Transformers in Vision: A Survey
Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processin...
Saved in:
Published in | ACM computing surveys Vol. 54; no. 10s; pp. 1 - 41 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
31.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence as compared to recurrent networks, e.g., Long short-term memory. Different from convolutional networks, Transformers require minimal inductive biases for their design and are naturally suited as set-functions. Furthermore, the straightforward design of Transformers allows processing multiple modalities (e.g., images, videos, text, and speech) using similar processing blocks and demonstrates excellent scalability to very large capacity networks and huge datasets. These strengths have led to exciting progress on a number of vision tasks using Transformer networks. This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline. We start with an introduction to fundamental concepts behind the success of Transformers, i.e., self-attention, large-scale pre-training, and bidirectional feature encoding. We then cover extensive applications of transformers in vision including popular recognition tasks (e.g., image classification, object detection, action recognition, and segmentation), generative modeling, multi-modal tasks (e.g., visual-question answering, visual reasoning, and visual grounding), video processing (e.g., activity recognition, video forecasting), low-level vision (e.g., image super-resolution, image enhancement, and colorization), and three-dimensional analysis (e.g., point cloud classification and segmentation). We compare the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value. Finally, we provide an analysis on open research directions and possible future works. We hope this effort will ignite further interest in the community to solve current challenges toward the application of transformer models in computer vision. |
---|---|
AbstractList | Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence as compared to recurrent networks, e.g., Long short-term memory. Different from convolutional networks, Transformers require minimal inductive biases for their design and are naturally suited as set-functions. Furthermore, the straightforward design of Transformers allows processing multiple modalities (e.g., images, videos, text, and speech) using similar processing blocks and demonstrates excellent scalability to very large capacity networks and huge datasets. These strengths have led to exciting progress on a number of vision tasks using Transformer networks. This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline. We start with an introduction to fundamental concepts behind the success of Transformers, i.e., self-attention, large-scale pre-training, and bidirectional feature encoding. We then cover extensive applications of transformers in vision including popular recognition tasks (e.g., image classification, object detection, action recognition, and segmentation), generative modeling, multi-modal tasks (e.g., visual-question answering, visual reasoning, and visual grounding), video processing (e.g., activity recognition, video forecasting), low-level vision (e.g., image super-resolution, image enhancement, and colorization), and three-dimensional analysis (e.g., point cloud classification and segmentation). We compare the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value. Finally, we provide an analysis on open research directions and possible future works. We hope this effort will ignite further interest in the community to solve current challenges toward the application of transformer models in computer vision. |
Author | Naseer, Muzammal Zamir, Syed Waqas Hayat, Munawar Shah, Mubarak Khan, Salman Khan, Fahad Shahbaz |
Author_xml | – sequence: 1 givenname: Salman orcidid: 0000-0002-9502-1749 surname: Khan fullname: Khan, Salman organization: MBZUAI, UAE and Australian National University, Canberra, ACT, AU – sequence: 2 givenname: Muzammal orcidid: 0000-0001-7663-7161 surname: Naseer fullname: Naseer, Muzammal organization: MBZUAI, UAE and Australian National University, Canberra, ACT, AU – sequence: 3 givenname: Munawar orcidid: 0000-0002-2706-5985 surname: Hayat fullname: Hayat, Munawar organization: Department of DSAI, Faculty of IT, Monash University, Clayton, Victoria, AU – sequence: 4 givenname: Syed Waqas orcidid: 0000-0002-7198-0187 surname: Zamir fullname: Zamir, Syed Waqas organization: Inception Institute of Artificial Intelligence, Masdar City, Abu Dhabi, UAE – sequence: 5 givenname: Fahad Shahbaz orcidid: 0000-0002-4263-3143 surname: Khan fullname: Khan, Fahad Shahbaz organization: MBZUAI, UAE and CVL, Linköping University, Linköping, Sweden – sequence: 6 givenname: Mubarak orcidid: 0000-0001-6172-5572 surname: Shah fullname: Shah, Mubarak organization: CRCV, University of Central Florida, Orlando, FL, USA |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-190366$$DView record from Swedish Publication Index |
BookMark | eNplkDFPwzAUhC1UJNKC-AvZmALvxc9xwxYVCkiVGChdLTtxkFGaVHYC6r8nqFUZmG757nR3UzZpu9Yydo1wi0jijgsQKdEZi1AImUhOOGER8AwS4AAXbBrCJwCkhFnE4rXXbag7v7U-xK6NNy64rr2Pi_ht8F92f8nOa90Ee3XUGXtfPq4Xz8nq9ellUaySkqd5n-BcpzLTKEyaVzkBZQiiSgUQaaqNmZPJQXIrZYkZ1boyY08QuRUVoeGSz1hyyA3fdjcYtfNuq_1eddqpB7cpVOc_VOMGhfm4JRv5mwNf-i4Eb-uTA0H9HqGOR_wln8jS9bofV_Zeu-Yf_wNswl1X |
CitedBy_id | crossref_primary_10_3390_jimaging11020059 crossref_primary_10_3390_electronics12173643 crossref_primary_10_3389_fncom_2023_1153572 crossref_primary_10_3390_jimaging9100226 crossref_primary_10_3390_electronics12102202 crossref_primary_10_1109_JSEN_2024_3401771 crossref_primary_10_1145_3699713 crossref_primary_10_2196_67144 crossref_primary_10_3390_ijms25147978 crossref_primary_10_1016_j_ndteint_2023_103033 crossref_primary_10_3390_drones9010011 crossref_primary_10_3390_rs16173131 crossref_primary_10_1007_s11760_024_03696_y crossref_primary_10_3389_fpubh_2024_1337395 crossref_primary_10_1109_ACCESS_2024_3369900 crossref_primary_10_1109_JBHI_2023_3271815 crossref_primary_10_1038_s42949_023_00125_w crossref_primary_10_1109_ACCESS_2024_3419004 crossref_primary_10_1186_s40942_024_00555_3 crossref_primary_10_1016_j_jvcir_2024_104363 crossref_primary_10_1109_ACCESS_2023_3329952 crossref_primary_10_1109_ACCESS_2023_3348450 crossref_primary_10_1038_s41598_024_67186_4 crossref_primary_10_1038_s42256_024_00800_2 crossref_primary_10_1109_OJCOMS_2024_3472094 crossref_primary_10_1016_j_compbiomed_2024_108313 crossref_primary_10_3390_app12136387 crossref_primary_10_3390_jimaging11030091 crossref_primary_10_1007_s13369_023_08012_3 crossref_primary_10_1016_j_brainres_2024_149302 crossref_primary_10_1631_FITEE_2300389 crossref_primary_10_1016_j_engappai_2023_107590 crossref_primary_10_1016_j_neucom_2025_129745 crossref_primary_10_1016_j_knosys_2024_112170 crossref_primary_10_1109_TGRS_2023_3344116 crossref_primary_10_1007_s00371_023_02965_0 crossref_primary_10_1038_s44325_024_00040_8 crossref_primary_10_1021_acsami_4c01765 crossref_primary_10_3390_bioengineering11070729 crossref_primary_10_1109_JBHI_2023_3271808 crossref_primary_10_1016_j_eswa_2024_125377 crossref_primary_10_1016_j_autcon_2023_105166 crossref_primary_10_1007_s11042_023_15112_7 crossref_primary_10_1053_j_gastro_2024_03_039 crossref_primary_10_3390_app14114447 crossref_primary_10_1109_TPAMI_2023_3243465 crossref_primary_10_1016_j_jwpe_2025_107164 crossref_primary_10_1109_JSEN_2023_3327552 crossref_primary_10_3390_computers12050106 crossref_primary_10_61186_crpase_9_4_2876 crossref_primary_10_3390_app14125103 crossref_primary_10_3390_rs14225853 crossref_primary_10_1007_s11042_024_19731_6 crossref_primary_10_1007_s13349_024_00858_x crossref_primary_10_1016_j_rineng_2024_102651 crossref_primary_10_1016_j_neunet_2025_107123 crossref_primary_10_1007_s00376_024_3191_1 crossref_primary_10_1109_ACCESS_2024_3455369 crossref_primary_10_1109_ACCESS_2023_3324042 crossref_primary_10_1109_ACCESS_2023_3324044 crossref_primary_10_1038_s41524_024_01488_z crossref_primary_10_1109_TGRS_2024_3410977 crossref_primary_10_3390_biom13040611 crossref_primary_10_1016_j_patcog_2025_111355 crossref_primary_10_1587_essfr_15_4_258 crossref_primary_10_1109_TCYB_2022_3213537 crossref_primary_10_3390_rs15184401 crossref_primary_10_1007_s10489_025_06427_z crossref_primary_10_1109_ACCESS_2022_3146059 crossref_primary_10_3390_rs14225861 crossref_primary_10_1109_TPAMI_2024_3397461 crossref_primary_10_1109_ACCESS_2022_3206449 crossref_primary_10_3390_s21175694 crossref_primary_10_1016_j_knosys_2024_112397 crossref_primary_10_3390_app15052704 crossref_primary_10_3390_a15120449 crossref_primary_10_1109_TCSVT_2023_3300731 crossref_primary_10_3390_agronomy13061503 crossref_primary_10_3390_s24186063 crossref_primary_10_1016_j_neunet_2025_107384 crossref_primary_10_7717_peerj_16125 crossref_primary_10_1109_TNNLS_2022_3201830 crossref_primary_10_3390_app14072741 crossref_primary_10_1016_j_patrec_2024_05_001 crossref_primary_10_1111_ele_14123 crossref_primary_10_1007_s13042_023_01999_z crossref_primary_10_1093_bib_bbae719 crossref_primary_10_1016_j_jnlssr_2023_06_002 crossref_primary_10_1117_1_JEI_33_1_013033 crossref_primary_10_1016_j_cmpb_2025_108724 crossref_primary_10_1007_s10489_024_05617_5 crossref_primary_10_1007_s13735_024_00326_8 crossref_primary_10_1016_j_survophthal_2024_07_005 crossref_primary_10_1109_TMM_2023_3333190 crossref_primary_10_1007_s42835_024_02032_1 crossref_primary_10_1109_ACCESS_2023_3302253 crossref_primary_10_3390_su15042927 crossref_primary_10_1016_j_engappai_2023_107304 crossref_primary_10_1007_s11760_024_03530_5 crossref_primary_10_1016_j_neucom_2021_12_093 crossref_primary_10_1145_3639470 crossref_primary_10_1016_j_displa_2023_102467 crossref_primary_10_1016_j_iot_2024_101153 crossref_primary_10_1016_j_procs_2024_04_324 crossref_primary_10_1016_j_procs_2024_10_315 crossref_primary_10_1007_s12145_024_01281_y crossref_primary_10_1016_j_eswa_2024_124297 crossref_primary_10_1016_j_engappai_2023_106669 crossref_primary_10_1111_exsy_13518 crossref_primary_10_1109_TIP_2023_3249579 crossref_primary_10_3390_ai5030063 crossref_primary_10_1007_s00138_022_01307_9 crossref_primary_10_1016_j_jspr_2024_102294 crossref_primary_10_1016_j_iot_2024_101167 crossref_primary_10_1016_j_procir_2024_10_264 crossref_primary_10_3390_agronomy15010077 crossref_primary_10_3390_app13042460 crossref_primary_10_3168_jds_2023_24601 crossref_primary_10_1007_s11063_024_11539_7 crossref_primary_10_1016_j_patcog_2024_110394 crossref_primary_10_1073_pnas_2407652121 crossref_primary_10_1109_TMM_2023_3268870 crossref_primary_10_1007_s10489_024_06014_8 crossref_primary_10_1007_s11227_025_07041_z crossref_primary_10_1007_s40747_023_01024_4 crossref_primary_10_1016_j_autcon_2023_105197 crossref_primary_10_1109_JSTARS_2024_3379350 crossref_primary_10_1109_TIP_2023_3335822 crossref_primary_10_3390_rs15020347 crossref_primary_10_1109_JIOT_2024_3483232 crossref_primary_10_1109_TASE_2023_3303175 crossref_primary_10_1109_ACCESS_2024_3413717 crossref_primary_10_1109_ACCESS_2023_3295893 crossref_primary_10_3390_s24186054 crossref_primary_10_1109_TGRS_2024_3368079 crossref_primary_10_4018_IJDST_317937 crossref_primary_10_1016_j_bspc_2023_105534 crossref_primary_10_1109_TCBB_2022_3165592 crossref_primary_10_1109_JSTARS_2023_3337132 crossref_primary_10_1016_j_engappai_2025_110057 crossref_primary_10_1016_j_simpat_2023_102754 crossref_primary_10_1109_TCSVT_2023_3295084 crossref_primary_10_1109_JETCAS_2023_3330432 crossref_primary_10_1016_j_ymssp_2025_112336 crossref_primary_10_1109_TGRS_2023_3242346 crossref_primary_10_1016_j_geoen_2023_211920 crossref_primary_10_3390_geomatics5010009 crossref_primary_10_1007_s00530_024_01463_0 crossref_primary_10_1109_ACCESS_2024_3397775 crossref_primary_10_1016_j_aei_2024_102911 crossref_primary_10_1109_TITS_2022_3157463 crossref_primary_10_3390_app14072785 crossref_primary_10_1016_j_cosrev_2024_100645 crossref_primary_10_1109_JBHI_2022_3213595 crossref_primary_10_1007_s13369_023_08043_w crossref_primary_10_1109_ACCESS_2023_3280992 crossref_primary_10_1109_JBHI_2023_3330289 crossref_primary_10_3390_diagnostics13182884 crossref_primary_10_1109_ACCESS_2022_3212767 crossref_primary_10_1109_TMI_2023_3326188 crossref_primary_10_1109_ACCESS_2022_3207161 crossref_primary_10_1109_TASE_2024_3431128 crossref_primary_10_1016_j_bspc_2023_105911 crossref_primary_10_1109_TMC_2023_3309633 crossref_primary_10_1016_j_media_2024_103224 crossref_primary_10_1109_TITS_2022_3219593 crossref_primary_10_3390_rs14091956 crossref_primary_10_1016_j_artmed_2024_102863 crossref_primary_10_1109_JSTARS_2023_3338448 crossref_primary_10_1186_s12911_024_02616_x crossref_primary_10_1016_j_compag_2024_109090 crossref_primary_10_3390_app12136782 crossref_primary_10_1109_ACCESS_2023_3292966 crossref_primary_10_1007_s11263_024_02043_5 crossref_primary_10_3390_s24030867 crossref_primary_10_1016_j_eswa_2023_122419 crossref_primary_10_1109_TGRS_2023_3296383 crossref_primary_10_1016_j_ejmech_2023_115199 crossref_primary_10_1109_ACCESS_2023_3268638 crossref_primary_10_1007_s10278_024_01226_3 crossref_primary_10_1016_j_knosys_2025_113120 crossref_primary_10_3390_drones8110607 crossref_primary_10_1016_j_csbj_2024_06_019 crossref_primary_10_1016_j_pmcj_2023_101846 crossref_primary_10_3390_ani13193134 crossref_primary_10_1016_j_engappai_2023_107718 crossref_primary_10_1109_ACCESS_2024_3375767 crossref_primary_10_1186_s40561_025_00374_5 crossref_primary_10_1016_j_compbiomed_2024_109014 crossref_primary_10_1007_s11042_024_18550_z crossref_primary_10_1109_ACCESS_2024_3411109 crossref_primary_10_1128_msystems_01058_21 crossref_primary_10_3390_rs14030592 crossref_primary_10_1007_s11517_024_03278_7 crossref_primary_10_3390_rs16111988 crossref_primary_10_1063_5_0152779 crossref_primary_10_3390_analytics2030039 crossref_primary_10_3390_biology12071033 crossref_primary_10_1007_s11704_024_40387_w crossref_primary_10_1038_s41598_024_52240_y crossref_primary_10_1109_TGRS_2025_3535529 crossref_primary_10_1109_TGRS_2024_3418850 crossref_primary_10_1016_j_patcog_2024_110362 crossref_primary_10_1109_ACCESS_2022_3193248 crossref_primary_10_1109_TBC_2023_3345657 crossref_primary_10_1117_1_JRS_16_046509 crossref_primary_10_3390_rs16132427 crossref_primary_10_1016_j_jmr_2022_107151 crossref_primary_10_1007_s10845_022_01963_8 crossref_primary_10_3390_bioengineering10111333 crossref_primary_10_1109_TBIOM_2024_3352164 crossref_primary_10_7717_peerj_cs_1400 crossref_primary_10_3389_fpubh_2023_1025746 crossref_primary_10_1007_s12539_024_00630_1 crossref_primary_10_1109_ACCESS_2023_3329985 crossref_primary_10_3390_bioengineering10040450 crossref_primary_10_1109_TGRS_2022_3227405 crossref_primary_10_1109_TIM_2024_3369132 crossref_primary_10_3390_land13122054 crossref_primary_10_1371_journal_pone_0305561 crossref_primary_10_1049_ipr2_12370 crossref_primary_10_3390_s23198235 crossref_primary_10_1109_ACCESS_2024_3446663 crossref_primary_10_1016_j_catena_2024_108263 crossref_primary_10_7717_peerj_cs_2564 crossref_primary_10_1007_s00371_023_03180_7 crossref_primary_10_1109_TIM_2022_3219500 crossref_primary_10_1007_s12559_024_10320_1 crossref_primary_10_1109_JSTARS_2024_3361444 crossref_primary_10_1109_TPAMI_2024_3404422 crossref_primary_10_1364_BOE_486276 crossref_primary_10_3390_s22134703 crossref_primary_10_1038_s41598_022_16302_3 crossref_primary_10_1080_01431161_2024_2343139 crossref_primary_10_3390_electronics12112431 crossref_primary_10_1007_s00521_023_08966_3 crossref_primary_10_1088_2632_2153_ad5fdc crossref_primary_10_1109_TIM_2023_3238059 crossref_primary_10_3390_technologies13010032 crossref_primary_10_1109_TPAMI_2024_3434373 crossref_primary_10_1145_3715098 crossref_primary_10_1007_s11263_021_01547_8 crossref_primary_10_1038_s41598_024_72254_w crossref_primary_10_1016_j_jvcir_2025_104412 crossref_primary_10_1109_TFUZZ_2024_3410929 crossref_primary_10_1088_1361_6560_ad6ede crossref_primary_10_1109_LGRS_2024_3490534 crossref_primary_10_1038_s41598_024_84783_5 crossref_primary_10_1007_s10044_024_01393_7 crossref_primary_10_3390_s24237753 crossref_primary_10_1007_s00500_023_09292_5 crossref_primary_10_1016_j_cogsys_2024_101244 crossref_primary_10_3390_pr12122946 crossref_primary_10_3390_rs16214103 crossref_primary_10_1007_s00530_024_01478_7 crossref_primary_10_1364_JOSAB_525182 crossref_primary_10_3390_app13179751 crossref_primary_10_1007_s11042_022_12670_0 crossref_primary_10_1016_j_eswa_2023_122666 crossref_primary_10_1039_D3RA07708J crossref_primary_10_1109_TVCG_2022_3225114 crossref_primary_10_3390_make6010033 crossref_primary_10_1061_JCCEE5_CPENG_6137 crossref_primary_10_3390_technologies13020053 crossref_primary_10_1038_s41598_024_66346_w crossref_primary_10_1007_s00371_023_02941_8 crossref_primary_10_1007_s00376_023_3255_7 crossref_primary_10_1109_LRA_2023_3338515 crossref_primary_10_1002_cjce_25507 crossref_primary_10_1007_s11042_024_19866_6 crossref_primary_10_1016_j_patter_2024_101046 crossref_primary_10_1117_1_JMI_11_1_014503 crossref_primary_10_1007_s42979_022_01407_3 crossref_primary_10_1016_j_eswa_2025_126397 crossref_primary_10_4103_sjopt_sjopt_91_23 crossref_primary_10_3390_s23218809 crossref_primary_10_1007_s10462_023_10595_0 crossref_primary_10_1051_0004_6361_202347994 crossref_primary_10_1016_j_wasman_2024_04_040 crossref_primary_10_1063_5_0243174 crossref_primary_10_1111_cgf_14733 crossref_primary_10_1109_JSTARS_2023_3289583 crossref_primary_10_1016_j_compbiomed_2023_107841 crossref_primary_10_3390_biomedicines11051333 crossref_primary_10_3390_diagnostics13193159 crossref_primary_10_1061_JPEODX_PVENG_1503 crossref_primary_10_1016_j_inffus_2024_102248 crossref_primary_10_1016_j_cmpb_2025_108596 crossref_primary_10_1088_1361_6560_accdb1 crossref_primary_10_1109_OJCS_2024_3500032 crossref_primary_10_1109_TGRS_2023_3286826 crossref_primary_10_1007_s10462_023_10486_4 crossref_primary_10_46810_tdfd_1442556 crossref_primary_10_1016_j_neunet_2023_01_048 crossref_primary_10_1145_3608112 crossref_primary_10_3390_biomedicines10071551 crossref_primary_10_1016_j_cma_2024_116876 crossref_primary_10_1016_j_ailsci_2023_100084 crossref_primary_10_1109_TPDS_2023_3247883 crossref_primary_10_1155_2024_8334358 crossref_primary_10_1007_s10489_022_04197_6 crossref_primary_10_3390_electronics12122631 crossref_primary_10_1016_j_cmpbup_2021_100042 crossref_primary_10_3390_rs17010052 crossref_primary_10_1109_TMI_2022_3149281 crossref_primary_10_1016_j_jobe_2024_110918 crossref_primary_10_1109_TASE_2024_3430896 crossref_primary_10_1016_j_knosys_2024_111611 crossref_primary_10_7717_peerj_cs_1490 crossref_primary_10_1016_j_patcog_2024_110883 crossref_primary_10_1109_TKDE_2022_3178211 crossref_primary_10_11834_jig_220895 crossref_primary_10_32604_cmc_2024_047093 crossref_primary_10_1016_j_bbe_2024_08_011 crossref_primary_10_1109_ACCESS_2025_3535791 crossref_primary_10_3390_stats7040090 crossref_primary_10_3390_math12132020 crossref_primary_10_1155_2024_3026500 crossref_primary_10_1109_TIM_2023_3309399 crossref_primary_10_1109_TUFFC_2023_3255843 crossref_primary_10_1016_j_aei_2024_102508 crossref_primary_10_1038_s41598_024_63575_x crossref_primary_10_1093_ijlct_ctae162 crossref_primary_10_1007_s40123_024_00900_7 crossref_primary_10_1016_j_autcon_2023_104983 crossref_primary_10_1016_j_crmeth_2023_100557 crossref_primary_10_1145_3687234_3687237 crossref_primary_10_1007_s00371_023_02797_y crossref_primary_10_1093_ve_veae086 crossref_primary_10_1109_TPAMI_2024_3377192 crossref_primary_10_1016_j_eij_2024_100523 crossref_primary_10_1109_ACCESS_2023_3298440 crossref_primary_10_46810_tdfd_1487442 crossref_primary_10_1007_s00521_024_10769_z crossref_primary_10_3390_app14062237 crossref_primary_10_1016_j_compag_2024_109824 crossref_primary_10_1049_ipr2_12875 crossref_primary_10_3389_fpls_2024_1442968 crossref_primary_10_1088_1748_9326_ad6fb7 crossref_primary_10_1109_JSTARS_2024_3439592 crossref_primary_10_3389_fmed_2023_1114571 crossref_primary_10_1109_JSTARS_2025_3526982 crossref_primary_10_3389_fpls_2023_1256773 crossref_primary_10_1109_ACCESS_2023_3277535 crossref_primary_10_1109_OJAP_2023_3292108 crossref_primary_10_1016_j_bspc_2025_107746 crossref_primary_10_1109_TCSS_2024_3403872 crossref_primary_10_1007_s00371_024_03518_9 crossref_primary_10_1109_TGRS_2024_3389780 crossref_primary_10_3390_s24082491 crossref_primary_10_1007_s00521_023_08269_7 crossref_primary_10_1016_j_media_2024_103421 crossref_primary_10_1016_j_sciaf_2023_e01809 crossref_primary_10_1016_j_compbiomed_2024_107939 crossref_primary_10_1038_s41598_023_48004_9 crossref_primary_10_1016_j_neucom_2025_130014 crossref_primary_10_1109_ACCESS_2024_3436585 crossref_primary_10_1109_TPAMI_2024_3410032 crossref_primary_10_3390_app132111657 crossref_primary_10_1007_s11042_023_17309_2 crossref_primary_10_1109_LRA_2024_3350979 crossref_primary_10_1016_j_eswa_2024_124614 crossref_primary_10_3390_biomedinformatics3030034 crossref_primary_10_1109_ACCESS_2023_3243911 crossref_primary_10_1016_j_eswa_2024_125947 crossref_primary_10_1109_ACCESS_2022_3162827 crossref_primary_10_3390_rs13224573 crossref_primary_10_1016_j_engappai_2024_108339 crossref_primary_10_1109_ACCESS_2023_3277785 crossref_primary_10_1016_j_ecoinf_2023_102334 crossref_primary_10_1016_j_neucom_2024_128630 crossref_primary_10_1007_s42979_023_02204_2 crossref_primary_10_1016_j_media_2024_103414 crossref_primary_10_1016_j_measurement_2024_116045 crossref_primary_10_3390_app122312503 crossref_primary_10_3390_diagnostics13152614 crossref_primary_10_1007_s11042_023_16910_9 crossref_primary_10_3390_su15054341 crossref_primary_10_1007_s13735_023_00268_7 crossref_primary_10_1109_TPAMI_2024_3428546 crossref_primary_10_4236_jcc_2024_129011 crossref_primary_10_1364_OE_514466 crossref_primary_10_1002_ima_23124 crossref_primary_10_1016_j_engappai_2024_109215 crossref_primary_10_1109_JSTARS_2024_3438246 crossref_primary_10_3390_rs16234583 crossref_primary_10_1016_j_inffus_2024_102493 crossref_primary_10_3390_app12157474 crossref_primary_10_1016_j_neucom_2024_127317 crossref_primary_10_1002_fhu2_11 crossref_primary_10_1007_s10664_024_10549_2 crossref_primary_10_1145_3534932 crossref_primary_10_1007_s00170_024_14842_8 crossref_primary_10_1016_j_patcog_2024_110600 crossref_primary_10_3390_biomedinformatics3040058 crossref_primary_10_1134_S1054661822020171 crossref_primary_10_1007_s00521_024_09633_x crossref_primary_10_3390_rs17010086 crossref_primary_10_1109_TMI_2022_3209648 crossref_primary_10_3389_fphy_2024_1334298 crossref_primary_10_1007_s00138_024_01521_7 crossref_primary_10_1109_TGRS_2022_3141217 crossref_primary_10_1007_s00521_023_08937_8 crossref_primary_10_1007_s00521_024_10516_4 crossref_primary_10_1016_j_ibmed_2024_100192 crossref_primary_10_3390_drones7050287 crossref_primary_10_3390_math12142256 crossref_primary_10_1007_s00530_024_01507_5 crossref_primary_10_1007_s00521_024_10956_y crossref_primary_10_1109_TGRS_2023_3268159 crossref_primary_10_1109_TIM_2023_3312755 crossref_primary_10_1016_j_jag_2024_103765 crossref_primary_10_1109_ACCESS_2024_3524729 crossref_primary_10_3390_rs16152825 crossref_primary_10_3390_app131911103 crossref_primary_10_1109_LGRS_2022_3228518 crossref_primary_10_1109_TGRS_2024_3389981 crossref_primary_10_3390_cancers17030449 crossref_primary_10_1007_s13042_024_02177_5 crossref_primary_10_3390_rs15225409 crossref_primary_10_1016_j_compag_2025_109930 crossref_primary_10_1109_TGRS_2024_3367709 crossref_primary_10_3390_e26060469 crossref_primary_10_1109_TGRS_2024_3359095 crossref_primary_10_3390_electronics14010009 crossref_primary_10_3390_rs16152837 crossref_primary_10_1109_JBHI_2023_3336372 crossref_primary_10_1109_TGRS_2023_3344083 crossref_primary_10_3390_machines13010011 crossref_primary_10_1109_ACCESS_2023_3300793 crossref_primary_10_1109_TBC_2022_3231101 crossref_primary_10_3390_electronics13050976 crossref_primary_10_1007_s10278_024_01131_9 crossref_primary_10_1016_j_knosys_2024_111482 crossref_primary_10_1007_s42417_024_01749_7 crossref_primary_10_3390_electronics11091422 crossref_primary_10_1016_j_compbiomed_2023_107450 crossref_primary_10_1016_j_nlp_2023_100047 crossref_primary_10_21923_jesd_1553326 crossref_primary_10_34133_cbsystems_0100 crossref_primary_10_3390_machines13010049 crossref_primary_10_1109_TGRS_2023_3324025 crossref_primary_10_1007_s00521_022_08094_4 crossref_primary_10_3390_rs17060953 crossref_primary_10_1016_j_isprsjprs_2022_07_016 crossref_primary_10_1038_s41598_023_27478_7 crossref_primary_10_1007_s41095_022_0271_y crossref_primary_10_3389_fnbot_2023_1119231 crossref_primary_10_1103_PhysRevAccelBeams_26_052801 crossref_primary_10_1109_TGRS_2024_3367725 crossref_primary_10_1142_S0129065724500242 crossref_primary_10_1007_s11263_022_01606_8 crossref_primary_10_1007_s00521_024_09802_y crossref_primary_10_1109_TGCN_2022_3171680 crossref_primary_10_5715_jnlp_29_1198 crossref_primary_10_1007_s10462_023_10588_z crossref_primary_10_1007_s11227_022_04895_5 crossref_primary_10_1007_s11548_022_02785_y crossref_primary_10_3390_math12192998 crossref_primary_10_7717_peerj_cs_2187 crossref_primary_10_1016_j_compag_2024_109676 crossref_primary_10_2174_0115748936283134240109054157 crossref_primary_10_1109_TIP_2024_3385980 crossref_primary_10_1007_s40747_024_01595_w crossref_primary_10_3390_s25020471 crossref_primary_10_1002_isaf_1549 crossref_primary_10_3390_math11081933 crossref_primary_10_1109_TNNLS_2022_3227717 crossref_primary_10_1109_JSTARS_2024_3354310 crossref_primary_10_1109_TASE_2024_3378010 crossref_primary_10_3390_machines13010036 crossref_primary_10_3390_drones8030084 crossref_primary_10_1016_j_jag_2023_103496 crossref_primary_10_1038_s41746_023_00840_9 crossref_primary_10_1109_TMI_2022_3170701 crossref_primary_10_3389_frobt_2024_1424883 crossref_primary_10_1109_TC_2024_3504263 crossref_primary_10_3390_rs14163979 crossref_primary_10_1007_s10489_023_04570_z crossref_primary_10_1016_j_inffus_2025_102951 crossref_primary_10_1061_JCCEE5_CPENG_5997 crossref_primary_10_1109_TAI_2024_3404910 crossref_primary_10_1016_j_neuroimage_2025_121080 crossref_primary_10_3389_fcpxs_2024_1347930 crossref_primary_10_1016_j_compag_2024_109611 crossref_primary_10_1016_j_media_2021_102299 crossref_primary_10_1002_cpe_7824 crossref_primary_10_1093_bioadv_vbad001 crossref_primary_10_3389_fpls_2023_1273029 crossref_primary_10_3390_jtaer18040110 crossref_primary_10_1108_CFRI_01_2024_0032 crossref_primary_10_1109_TSP_2024_3381749 crossref_primary_10_1109_TMM_2024_3353544 crossref_primary_10_3390_agronomy12112659 crossref_primary_10_3390_app14104316 crossref_primary_10_3390_computers13050116 crossref_primary_10_1080_01431161_2023_2257860 crossref_primary_10_3390_rs15071860 crossref_primary_10_1109_TVCG_2023_3261935 crossref_primary_10_3390_fishes10020081 crossref_primary_10_3390_s24113484 crossref_primary_10_1016_j_ins_2024_120338 crossref_primary_10_3390_s22186821 crossref_primary_10_3389_fphy_2023_1259273 crossref_primary_10_62520_fujece_1454309 crossref_primary_10_1007_s11633_022_1364_x crossref_primary_10_1016_j_compag_2025_109919 crossref_primary_10_1109_JSTARS_2022_3143532 crossref_primary_10_1109_TGRS_2024_3365990 crossref_primary_10_1109_ACCESS_2025_3548418 crossref_primary_10_1007_s12161_024_02654_1 crossref_primary_10_1016_j_compbiomed_2023_107028 crossref_primary_10_1038_s41598_022_13039_x crossref_primary_10_1016_j_compeleceng_2025_110099 crossref_primary_10_1002_nafm_11039 crossref_primary_10_1016_j_apenergy_2024_122967 crossref_primary_10_1134_S2070048224020157 crossref_primary_10_1007_s10489_022_04100_3 crossref_primary_10_1016_j_autcon_2024_105770 crossref_primary_10_1093_bjrai_ubae011 crossref_primary_10_1109_TCSVT_2021_3135013 crossref_primary_10_1016_j_compeleceng_2025_110087 crossref_primary_10_1016_j_eng_2025_02_018 crossref_primary_10_4103_tjo_TJO_D_23_00068 crossref_primary_10_1016_j_cmpb_2024_108037 crossref_primary_10_1109_ACCESS_2024_3358452 crossref_primary_10_1109_TGRS_2023_3317305 crossref_primary_10_1016_j_compbiomed_2023_107034 crossref_primary_10_1007_s11571_025_10224_2 crossref_primary_10_1088_1361_6501_ad7bde crossref_primary_10_3103_S1060992X2306005X crossref_primary_10_1016_j_compmedimag_2023_102307 crossref_primary_10_1007_s10489_022_03543_y crossref_primary_10_1109_TMI_2022_3180228 crossref_primary_10_1016_j_media_2021_102258 crossref_primary_10_1007_s00779_023_01776_3 crossref_primary_10_1016_j_bspc_2022_104276 crossref_primary_10_1016_j_engappai_2023_107697 crossref_primary_10_1109_TGRS_2023_3309245 crossref_primary_10_1016_j_bspc_2023_105880 crossref_primary_10_3390_rs13173527 crossref_primary_10_3390_rs15102631 crossref_primary_10_3390_rs16071216 crossref_primary_10_1093_bib_bbad306 crossref_primary_10_1109_JSTARS_2024_3483786 crossref_primary_10_1007_s00500_025_10463_9 crossref_primary_10_1186_s43067_023_00123_z crossref_primary_10_3390_rs14092088 crossref_primary_10_1002_ps_8473 crossref_primary_10_3390_electronics11182810 crossref_primary_10_3389_fmolb_2024_1390858 crossref_primary_10_1145_3584984 crossref_primary_10_1016_j_jhydrol_2023_129561 crossref_primary_10_1088_1367_2630_ad6f3d crossref_primary_10_1109_TITS_2024_3365296 crossref_primary_10_3390_biomimetics9110695 crossref_primary_10_3390_electronics13163125 crossref_primary_10_1109_JSTARS_2023_3260006 crossref_primary_10_1007_s11042_024_19218_4 crossref_primary_10_1016_j_compag_2024_109123 crossref_primary_10_3390_s21165312 crossref_primary_10_3390_electronics13030617 crossref_primary_10_1109_ACCESS_2024_3502542 crossref_primary_10_3389_fnbot_2023_1275645 crossref_primary_10_1109_TGRS_2023_3324404 crossref_primary_10_1142_S012906572350065X crossref_primary_10_1016_j_eswa_2025_126863 crossref_primary_10_1007_s11263_023_01861_3 crossref_primary_10_1016_j_compbiomed_2024_109531 crossref_primary_10_1079_cabireviews_2025_0009 crossref_primary_10_1007_s00521_024_10420_x crossref_primary_10_1007_s10489_023_04950_5 crossref_primary_10_1007_s00500_023_08723_7 crossref_primary_10_1186_s40708_024_00238_7 crossref_primary_10_3390_agronomy12081843 crossref_primary_10_3389_frsip_2023_1193523 crossref_primary_10_1007_s10462_024_10717_2 crossref_primary_10_1177_20552076241293498 crossref_primary_10_1109_JTEHM_2022_3221918 crossref_primary_10_1007_s00521_024_10662_9 crossref_primary_10_1016_j_eswa_2024_124159 crossref_primary_10_3390_rs16173218 crossref_primary_10_3390_conservation4040041 crossref_primary_10_1109_ACCESS_2024_3434559 crossref_primary_10_1007_s00784_025_06216_5 crossref_primary_10_3390_rs13183585 crossref_primary_10_3390_s23073439 crossref_primary_10_1016_j_eja_2024_127477 crossref_primary_10_1016_j_envsoft_2025_106402 crossref_primary_10_1109_JSTARS_2023_3339235 crossref_primary_10_12677_mos_2024_133186 crossref_primary_10_3390_electronics12081791 crossref_primary_10_3390_jimaging10120332 crossref_primary_10_1109_TIV_2023_3292513 crossref_primary_10_1109_TIV_2024_3350669 crossref_primary_10_1109_JBHI_2022_3153902 crossref_primary_10_1109_TGRS_2023_3333375 crossref_primary_10_1109_TLT_2023_3259013 crossref_primary_10_1016_j_eswa_2024_124153 crossref_primary_10_3390_jrfm16100440 crossref_primary_10_1007_s10462_023_10557_6 crossref_primary_10_1016_j_jbi_2021_103982 crossref_primary_10_1016_j_measurement_2024_114303 crossref_primary_10_1029_2024GL108889 crossref_primary_10_1109_ACCESS_2023_3273736 crossref_primary_10_1109_ACCESS_2024_3514322 crossref_primary_10_1145_3665869 crossref_primary_10_1109_TRPMS_2024_3397318 crossref_primary_10_1016_j_imed_2023_01_004 crossref_primary_10_3390_app13053213 crossref_primary_10_1016_j_neucom_2023_126835 crossref_primary_10_1007_s11042_023_18091_x crossref_primary_10_1016_j_jag_2023_103286 crossref_primary_10_1007_s10462_023_10677_z crossref_primary_10_3390_s24051467 crossref_primary_10_7717_peerj_cs_1755 crossref_primary_10_1016_j_eswa_2023_121638 crossref_primary_10_1007_s00138_024_01560_0 crossref_primary_10_1109_ACCESS_2023_3263931 crossref_primary_10_1021_acs_jcim_3c02070 crossref_primary_10_1007_s00530_023_01195_7 crossref_primary_10_1007_s00530_025_01746_0 crossref_primary_10_1016_j_patcog_2025_111413 crossref_primary_10_3390_app142311327 crossref_primary_10_1002_mp_17430 crossref_primary_10_1364_OE_522516 crossref_primary_10_1142_S0218001423560268 crossref_primary_10_1016_j_compbiomed_2024_109325 crossref_primary_10_1109_TMI_2023_3287256 crossref_primary_10_1016_j_pacs_2024_100674 crossref_primary_10_1016_j_mineng_2024_108599 crossref_primary_10_1109_JIOT_2024_3403844 crossref_primary_10_1103_PhysRevResearch_6_023250 crossref_primary_10_1186_s13321_023_00789_7 crossref_primary_10_1021_acs_jpca_4c05665 crossref_primary_10_1016_j_neucom_2024_128077 crossref_primary_10_1007_s12145_023_01208_z crossref_primary_10_1016_j_phrs_2023_106984 crossref_primary_10_1007_s40192_024_00369_z crossref_primary_10_1016_j_neuroimage_2024_120652 crossref_primary_10_1016_j_engappai_2023_106545 crossref_primary_10_1088_2057_1976_ad5bed crossref_primary_10_3390_electronics12041024 crossref_primary_10_1002_mp_16135 crossref_primary_10_1016_j_eswa_2023_119774 crossref_primary_10_1016_j_infrared_2022_104522 crossref_primary_10_3390_en17184734 crossref_primary_10_1016_j_media_2025_103487 crossref_primary_10_1109_TCAD_2024_3483092 crossref_primary_10_1007_s11760_024_03259_1 crossref_primary_10_1016_j_compmedimag_2024_102337 crossref_primary_10_1109_ACCESS_2023_3234519 crossref_primary_10_1016_j_neucom_2024_128086 crossref_primary_10_1109_TGRS_2023_3240296 crossref_primary_10_1016_j_jvcir_2024_104066 crossref_primary_10_3389_fnins_2024_1340345 crossref_primary_10_1016_j_ymssp_2024_112160 crossref_primary_10_1190_geo2023_0508_1 crossref_primary_10_1109_TGRS_2022_3194505 crossref_primary_10_1021_acsphotonics_3c01349 crossref_primary_10_14778_3494124_3494136 crossref_primary_10_3390_wevj15030104 crossref_primary_10_3390_jmse13030425 crossref_primary_10_1016_j_bspc_2024_106801 crossref_primary_10_1007_s11831_024_10176_6 crossref_primary_10_26599_CVM_2025_9450383 crossref_primary_10_1016_j_media_2024_103198 crossref_primary_10_1016_j_cmpb_2025_108613 crossref_primary_10_1016_j_eswa_2023_122717 crossref_primary_10_1109_ACCESS_2023_3314573 crossref_primary_10_3390_s23187844 crossref_primary_10_3390_e24081062 crossref_primary_10_1002_wics_1631 crossref_primary_10_3390_rs17061066 crossref_primary_10_3390_jimaging8050143 crossref_primary_10_1007_s00701_022_05446_w crossref_primary_10_1177_1088467X251324336 crossref_primary_10_1148_ryai_220067 crossref_primary_10_1016_j_engappai_2023_107618 crossref_primary_10_1109_TGRS_2024_3482277 crossref_primary_10_1016_j_neucom_2022_11_020 crossref_primary_10_3390_rs16061013 crossref_primary_10_1109_ACCESS_2023_3288112 crossref_primary_10_1109_TNSM_2024_3485545 crossref_primary_10_1002_cav_2270 crossref_primary_10_1007_s10462_024_11089_3 crossref_primary_10_3390_rs16163045 crossref_primary_10_1016_j_mineng_2024_108790 crossref_primary_10_1109_ACCESS_2025_3544515 crossref_primary_10_1002_brx2_23 crossref_primary_10_1007_s11263_022_01611_x crossref_primary_10_1177_02783649241281508 crossref_primary_10_1145_3636424 crossref_primary_10_3390_info15050253 crossref_primary_10_1002_brx2_29 crossref_primary_10_1016_j_ajpath_2024_01_009 crossref_primary_10_3390_agronomy14020363 crossref_primary_10_1109_JSTARS_2022_3204191 crossref_primary_10_1145_3586074 crossref_primary_10_1029_2023MS004095 crossref_primary_10_3390_mi14061265 crossref_primary_10_1016_j_aej_2024_11_003 crossref_primary_10_3390_robotics12060167 crossref_primary_10_1038_s41598_024_84795_1 crossref_primary_10_1016_j_ymeth_2025_01_008 crossref_primary_10_1109_TGRS_2024_3425491 crossref_primary_10_1109_ACCESS_2023_3329678 crossref_primary_10_3390_app15052697 crossref_primary_10_1109_TCAD_2023_3317169 crossref_primary_10_1029_2024EA003544 crossref_primary_10_1364_AO_550755 crossref_primary_10_1016_j_advwatres_2022_104169 crossref_primary_10_3390_insects15090667 crossref_primary_10_3390_s23031616 crossref_primary_10_1016_j_compag_2025_110016 crossref_primary_10_1007_s40747_025_01842_8 crossref_primary_10_1109_ACCESS_2024_3468368 crossref_primary_10_1007_s44244_024_00020_y crossref_primary_10_1016_j_conbuildmat_2023_134134 crossref_primary_10_1007_s00259_022_06097_w crossref_primary_10_1016_j_cviu_2025_104326 crossref_primary_10_1016_j_eswa_2024_126150 crossref_primary_10_1007_s10846_021_01540_w crossref_primary_10_1109_TPAMI_2021_3117837 crossref_primary_10_61186_joc_17_2_1 crossref_primary_10_1109_TBIOM_2023_3317303 crossref_primary_10_1016_j_measurement_2023_114000 crossref_primary_10_1371_journal_pone_0289499 crossref_primary_10_3389_fpls_2023_1327163 crossref_primary_10_3390_biom11121793 crossref_primary_10_1109_JSTARS_2023_3316302 crossref_primary_10_1109_TGRS_2021_3119537 crossref_primary_10_1002_mp_16574 crossref_primary_10_1109_TNNLS_2023_3301007 crossref_primary_10_1109_TGRS_2025_3526933 crossref_primary_10_1016_j_apenergy_2023_122282 crossref_primary_10_1007_s10462_024_11067_9 crossref_primary_10_1016_j_procs_2024_04_074 crossref_primary_10_1016_j_jpha_2024_101081 crossref_primary_10_1128_msystems_00697_24 crossref_primary_10_1109_TGRS_2022_3168697 crossref_primary_10_3390_info14100527 crossref_primary_10_1016_j_neucom_2022_05_093 crossref_primary_10_1007_s13132_024_01814_2 crossref_primary_10_1016_j_bspc_2024_107252 crossref_primary_10_1016_j_compbiomed_2024_108057 crossref_primary_10_1051_0004_6361_202449929 crossref_primary_10_1038_s41598_024_78414_2 crossref_primary_10_1109_TPAMI_2023_3298925 crossref_primary_10_1016_j_cja_2024_03_017 crossref_primary_10_1038_s41598_025_90482_6 crossref_primary_10_1002_mp_17655 crossref_primary_10_3390_app13169419 crossref_primary_10_1007_s11042_024_19297_3 crossref_primary_10_1109_JSTARS_2024_3472296 crossref_primary_10_1109_TCE_2024_3360211 crossref_primary_10_3390_hydrology10060116 crossref_primary_10_3390_electronics10151808 crossref_primary_10_1515_revneuro_2024_0088 crossref_primary_10_3390_math11071744 crossref_primary_10_1038_s41597_023_02182_3 crossref_primary_10_1007_s11831_024_10108_4 crossref_primary_10_1016_j_compag_2023_107957 crossref_primary_10_1109_TGRS_2024_3428551 crossref_primary_10_1016_j_artmed_2024_102952 crossref_primary_10_1109_TGRS_2022_3144894 crossref_primary_10_3390_jpm13101496 crossref_primary_10_2139_ssrn_4609920 crossref_primary_10_1007_s00066_024_02262_2 crossref_primary_10_1016_j_enss_2024_02_004 crossref_primary_10_1109_TGRS_2023_3323507 crossref_primary_10_3934_mbe_2023668 crossref_primary_10_4018_JDM_306188 crossref_primary_10_1038_s41598_023_27616_1 crossref_primary_10_1016_j_compmedimag_2024_102382 crossref_primary_10_1109_TNNLS_2023_3298638 crossref_primary_10_3389_fnbot_2023_1323188 crossref_primary_10_1016_j_mlwa_2024_100550 crossref_primary_10_1007_s10462_024_10730_5 crossref_primary_10_3390_rs14236017 crossref_primary_10_1007_s11633_022_1410_8 crossref_primary_10_1016_j_eswa_2024_123923 crossref_primary_10_1016_j_displa_2025_102980 crossref_primary_10_1080_01431161_2023_2179897 crossref_primary_10_1016_j_cageo_2024_105664 crossref_primary_10_1109_TVT_2024_3396286 crossref_primary_10_1007_s42979_024_03271_9 crossref_primary_10_1016_j_inffus_2023_101847 crossref_primary_10_3390_diagnostics12051278 crossref_primary_10_1016_j_cmpb_2023_107591 crossref_primary_10_3390_ai5040141 crossref_primary_10_1186_s13014_024_02467_w crossref_primary_10_3390_electronics12183904 crossref_primary_10_1145_3721432 crossref_primary_10_3390_ai5040101 crossref_primary_10_1016_j_rcim_2025_102982 crossref_primary_10_1038_s42256_022_00600_6 crossref_primary_10_1109_TSMC_2024_3355101 crossref_primary_10_2139_ssrn_4755445 crossref_primary_10_1109_TPAMI_2022_3233482 crossref_primary_10_1109_TASLP_2023_3282092 crossref_primary_10_3390_rs13193953 crossref_primary_10_1109_TPAMI_2024_3392941 crossref_primary_10_1016_j_ymssp_2024_111912 crossref_primary_10_1002_ima_70039 crossref_primary_10_1007_s00366_022_01648_z crossref_primary_10_1016_j_media_2024_103360 crossref_primary_10_1007_s44196_024_00423_w crossref_primary_10_3390_mca28020061 crossref_primary_10_1016_j_cjca_2024_07_014 crossref_primary_10_1016_j_eswa_2023_121692 crossref_primary_10_17694_bajece_1345993 crossref_primary_10_1016_j_animal_2024_101079 crossref_primary_10_1109_JSTARS_2024_3444773 crossref_primary_10_1007_s00521_024_10353_5 crossref_primary_10_1109_ACCESS_2023_3271748 crossref_primary_10_3390_app112411991 crossref_primary_10_1016_j_future_2024_107693 crossref_primary_10_1109_TGRS_2024_3355037 crossref_primary_10_1007_s10489_024_05299_z crossref_primary_10_1007_s10845_024_02416_0 crossref_primary_10_1007_s11390_022_2158_x crossref_primary_10_1016_j_cviu_2024_104010 crossref_primary_10_3390_electronics12051218 crossref_primary_10_3390_sci5040046 crossref_primary_10_3390_rs16132355 crossref_primary_10_1016_j_media_2024_103356 crossref_primary_10_1007_s00371_024_03728_1 crossref_primary_10_1080_10426914_2023_2199499 crossref_primary_10_3390_buildings15020176 crossref_primary_10_1007_s10044_023_01130_6 crossref_primary_10_1016_j_patcog_2023_110140 crossref_primary_10_1109_TPAMI_2022_3199617 crossref_primary_10_3390_s22176554 crossref_primary_10_1109_TPAMI_2022_3207091 crossref_primary_10_1145_3723358 crossref_primary_10_1145_3670854 crossref_primary_10_5909_JBE_2024_29_6_931 crossref_primary_10_1117_1_JEI_33_5_053017 crossref_primary_10_1016_j_apenergy_2024_124442 crossref_primary_10_1016_j_neucom_2024_128701 crossref_primary_10_1109_TVCG_2023_3337870 crossref_primary_10_1109_TPAMI_2024_3411045 crossref_primary_10_3390_app14156741 crossref_primary_10_3390_app13137577 crossref_primary_10_1007_s10462_024_10941_w crossref_primary_10_1109_TITS_2022_3186613 crossref_primary_10_1109_ACCESS_2022_3224588 crossref_primary_10_3390_s23052385 crossref_primary_10_1021_acssensors_4c00149 crossref_primary_10_1109_ACCESS_2022_3225689 crossref_primary_10_1049_cvi2_12266 crossref_primary_10_1016_j_compag_2024_108839 crossref_primary_10_1016_j_ymssp_2022_109050 crossref_primary_10_1088_2632_2153_ad6832 crossref_primary_10_1145_3657632 crossref_primary_10_1109_TCSVT_2022_3207148 crossref_primary_10_1007_s13735_022_00228_7 crossref_primary_10_1007_s42979_024_03398_9 crossref_primary_10_1109_TPAMI_2022_3211006 crossref_primary_10_1016_j_eswa_2023_123107 crossref_primary_10_1038_s41598_024_78699_3 crossref_primary_10_1109_TPAMI_2023_3322604 crossref_primary_10_3390_s24134089 crossref_primary_10_1371_journal_pone_0319027 crossref_primary_10_1109_JIOT_2024_3394050 crossref_primary_10_1016_j_cma_2023_116276 crossref_primary_10_1016_j_compag_2024_109719 crossref_primary_10_1111_risa_14666 crossref_primary_10_1080_10630732_2024_2402676 crossref_primary_10_1109_TGRS_2023_3331751 crossref_primary_10_1109_TMM_2022_3198011 crossref_primary_10_1016_j_patcog_2024_110519 crossref_primary_10_3390_app132312905 crossref_primary_10_1109_TMI_2023_3337253 crossref_primary_10_1109_ACCESS_2024_3398806 crossref_primary_10_1109_LGRS_2022_3183467 crossref_primary_10_1038_s41598_023_47936_6 crossref_primary_10_1007_s00521_023_08640_8 crossref_primary_10_3390_diagnostics13050825 crossref_primary_10_1088_2632_2153_ad4e03 crossref_primary_10_1016_j_imavis_2024_105055 crossref_primary_10_1016_j_media_2023_103000 crossref_primary_10_1088_1361_6560_aced79 crossref_primary_10_1016_j_epsr_2024_111403 crossref_primary_10_1002_smll_202204941 crossref_primary_10_1007_s40747_023_01296_w crossref_primary_10_3390_app131910980 crossref_primary_10_3390_app13084821 crossref_primary_10_1016_j_csbj_2025_03_021 crossref_primary_10_1016_j_taml_2024_100527 crossref_primary_10_1109_ACCESS_2025_3547416 crossref_primary_10_3390_electronics13204116 crossref_primary_10_3390_s25051478 crossref_primary_10_1016_j_sigpro_2024_109683 crossref_primary_10_3390_app14209488 crossref_primary_10_1108_IJWIS_08_2023_0131 crossref_primary_10_1016_j_heliyon_2024_e39329 crossref_primary_10_1109_JSSC_2024_3402174 crossref_primary_10_11834_jig_230323 crossref_primary_10_1007_s00138_025_01661_4 crossref_primary_10_1007_s10586_024_04355_0 crossref_primary_10_1016_j_bspc_2024_106490 crossref_primary_10_1007_s00138_024_01557_9 crossref_primary_10_1016_j_geoderma_2023_116555 crossref_primary_10_1007_s41870_023_01635_7 crossref_primary_10_3390_s23218727 crossref_primary_10_1016_j_bspc_2024_106497 crossref_primary_10_1016_j_autcon_2023_104894 crossref_primary_10_1016_j_bspc_2025_107620 crossref_primary_10_1016_j_neucom_2024_128745 crossref_primary_10_46578_humder_1333782 crossref_primary_10_1093_noajnl_vdae205 crossref_primary_10_3390_app13116839 crossref_primary_10_1016_j_jgsce_2024_205469 crossref_primary_10_3847_1538_4357_adb41a crossref_primary_10_1038_s41467_024_45578_4 crossref_primary_10_1007_s00371_024_03383_6 crossref_primary_10_1007_s11227_022_05009_x crossref_primary_10_11834_jig_220799 crossref_primary_10_1007_s13534_025_00469_5 crossref_primary_10_1007_s11207_024_02284_0 crossref_primary_10_1016_j_engappai_2024_108458 crossref_primary_10_1145_3617374 crossref_primary_10_1016_j_cmpb_2023_107872 crossref_primary_10_1016_j_indcrop_2025_120850 crossref_primary_10_1109_TCSS_2024_3416837 crossref_primary_10_1088_1361_6501_ad1e20 crossref_primary_10_3233_IDA_227205 crossref_primary_10_48175_IJARSCT_22130 crossref_primary_10_1016_j_bspc_2025_107640 crossref_primary_10_1371_journal_pone_0307206 crossref_primary_10_1002_cepa_2072 crossref_primary_10_3390_s23020734 crossref_primary_10_1109_ACCESS_2025_3532354 crossref_primary_10_1007_s11280_024_01251_w crossref_primary_10_3390_electronics13020339 crossref_primary_10_1103_PhysRevC_110_054609 crossref_primary_10_1080_21681163_2023_2297016 crossref_primary_10_1109_JBHI_2024_3506829 crossref_primary_10_1109_TITS_2024_3386531 crossref_primary_10_1109_TIP_2023_3318953 crossref_primary_10_1145_3691338 crossref_primary_10_1016_j_neucom_2024_128524 crossref_primary_10_1109_ACCESS_2023_3240999 crossref_primary_10_1093_nc_niae001 crossref_primary_10_1109_OJCS_2024_3400696 crossref_primary_10_1016_j_heliyon_2024_e29583 crossref_primary_10_3390_s24061936 crossref_primary_10_1109_ACCESS_2022_3204755 crossref_primary_10_3390_agronomy13041156 crossref_primary_10_1007_s00521_024_10470_1 crossref_primary_10_3390_app13063707 crossref_primary_10_5909_JBE_2024_29_3_291 crossref_primary_10_1109_TCI_2024_3515844 crossref_primary_10_1016_j_patcog_2023_109432 crossref_primary_10_1109_OJCOMS_2023_3320646 crossref_primary_10_3390_ijgi13090336 crossref_primary_10_1109_TPAMI_2023_3243812 crossref_primary_10_1007_s10489_024_05380_7 crossref_primary_10_1038_s41598_024_66886_1 crossref_primary_10_1109_ACCESS_2023_3277204 crossref_primary_10_1109_ACCESS_2024_3452728 crossref_primary_10_1109_ACCESS_2024_3356551 crossref_primary_10_1038_s41598_024_83652_5 crossref_primary_10_1016_j_buildenv_2024_111396 crossref_primary_10_3390_machines11020187 crossref_primary_10_1109_ACCESS_2024_3469393 crossref_primary_10_3390_rs17050858 crossref_primary_10_1016_j_geoen_2024_212994 crossref_primary_10_1109_TGRS_2024_3520635 crossref_primary_10_1016_j_compmedimag_2023_102230 crossref_primary_10_1016_j_measurement_2022_111594 crossref_primary_10_15407_jai2024_04_133 crossref_primary_10_1109_TUFFC_2023_3329119 crossref_primary_10_1109_TMM_2022_3173131 crossref_primary_10_1109_TPAMI_2024_3408271 crossref_primary_10_1007_s00371_024_03524_x crossref_primary_10_1016_j_compbiomed_2024_108709 crossref_primary_10_1016_j_metrad_2023_100047 crossref_primary_10_1109_JBHI_2024_3355758 crossref_primary_10_1063_5_0207363 crossref_primary_10_1007_s13748_023_00301_0 crossref_primary_10_1016_j_isprsjprs_2024_03_012 crossref_primary_10_1109_OJSP_2024_3375276 crossref_primary_10_1109_JBHI_2023_3285275 crossref_primary_10_1080_22797254_2024_2352386 crossref_primary_10_3390_electronics14050825 crossref_primary_10_3390_s24175800 crossref_primary_10_1109_TII_2024_3353814 crossref_primary_10_1016_j_isci_2024_111216 crossref_primary_10_1016_j_neunet_2025_107175 crossref_primary_10_1155_2023_6691332 crossref_primary_10_1007_s00138_023_01462_7 crossref_primary_10_3390_s23063217 crossref_primary_10_1117_1_JMI_12_2_024502 crossref_primary_10_1002_acm2_13942 crossref_primary_10_1007_s40747_023_01237_7 crossref_primary_10_1016_j_neucom_2024_127468 crossref_primary_10_1017_jfm_2023_1096 crossref_primary_10_3390_s23239488 crossref_primary_10_1063_5_0134317 crossref_primary_10_1016_j_jare_2022_08_021 crossref_primary_10_1016_j_knosys_2024_112215 crossref_primary_10_1002_rse2_419 crossref_primary_10_1016_j_inffus_2023_102217 crossref_primary_10_1109_TIM_2025_3545699 crossref_primary_10_1145_3715330 crossref_primary_10_1016_j_actamat_2025_120962 crossref_primary_10_1007_s13042_024_02110_w crossref_primary_10_1109_TGRS_2024_3396379 crossref_primary_10_3390_app13031487 crossref_primary_10_3390_jrfm17070293 crossref_primary_10_1109_TGRS_2022_3186634 crossref_primary_10_3390_rs15245706 crossref_primary_10_1364_OE_550831 crossref_primary_10_1109_TGRS_2024_3401130 crossref_primary_10_1109_TUFFC_2023_3276634 crossref_primary_10_1109_TITS_2023_3258683 crossref_primary_10_3390_signals5030031 crossref_primary_10_3390_rs14092228 crossref_primary_10_1145_3664595 crossref_primary_10_1109_JIOT_2024_3372060 crossref_primary_10_1016_j_heliyon_2024_e36450 crossref_primary_10_1109_TIM_2024_3373045 crossref_primary_10_1038_s41598_023_38365_6 crossref_primary_10_1109_ACCESS_2023_3256723 crossref_primary_10_1109_JSTARS_2024_3439429 crossref_primary_10_1109_LSP_2022_3155991 crossref_primary_10_1016_j_jvcir_2023_103956 crossref_primary_10_1007_s10489_023_04747_6 crossref_primary_10_1109_TGRS_2024_3491871 crossref_primary_10_1186_s40537_024_01001_9 crossref_primary_10_3390_rs16162974 crossref_primary_10_1049_ipr2_12915 crossref_primary_10_1109_ACCESS_2024_3458908 crossref_primary_10_1016_j_aei_2024_102463 crossref_primary_10_1109_ACCESS_2025_3549679 crossref_primary_10_1007_s11227_024_06638_0 crossref_primary_10_1080_15230406_2023_2295948 crossref_primary_10_3390_rs16112041 crossref_primary_10_3390_ai5010016 crossref_primary_10_1016_j_heliyon_2023_e21723 crossref_primary_10_1109_TGRS_2024_3374324 crossref_primary_10_1109_TGRS_2023_3308999 crossref_primary_10_32604_cmc_2024_050790 crossref_primary_10_1109_ACCESS_2024_3524403 crossref_primary_10_1109_ACCESS_2022_3156894 crossref_primary_10_1117_1_JMI_11_2_024009 crossref_primary_10_1177_01655515231202761 crossref_primary_10_1093_bib_bbad231 crossref_primary_10_1016_j_asoc_2023_111166 crossref_primary_10_1103_PhysRevApplied_23_024044 crossref_primary_10_1016_j_csbj_2025_02_024 crossref_primary_10_32628_CSEIT241051019 crossref_primary_10_1038_s41467_025_57587_y crossref_primary_10_1109_TGRS_2021_3127986 crossref_primary_10_1002_aisy_202400110 crossref_primary_10_1016_j_neucom_2024_128583 crossref_primary_10_1109_TGRS_2024_3478249 crossref_primary_10_1109_TMI_2023_3322581 crossref_primary_10_2478_ttj_2024_0003 crossref_primary_10_1016_j_inffus_2024_102308 crossref_primary_10_3390_agronomy14030417 crossref_primary_10_1109_TMI_2023_3250474 crossref_primary_10_3390_info14030187 crossref_primary_10_1109_ACCESS_2023_3300234 crossref_primary_10_3389_fpls_2023_1111175 crossref_primary_10_3390_app14010386 crossref_primary_10_1016_j_patrec_2024_02_019 crossref_primary_10_1007_s11042_023_14950_9 crossref_primary_10_1541_ieejeiss_144_665 crossref_primary_10_1109_TVCG_2024_3388514 crossref_primary_10_3390_sym17030324 crossref_primary_10_1109_TIP_2023_3336532 crossref_primary_10_3390_brainsci14121266 crossref_primary_10_1016_j_engappai_2024_108859 crossref_primary_10_1109_TNNLS_2023_3247103 crossref_primary_10_1109_TGRS_2025_3531879 crossref_primary_10_1016_j_neucom_2025_129549 crossref_primary_10_1190_geo2023_0553_1 crossref_primary_10_3390_s23031258 crossref_primary_10_3390_s25020303 crossref_primary_10_1109_ACCESS_2023_3283495 crossref_primary_10_1007_s13347_024_00790_4 crossref_primary_10_1007_s00371_023_03164_7 crossref_primary_10_1109_TGRS_2024_3396330 crossref_primary_10_1109_TPAMI_2022_3213073 crossref_primary_10_1007_s11042_024_19685_9 crossref_primary_10_3390_electronics13234636 crossref_primary_10_1016_j_powtec_2024_120446 crossref_primary_10_1016_j_heliyon_2023_e13081 crossref_primary_10_1007_s10694_022_01231_4 crossref_primary_10_1109_LSP_2022_3233005 crossref_primary_10_1016_j_bspc_2024_106633 crossref_primary_10_1016_j_dsp_2023_104109 crossref_primary_10_1109_TSMC_2023_3267858 crossref_primary_10_1016_j_tree_2022_11_008 crossref_primary_10_1109_ACCESS_2024_3406478 crossref_primary_10_1109_TGRS_2023_3293832 crossref_primary_10_61187_ita_v1i2_36 crossref_primary_10_1109_ACCESS_2023_3297206 crossref_primary_10_1109_TGRS_2023_3330869 crossref_primary_10_1007_s10895_025_04229_7 crossref_primary_10_1109_TSP_2025_3525951 crossref_primary_10_1109_ACCESS_2024_3393558 crossref_primary_10_1016_j_artint_2024_104147 crossref_primary_10_1117_1_OE_63_4_043105 crossref_primary_10_1016_j_asoc_2025_112878 crossref_primary_10_1109_TITS_2024_3447586 crossref_primary_10_1016_j_neucom_2024_128126 crossref_primary_10_3390_app15063061 crossref_primary_10_1109_JBHI_2024_3389708 crossref_primary_10_1088_1751_8121_acafb3 crossref_primary_10_1049_cit2_12255 crossref_primary_10_1186_s40942_024_00554_4 crossref_primary_10_1016_j_eswa_2024_124113 crossref_primary_10_1007_s11042_023_17345_y crossref_primary_10_3390_diagnostics14222497 crossref_primary_10_1002_adma_202308912 crossref_primary_10_1088_1361_6501_ad9ca9 crossref_primary_10_1093_rasti_rzad016 crossref_primary_10_3390_electronics12163407 crossref_primary_10_1109_ACCESS_2024_3505919 crossref_primary_10_1088_1361_6560_adac25 crossref_primary_10_3390_s23063035 crossref_primary_10_1109_TPAMI_2024_3523364 crossref_primary_10_1007_s10462_024_10934_9 crossref_primary_10_3390_rs15081995 crossref_primary_10_1016_j_jechem_2024_11_011 crossref_primary_10_1016_j_neunet_2023_11_039 crossref_primary_10_1155_2023_6646599 crossref_primary_10_1016_j_compbiomed_2023_107396 crossref_primary_10_1109_TGRS_2023_3280546 crossref_primary_10_3390_math12203174 crossref_primary_10_1177_11795972241271569 crossref_primary_10_3390_app15010109 crossref_primary_10_1109_TASE_2023_3346823 |
Cites_doi | 10.1162/neco.1989.1.4.541 10.1109/ICCV48922.2021.00179 10.1109/LGRS.2017.2752750 10.1007/978-3-031-01821-3 10.1038/nature14539 10.1162/neco.1997.9.8.1735 10.1016/j.patrec.2008.04.005 10.1109/ICCV48922.2021.00675 10.1007/s11263-016-0981-7 10.1145/10.1109/wacv.2018.00092 10.1109/ICCV48922.2021.01204 10.1145/10.1109/TPAMI.2019.2916873 10.1109/CVPR42600.2020.00975 10.18653/v1/2020.acl-main.686 10.1109/CVPR46437.2021.00681 10.1109/ICCV48922.2021.00717 10.1109/ICCV48922.2021.00950 |
ContentType | Journal Article |
DBID | AAYXX CITATION ADTPV AOWAS DG8 |
DOI | 10.1145/3505244 |
DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Linköpings universitet |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1557-7341 |
EndPage | 41 |
ExternalDocumentID | oai_DiVA_org_liu_190366 10_1145_3505244 |
GroupedDBID | --Z -DZ -~X .DC 23M 4.4 5GY 5VS 6J9 85S 8US 8VB AAIKC AAKMM AALFJ AAMNW AAYFX AAYXX ABPPZ ACGFO ACGOD ACM ACNCT ADBCU ADL ADMLS AEBYY AEFXT AEGXH AEJOY AEMOZ AENEX AENSD AETEA AFWIH AFWXC AGHSJ AHQJS AIAGR AIKLT AKRVB AKVCP ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF BDXCO CCLIF CITATION CS3 FEDTE GUFHI HGAVV H~9 IAO ICD IEA IGS IOF K1G LHSKQ N95 P1C P2P PQQKQ QWB RNS ROL RXW TAE TH9 U5U UKR UPT WH7 X6Y XH6 XSW XZL YXB ZCA ZL0 41~ 4R4 9M8 AAFWJ ACBNA ADMHC ADTPV ADXHL AFFNX AI. AOWAS BAAKF DG8 EBS EJD HF~ ITC MVM OHT TAF VH1 XJT XOL YR5 ZCG |
ID | FETCH-LOGICAL-c329t-18a276a15b29d94046105d25044a4fbb84b9073e77c164fadb350059e5d41b373 |
ISSN | 0360-0300 1557-7341 |
IngestDate | Thu Aug 21 06:48:42 EDT 2025 Thu Jul 03 08:32:49 EDT 2025 Thu Apr 24 23:09:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10s |
Keywords | bidirectional encoders transformers literature survey Self-attention convolutional networks self-supervision deep neural networks |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c329t-18a276a15b29d94046105d25044a4fbb84b9073e77c164fadb350059e5d41b373 |
ORCID | 0000-0001-6172-5572 0000-0001-7663-7161 0000-0002-7198-0187 0000-0002-4263-3143 0000-0002-2706-5985 0000-0002-9502-1749 |
PageCount | 41 |
ParticipantIDs | swepub_primary_oai_DiVA_org_liu_190366 crossref_primary_10_1145_3505244 crossref_citationtrail_10_1145_3505244 |
PublicationCentury | 2000 |
PublicationDate | 2022-01-31 |
PublicationDateYYYYMMDD | 2022-01-31 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | ACM computing surveys |
PublicationYear | 2022 |
References | Misra Ishan (e_1_3_2_144_2) 2016 Xu Tao (e_1_3_2_226_2) 2018 Ahsan Unaiza (e_1_3_2_6_2) 2019 Seong Hongje (e_1_3_2_174_2) 2019 Yang Fuzhi (e_1_3_2_228_2) 2020 Touvron Hugo (e_1_3_2_199_2) 2021 e_1_3_2_62_2 e_1_3_2_85_2 Tan Mingxing (e_1_3_2_191_2) 2019 Wang Jue (e_1_3_2_207_2) 2021 Lee Hsin-Ying (e_1_3_2_114_2) 2017 Liu Ze (e_1_3_2_138_2) 2021 Radford Alec (e_1_3_2_163_2) 2018 Zellers Rowan (e_1_3_2_238_2) 2019 Ramesh Aditya (e_1_3_2_167_2) 2021 Tay Yi (e_1_3_2_194_2) 2020 Korbar Bruno (e_1_3_2_106_2) 2018 Abnar Samira (e_1_3_2_5_2) 2020 e_1_3_2_108_2 Chen Boyu (e_1_3_2_28_2) 2021 Lee Sangho (e_1_3_2_116_2) 2020 Tan Hao (e_1_3_2_190_2) 2020 Ledig Christian (e_1_3_2_113_2) 2017 Lin Tsung-Yi (e_1_3_2_131_2) 2017 Wu Xiaolei (e_1_3_2_220_2) 2021 Naseer Muhammad Muzammal (e_1_3_2_146_2) 2019 Neuhold Gerhard (e_1_3_2_148_2) 2017 Ho Jonathan (e_1_3_2_84_2) 2019 e_1_3_2_73_2 e_1_3_2_205_2 e_1_3_2_58_2 Grill Jean-Bastien (e_1_3_2_74_2) 2020 e_1_3_2_112_2 Liu Yun (e_1_3_2_137_2) 2021 Girdhar Rohit (e_1_3_2_70_2) 2019 e_1_3_2_50_2 Vaswani Ashish (e_1_3_2_202_2) 2017 Cordts Marius (e_1_3_2_47_2) 2016 Alberti Chris (e_1_3_2_7_2) 2019 Chen Hanting (e_1_3_2_31_2) 2020 Chen Minghao (e_1_3_2_33_2) 2021 Dosovitskiy Alexey (e_1_3_2_57_2) 2020 e_1_3_2_63_2 Wang Wenxiao (e_1_3_2_211_2) 2021 Hénaff Olivier J. (e_1_3_2_83_2) 2019 Foret Pierre (e_1_3_2_65_2) 2020 Krishna Ranjay (e_1_3_2_107_2) 2017 Chefer Hila (e_1_3_2_27_2) 2020 Hao Weituo (e_1_3_2_77_2) 2020 Lin Junyang (e_1_3_2_129_2) 2021 Karras Tero (e_1_3_2_98_2) 2020 e_1_3_2_229_2 Child Rewon (e_1_3_2_41_2) 2019 Johnson Justin (e_1_3_2_96_2) 2016 Sajjadi Mehdi S. M. (e_1_3_2_172_2) 2017 e_1_3_2_36_2 Jaegle Andrew (e_1_3_2_91_2) 2021 Reed Scott (e_1_3_2_170_2) 2016 e_1_3_2_111_2 Huang Zilong (e_1_3_2_89_2) 2019 Sigurdsson Gunnar A. (e_1_3_2_178_2) 2016 Zhang Pengchuan (e_1_3_2_244_2) 2021 Chaudhari Sneha (e_1_3_2_26_2) 2019 Gao Chen (e_1_3_2_66_2) 2020 Doersch Carl (e_1_3_2_55_2) 2020 Liang Xiaodan (e_1_3_2_126_2) 2018 Beltagy Iz (e_1_3_2_16_2) 2020 Bachman Philip (e_1_3_2_13_2) 2019 Tai Ying (e_1_3_2_188_2) 2017 e_1_3_2_60_2 Zhao Hengshuang (e_1_3_2_250_2) 2020 e_1_3_2_102_2 Zhang Yulun (e_1_3_2_248_2) 2020 Tay Y. (e_1_3_2_192_2) 2021 Oord Aaron Van den (e_1_3_2_200_2) 2016 Kamath Aishwarya (e_1_3_2_97_2) 2021 Carreira Joao (e_1_3_2_25_2) 2019 Zhou Bolei (e_1_3_2_252_2) 2017 Ordonez Vicente (e_1_3_2_151_2) 2011 Ott Myle (e_1_3_2_152_2) 2018 Shaw Peter (e_1_3_2_177_2) 2018 e_1_3_2_222_2 Zamir Syed Waqas (e_1_3_2_237_2) 2021 Bengio Yoshua (e_1_3_2_17_2) 2017 e_1_3_2_79_2 Liu Wei (e_1_3_2_134_2) 2016 Fedus William (e_1_3_2_64_2) Szegedy Christian (e_1_3_2_187_2) 2013 Chen Xiangning (e_1_3_2_38_2) 2021 Ye Han-Jia (e_1_3_2_231_2) 2020 Jiang Zihang (e_1_3_2_93_2) 2021 Ging Simon (e_1_3_2_69_2) 2020 Plizzari Chiara (e_1_3_2_159_2) 2020 Wang Zhendong (e_1_3_2_217_2) 2021 Arnab Anurag (e_1_3_2_11_2) 2021 Xiong Yunyang (e_1_3_2_225_2) 2021 Voita Elena (e_1_3_2_204_2) 2019 Zhang Han (e_1_3_2_241_2) 2017 Yuan Kun (e_1_3_2_234_2) 2021 Gidaris Spyros (e_1_3_2_68_2) 2018 Jing Longlong (e_1_3_2_95_2) 2018 Chen Chun-Fu (e_1_3_2_29_2) 2021 Deng Jia (e_1_3_2_52_2) 2009 Lu Zhisheng (e_1_3_2_140_2) 2021 e_1_3_2_124_2 Wu Haiping (e_1_3_2_219_2) 2021 Bertasius Gedas (e_1_3_2_18_2) 2020 Gemmeke Jort F. (e_1_3_2_67_2) 2017 Mao Junhua (e_1_3_2_142_2) 2016 Caron Mathilde (e_1_3_2_24_2) 2021 e_1_3_2_101_2 He Kaiming (e_1_3_2_81_2) 2016 Radford Alec (e_1_3_2_162_2) 2015 Zhou Luowei (e_1_3_2_254_2) 2020 Bello Irwan (e_1_3_2_14_2) 2021 e_1_3_2_4_2 Chen Mark (e_1_3_2_34_2) 2020 Touvron Hugo (e_1_3_2_197_2) 2021 Kitaev Nikita (e_1_3_2_105_2) 2020 Chen Ting (e_1_3_2_35_2) 2020 Sharma Piyush (e_1_3_2_176_2) 2018 Redmon Joseph (e_1_3_2_169_2) 2016 Prangemeier Tim (e_1_3_2_160_2) 2020 Chen Xinlei (e_1_3_2_37_2) 2020 e_1_3_2_251_2 Li Xiujun (e_1_3_2_123_2) 2020 Carion Nicolas (e_1_3_2_23_2) 2020 Shahroudy Amir (e_1_3_2_175_2) 2016 e_1_3_2_20_2 Zhang Han (e_1_3_2_242_2) 2018 Hu Dichao (e_1_3_2_86_2) 2019 Ren Shaoqing (e_1_3_2_171_2) 2016 Kumar Manoj (e_1_3_2_110_2) 2021 Li Liunian Harold (e_1_3_2_121_2) 2019 Hu Han (e_1_3_2_87_2) 2019 Lim Bee (e_1_3_2_127_2) 2017 e_1_3_2_39_2 Lu Jiasen (e_1_3_2_139_2) 2019 Zhou Luowei (e_1_3_2_256_2) 2018 Sayed Nawid (e_1_3_2_173_2) 2018 Lin Kevin (e_1_3_2_130_2) 2020 Chu Xiangxiang (e_1_3_2_43_2) 2021 Han Wei (e_1_3_2_76_2) 2018 e_1_3_2_3_2 e_1_3_2_209_2 Bertasius Gedas (e_1_3_2_19_2) 2021 Goodfellow Ian (e_1_3_2_72_2) 2014 e_1_3_2_92_2 Wang Xinpeng (e_1_3_2_213_2) 2020 Wang Sinong (e_1_3_2_208_2) 2020 Wang Wenhai (e_1_3_2_210_2) 2021 Tolstikhin Ilya (e_1_3_2_196_2) 2021 Kazemzadeh Sahar (e_1_3_2_100_2) 2014 Zhang Qinglong (e_1_3_2_245_2) 2021 Coates Adam (e_1_3_2_45_2) 2011 Vinyals Oriol (e_1_3_2_203_1) 2015 Yu Licheng (e_1_3_2_233_2) 2016 Ye Linwei (e_1_3_2_232_2) 2019 Arandjelovic Relja (e_1_3_2_10_2) 2017 Kay Will (e_1_3_2_99_2) 2017 Wu Yu-Huan (e_1_3_2_221_2) 2021 Xie Saining (e_1_3_2_223_2) 2017 e_1_3_2_44_2 Razavi Ali (e_1_3_2_168_2) 2019 Touvron Hugo (e_1_3_2_198_2) 2020 Girshick Ross (e_1_3_2_71_2) 2015 Radford Alec (e_1_3_2_164_2) 2019 Yun Sangdoo (e_1_3_2_236_2) 2019 Zhu Xizhou (e_1_3_2_257_2) 2020 Wang Xiaolong (e_1_3_2_212_2) 2018 Lee Kuang-Huei (e_1_3_2_115_2) 2018 Raffel Colin (e_1_3_2_166_2) 2019 (e_1_3_2_8_2) 2022 Antol Stanislaw (e_1_3_2_9_2) 2015 Li Changlin (e_1_3_2_118_2) 2021 Tay Yi (e_1_3_2_193_2) 2020 Zhang Zizhao (e_1_3_2_249_2) 2021 Krizhevsky Alex (e_1_3_2_109_2) 2009 Majumdar Arjun (e_1_3_2_141_2) 2020 Lin Tsung-Yi (e_1_3_2_132_2) 2014 Chen Yen-Chun (e_1_3_2_40_2) 2020 Ba Jimmy Lei (e_1_3_2_12_2) 2016 Dong Xiaoyi (e_1_3_2_56_2) 2021 Chen Kevin (e_1_3_2_32_2) 2020 e_1_3_2_78_2 Wang Xintao (e_1_3_2_214_2) 2018 e_1_3_2_2_2 Sun Chen (e_1_3_2_184_2) 2019 Tian Yonglong (e_1_3_2_195_2) 2019 Wang Huiyu (e_1_3_2_206_2) 2020 Parmar Niki (e_1_3_2_155_2) 2018 Liang Jingyun (e_1_3_2_125_2) 2021 Correia Alana de Santana (e_1_3_2_51_2) 2021 Liu Xiao (e_1_3_2_135_2) 2020 Pérez Jorge (e_1_3_2_158_2) 2018 Zhang Han (e_1_3_2_240_2) 2019 Naseer Muzammal (e_1_3_2_145_2) 2021 Brown Tom B. (e_1_3_2_21_2) 2020 e_1_3_2_253_2 Yuan Li (e_1_3_2_235_2) 2021 Cordonnier Jean-Baptiste (e_1_3_2_46_2) 2019 He Kaiming (e_1_3_2_80_2) 2017 Neimark Daniel (e_1_3_2_147_2) 2021 Choromanski Krzysztof (e_1_3_2_42_2) 2021 Dai Tao (e_1_3_2_49_2) 2019 Radosavovic Ilija (e_1_3_2_165_2) 2020 Soomro Khurram (e_1_3_2_180_2) 2012 Kingma Diederik P. (e_1_3_2_103_2) 2013 Xie Zhenda (e_1_3_2_224_2) 2021 Tan Hao (e_1_3_2_189_2) 2019 Li Muchen (e_1_3_2_122_2) 2021 e_1_3_2_179_2 Jaegle Andrew (e_1_3_2_90_2) 2021 Sun Chen (e_1_3_2_185_2) 2019 e_1_3_2_133_2 Bello Irwan (e_1_3_2_15_2) 2019 Jing Longlong (e_1_3_2_94_2) 2020 Parmar Niki (e_1_3_2_154_2) 2019 Wang Yuqing (e_1_3_2_215_2) 2020 Niu Ben (e_1_3_2_149_2) 2020 Peng Hao (e_1_3_2_157_2) 2021 Devlin Jacob (e_1_3_2_54_2) 2018 Kirillov Alexander (e_1_3_2_104_2) 2019 Zhang Pengchuan (e_1_3_2_243_2) 2021 Li Chunyuan (e_1_3_2_119_2) 2021 Zhang Yulun (e_1_3_2_247_2) 2018 Du Ye (e_1_3_2_59_2) 2021 e_1_3_2_239_2 e_1_3_2_216_2 e_1_3_2_88_2 Suhr Alane (e_1_3_2_183_2) 2018 Lepikhin Dmitry (e_1_3_2_117_2) 2020 Park Seong-Jin (e_1_3_2_153_2) 2018 Vaswani Ashish (e_1_3_2_201_2) 2021 Wei Donglai (e_1_3_2_218_2) 2018 Zhang Richard (e_1_3_2_246_2) 2016 e_1_3_2_128_2 Dai Jifeng (e_1_3_2_48_2) 2017 Su Weijie (e_1_3_2_182_2) 2019 Zhou Luowei (e_1_3_2_255_2) 2018 Melas-Kyriazi Luke (e_1_3_2_143_2) 2021 e_1_3_2_30_2 e_1_3_2_53_2 Noroozi Mehdi (e_1_3_2_150_2) 2016 e_1_3_2_227_2 e_1_3_2_181_2 Han Kai (e_1_3_2_75_2) 2021 He Shuting (e_1_3_2_82_2) 2021 Esser Patrick (e_1_3_2_61_2) 2020 Li Gen (e_1_3_2_120_2) 2020 Yang Linjie (e_1_3_2_230_2) 2019 Liu Yinhan (e_1_3_2_136_2) 2019 Radford Alec (e_1_3_2_161_2) 2021; 2 Szegedy Christian (e_1_3_2_186_2) 2016 Buades Antoni (e_1_3_2_22_2) 2005 Pathak Deepak (e_1_3_2_156_2) 2016 |
References_xml | – start-page: 700 volume-title: BIBM year: 2020 ident: e_1_3_2_160_2 – year: 2019 ident: e_1_3_2_26_2 article-title: An attentive survey of attention models publication-title: arXiv:1904.02874 – volume-title: CVPR year: 2017 ident: e_1_3_2_188_2 – start-page: 12894 volume-title: CVPR year: 2021 ident: e_1_3_2_201_2 – year: 2020 ident: e_1_3_2_74_2 article-title: Bootstrap your own latent: A new approach to self-supervised learning publication-title: NeurIPS – volume-title: ICML year: 2021 ident: e_1_3_2_19_2 – year: 2020 ident: e_1_3_2_61_2 article-title: Taming transformers for high-resolution image synthesis publication-title: arXiv:2012.09841 – year: 2021 ident: e_1_3_2_93_2 article-title: All tokens matter: Token labeling for training better vision transformers publication-title: arXiv:2104.10858 – volume-title: NeurIPS year: 2019 ident: e_1_3_2_139_2 – volume-title: ECCV year: 2016 ident: e_1_3_2_246_2 – volume-title: CVPR year: 2019 ident: e_1_3_2_238_2 – volume-title: Language Models Are Unsupervised Multitask Learners year: 2019 ident: e_1_3_2_164_2 – volume-title: ICCV year: 2015 ident: e_1_3_2_9_2 – volume-title: NeurIPS year: 2018 ident: e_1_3_2_106_2 – volume-title: CVPR year: 2016 ident: e_1_3_2_175_2 – ident: e_1_3_2_36_2 – volume-title: CVPR year: 2005 ident: e_1_3_2_22_2 – year: 2021 ident: e_1_3_2_24_2 article-title: Emerging properties in self-supervised vision transformers publication-title: arXiv:2104.14294 – volume-title: CVPR year: 2019 ident: e_1_3_2_104_2 – year: 2020 ident: e_1_3_2_206_2 article-title: Axial-DeepLab: Stand-alone axial-attention for panoptic segmentation publication-title: arXiv:2003.07853 – year: 2020 ident: e_1_3_2_16_2 article-title: Longformer: The long-document transformer publication-title: arXiv:2004.05150 – start-page: 2818 volume-title: CVPR year: 2016 ident: e_1_3_2_186_2 – ident: e_1_3_2_124_2 – year: 2019 ident: e_1_3_2_182_2 article-title: VL-BERT: Pre-training of generic visual-linguistic representations publication-title: arXiv:1908.08530 – ident: e_1_3_2_63_2 – year: 2021 ident: e_1_3_2_224_2 article-title: Self-supervised learning with swin transformers publication-title: arXiv:2105.04553 – ident: e_1_3_2_239_2 – volume-title: ICCV year: 2019 ident: e_1_3_2_15_2 – ident: e_1_3_2_2_2 – volume-title: ICLR year: 2018 ident: e_1_3_2_68_2 – ident: e_1_3_2_112_2 doi: 10.1162/neco.1989.1.4.541 – start-page: 0 volume-title: ICCV Workshops year: 2019 ident: e_1_3_2_174_2 – year: 2021 ident: e_1_3_2_90_2 article-title: Perceiver IO: A general architecture for structured inputs & outputs publication-title: arXiv:2107.14795 – year: 2020 ident: e_1_3_2_31_2 article-title: Pre-trained image processing transformer publication-title: arXiv:2012.00364 – volume-title: CVPR year: 2017 ident: e_1_3_2_252_2 – volume-title: ICCV year: 2019 ident: e_1_3_2_185_2 – volume-title: ICCV year: 2019 ident: e_1_3_2_89_2 – volume-title: AAAI year: 2021 ident: e_1_3_2_225_2 – year: 2021 ident: e_1_3_2_75_2 article-title: Transformer in transformer publication-title: arXiv:2103.00112 – volume-title: CVPR year: 2018 ident: e_1_3_2_226_2 – year: 2016 ident: e_1_3_2_12_2 article-title: Layer normalization publication-title: arXiv:1607.06450 – year: 2020 ident: e_1_3_2_32_2 article-title: Topological planning with transformers for vision-and-language navigation publication-title: arXiv:2012.05292 – year: 2021 ident: e_1_3_2_119_2 article-title: Efficient Self-supervised vision transformers for representation learning publication-title: arXiv:2106.09785 – volume-title: ICCV year: 2019 ident: e_1_3_2_87_2 – volume-title: IntelliSys year: 2019 ident: e_1_3_2_86_2 – volume-title: NeurIPS year: 2019 ident: e_1_3_2_154_2 – volume-title: ICASSP year: 2017 ident: e_1_3_2_67_2 – year: 2020 ident: e_1_3_2_159_2 article-title: Spatial temporal transformer network for skeleton-based action recognition publication-title: arXiv:2008.07404 – year: 2021 ident: e_1_3_2_28_2 article-title: GLiT: Neural architecture search for global and local image transformer publication-title: arXiv:2107.02960 – volume-title: Learning Multiple Layers of Features from Tiny Images year: 2009 ident: e_1_3_2_109_2 – volume-title: CVPR year: 2009 ident: e_1_3_2_52_2 – year: 2015 ident: e_1_3_2_162_2 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks publication-title: arXiv:1511.06434 – ident: e_1_3_2_227_2 – volume-title: CVPR year: 2019 ident: e_1_3_2_49_2 – year: 2020 ident: e_1_3_2_94_2 article-title: Self-supervised visual feature learning with deep neural networks: A survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume-title: ECCV year: 2018 ident: e_1_3_2_247_2 – year: 2021 ident: e_1_3_2_140_2 article-title: Efficient transformer for single image super-resolution publication-title: arXiv:2108.11084 – volume-title: arXiv:2105.12723 year: 2021 ident: e_1_3_2_249_2 – volume-title: CVPR year: 2016 ident: e_1_3_2_81_2 – volume-title: NeurIPS year: 2017 ident: e_1_3_2_202_2 – volume-title: ICCV year: 2017 ident: e_1_3_2_172_2 – year: 2018 ident: e_1_3_2_183_2 article-title: A corpus for reasoning about natural language grounded in photographs publication-title: arXiv:1811.00491 – year: 2018 ident: e_1_3_2_242_2 article-title: StackGAN++: Realistic image synthesis with stacked generative adversarial networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 13041 volume-title: AAAI year: 2020 ident: e_1_3_2_254_2 – year: 2020 ident: e_1_3_2_65_2 article-title: Sharpness-aware minimization for efficiently improving generalization publication-title: arXiv:2010.01412 – year: 2021 ident: e_1_3_2_129_2 article-title: M6: A Chinese multimodal pretrainer publication-title: arXiv:2103.00823 – volume-title: Improving Language Understanding by Generative Pre-training year: 2018 ident: e_1_3_2_163_2 – volume-title: ICCV year: 2021 ident: e_1_3_2_138_2 – ident: e_1_3_2_88_2 – volume-title: ICML year: 2020 ident: e_1_3_2_34_2 – year: 2020 ident: e_1_3_2_37_2 article-title: Improved baselines with momentum contrastive learning publication-title: arXiv:2003.04297 – ident: e_1_3_2_53_2 doi: 10.1109/ICCV48922.2021.00179 – volume-title: arXiv:1908.03557 year: 2019 ident: e_1_3_2_121_2 – start-page: 5680 volume-title: CVPR year: 2020 ident: e_1_3_2_66_2 – year: 2020 ident: e_1_3_2_257_2 article-title: Deformable DETR: Deformable transformers for end-to-end object detection publication-title: arXiv:2010.04159 – year: 2018 ident: e_1_3_2_54_2 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding publication-title: arXiv:1810.04805 – year: 2021 ident: e_1_3_2_217_2 article-title: Uformer: A general U-shaped transformer for image restoration publication-title: arXiv:2106.03106 – start-page: 6023 volume-title: ICCV year: 2019 ident: e_1_3_2_236_2 – ident: e_1_3_2_128_2 doi: 10.1109/LGRS.2017.2752750 – year: 2020 ident: e_1_3_2_198_2 article-title: Training data-efficient image transformers & distillation through attention publication-title: arXiv:2012.12877 – volume: 2 start-page: T2 year: 2021 ident: e_1_3_2_161_2 article-title: Learning transferable visual models from natural language supervision publication-title: Image – year: 2021 ident: e_1_3_2_51_2 article-title: Attention, please! A survey of neural attention models in deep learning publication-title: arXiv:2103.16775 – year: 2021 ident: e_1_3_2_245_2 article-title: ResT: An efficient transformer for visual recognition publication-title: arXiv:2105.13677 – volume-title: ICCVW year: 2021 ident: e_1_3_2_125_2 – ident: e_1_3_2_30_2 – year: 2021 ident: e_1_3_2_91_2 article-title: Perceiver: General perception with iterative attention publication-title: arXiv:2103.03206 – volume-title: ECCV year: 2016 ident: e_1_3_2_178_2 – volume-title: ECCV year: 2020 ident: e_1_3_2_123_2 – year: 2020 ident: e_1_3_2_248_2 article-title: Residual dense network for image restoration publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: e_1_3_2_44_2 – year: 2021 ident: e_1_3_2_211_2 article-title: CrossFormer: A versatile vision transformer based on cross-scale attention publication-title: arXiv:2108.00154 – year: 2021 ident: e_1_3_2_137_2 article-title: Transformer in convolutional neural networks publication-title: arXiv:2106.03180 – year: 2021 ident: e_1_3_2_219_2 article-title: Cvt: Introducing convolutions to vision transformers publication-title: arXiv:2103.15808 – volume-title: ICCV year: 2017 ident: e_1_3_2_10_2 – volume-title: NeurIPS year: 2016 ident: e_1_3_2_200_2 – year: 2020 ident: e_1_3_2_135_2 article-title: Self-supervised learning: Generative or contrastive publication-title: arXiv:2006.08218 – year: 2020 ident: e_1_3_2_23_2 article-title: End-to-end object detection with transformers publication-title: arXiv:2005.12872 – year: 2021 ident: e_1_3_2_145_2 article-title: Intriguing properties of vision transformers publication-title: arXiv:2105.10497 – year: 2021 ident: e_1_3_2_122_2 article-title: Referring transformer: A one-step approach to multi-task visual grounding publication-title: arXiv:2106.03089 – volume-title: CVPR year: 2018 ident: e_1_3_2_76_2 – volume-title: NeurISP year: 2019 ident: e_1_3_2_168_2 – volume-title: NeurIPS year: 2019 ident: e_1_3_2_13_2 – volume-title: CVPR year: 2019 ident: e_1_3_2_232_2 – ident: e_1_3_2_101_2 doi: 10.1007/978-3-031-01821-3 – volume-title: CVPR year: 2018 ident: e_1_3_2_212_2 – volume-title: NeurIPS year: 2019 ident: e_1_3_2_146_2 – year: 2018 ident: e_1_3_2_126_2 article-title: Look into person: Joint body parsing & pose estimation network and a new benchmark publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2020 ident: e_1_3_2_194_2 article-title: Efficient transformers: A survey publication-title: arXiv:2009.06732 – ident: e_1_3_2_111_2 doi: 10.1038/nature14539 – volume-title: ECCV year: 2020 ident: e_1_3_2_40_2 – start-page: 764 volume-title: ICCV year: 2017 ident: e_1_3_2_48_2 – volume-title: ICLR year: 2021 ident: e_1_3_2_14_2 – year: 2021 ident: e_1_3_2_56_2 article-title: Cswin transformer: A general vision transformer backbone with cross-shaped windows publication-title: arXiv:2107.00652 – volume-title: AISTATS year: 2011 ident: e_1_3_2_45_2 – ident: e_1_3_2_92_2 – year: 2020 ident: e_1_3_2_27_2 article-title: Transformer interpretability beyond attention visualization publication-title: arXiv:2012.09838 – ident: e_1_3_2_216_2 – year: 2021 ident: e_1_3_2_43_2 article-title: Twins: Revisiting the design of spatial attention in vision transformers publication-title: arXiv:2104.13840 – start-page: 5188 volume-title: ICCV year: 2019 ident: e_1_3_2_230_2 – volume-title: ICLR year: 2018 ident: e_1_3_2_158_2 – year: 2020 ident: e_1_3_2_5_2 article-title: Quantifying attention flow in transformers publication-title: arXiv:2005.00928 – volume-title: NIPS year: 2021 ident: e_1_3_2_196_2 – year: 2020 ident: e_1_3_2_57_2 article-title: An image is worth 16 \( \times \) 16 words: Transformers for image recognition at scale publication-title: arXiv:2010.11929 – year: 2021 ident: e_1_3_2_33_2 article-title: AutoFormer: Searching transformers for visual recognition publication-title: arXiv:2107.00651 – volume-title: CVPR year: 2017 ident: e_1_3_2_131_2 – volume-title: ECCV year: 2016 ident: e_1_3_2_150_2 – start-page: 5579 volume-title: CVPR year: 2021 ident: e_1_3_2_244_2 – year: 2021 ident: e_1_3_2_197_2 article-title: Resmlp: Feedforward networks for image classification with data-efficient training publication-title: arXiv:2105.03404 – volume-title: NAACL year: 2018 ident: e_1_3_2_177_2 – ident: e_1_3_2_85_2 doi: 10.1162/neco.1997.9.8.1735 – volume-title: CVPR year: 2017 ident: e_1_3_2_113_2 – volume-title: ICLR year: 2021 ident: e_1_3_2_157_2 – volume-title: WMT year: 2018 ident: e_1_3_2_152_2 – volume-title: CVPR year: 2015 ident: e_1_3_2_203_1 – ident: e_1_3_2_20_2 doi: 10.1016/j.patrec.2008.04.005 – ident: e_1_3_2_62_2 doi: 10.1109/ICCV48922.2021.00675 – year: 2020 ident: e_1_3_2_215_2 article-title: End-to-end video instance segmentation with transformers publication-title: arXiv:2011.14503 – volume-title: ICLR year: 2022 ident: e_1_3_2_8_2 – ident: e_1_3_2_108_2 doi: 10.1007/s11263-016-0981-7 – year: 2021 ident: e_1_3_2_143_2 article-title: Do you even need attention? A stack of feed-forward layers does surprisingly well on imagenet publication-title: arXiv:2105.02723 – ident: e_1_3_2_50_2 – volume-title: CVPR year: 2020 ident: e_1_3_2_250_2 – volume-title: ICML year: 2020 ident: e_1_3_2_193_2 – year: 2021 ident: e_1_3_2_147_2 article-title: Video transformer network publication-title: arXiv:2102.00719 – start-page: 7354 volume-title: ICML year: 2019 ident: e_1_3_2_240_2 – year: 2017 ident: e_1_3_2_99_2 article-title: The kinetics human action video dataset publication-title: arXiv:1705.06950 – year: 2021 ident: e_1_3_2_82_2 article-title: TransReID: Transformer-based object re-identification publication-title: arXiv:2102.04378 – year: 2021 ident: e_1_3_2_207_2 article-title: Long-short temporal contrastive learning of video transformers publication-title: arXiv:2106.09212 – year: 2021 ident: e_1_3_2_235_2 article-title: Tokens-to-token ViT: Training vision transformers from scratch on imagenet publication-title: arXiv:2101.11986 – year: 2013 ident: e_1_3_2_103_2 article-title: Auto-encoding variational bayes publication-title: arXiv:1312.6114 – year: 2021 ident: e_1_3_2_59_2 article-title: Visual grounding with transformers publication-title: arXiv:2105.04281 – ident: e_1_3_2_102_2 doi: 10.1145/10.1109/wacv.2018.00092 – year: 2021 ident: e_1_3_2_29_2 article-title: Crossvit: Cross-attention multi-scale vision transformer for image classification publication-title: arXiv:2103.14899 – volume-title: NeurIPS year: 2014 ident: e_1_3_2_72_2 – ident: e_1_3_2_73_2 doi: 10.1109/ICCV48922.2021.01204 – ident: e_1_3_2_209_2 – volume-title: CVPR year: 2016 ident: e_1_3_2_47_2 – volume-title: EMNLP year: 2019 ident: e_1_3_2_7_2 – volume-title: ECCV year: 2014 ident: e_1_3_2_132_2 – volume-title: EMNLP year: 2020 ident: e_1_3_2_190_2 – year: 2021 ident: e_1_3_2_210_2 article-title: Pyramid vision transformer: A versatile backbone for dense prediction without convolutions publication-title: arXiv:2102.12122 – ident: e_1_3_2_133_2 doi: 10.1145/10.1109/TPAMI.2019.2916873 – year: 2019 ident: e_1_3_2_41_2 article-title: Generating long sequences with sparse transformers publication-title: arXiv:1904.10509 – volume-title: EMNLP year: 2014 ident: e_1_3_2_100_2 – year: 2020 ident: e_1_3_2_117_2 article-title: Gshard: Scaling giant models with conditional computation and automatic sharding publication-title: arXiv:2006.16668 – volume-title: CVPR year: 2020 ident: e_1_3_2_77_2 – volume-title: ICCV year: 2017 ident: e_1_3_2_148_2 – year: 2021 ident: e_1_3_2_221_2 article-title: P2T: Pyramid pooling transformer for scene understanding publication-title: arXiv:2106.12011 – volume-title: ICLR year: 2021 ident: e_1_3_2_42_2 – ident: e_1_3_2_79_2 doi: 10.1109/CVPR42600.2020.00975 – ident: e_1_3_2_253_2 – ident: e_1_3_2_3_2 – year: 2019 ident: e_1_3_2_184_2 article-title: Learning video representations using contrastive bidirectional transformer publication-title: arXiv:1906.05743 – volume-title: CVPRW year: 2017 ident: e_1_3_2_127_2 – year: 2019 ident: e_1_3_2_136_2 article-title: RoBERTa: A robustly optimized bert pretraining approach publication-title: arXiv:1907.11692 – year: 2021 ident: e_1_3_2_118_2 article-title: Bossnas: Exploring hybrid cnn-transformers with block-wisely self-supervised neural architecture search publication-title: arXiv:2103.12424 – year: 2019 ident: e_1_3_2_83_2 article-title: Data-efficient image recognition with contrastive predictive coding publication-title: arXiv:1905.09272 – ident: e_1_3_2_78_2 – start-page: 8110 volume-title: CVPR year: 2020 ident: e_1_3_2_98_2 – year: 2013 ident: e_1_3_2_187_2 article-title: Intriguing properties of neural networks publication-title: arXiv:1312.6199 – volume-title: ICCV year: 2015 ident: e_1_3_2_71_2 – year: 2020 ident: e_1_3_2_141_2 article-title: Improving vision-and-language navigation with image-text pairs from the web publication-title: arXiv:2004.14973 – volume-title: CVPR year: 2020 ident: e_1_3_2_231_2 – volume-title: AAAI year: 2018 ident: e_1_3_2_255_2 – volume-title: ICCV year: 2017 ident: e_1_3_2_80_2 – volume-title: ICLR year: 2021 ident: e_1_3_2_110_2 – year: 2019 ident: e_1_3_2_195_2 article-title: Contrastive multiview coding publication-title: arXiv:1906.05849 – year: 2020 ident: e_1_3_2_21_2 article-title: Language models are few-shot learners publication-title: arXiv:2005.14165 – ident: e_1_3_2_205_2 doi: 10.18653/v1/2020.acl-main.686 – volume-title: CVPR year: 2017 ident: e_1_3_2_223_2 – start-page: 9739 volume-title: CVPR year: 2020 ident: e_1_3_2_18_2 – year: 2012 ident: e_1_3_2_180_2 article-title: UCF101: A dataset of 101 human actions classes from videos in the wild publication-title: arXiv:1212.0402 – volume-title: ECCV year: 2016 ident: e_1_3_2_96_2 – volume-title: ECCV year: 2016 ident: e_1_3_2_134_2 – volume-title: ICML year: 2016 ident: e_1_3_2_170_2 – year: 2018 ident: e_1_3_2_95_2 article-title: Self-supervised spatiotemporal feature learning via video rotation prediction publication-title: arXiv:1811.11387 – volume-title: CVPR year: 2019 ident: e_1_3_2_70_2 – start-page: 14618 volume-title: ICCV year: 2021 ident: e_1_3_2_220_2 – ident: e_1_3_2_179_2 – year: 2020 ident: e_1_3_2_213_2 article-title: SceneFormer: Indoor scene generation with transformers publication-title: arXiv:2012.09793 – year: 2020 ident: e_1_3_2_130_2 article-title: End-to-end human pose and mesh reconstruction with transformers publication-title: arXiv:2012.09760 – year: 2021 ident: e_1_3_2_234_2 article-title: Incorporating convolution designs into visual transformers publication-title: arXiv:2103.11816 – year: 2020 ident: e_1_3_2_35_2 article-title: A simple framework for contrastive learning of visual representations publication-title: arXiv:2002.05709 – volume-title: ECCV year: 2020 ident: e_1_3_2_149_2 – volume-title: CVPR year: 2020 ident: e_1_3_2_228_2 – year: 2020 ident: e_1_3_2_208_2 article-title: Linformer: Self-attention with linear complexity publication-title: arXiv:2006.04768 – year: 2021 ident: e_1_3_2_237_2 article-title: Restormer: Efficient transformer for high-resolution image restoration publication-title: arXiv:2111.09881 – volume-title: CVPR year: 2016 ident: e_1_3_2_156_2 – volume-title: ECCV year: 2018 ident: e_1_3_2_115_2 – volume-title: ICML year: 2018 ident: e_1_3_2_155_2 – volume-title: ECCV year: 2016 ident: e_1_3_2_233_2 – ident: e_1_3_2_222_2 – ident: e_1_3_2_251_2 doi: 10.1109/CVPR46437.2021.00681 – volume-title: ECCV year: 2018 ident: e_1_3_2_153_2 – volume-title: EMNLP-IJCNLP year: 2019 ident: e_1_3_2_189_2 – ident: e_1_3_2_181_2 doi: 10.1109/ICCV48922.2021.00717 – ident: e_1_3_2_60_2 – volume-title: ECCVW year: 2018 ident: e_1_3_2_214_2 – volume-title: ICCV year: 2017 ident: e_1_3_2_114_2 – year: 2021 ident: e_1_3_2_243_2 article-title: Multi-scale vision longformer: A new vision transformer for high-resolution image encoding publication-title: ICCV – volume-title: WACV year: 2019 ident: e_1_3_2_6_2 – ident: e_1_3_2_58_2 – year: 2020 ident: e_1_3_2_55_2 article-title: CrossTransformers: Spatially-aware few-shot transfer publication-title: NeurIPS – ident: e_1_3_2_229_2 – volume-title: CVPR year: 2020 ident: e_1_3_2_165_2 – volume-title: CVPR year: 2018 ident: e_1_3_2_218_2 – volume-title: ICML year: 2019 ident: e_1_3_2_191_2 – volume-title: AAAI year: 2020 ident: e_1_3_2_120_2 – year: 2021 ident: e_1_3_2_97_2 article-title: MDETR–Modulated detection for end-to-end multi-modal understanding publication-title: arXiv:2104.12763 – start-page: 706 volume-title: ICCV year: 2017 ident: e_1_3_2_107_2 – volume-title: CVPR year: 2016 ident: e_1_3_2_169_2 – volume-title: Deep Learning year: 2017 ident: e_1_3_2_17_2 – year: 2016 ident: e_1_3_2_171_2 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume-title: GCPR year: 2018 ident: e_1_3_2_173_2 – volume-title: CVPR year: 2016 ident: e_1_3_2_142_2 – year: 2021 ident: e_1_3_2_199_2 article-title: Going deeper with image transformers publication-title: arXiv:2103.17239 – volume-title: CVPR year: 2018 ident: e_1_3_2_256_2 – ident: e_1_3_2_4_2 – volume-title: ECCV year: 2016 ident: e_1_3_2_144_2 – year: 2019 ident: e_1_3_2_25_2 article-title: A short note on the kinetics-700 human action dataset publication-title: arXiv:1907.06987 – ident: e_1_3_2_64_2 article-title: Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity publication-title: arXiv:2101.03961 – volume-title: ICLR year: 2020 ident: e_1_3_2_105_2 – volume-title: DALL \( {\cdot } \) E: Creating Images from Text year: 2021 ident: e_1_3_2_167_2 – volume-title: ICML year: 2021 ident: e_1_3_2_192_2 – volume-title: NeurIPS year: 2011 ident: e_1_3_2_151_2 – volume-title: ACL year: 2018 ident: e_1_3_2_176_2 – year: 2021 ident: e_1_3_2_38_2 article-title: When vision transformers outperform ResNets without pretraining or strong data augmentations publication-title: arXiv:2106.01548 – volume-title: ICLR year: 2019 ident: e_1_3_2_46_2 – year: 2020 ident: e_1_3_2_116_2 article-title: Parameter efficient multimodal transformers for video representation learning publication-title: arXiv:2012.04124 – year: 2019 ident: e_1_3_2_204_2 article-title: Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned publication-title: arXiv:1905.09418 – volume-title: ICCV year: 2017 ident: e_1_3_2_241_2 – year: 2021 ident: e_1_3_2_11_2 article-title: Vivit: A video vision transformer publication-title: arXiv:2103.15691 – ident: e_1_3_2_39_2 doi: 10.1109/ICCV48922.2021.00950 – year: 2019 ident: e_1_3_2_166_2 article-title: Exploring the limits of transfer learning with a unified text-to-text transformer publication-title: arXiv:1910.10683 – year: 2020 ident: e_1_3_2_69_2 article-title: COOT: Cooperative hierarchical transformer for video-text representation learning publication-title: arXiv:2011.00597 – year: 2019 ident: e_1_3_2_84_2 article-title: Axial attention in multidimensional transformers publication-title: arXiv:1912.12180 |
SSID | ssj0002416 |
Score | 2.7444372 |
Snippet | Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision... |
SourceID | swepub crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
StartPage | 1 |
Title | Transformers in Vision: A Survey |
URI | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-190366 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7YULtDxEoSAfUC_IZeNHnO2JqC2qENtLn-IS2YkNkXZT2G6o2l_POHaymxaJxyWKEjtK8jmfx5mZbxB6WyS5UFwyQqWwhOsxI4pRQYD5rDWJ1bYp3zY5ig9P-acLcTEYfFjNLlnonfz2t3kl_4MqHANcXZbsPyDbXRQOwD7gC1tAGLZ_h3Frdbos3LJ6d9Ykivtk8-N6_rPvs033Jk0Eed1EOl8155eunG_hT6iazpYD5gjmOI_ppL5Vs5maLhnrRvlIj7pS16oL8f2iZqUv5XUDpuy5-qF6Pxaoi9BoGblNqBoR4ADvNjGBH4UkknmtqpZAvQp0O1BGVyt8GK1MrL7TfcrmTt2CuYJ6XgmyL4p9Z7LqQgh9QrXIQscHaI3CQoEO0Vq6P_l83M3GYKEEf7V_GJ847bq-D117FklPL7axMU7W0aOwOMCpR3oDDUz1BD1uC2_gwMNPEV4FHpcV9sDv4hR72J-h048HJ3uHJJS6IDmj4wWJEkVlrCKh6bgY80YFXxROXo4rbrVO4CsCMjZS5rC-tarQcPNgGRtR8EgzyZ6jYXVZmRcIU80j5xyVigmudJTEhTS2gE-S2lGSm0203T5ulgcdeFeOZJrdeaWbCHcNv3vpk_tNtv376ho4tfL98izNLudfs2lZZ2Bwsjh--edrvUIPl6NwCw0X89q8BoNvod8ETH8B_MZR3w |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformers+in+Vision%3A+A+Survey&rft.jtitle=ACM+computing+surveys&rft.au=Khan%2C+Salman&rft.au=Naseer%2C+Muzammal&rft.au=Hayat%2C+Munawar&rft.au=Zamir%2C+Syed+Waqas&rft.date=2022-01-31&rft.issn=0360-0300&rft.eissn=1557-7341&rft.volume=54&rft.issue=10s&rft.spage=1&rft.epage=41&rft_id=info:doi/10.1145%2F3505244&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3505244 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-0300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-0300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-0300&client=summon |