crossref_primary_10_1145_3617374
crossref_primary_10_1016_j_cmpb_2023_107872
crossref_primary_10_1016_j_indcrop_2025_120850
crossref_primary_10_1109_TCSS_2024_3416837
crossref_primary_10_1088_1361_6501_ad1e20
crossref_primary_10_3233_IDA_227205
crossref_primary_10_48175_IJARSCT_22130
crossref_primary_10_1016_j_bspc_2025_107640
crossref_primary_10_1371_journal_pone_0307206
crossref_primary_10_1002_cepa_2072
crossref_primary_10_3390_s23020734
crossref_primary_10_1109_ACCESS_2025_3532354
crossref_primary_10_1007_s11280_024_01251_w
crossref_primary_10_3390_electronics13020339
crossref_primary_10_1103_PhysRevC_110_054609
crossref_primary_10_1080_21681163_2023_2297016
crossref_primary_10_1109_JBHI_2024_3506829
crossref_primary_10_1109_TITS_2024_3386531
crossref_primary_10_1109_TIP_2023_3318953
crossref_primary_10_1145_3691338
crossref_primary_10_1016_j_neucom_2024_128524
crossref_primary_10_1109_ACCESS_2023_3240999
crossref_primary_10_1093_nc_niae001
crossref_primary_10_1109_OJCS_2024_3400696
crossref_primary_10_1016_j_heliyon_2024_e29583
crossref_primary_10_3390_s24061936
crossref_primary_10_1109_ACCESS_2022_3204755
crossref_primary_10_3390_agronomy13041156
crossref_primary_10_1007_s00521_024_10470_1
crossref_primary_10_3390_app13063707
crossref_primary_10_5909_JBE_2024_29_3_291
crossref_primary_10_1109_TCI_2024_3515844
crossref_primary_10_1016_j_patcog_2023_109432
crossref_primary_10_1109_OJCOMS_2023_3320646
crossref_primary_10_3390_ijgi13090336
crossref_primary_10_1109_TPAMI_2023_3243812
crossref_primary_10_1007_s10489_024_05380_7
crossref_primary_10_1038_s41598_024_66886_1
crossref_primary_10_1109_ACCESS_2023_3277204
crossref_primary_10_1109_ACCESS_2024_3452728
crossref_primary_10_1109_ACCESS_2024_3356551
crossref_primary_10_1038_s41598_024_83652_5
crossref_primary_10_1016_j_buildenv_2024_111396
crossref_primary_10_3390_machines11020187
crossref_primary_10_1109_ACCESS_2024_3469393
crossref_primary_10_3390_rs17050858
crossref_primary_10_1016_j_geoen_2024_212994
crossref_primary_10_1109_TGRS_2024_3520635
crossref_primary_10_1016_j_compmedimag_2023_102230
crossref_primary_10_1016_j_measurement_2022_111594
crossref_primary_10_15407_jai2024_04_133
crossref_primary_10_1109_TUFFC_2023_3329119
crossref_primary_10_1109_TMM_2022_3173131
crossref_primary_10_1109_TPAMI_2024_3408271
crossref_primary_10_1007_s00371_024_03524_x
crossref_primary_10_1016_j_compbiomed_2024_108709
crossref_primary_10_1016_j_metrad_2023_100047
crossref_primary_10_1109_JBHI_2024_3355758
crossref_primary_10_1063_5_0207363
crossref_primary_10_1007_s13748_023_00301_0
crossref_primary_10_1016_j_isprsjprs_2024_03_012
crossref_primary_10_1109_OJSP_2024_3375276
crossref_primary_10_1109_JBHI_2023_3285275
crossref_primary_10_1080_22797254_2024_2352386
crossref_primary_10_3390_electronics14050825
crossref_primary_10_3390_s24175800
crossref_primary_10_1109_TII_2024_3353814
crossref_primary_10_1016_j_isci_2024_111216
crossref_primary_10_1016_j_neunet_2025_107175
crossref_primary_10_1155_2023_6691332
crossref_primary_10_1007_s00138_023_01462_7
crossref_primary_10_3390_s23063217
crossref_primary_10_1117_1_JMI_12_2_024502
crossref_primary_10_1002_acm2_13942
crossref_primary_10_1007_s40747_023_01237_7
crossref_primary_10_1016_j_neucom_2024_127468
crossref_primary_10_1017_jfm_2023_1096
crossref_primary_10_3390_s23239488
crossref_primary_10_1063_5_0134317
crossref_primary_10_1016_j_jare_2022_08_021
crossref_primary_10_1016_j_knosys_2024_112215
crossref_primary_10_1002_rse2_419
crossref_primary_10_1016_j_inffus_2023_102217
crossref_primary_10_1109_TIM_2025_3545699
crossref_primary_10_1145_3715330
crossref_primary_10_1016_j_actamat_2025_120962
crossref_primary_10_1007_s13042_024_02110_w
crossref_primary_10_1109_TGRS_2024_3396379
crossref_primary_10_3390_app13031487
crossref_primary_10_3390_jrfm17070293
crossref_primary_10_1109_TGRS_2022_3186634
crossref_primary_10_3390_rs15245706
crossref_primary_10_1364_OE_550831
crossref_primary_10_1109_TGRS_2024_3401130
crossref_primary_10_1109_TUFFC_2023_3276634
crossref_primary_10_1109_TITS_2023_3258683
crossref_primary_10_3390_signals5030031
crossref_primary_10_3390_rs14092228
crossref_primary_10_1145_3664595
crossref_primary_10_1109_JIOT_2024_3372060
crossref_primary_10_1016_j_heliyon_2024_e36450
crossref_primary_10_1109_TIM_2024_3373045
crossref_primary_10_1038_s41598_023_38365_6
crossref_primary_10_1109_ACCESS_2023_3256723
crossref_primary_10_1109_JSTARS_2024_3439429
crossref_primary_10_1109_LSP_2022_3155991
crossref_primary_10_1016_j_jvcir_2023_103956
crossref_primary_10_1007_s10489_023_04747_6
crossref_primary_10_1109_TGRS_2024_3491871
crossref_primary_10_1186_s40537_024_01001_9
crossref_primary_10_3390_rs16162974
crossref_primary_10_1049_ipr2_12915
crossref_primary_10_1109_ACCESS_2024_3458908
crossref_primary_10_1016_j_aei_2024_102463
crossref_primary_10_1109_ACCESS_2025_3549679
crossref_primary_10_1007_s11227_024_06638_0
crossref_primary_10_1080_15230406_2023_2295948
crossref_primary_10_3390_rs16112041
crossref_primary_10_3390_ai5010016
crossref_primary_10_1016_j_heliyon_2023_e21723
crossref_primary_10_1109_TGRS_2024_3374324
crossref_primary_10_1109_TGRS_2023_3308999
crossref_primary_10_32604_cmc_2024_050790
crossref_primary_10_1109_ACCESS_2024_3524403
crossref_primary_10_1109_ACCESS_2022_3156894
crossref_primary_10_1117_1_JMI_11_2_024009
crossref_primary_10_1177_01655515231202761
crossref_primary_10_1093_bib_bbad231
crossref_primary_10_1016_j_asoc_2023_111166
crossref_primary_10_1103_PhysRevApplied_23_024044
crossref_primary_10_1016_j_csbj_2025_02_024
crossref_primary_10_32628_CSEIT241051019
crossref_primary_10_1038_s41467_025_57587_y
crossref_primary_10_1109_TGRS_2021_3127986
crossref_primary_10_1002_aisy_202400110
crossref_primary_10_1016_j_neucom_2024_128583
crossref_primary_10_1109_TGRS_2024_3478249
crossref_primary_10_1109_TMI_2023_3322581
crossref_primary_10_2478_ttj_2024_0003
crossref_primary_10_1016_j_inffus_2024_102308
crossref_primary_10_3390_agronomy14030417
crossref_primary_10_1109_TMI_2023_3250474
crossref_primary_10_3390_info14030187
crossref_primary_10_1109_ACCESS_2023_3300234
crossref_primary_10_3389_fpls_2023_1111175
crossref_primary_10_3390_app14010386
crossref_primary_10_1016_j_patrec_2024_02_019
crossref_primary_10_1007_s11042_023_14950_9
crossref_primary_10_1541_ieejeiss_144_665
crossref_primary_10_1109_TVCG_2024_3388514
crossref_primary_10_3390_sym17030324
crossref_primary_10_1109_TIP_2023_3336532
crossref_primary_10_3390_brainsci14121266
crossref_primary_10_1016_j_engappai_2024_108859
crossref_primary_10_1109_TNNLS_2023_3247103
crossref_primary_10_1109_TGRS_2025_3531879
crossref_primary_10_1016_j_neucom_2025_129549
crossref_primary_10_1190_geo2023_0553_1
crossref_primary_10_3390_s23031258
crossref_primary_10_3390_s25020303
crossref_primary_10_1109_ACCESS_2023_3283495
crossref_primary_10_1007_s13347_024_00790_4
crossref_primary_10_1007_s00371_023_03164_7
crossref_primary_10_1109_TGRS_2024_3396330
crossref_primary_10_1109_TPAMI_2022_3213073
crossref_primary_10_1007_s11042_024_19685_9
crossref_primary_10_3390_electronics13234636
crossref_primary_10_1016_j_powtec_2024_120446
crossref_primary_10_1016_j_heliyon_2023_e13081
crossref_primary_10_1007_s10694_022_01231_4
crossref_primary_10_1109_LSP_2022_3233005
crossref_primary_10_1016_j_bspc_2024_106633
crossref_primary_10_1016_j_dsp_2023_104109
crossref_primary_10_1109_TSMC_2023_3267858
crossref_primary_10_1016_j_tree_2022_11_008
crossref_primary_10_1109_ACCESS_2024_3406478
crossref_primary_10_1109_TGRS_2023_3293832
crossref_primary_10_61187_ita_v1i2_36
crossref_primary_10_1109_ACCESS_2023_3297206
crossref_primary_10_1109_TGRS_2023_3330869
crossref_primary_10_1007_s10895_025_04229_7
crossref_primary_10_1109_TSP_2025_3525951
crossref_primary_10_1109_ACCESS_2024_3393558
crossref_primary_10_1016_j_artint_2024_104147
crossref_primary_10_1117_1_OE_63_4_043105
crossref_primary_10_1016_j_asoc_2025_112878
crossref_primary_10_1109_TITS_2024_3447586
crossref_primary_10_1016_j_neucom_2024_128126
crossref_primary_10_3390_app15063061
crossref_primary_10_1109_JBHI_2024_3389708
crossref_primary_10_1088_1751_8121_acafb3
crossref_primary_10_1049_cit2_12255
crossref_primary_10_1186_s40942_024_00554_4
crossref_primary_10_1016_j_eswa_2024_124113
crossref_primary_10_1007_s11042_023_17345_y
crossref_primary_10_3390_diagnostics14222497
crossref_primary_10_1002_adma_202308912
crossref_primary_10_1088_1361_6501_ad9ca9
crossref_primary_10_1093_rasti_rzad016
crossref_primary_10_3390_electronics12163407
crossref_primary_10_1109_ACCESS_2024_3505919
crossref_primary_10_1088_1361_6560_adac25
crossref_primary_10_3390_s23063035
crossref_primary_10_1109_TPAMI_2024_3523364
crossref_primary_10_1007_s10462_024_10934_9
crossref_primary_10_3390_rs15081995
crossref_primary_10_1016_j_jechem_2024_11_011
crossref_primary_10_1016_j_neunet_2023_11_039
crossref_primary_10_1155_2023_6646599
crossref_primary_10_1016_j_compbiomed_2023_107396
crossref_primary_10_1109_TGRS_2023_3280546
crossref_primary_10_3390_math12203174
crossref_primary_10_1177_11795972241271569
crossref_primary_10_3390_app15010109
crossref_primary_10_1109_TASE_2023_3346823
Cites_doi 10.1162/neco.1989.1.4.541
10.1109/ICCV48922.2021.00179
10.1109/LGRS.2017.2752750
10.1007/978-3-031-01821-3
10.1038/nature14539
10.1162/neco.1997.9.8.1735
10.1016/j.patrec.2008.04.005
10.1109/ICCV48922.2021.00675
10.1007/s11263-016-0981-7
10.1145/10.1109/wacv.2018.00092
10.1109/ICCV48922.2021.01204
10.1145/10.1109/TPAMI.2019.2916873
10.1109/CVPR42600.2020.00975
10.18653/v1/2020.acl-main.686
10.1109/CVPR46437.2021.00681
10.1109/ICCV48922.2021.00717
10.1109/ICCV48922.2021.00950
ContentType Journal Article
DBID AAYXX
CITATION
ADTPV
AOWAS
DG8
DOI 10.1145/3505244
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Linköpings universitet
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1557-7341
EndPage 41
ExternalDocumentID oai_DiVA_org_liu_190366
10_1145_3505244
GroupedDBID --Z
-DZ
-~X
.DC
23M
4.4
5GY
5VS
6J9
85S
8US
8VB
AAIKC
AAKMM
AALFJ
AAMNW
AAYFX
AAYXX
ABPPZ
ACGFO
ACGOD
ACM
ACNCT
ADBCU
ADL
ADMLS
AEBYY
AEFXT
AEGXH
AEJOY
AEMOZ
AENEX
AENSD
AETEA
AFWIH
AFWXC
AGHSJ
AHQJS
AIAGR
AIKLT
AKRVB
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BDXCO
CCLIF
CITATION
CS3
FEDTE
GUFHI
HGAVV
H~9
IAO
ICD
IEA
IGS
IOF
K1G
LHSKQ
N95
P1C
P2P
PQQKQ
QWB
RNS
ROL
RXW
TAE
TH9
U5U
UKR
UPT
WH7
X6Y
XH6
XSW
XZL
YXB
ZCA
ZL0
41~
4R4
9M8
AAFWJ
ACBNA
ADMHC
ADTPV
ADXHL
AFFNX
AI.
AOWAS
BAAKF
DG8
EBS
EJD
HF~
ITC
MVM
OHT
TAF
VH1
XJT
XOL
YR5
ZCG
ID FETCH-LOGICAL-c329t-18a276a15b29d94046105d25044a4fbb84b9073e77c164fadb350059e5d41b373
ISSN 0360-0300
1557-7341
IngestDate Thu Aug 21 06:48:42 EDT 2025
Thu Jul 03 08:32:49 EDT 2025
Thu Apr 24 23:09:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10s
Keywords bidirectional encoders
transformers
literature survey
Self-attention
convolutional networks
self-supervision
deep neural networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c329t-18a276a15b29d94046105d25044a4fbb84b9073e77c164fadb350059e5d41b373
ORCID 0000-0001-6172-5572
0000-0001-7663-7161
0000-0002-7198-0187
0000-0002-4263-3143
0000-0002-2706-5985
0000-0002-9502-1749
PageCount 41
ParticipantIDs swepub_primary_oai_DiVA_org_liu_190366
crossref_primary_10_1145_3505244
crossref_citationtrail_10_1145_3505244
PublicationCentury 2000
PublicationDate 2022-01-31
PublicationDateYYYYMMDD 2022-01-31
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-31
  day: 31
PublicationDecade 2020
PublicationTitle ACM computing surveys
PublicationYear 2022
References Misra Ishan (e_1_3_2_144_2) 2016
Xu Tao (e_1_3_2_226_2) 2018
Ahsan Unaiza (e_1_3_2_6_2) 2019
Seong Hongje (e_1_3_2_174_2) 2019
Yang Fuzhi (e_1_3_2_228_2) 2020
Touvron Hugo (e_1_3_2_199_2) 2021
e_1_3_2_62_2
e_1_3_2_85_2
Tan Mingxing (e_1_3_2_191_2) 2019
Wang Jue (e_1_3_2_207_2) 2021
Lee Hsin-Ying (e_1_3_2_114_2) 2017
Liu Ze (e_1_3_2_138_2) 2021
Radford Alec (e_1_3_2_163_2) 2018
Zellers Rowan (e_1_3_2_238_2) 2019
Ramesh Aditya (e_1_3_2_167_2) 2021
Tay Yi (e_1_3_2_194_2) 2020
Korbar Bruno (e_1_3_2_106_2) 2018
Abnar Samira (e_1_3_2_5_2) 2020
e_1_3_2_108_2
Chen Boyu (e_1_3_2_28_2) 2021
Lee Sangho (e_1_3_2_116_2) 2020
Tan Hao (e_1_3_2_190_2) 2020
Ledig Christian (e_1_3_2_113_2) 2017
Lin Tsung-Yi (e_1_3_2_131_2) 2017
Wu Xiaolei (e_1_3_2_220_2) 2021
Naseer Muhammad Muzammal (e_1_3_2_146_2) 2019
Neuhold Gerhard (e_1_3_2_148_2) 2017
Ho Jonathan (e_1_3_2_84_2) 2019
e_1_3_2_73_2
e_1_3_2_205_2
e_1_3_2_58_2
Grill Jean-Bastien (e_1_3_2_74_2) 2020
e_1_3_2_112_2
Liu Yun (e_1_3_2_137_2) 2021
Girdhar Rohit (e_1_3_2_70_2) 2019
e_1_3_2_50_2
Vaswani Ashish (e_1_3_2_202_2) 2017
Cordts Marius (e_1_3_2_47_2) 2016
Alberti Chris (e_1_3_2_7_2) 2019
Chen Hanting (e_1_3_2_31_2) 2020
Chen Minghao (e_1_3_2_33_2) 2021
Dosovitskiy Alexey (e_1_3_2_57_2) 2020
e_1_3_2_63_2
Wang Wenxiao (e_1_3_2_211_2) 2021
Hénaff Olivier J. (e_1_3_2_83_2) 2019
Foret Pierre (e_1_3_2_65_2) 2020
Krishna Ranjay (e_1_3_2_107_2) 2017
Chefer Hila (e_1_3_2_27_2) 2020
Hao Weituo (e_1_3_2_77_2) 2020
Lin Junyang (e_1_3_2_129_2) 2021
Karras Tero (e_1_3_2_98_2) 2020
e_1_3_2_229_2
Child Rewon (e_1_3_2_41_2) 2019
Johnson Justin (e_1_3_2_96_2) 2016
Sajjadi Mehdi S. M. (e_1_3_2_172_2) 2017
e_1_3_2_36_2
Jaegle Andrew (e_1_3_2_91_2) 2021
Reed Scott (e_1_3_2_170_2) 2016
e_1_3_2_111_2
Huang Zilong (e_1_3_2_89_2) 2019
Sigurdsson Gunnar A. (e_1_3_2_178_2) 2016
Zhang Pengchuan (e_1_3_2_244_2) 2021
Chaudhari Sneha (e_1_3_2_26_2) 2019
Gao Chen (e_1_3_2_66_2) 2020
Doersch Carl (e_1_3_2_55_2) 2020
Liang Xiaodan (e_1_3_2_126_2) 2018
Beltagy Iz (e_1_3_2_16_2) 2020
Bachman Philip (e_1_3_2_13_2) 2019
Tai Ying (e_1_3_2_188_2) 2017
e_1_3_2_60_2
Zhao Hengshuang (e_1_3_2_250_2) 2020
e_1_3_2_102_2
Zhang Yulun (e_1_3_2_248_2) 2020
Tay Y. (e_1_3_2_192_2) 2021
Oord Aaron Van den (e_1_3_2_200_2) 2016
Kamath Aishwarya (e_1_3_2_97_2) 2021
Carreira Joao (e_1_3_2_25_2) 2019
Zhou Bolei (e_1_3_2_252_2) 2017
Ordonez Vicente (e_1_3_2_151_2) 2011
Ott Myle (e_1_3_2_152_2) 2018
Shaw Peter (e_1_3_2_177_2) 2018
e_1_3_2_222_2
Zamir Syed Waqas (e_1_3_2_237_2) 2021
Bengio Yoshua (e_1_3_2_17_2) 2017
e_1_3_2_79_2
Liu Wei (e_1_3_2_134_2) 2016
Fedus William (e_1_3_2_64_2)
Szegedy Christian (e_1_3_2_187_2) 2013
Chen Xiangning (e_1_3_2_38_2) 2021
Ye Han-Jia (e_1_3_2_231_2) 2020
Jiang Zihang (e_1_3_2_93_2) 2021
Ging Simon (e_1_3_2_69_2) 2020
Plizzari Chiara (e_1_3_2_159_2) 2020
Wang Zhendong (e_1_3_2_217_2) 2021
Arnab Anurag (e_1_3_2_11_2) 2021
Xiong Yunyang (e_1_3_2_225_2) 2021
Voita Elena (e_1_3_2_204_2) 2019
Zhang Han (e_1_3_2_241_2) 2017
Yuan Kun (e_1_3_2_234_2) 2021
Gidaris Spyros (e_1_3_2_68_2) 2018
Jing Longlong (e_1_3_2_95_2) 2018
Chen Chun-Fu (e_1_3_2_29_2) 2021
Deng Jia (e_1_3_2_52_2) 2009
Lu Zhisheng (e_1_3_2_140_2) 2021
e_1_3_2_124_2
Wu Haiping (e_1_3_2_219_2) 2021
Bertasius Gedas (e_1_3_2_18_2) 2020
Gemmeke Jort F. (e_1_3_2_67_2) 2017
Mao Junhua (e_1_3_2_142_2) 2016
Caron Mathilde (e_1_3_2_24_2) 2021
e_1_3_2_101_2
He Kaiming (e_1_3_2_81_2) 2016
Radford Alec (e_1_3_2_162_2) 2015
Zhou Luowei (e_1_3_2_254_2) 2020
Bello Irwan (e_1_3_2_14_2) 2021
e_1_3_2_4_2
Chen Mark (e_1_3_2_34_2) 2020
Touvron Hugo (e_1_3_2_197_2) 2021
Kitaev Nikita (e_1_3_2_105_2) 2020
Chen Ting (e_1_3_2_35_2) 2020
Sharma Piyush (e_1_3_2_176_2) 2018
Redmon Joseph (e_1_3_2_169_2) 2016
Prangemeier Tim (e_1_3_2_160_2) 2020
Chen Xinlei (e_1_3_2_37_2) 2020
e_1_3_2_251_2
Li Xiujun (e_1_3_2_123_2) 2020
Carion Nicolas (e_1_3_2_23_2) 2020
Shahroudy Amir (e_1_3_2_175_2) 2016
e_1_3_2_20_2
Zhang Han (e_1_3_2_242_2) 2018
Hu Dichao (e_1_3_2_86_2) 2019
Ren Shaoqing (e_1_3_2_171_2) 2016
Kumar Manoj (e_1_3_2_110_2) 2021
Li Liunian Harold (e_1_3_2_121_2) 2019
Hu Han (e_1_3_2_87_2) 2019
Lim Bee (e_1_3_2_127_2) 2017
e_1_3_2_39_2
Lu Jiasen (e_1_3_2_139_2) 2019
Zhou Luowei (e_1_3_2_256_2) 2018
Sayed Nawid (e_1_3_2_173_2) 2018
Lin Kevin (e_1_3_2_130_2) 2020
Chu Xiangxiang (e_1_3_2_43_2) 2021
Han Wei (e_1_3_2_76_2) 2018
e_1_3_2_3_2
e_1_3_2_209_2
Bertasius Gedas (e_1_3_2_19_2) 2021
Goodfellow Ian (e_1_3_2_72_2) 2014
e_1_3_2_92_2
Wang Xinpeng (e_1_3_2_213_2) 2020
Wang Sinong (e_1_3_2_208_2) 2020
Wang Wenhai (e_1_3_2_210_2) 2021
Tolstikhin Ilya (e_1_3_2_196_2) 2021
Kazemzadeh Sahar (e_1_3_2_100_2) 2014
Zhang Qinglong (e_1_3_2_245_2) 2021
Coates Adam (e_1_3_2_45_2) 2011
Vinyals Oriol (e_1_3_2_203_1) 2015
Yu Licheng (e_1_3_2_233_2) 2016
Ye Linwei (e_1_3_2_232_2) 2019
Arandjelovic Relja (e_1_3_2_10_2) 2017
Kay Will (e_1_3_2_99_2) 2017
Wu Yu-Huan (e_1_3_2_221_2) 2021
Xie Saining (e_1_3_2_223_2) 2017
e_1_3_2_44_2
Razavi Ali (e_1_3_2_168_2) 2019
Touvron Hugo (e_1_3_2_198_2) 2020
Girshick Ross (e_1_3_2_71_2) 2015
Radford Alec (e_1_3_2_164_2) 2019
Yun Sangdoo (e_1_3_2_236_2) 2019
Zhu Xizhou (e_1_3_2_257_2) 2020
Wang Xiaolong (e_1_3_2_212_2) 2018
Lee Kuang-Huei (e_1_3_2_115_2) 2018
Raffel Colin (e_1_3_2_166_2) 2019
(e_1_3_2_8_2) 2022
Antol Stanislaw (e_1_3_2_9_2) 2015
Li Changlin (e_1_3_2_118_2) 2021
Tay Yi (e_1_3_2_193_2) 2020
Zhang Zizhao (e_1_3_2_249_2) 2021
Krizhevsky Alex (e_1_3_2_109_2) 2009
Majumdar Arjun (e_1_3_2_141_2) 2020
Lin Tsung-Yi (e_1_3_2_132_2) 2014
Chen Yen-Chun (e_1_3_2_40_2) 2020
Ba Jimmy Lei (e_1_3_2_12_2) 2016
Dong Xiaoyi (e_1_3_2_56_2) 2021
Chen Kevin (e_1_3_2_32_2) 2020
e_1_3_2_78_2
Wang Xintao (e_1_3_2_214_2) 2018
e_1_3_2_2_2
Sun Chen (e_1_3_2_184_2) 2019
Tian Yonglong (e_1_3_2_195_2) 2019
Wang Huiyu (e_1_3_2_206_2) 2020
Parmar Niki (e_1_3_2_155_2) 2018
Liang Jingyun (e_1_3_2_125_2) 2021
Correia Alana de Santana (e_1_3_2_51_2) 2021
Liu Xiao (e_1_3_2_135_2) 2020
Pérez Jorge (e_1_3_2_158_2) 2018
Zhang Han (e_1_3_2_240_2) 2019
Naseer Muzammal (e_1_3_2_145_2) 2021
Brown Tom B. (e_1_3_2_21_2) 2020
e_1_3_2_253_2
Yuan Li (e_1_3_2_235_2) 2021
Cordonnier Jean-Baptiste (e_1_3_2_46_2) 2019
He Kaiming (e_1_3_2_80_2) 2017
Neimark Daniel (e_1_3_2_147_2) 2021
Choromanski Krzysztof (e_1_3_2_42_2) 2021
Dai Tao (e_1_3_2_49_2) 2019
Radosavovic Ilija (e_1_3_2_165_2) 2020
Soomro Khurram (e_1_3_2_180_2) 2012
Kingma Diederik P. (e_1_3_2_103_2) 2013
Xie Zhenda (e_1_3_2_224_2) 2021
Tan Hao (e_1_3_2_189_2) 2019
Li Muchen (e_1_3_2_122_2) 2021
e_1_3_2_179_2
Jaegle Andrew (e_1_3_2_90_2) 2021
Sun Chen (e_1_3_2_185_2) 2019
e_1_3_2_133_2
Bello Irwan (e_1_3_2_15_2) 2019
Jing Longlong (e_1_3_2_94_2) 2020
Parmar Niki (e_1_3_2_154_2) 2019
Wang Yuqing (e_1_3_2_215_2) 2020
Niu Ben (e_1_3_2_149_2) 2020
Peng Hao (e_1_3_2_157_2) 2021
Devlin Jacob (e_1_3_2_54_2) 2018
Kirillov Alexander (e_1_3_2_104_2) 2019
Zhang Pengchuan (e_1_3_2_243_2) 2021
Li Chunyuan (e_1_3_2_119_2) 2021
Zhang Yulun (e_1_3_2_247_2) 2018
Du Ye (e_1_3_2_59_2) 2021
e_1_3_2_239_2
e_1_3_2_216_2
e_1_3_2_88_2
Suhr Alane (e_1_3_2_183_2) 2018
Lepikhin Dmitry (e_1_3_2_117_2) 2020
Park Seong-Jin (e_1_3_2_153_2) 2018
Vaswani Ashish (e_1_3_2_201_2) 2021
Wei Donglai (e_1_3_2_218_2) 2018
Zhang Richard (e_1_3_2_246_2) 2016
e_1_3_2_128_2
Dai Jifeng (e_1_3_2_48_2) 2017
Su Weijie (e_1_3_2_182_2) 2019
Zhou Luowei (e_1_3_2_255_2) 2018
Melas-Kyriazi Luke (e_1_3_2_143_2) 2021
e_1_3_2_30_2
e_1_3_2_53_2
Noroozi Mehdi (e_1_3_2_150_2) 2016
e_1_3_2_227_2
e_1_3_2_181_2
Han Kai (e_1_3_2_75_2) 2021
He Shuting (e_1_3_2_82_2) 2021
Esser Patrick (e_1_3_2_61_2) 2020
Li Gen (e_1_3_2_120_2) 2020
Yang Linjie (e_1_3_2_230_2) 2019
Liu Yinhan (e_1_3_2_136_2) 2019
Radford Alec (e_1_3_2_161_2) 2021; 2
Szegedy Christian (e_1_3_2_186_2) 2016
Buades Antoni (e_1_3_2_22_2) 2005
Pathak Deepak (e_1_3_2_156_2) 2016
References_xml – start-page: 700
  volume-title: BIBM
  year: 2020
  ident: e_1_3_2_160_2
– year: 2019
  ident: e_1_3_2_26_2
  article-title: An attentive survey of attention models
  publication-title: arXiv:1904.02874
– volume-title: CVPR
  year: 2017
  ident: e_1_3_2_188_2
– start-page: 12894
  volume-title: CVPR
  year: 2021
  ident: e_1_3_2_201_2
– year: 2020
  ident: e_1_3_2_74_2
  article-title: Bootstrap your own latent: A new approach to self-supervised learning
  publication-title: NeurIPS
– volume-title: ICML
  year: 2021
  ident: e_1_3_2_19_2
– year: 2020
  ident: e_1_3_2_61_2
  article-title: Taming transformers for high-resolution image synthesis
  publication-title: arXiv:2012.09841
– year: 2021
  ident: e_1_3_2_93_2
  article-title: All tokens matter: Token labeling for training better vision transformers
  publication-title: arXiv:2104.10858
– volume-title: NeurIPS
  year: 2019
  ident: e_1_3_2_139_2
– volume-title: ECCV
  year: 2016
  ident: e_1_3_2_246_2
– volume-title: CVPR
  year: 2019
  ident: e_1_3_2_238_2
– volume-title: Language Models Are Unsupervised Multitask Learners
  year: 2019
  ident: e_1_3_2_164_2
– volume-title: ICCV
  year: 2015
  ident: e_1_3_2_9_2
– volume-title: NeurIPS
  year: 2018
  ident: e_1_3_2_106_2
– volume-title: CVPR
  year: 2016
  ident: e_1_3_2_175_2
– ident: e_1_3_2_36_2
– volume-title: CVPR
  year: 2005
  ident: e_1_3_2_22_2
– year: 2021
  ident: e_1_3_2_24_2
  article-title: Emerging properties in self-supervised vision transformers
  publication-title: arXiv:2104.14294
– volume-title: CVPR
  year: 2019
  ident: e_1_3_2_104_2
– year: 2020
  ident: e_1_3_2_206_2
  article-title: Axial-DeepLab: Stand-alone axial-attention for panoptic segmentation
  publication-title: arXiv:2003.07853
– year: 2020
  ident: e_1_3_2_16_2
  article-title: Longformer: The long-document transformer
  publication-title: arXiv:2004.05150
– start-page: 2818
  volume-title: CVPR
  year: 2016
  ident: e_1_3_2_186_2
– ident: e_1_3_2_124_2
– year: 2019
  ident: e_1_3_2_182_2
  article-title: VL-BERT: Pre-training of generic visual-linguistic representations
  publication-title: arXiv:1908.08530
– ident: e_1_3_2_63_2
– year: 2021
  ident: e_1_3_2_224_2
  article-title: Self-supervised learning with swin transformers
  publication-title: arXiv:2105.04553
– ident: e_1_3_2_239_2
– volume-title: ICCV
  year: 2019
  ident: e_1_3_2_15_2
– ident: e_1_3_2_2_2
– volume-title: ICLR
  year: 2018
  ident: e_1_3_2_68_2
– ident: e_1_3_2_112_2
  doi: 10.1162/neco.1989.1.4.541
– start-page: 0
  volume-title: ICCV Workshops
  year: 2019
  ident: e_1_3_2_174_2
– year: 2021
  ident: e_1_3_2_90_2
  article-title: Perceiver IO: A general architecture for structured inputs & outputs
  publication-title: arXiv:2107.14795
– year: 2020
  ident: e_1_3_2_31_2
  article-title: Pre-trained image processing transformer
  publication-title: arXiv:2012.00364
– volume-title: CVPR
  year: 2017
  ident: e_1_3_2_252_2
– volume-title: ICCV
  year: 2019
  ident: e_1_3_2_185_2
– volume-title: ICCV
  year: 2019
  ident: e_1_3_2_89_2
– volume-title: AAAI
  year: 2021
  ident: e_1_3_2_225_2
– year: 2021
  ident: e_1_3_2_75_2
  article-title: Transformer in transformer
  publication-title: arXiv:2103.00112
– volume-title: CVPR
  year: 2018
  ident: e_1_3_2_226_2
– year: 2016
  ident: e_1_3_2_12_2
  article-title: Layer normalization
  publication-title: arXiv:1607.06450
– year: 2020
  ident: e_1_3_2_32_2
  article-title: Topological planning with transformers for vision-and-language navigation
  publication-title: arXiv:2012.05292
– year: 2021
  ident: e_1_3_2_119_2
  article-title: Efficient Self-supervised vision transformers for representation learning
  publication-title: arXiv:2106.09785
– volume-title: ICCV
  year: 2019
  ident: e_1_3_2_87_2
– volume-title: IntelliSys
  year: 2019
  ident: e_1_3_2_86_2
– volume-title: NeurIPS
  year: 2019
  ident: e_1_3_2_154_2
– volume-title: ICASSP
  year: 2017
  ident: e_1_3_2_67_2
– year: 2020
  ident: e_1_3_2_159_2
  article-title: Spatial temporal transformer network for skeleton-based action recognition
  publication-title: arXiv:2008.07404
– year: 2021
  ident: e_1_3_2_28_2
  article-title: GLiT: Neural architecture search for global and local image transformer
  publication-title: arXiv:2107.02960
– volume-title: Learning Multiple Layers of Features from Tiny Images
  year: 2009
  ident: e_1_3_2_109_2
– volume-title: CVPR
  year: 2009
  ident: e_1_3_2_52_2
– year: 2015
  ident: e_1_3_2_162_2
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: arXiv:1511.06434
– ident: e_1_3_2_227_2
– volume-title: CVPR
  year: 2019
  ident: e_1_3_2_49_2
– year: 2020
  ident: e_1_3_2_94_2
  article-title: Self-supervised visual feature learning with deep neural networks: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume-title: ECCV
  year: 2018
  ident: e_1_3_2_247_2
– year: 2021
  ident: e_1_3_2_140_2
  article-title: Efficient transformer for single image super-resolution
  publication-title: arXiv:2108.11084
– volume-title: arXiv:2105.12723
  year: 2021
  ident: e_1_3_2_249_2
– volume-title: CVPR
  year: 2016
  ident: e_1_3_2_81_2
– volume-title: NeurIPS
  year: 2017
  ident: e_1_3_2_202_2
– volume-title: ICCV
  year: 2017
  ident: e_1_3_2_172_2
– year: 2018
  ident: e_1_3_2_183_2
  article-title: A corpus for reasoning about natural language grounded in photographs
  publication-title: arXiv:1811.00491
– year: 2018
  ident: e_1_3_2_242_2
  article-title: StackGAN++: Realistic image synthesis with stacked generative adversarial networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 13041
  volume-title: AAAI
  year: 2020
  ident: e_1_3_2_254_2
– year: 2020
  ident: e_1_3_2_65_2
  article-title: Sharpness-aware minimization for efficiently improving generalization
  publication-title: arXiv:2010.01412
– year: 2021
  ident: e_1_3_2_129_2
  article-title: M6: A Chinese multimodal pretrainer
  publication-title: arXiv:2103.00823
– volume-title: Improving Language Understanding by Generative Pre-training
  year: 2018
  ident: e_1_3_2_163_2
– volume-title: ICCV
  year: 2021
  ident: e_1_3_2_138_2
– ident: e_1_3_2_88_2
– volume-title: ICML
  year: 2020
  ident: e_1_3_2_34_2
– year: 2020
  ident: e_1_3_2_37_2
  article-title: Improved baselines with momentum contrastive learning
  publication-title: arXiv:2003.04297
– ident: e_1_3_2_53_2
  doi: 10.1109/ICCV48922.2021.00179
– volume-title: arXiv:1908.03557
  year: 2019
  ident: e_1_3_2_121_2
– start-page: 5680
  volume-title: CVPR
  year: 2020
  ident: e_1_3_2_66_2
– year: 2020
  ident: e_1_3_2_257_2
  article-title: Deformable DETR: Deformable transformers for end-to-end object detection
  publication-title: arXiv:2010.04159
– year: 2018
  ident: e_1_3_2_54_2
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
  publication-title: arXiv:1810.04805
– year: 2021
  ident: e_1_3_2_217_2
  article-title: Uformer: A general U-shaped transformer for image restoration
  publication-title: arXiv:2106.03106
– start-page: 6023
  volume-title: ICCV
  year: 2019
  ident: e_1_3_2_236_2
– ident: e_1_3_2_128_2
  doi: 10.1109/LGRS.2017.2752750
– year: 2020
  ident: e_1_3_2_198_2
  article-title: Training data-efficient image transformers & distillation through attention
  publication-title: arXiv:2012.12877
– volume: 2
  start-page: T2
  year: 2021
  ident: e_1_3_2_161_2
  article-title: Learning transferable visual models from natural language supervision
  publication-title: Image
– year: 2021
  ident: e_1_3_2_51_2
  article-title: Attention, please! A survey of neural attention models in deep learning
  publication-title: arXiv:2103.16775
– year: 2021
  ident: e_1_3_2_245_2
  article-title: ResT: An efficient transformer for visual recognition
  publication-title: arXiv:2105.13677
– volume-title: ICCVW
  year: 2021
  ident: e_1_3_2_125_2
– ident: e_1_3_2_30_2
– year: 2021
  ident: e_1_3_2_91_2
  article-title: Perceiver: General perception with iterative attention
  publication-title: arXiv:2103.03206
– volume-title: ECCV
  year: 2016
  ident: e_1_3_2_178_2
– volume-title: ECCV
  year: 2020
  ident: e_1_3_2_123_2
– year: 2020
  ident: e_1_3_2_248_2
  article-title: Residual dense network for image restoration
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: e_1_3_2_44_2
– year: 2021
  ident: e_1_3_2_211_2
  article-title: CrossFormer: A versatile vision transformer based on cross-scale attention
  publication-title: arXiv:2108.00154
– year: 2021
  ident: e_1_3_2_137_2
  article-title: Transformer in convolutional neural networks
  publication-title: arXiv:2106.03180
– year: 2021
  ident: e_1_3_2_219_2
  article-title: Cvt: Introducing convolutions to vision transformers
  publication-title: arXiv:2103.15808
– volume-title: ICCV
  year: 2017
  ident: e_1_3_2_10_2
– volume-title: NeurIPS
  year: 2016
  ident: e_1_3_2_200_2
– year: 2020
  ident: e_1_3_2_135_2
  article-title: Self-supervised learning: Generative or contrastive
  publication-title: arXiv:2006.08218
– year: 2020
  ident: e_1_3_2_23_2
  article-title: End-to-end object detection with transformers
  publication-title: arXiv:2005.12872
– year: 2021
  ident: e_1_3_2_145_2
  article-title: Intriguing properties of vision transformers
  publication-title: arXiv:2105.10497
– year: 2021
  ident: e_1_3_2_122_2
  article-title: Referring transformer: A one-step approach to multi-task visual grounding
  publication-title: arXiv:2106.03089
– volume-title: CVPR
  year: 2018
  ident: e_1_3_2_76_2
– volume-title: NeurISP
  year: 2019
  ident: e_1_3_2_168_2
– volume-title: NeurIPS
  year: 2019
  ident: e_1_3_2_13_2
– volume-title: CVPR
  year: 2019
  ident: e_1_3_2_232_2
– ident: e_1_3_2_101_2
  doi: 10.1007/978-3-031-01821-3
– volume-title: CVPR
  year: 2018
  ident: e_1_3_2_212_2
– volume-title: NeurIPS
  year: 2019
  ident: e_1_3_2_146_2
– year: 2018
  ident: e_1_3_2_126_2
  article-title: Look into person: Joint body parsing & pose estimation network and a new benchmark
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2020
  ident: e_1_3_2_194_2
  article-title: Efficient transformers: A survey
  publication-title: arXiv:2009.06732
– ident: e_1_3_2_111_2
  doi: 10.1038/nature14539
– volume-title: ECCV
  year: 2020
  ident: e_1_3_2_40_2
– start-page: 764
  volume-title: ICCV
  year: 2017
  ident: e_1_3_2_48_2
– volume-title: ICLR
  year: 2021
  ident: e_1_3_2_14_2
– year: 2021
  ident: e_1_3_2_56_2
  article-title: Cswin transformer: A general vision transformer backbone with cross-shaped windows
  publication-title: arXiv:2107.00652
– volume-title: AISTATS
  year: 2011
  ident: e_1_3_2_45_2
– ident: e_1_3_2_92_2
– year: 2020
  ident: e_1_3_2_27_2
  article-title: Transformer interpretability beyond attention visualization
  publication-title: arXiv:2012.09838
– ident: e_1_3_2_216_2
– year: 2021
  ident: e_1_3_2_43_2
  article-title: Twins: Revisiting the design of spatial attention in vision transformers
  publication-title: arXiv:2104.13840
– start-page: 5188
  volume-title: ICCV
  year: 2019
  ident: e_1_3_2_230_2
– volume-title: ICLR
  year: 2018
  ident: e_1_3_2_158_2
– year: 2020
  ident: e_1_3_2_5_2
  article-title: Quantifying attention flow in transformers
  publication-title: arXiv:2005.00928
– volume-title: NIPS
  year: 2021
  ident: e_1_3_2_196_2
– year: 2020
  ident: e_1_3_2_57_2
  article-title: An image is worth 16 \( \times \) 16 words: Transformers for image recognition at scale
  publication-title: arXiv:2010.11929
– year: 2021
  ident: e_1_3_2_33_2
  article-title: AutoFormer: Searching transformers for visual recognition
  publication-title: arXiv:2107.00651
– volume-title: CVPR
  year: 2017
  ident: e_1_3_2_131_2
– volume-title: ECCV
  year: 2016
  ident: e_1_3_2_150_2
– start-page: 5579
  volume-title: CVPR
  year: 2021
  ident: e_1_3_2_244_2
– year: 2021
  ident: e_1_3_2_197_2
  article-title: Resmlp: Feedforward networks for image classification with data-efficient training
  publication-title: arXiv:2105.03404
– volume-title: NAACL
  year: 2018
  ident: e_1_3_2_177_2
– ident: e_1_3_2_85_2
  doi: 10.1162/neco.1997.9.8.1735
– volume-title: CVPR
  year: 2017
  ident: e_1_3_2_113_2
– volume-title: ICLR
  year: 2021
  ident: e_1_3_2_157_2
– volume-title: WMT
  year: 2018
  ident: e_1_3_2_152_2
– volume-title: CVPR
  year: 2015
  ident: e_1_3_2_203_1
– ident: e_1_3_2_20_2
  doi: 10.1016/j.patrec.2008.04.005
– ident: e_1_3_2_62_2
  doi: 10.1109/ICCV48922.2021.00675
– year: 2020
  ident: e_1_3_2_215_2
  article-title: End-to-end video instance segmentation with transformers
  publication-title: arXiv:2011.14503
– volume-title: ICLR
  year: 2022
  ident: e_1_3_2_8_2
– ident: e_1_3_2_108_2
  doi: 10.1007/s11263-016-0981-7
– year: 2021
  ident: e_1_3_2_143_2
  article-title: Do you even need attention? A stack of feed-forward layers does surprisingly well on imagenet
  publication-title: arXiv:2105.02723
– ident: e_1_3_2_50_2
– volume-title: CVPR
  year: 2020
  ident: e_1_3_2_250_2
– volume-title: ICML
  year: 2020
  ident: e_1_3_2_193_2
– year: 2021
  ident: e_1_3_2_147_2
  article-title: Video transformer network
  publication-title: arXiv:2102.00719
– start-page: 7354
  volume-title: ICML
  year: 2019
  ident: e_1_3_2_240_2
– year: 2017
  ident: e_1_3_2_99_2
  article-title: The kinetics human action video dataset
  publication-title: arXiv:1705.06950
– year: 2021
  ident: e_1_3_2_82_2
  article-title: TransReID: Transformer-based object re-identification
  publication-title: arXiv:2102.04378
– year: 2021
  ident: e_1_3_2_207_2
  article-title: Long-short temporal contrastive learning of video transformers
  publication-title: arXiv:2106.09212
– year: 2021
  ident: e_1_3_2_235_2
  article-title: Tokens-to-token ViT: Training vision transformers from scratch on imagenet
  publication-title: arXiv:2101.11986
– year: 2013
  ident: e_1_3_2_103_2
  article-title: Auto-encoding variational bayes
  publication-title: arXiv:1312.6114
– year: 2021
  ident: e_1_3_2_59_2
  article-title: Visual grounding with transformers
  publication-title: arXiv:2105.04281
– ident: e_1_3_2_102_2
  doi: 10.1145/10.1109/wacv.2018.00092
– year: 2021
  ident: e_1_3_2_29_2
  article-title: Crossvit: Cross-attention multi-scale vision transformer for image classification
  publication-title: arXiv:2103.14899
– volume-title: NeurIPS
  year: 2014
  ident: e_1_3_2_72_2
– ident: e_1_3_2_73_2
  doi: 10.1109/ICCV48922.2021.01204
– ident: e_1_3_2_209_2
– volume-title: CVPR
  year: 2016
  ident: e_1_3_2_47_2
– volume-title: EMNLP
  year: 2019
  ident: e_1_3_2_7_2
– volume-title: ECCV
  year: 2014
  ident: e_1_3_2_132_2
– volume-title: EMNLP
  year: 2020
  ident: e_1_3_2_190_2
– year: 2021
  ident: e_1_3_2_210_2
  article-title: Pyramid vision transformer: A versatile backbone for dense prediction without convolutions
  publication-title: arXiv:2102.12122
– ident: e_1_3_2_133_2
  doi: 10.1145/10.1109/TPAMI.2019.2916873
– year: 2019
  ident: e_1_3_2_41_2
  article-title: Generating long sequences with sparse transformers
  publication-title: arXiv:1904.10509
– volume-title: EMNLP
  year: 2014
  ident: e_1_3_2_100_2
– year: 2020
  ident: e_1_3_2_117_2
  article-title: Gshard: Scaling giant models with conditional computation and automatic sharding
  publication-title: arXiv:2006.16668
– volume-title: CVPR
  year: 2020
  ident: e_1_3_2_77_2
– volume-title: ICCV
  year: 2017
  ident: e_1_3_2_148_2
– year: 2021
  ident: e_1_3_2_221_2
  article-title: P2T: Pyramid pooling transformer for scene understanding
  publication-title: arXiv:2106.12011
– volume-title: ICLR
  year: 2021
  ident: e_1_3_2_42_2
– ident: e_1_3_2_79_2
  doi: 10.1109/CVPR42600.2020.00975
– ident: e_1_3_2_253_2
– ident: e_1_3_2_3_2
– year: 2019
  ident: e_1_3_2_184_2
  article-title: Learning video representations using contrastive bidirectional transformer
  publication-title: arXiv:1906.05743
– volume-title: CVPRW
  year: 2017
  ident: e_1_3_2_127_2
– year: 2019
  ident: e_1_3_2_136_2
  article-title: RoBERTa: A robustly optimized bert pretraining approach
  publication-title: arXiv:1907.11692
– year: 2021
  ident: e_1_3_2_118_2
  article-title: Bossnas: Exploring hybrid cnn-transformers with block-wisely self-supervised neural architecture search
  publication-title: arXiv:2103.12424
– year: 2019
  ident: e_1_3_2_83_2
  article-title: Data-efficient image recognition with contrastive predictive coding
  publication-title: arXiv:1905.09272
– ident: e_1_3_2_78_2
– start-page: 8110
  volume-title: CVPR
  year: 2020
  ident: e_1_3_2_98_2
– year: 2013
  ident: e_1_3_2_187_2
  article-title: Intriguing properties of neural networks
  publication-title: arXiv:1312.6199
– volume-title: ICCV
  year: 2015
  ident: e_1_3_2_71_2
– year: 2020
  ident: e_1_3_2_141_2
  article-title: Improving vision-and-language navigation with image-text pairs from the web
  publication-title: arXiv:2004.14973
– volume-title: CVPR
  year: 2020
  ident: e_1_3_2_231_2
– volume-title: AAAI
  year: 2018
  ident: e_1_3_2_255_2
– volume-title: ICCV
  year: 2017
  ident: e_1_3_2_80_2
– volume-title: ICLR
  year: 2021
  ident: e_1_3_2_110_2
– year: 2019
  ident: e_1_3_2_195_2
  article-title: Contrastive multiview coding
  publication-title: arXiv:1906.05849
– year: 2020
  ident: e_1_3_2_21_2
  article-title: Language models are few-shot learners
  publication-title: arXiv:2005.14165
– ident: e_1_3_2_205_2
  doi: 10.18653/v1/2020.acl-main.686
– volume-title: CVPR
  year: 2017
  ident: e_1_3_2_223_2
– start-page: 9739
  volume-title: CVPR
  year: 2020
  ident: e_1_3_2_18_2
– year: 2012
  ident: e_1_3_2_180_2
  article-title: UCF101: A dataset of 101 human actions classes from videos in the wild
  publication-title: arXiv:1212.0402
– volume-title: ECCV
  year: 2016
  ident: e_1_3_2_96_2
– volume-title: ECCV
  year: 2016
  ident: e_1_3_2_134_2
– volume-title: ICML
  year: 2016
  ident: e_1_3_2_170_2
– year: 2018
  ident: e_1_3_2_95_2
  article-title: Self-supervised spatiotemporal feature learning via video rotation prediction
  publication-title: arXiv:1811.11387
– volume-title: CVPR
  year: 2019
  ident: e_1_3_2_70_2
– start-page: 14618
  volume-title: ICCV
  year: 2021
  ident: e_1_3_2_220_2
– ident: e_1_3_2_179_2
– year: 2020
  ident: e_1_3_2_213_2
  article-title: SceneFormer: Indoor scene generation with transformers
  publication-title: arXiv:2012.09793
– year: 2020
  ident: e_1_3_2_130_2
  article-title: End-to-end human pose and mesh reconstruction with transformers
  publication-title: arXiv:2012.09760
– year: 2021
  ident: e_1_3_2_234_2
  article-title: Incorporating convolution designs into visual transformers
  publication-title: arXiv:2103.11816
– year: 2020
  ident: e_1_3_2_35_2
  article-title: A simple framework for contrastive learning of visual representations
  publication-title: arXiv:2002.05709
– volume-title: ECCV
  year: 2020
  ident: e_1_3_2_149_2
– volume-title: CVPR
  year: 2020
  ident: e_1_3_2_228_2
– year: 2020
  ident: e_1_3_2_208_2
  article-title: Linformer: Self-attention with linear complexity
  publication-title: arXiv:2006.04768
– year: 2021
  ident: e_1_3_2_237_2
  article-title: Restormer: Efficient transformer for high-resolution image restoration
  publication-title: arXiv:2111.09881
– volume-title: CVPR
  year: 2016
  ident: e_1_3_2_156_2
– volume-title: ECCV
  year: 2018
  ident: e_1_3_2_115_2
– volume-title: ICML
  year: 2018
  ident: e_1_3_2_155_2
– volume-title: ECCV
  year: 2016
  ident: e_1_3_2_233_2
– ident: e_1_3_2_222_2
– ident: e_1_3_2_251_2
  doi: 10.1109/CVPR46437.2021.00681
– volume-title: ECCV
  year: 2018
  ident: e_1_3_2_153_2
– volume-title: EMNLP-IJCNLP
  year: 2019
  ident: e_1_3_2_189_2
– ident: e_1_3_2_181_2
  doi: 10.1109/ICCV48922.2021.00717
– ident: e_1_3_2_60_2
– volume-title: ECCVW
  year: 2018
  ident: e_1_3_2_214_2
– volume-title: ICCV
  year: 2017
  ident: e_1_3_2_114_2
– year: 2021
  ident: e_1_3_2_243_2
  article-title: Multi-scale vision longformer: A new vision transformer for high-resolution image encoding
  publication-title: ICCV
– volume-title: WACV
  year: 2019
  ident: e_1_3_2_6_2
– ident: e_1_3_2_58_2
– year: 2020
  ident: e_1_3_2_55_2
  article-title: CrossTransformers: Spatially-aware few-shot transfer
  publication-title: NeurIPS
– ident: e_1_3_2_229_2
– volume-title: CVPR
  year: 2020
  ident: e_1_3_2_165_2
– volume-title: CVPR
  year: 2018
  ident: e_1_3_2_218_2
– volume-title: ICML
  year: 2019
  ident: e_1_3_2_191_2
– volume-title: AAAI
  year: 2020
  ident: e_1_3_2_120_2
– year: 2021
  ident: e_1_3_2_97_2
  article-title: MDETR–Modulated detection for end-to-end multi-modal understanding
  publication-title: arXiv:2104.12763
– start-page: 706
  volume-title: ICCV
  year: 2017
  ident: e_1_3_2_107_2
– volume-title: CVPR
  year: 2016
  ident: e_1_3_2_169_2
– volume-title: Deep Learning
  year: 2017
  ident: e_1_3_2_17_2
– year: 2016
  ident: e_1_3_2_171_2
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume-title: GCPR
  year: 2018
  ident: e_1_3_2_173_2
– volume-title: CVPR
  year: 2016
  ident: e_1_3_2_142_2
– year: 2021
  ident: e_1_3_2_199_2
  article-title: Going deeper with image transformers
  publication-title: arXiv:2103.17239
– volume-title: CVPR
  year: 2018
  ident: e_1_3_2_256_2
– ident: e_1_3_2_4_2
– volume-title: ECCV
  year: 2016
  ident: e_1_3_2_144_2
– year: 2019
  ident: e_1_3_2_25_2
  article-title: A short note on the kinetics-700 human action dataset
  publication-title: arXiv:1907.06987
– ident: e_1_3_2_64_2
  article-title: Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity
  publication-title: arXiv:2101.03961
– volume-title: ICLR
  year: 2020
  ident: e_1_3_2_105_2
– volume-title: DALL \( {\cdot } \) E: Creating Images from Text
  year: 2021
  ident: e_1_3_2_167_2
– volume-title: ICML
  year: 2021
  ident: e_1_3_2_192_2
– volume-title: NeurIPS
  year: 2011
  ident: e_1_3_2_151_2
– volume-title: ACL
  year: 2018
  ident: e_1_3_2_176_2
– year: 2021
  ident: e_1_3_2_38_2
  article-title: When vision transformers outperform ResNets without pretraining or strong data augmentations
  publication-title: arXiv:2106.01548
– volume-title: ICLR
  year: 2019
  ident: e_1_3_2_46_2
– year: 2020
  ident: e_1_3_2_116_2
  article-title: Parameter efficient multimodal transformers for video representation learning
  publication-title: arXiv:2012.04124
– year: 2019
  ident: e_1_3_2_204_2
  article-title: Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned
  publication-title: arXiv:1905.09418
– volume-title: ICCV
  year: 2017
  ident: e_1_3_2_241_2
– year: 2021
  ident: e_1_3_2_11_2
  article-title: Vivit: A video vision transformer
  publication-title: arXiv:2103.15691
– ident: e_1_3_2_39_2
  doi: 10.1109/ICCV48922.2021.00950
– year: 2019
  ident: e_1_3_2_166_2
  article-title: Exploring the limits of transfer learning with a unified text-to-text transformer
  publication-title: arXiv:1910.10683
– year: 2020
  ident: e_1_3_2_69_2
  article-title: COOT: Cooperative hierarchical transformer for video-text representation learning
  publication-title: arXiv:2011.00597
– year: 2019
  ident: e_1_3_2_84_2
  article-title: Axial attention in multidimensional transformers
  publication-title: arXiv:1912.12180
SSID ssj0002416
Score 2.7444372
Snippet Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision...
SourceID swepub
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 1
Title Transformers in Vision: A Survey
URI https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-190366
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7YULtDxEoSAfUC_IZeNHnO2JqC2qENtLn-IS2YkNkXZT2G6o2l_POHaymxaJxyWKEjtK8jmfx5mZbxB6WyS5UFwyQqWwhOsxI4pRQYD5rDWJ1bYp3zY5ig9P-acLcTEYfFjNLlnonfz2t3kl_4MqHANcXZbsPyDbXRQOwD7gC1tAGLZ_h3Frdbos3LJ6d9Ykivtk8-N6_rPvs033Jk0Eed1EOl8155eunG_hT6iazpYD5gjmOI_ppL5Vs5maLhnrRvlIj7pS16oL8f2iZqUv5XUDpuy5-qF6Pxaoi9BoGblNqBoR4ADvNjGBH4UkknmtqpZAvQp0O1BGVyt8GK1MrL7TfcrmTt2CuYJ6XgmyL4p9Z7LqQgh9QrXIQscHaI3CQoEO0Vq6P_l83M3GYKEEf7V_GJ847bq-D117FklPL7axMU7W0aOwOMCpR3oDDUz1BD1uC2_gwMNPEV4FHpcV9sDv4hR72J-h048HJ3uHJJS6IDmj4wWJEkVlrCKh6bgY80YFXxROXo4rbrVO4CsCMjZS5rC-tarQcPNgGRtR8EgzyZ6jYXVZmRcIU80j5xyVigmudJTEhTS2gE-S2lGSm0203T5ulgcdeFeOZJrdeaWbCHcNv3vpk_tNtv376ho4tfL98izNLudfs2lZZ2Bwsjh--edrvUIPl6NwCw0X89q8BoNvod8ETH8B_MZR3w
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformers+in+Vision%3A+A+Survey&rft.jtitle=ACM+computing+surveys&rft.au=Khan%2C+Salman&rft.au=Naseer%2C+Muzammal&rft.au=Hayat%2C+Munawar&rft.au=Zamir%2C+Syed+Waqas&rft.date=2022-01-31&rft.issn=0360-0300&rft.eissn=1557-7341&rft.volume=54&rft.issue=10s&rft.spage=1&rft.epage=41&rft_id=info:doi/10.1145%2F3505244&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3505244
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-0300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-0300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-0300&client=summon