Ecotoxicity and Sustainability of Emerging Pb‐Based Photovoltaics

Emerging Pb‐based photovoltaic (PV) technologies, including in particular solution processed halide perovskite solar cells (PSCs) and Pb chalcogenide quantum dot solar cells (QDSCs), are among the most promising next‐generation PV technologies for a range of disruptive energy and electronic applicat...

Full description

Saved in:
Bibliographic Details
Published inSolar RRL Vol. 6; no. 12
Main Authors Lu, Xingwen, Yan, Dong, Feng, Jiangtao, Li, Meng, Hou, Bo, Li, Zhe, Wang, Fei
Format Journal Article
LanguageEnglish
Published 01.12.2022
Subjects
Online AccessGet full text
ISSN2367-198X
2367-198X
DOI10.1002/solr.202200699

Cover

Loading…
Abstract Emerging Pb‐based photovoltaic (PV) technologies, including in particular solution processed halide perovskite solar cells (PSCs) and Pb chalcogenide quantum dot solar cells (QDSCs), are among the most promising next‐generation PV technologies for a range of disruptive energy and electronic applications. However, the potential toxicity and leakage of hazardous Pb species have become one of the main barriers to their large‐scale application. When solar cells are subject to physical damage or failure of encapsulation, rapid leakage of Pb may occur, which can be accelerated by exposure to external environmental weathering conditions such as rainfall and elevated temperature. Herein, an in‐depth investigation on the essential role of Pb in PSCs and QDSCs, as well as common causes of Pb leakage, is undertaken. The hazardous effects of Pb toxicity on soil plants, bacteria, animals, and human cells are also evaluated. Recent progress in developing effective strategies for Pb leakage reduction, such as Pb‐free or Pb‐less perovskite materials, device architecture design, encapsulation absorbers for PSCs, and core–shell structure and ligand exchange method for QDSCs, in addition to Pb recycling strategies of end‐of‐life solar cells are summarized. This review provides quantitative insights into the future development of eco‐friendly emerging Pb‐based PV technologies. This review provides a unique vision of the ecotoxicity and sustainability of emerging Pb halide perovskite solar cells and Pb chalcogenide quantum dot solar cells. The critical role of Pb, the causes of Pb leakage, the hazardous impact, Pb leakage reduction strategies, and Pb recycling strategies of end‐of‐life solar cells are systematically analyzed.
AbstractList Emerging Pb‐based photovoltaic (PV) technologies, including in particular solution processed halide perovskite solar cells (PSCs) and Pb chalcogenide quantum dot solar cells (QDSCs), are among the most promising next‐generation PV technologies for a range of disruptive energy and electronic applications. However, the potential toxicity and leakage of hazardous Pb species have become one of the main barriers to their large‐scale application. When solar cells are subject to physical damage or failure of encapsulation, rapid leakage of Pb may occur, which can be accelerated by exposure to external environmental weathering conditions such as rainfall and elevated temperature. Herein, an in‐depth investigation on the essential role of Pb in PSCs and QDSCs, as well as common causes of Pb leakage, is undertaken. The hazardous effects of Pb toxicity on soil plants, bacteria, animals, and human cells are also evaluated. Recent progress in developing effective strategies for Pb leakage reduction, such as Pb‐free or Pb‐less perovskite materials, device architecture design, encapsulation absorbers for PSCs, and core–shell structure and ligand exchange method for QDSCs, in addition to Pb recycling strategies of end‐of‐life solar cells are summarized. This review provides quantitative insights into the future development of eco‐friendly emerging Pb‐based PV technologies. This review provides a unique vision of the ecotoxicity and sustainability of emerging Pb halide perovskite solar cells and Pb chalcogenide quantum dot solar cells. The critical role of Pb, the causes of Pb leakage, the hazardous impact, Pb leakage reduction strategies, and Pb recycling strategies of end‐of‐life solar cells are systematically analyzed.
Author Hou, Bo
Wang, Fei
Feng, Jiangtao
Li, Zhe
Li, Meng
Lu, Xingwen
Yan, Dong
Author_xml – sequence: 1
  givenname: Xingwen
  surname: Lu
  fullname: Lu, Xingwen
  organization: Guangdong University of Technology
– sequence: 2
  givenname: Dong
  surname: Yan
  fullname: Yan, Dong
  organization: Queen Mary University of London
– sequence: 3
  givenname: Jiangtao
  surname: Feng
  fullname: Feng, Jiangtao
  organization: Xi'an Jiaotong University
– sequence: 4
  givenname: Meng
  surname: Li
  fullname: Li, Meng
  email: mengli@henu.edu.cn
  organization: Henan University
– sequence: 5
  givenname: Bo
  surname: Hou
  fullname: Hou, Bo
  email: houb6@cardiff.ac.UK
  organization: Cardiff University
– sequence: 6
  givenname: Zhe
  orcidid: 0000-0001-5680-0486
  surname: Li
  fullname: Li, Zhe
  email: zhe.li@qmul.ac.UK
  organization: Queen Mary University of London
– sequence: 7
  givenname: Fei
  surname: Wang
  fullname: Wang, Fei
  email: wf1984@jnu.edu.cn
  organization: Jinan University
BookMark eNqFkM9KAzEQh4NUsNZePe8LbJ0k22z2qKX-gUKLVfC2zGaTGtluJFm1e_MRfEafxC0VFUE8zTD8vmHmOyS92tWakGMKIwrAToKr_IgBYwAiy_ZIn3GRxjSTd70f_QEZhvAAHZAkqRS0TyZT5Rq3sco2bYR1GS2fQoO2xsJW25Ez0XSt_crWq2hRvL--nWHQZbS476hnV3VRFY7IvsEq6OFnHZDb8-nN5DKezS-uJqezWHGWZXFZGjQAJZUpTxIuTIkSNEUthTAwpkAVZVQUmOjuJZkahcwwxQslC67GyAck2e1V3oXgtcm7q7Gxrm482iqnkG9d5FsX-ZeLDhv9wh69XaNv_wayHfBiK93-k86X89n1N_sBnV52oA
CitedBy_id crossref_primary_10_1007_s40820_023_01134_1
crossref_primary_10_1016_j_rser_2024_114980
crossref_primary_10_1016_j_renene_2023_03_035
crossref_primary_10_1002_smll_202301824
crossref_primary_10_1002_zaac_202300045
crossref_primary_10_1039_D3CY01459B
crossref_primary_10_1002_cptc_202400337
crossref_primary_10_1007_s40820_024_01547_6
crossref_primary_10_3390_environments11070140
crossref_primary_10_1039_D4TC04709E
crossref_primary_10_1002_smll_202308945
Cites_doi 10.1038/s41467-018-05514-9
10.1002/advs.201700331
10.1038/s41467-019-13910-y
10.1021/ja809598r
10.1007/s00204-010-0627-4
10.1002/eem2.12374
10.1126/science.1243982
10.1146/annurev.med.55.091902.103653
10.1103/PhysRevB.92.144308
10.1021/ja511132a
10.1039/C7TA07674F
10.1016/j.fct.2013.07.046
10.1039/C6EE01969B
10.1021/acsenergylett.7b00276
10.1038/s41586-019-1239-7
10.1126/science.1191462
10.1002/anie.201503153
10.1002/solr.202000616
10.1002/adfm.201703060
10.1016/j.joule.2017.09.007
10.1002/aenm.202201242
10.1016/j.joule.2020.05.011
10.1016/j.ecoenv.2020.111677
10.1016/j.aquatox.2021.105900
10.1021/acs.jpclett.9b02191
10.1021/nl048715d
10.1021/acsenergylett.1c01487
10.1002/pip.2916
10.1021/acsenergylett.7b00414
10.1002/adsu.201900061
10.1038/s41560-020-00716-2
10.1002/eom2.12185
10.1038/s41586-020-2001-x
10.1016/j.orgel.2021.106158
10.1021/acsenergylett.1c00342
10.1021/acsenergylett.6b00294
10.1107/S0108768108032734
10.1002/adfm.201807024
10.1002/adfm.202202408
10.1016/j.envres.2020.110593
10.1146/annurev.matsci.30.1.545
10.1016/j.cej.2022.134566
10.1038/s41893-020-0586-6
10.1038/srep03132
10.31635/ccschem.021.202000516
10.1038/s41598-018-37229-8
10.1016/j.cej.2020.128167
10.1002/anie.201307232
10.1016/j.actbio.2016.10.022
10.1002/anie.202204314
10.1007/s12274-021-3600-z
10.1038/nenergy.2016.16
10.1021/acs.chemrev.5b00063
10.1038/srep18721
10.1007/s12274-021-3673-8
10.1039/C5GC02734A
10.1016/j.mattod.2014.07.007
10.1039/D2MA00375A
10.1038/s41560-021-00830-9
10.1016/j.psep.2020.10.035
10.1002/adfm.202201036
10.1073/pnas.1814880116
10.1002/adma.202102055
10.1002/solr.202100464
10.1038/nmat4572
10.1021/acs.chemmater.8b01421
10.1021/acs.jpclett.5b00504
10.1007/s12274-016-1251-2
10.1016/j.joule.2018.04.026
10.1002/solr.201600021
10.1002/solr.201900213
10.1039/D0CC02957B
10.1126/sciadv.aao5616
10.1039/D1EE00832C
10.1016/j.solener.2021.08.031
10.1039/C6EE02013E
10.1021/acs.chemrev.5b00715
10.1039/D1TA02214H
10.1021/acssuschemeng.1c07083
10.1021/acsenergylett.9b00546
10.1021/acs.analchem.6b03515
10.1021/acsenergylett.2c00644
10.1016/j.nanoen.2021.106853
10.1002/solr.202100841
10.1021/acsenergylett.6b00499
10.1002/aenm.202102281
10.1126/science.1243167
10.1038/s41893-021-00701-x
10.3390/ma12203304
10.1002/adfm.202004563
10.1038/nmat4676
10.1016/j.cej.2021.132405
10.1016/j.chemosphere.2020.126564
10.1016/j.scitotenv.2019.135134
10.1002/aenm.201601353
10.1016/j.matt.2022.02.012
10.1002/adma.201800258
10.1126/sciadv.abi8249
10.1016/j.jiec.2018.11.008
10.1039/C4TA05033A
10.1039/C5TX00303B
10.1038/s41467-021-23788-4
10.1515/intox-2015-0009
10.1016/j.nanoen.2020.105160
10.1039/D2EE01016J
10.1039/D1TA04922D
10.1021/acsami.0c21137
10.1002/adfm.202106460
10.1038/s41467-021-26121-1
10.1016/j.jinorgbio.2013.05.008
10.1016/j.matt.2021.05.023
10.1126/sciadv.abb0055
10.1103/PhysRevB.67.155405
10.1002/smtd.202101257
10.1002/aenm.201902662
10.1038/ncomms13422
10.1039/c3ee43822h
10.1016/j.joule.2021.04.008
10.1021/jz500480m
10.1021/jp512077m
10.1002/solr.201800256
10.1038/s41586-021-03964-8
10.1021/acsami.6b03767
10.1021/acsaem.8b00007
10.1016/j.isci.2020.101753
10.1021/acs.jpclett.5b01747
10.1002/admi.201901469
10.1016/j.jhazmat.2021.127848
10.1038/s41586-021-03406-5
10.1002/solr.202100212
10.1039/D0EE04007J
10.1002/adfm.202110139
10.1021/acsomega.9b01053
10.1364/JOSAB.14.001632
10.1038/s41586-021-03285-w
10.1557/mre.2017.17
10.1021/acs.jpclett.0c00503
10.1016/j.solmat.2017.11.008
10.1021/acssuschemeng.8b00314
10.1021/acsami.0c17893
10.1002/adma.201803792
10.1021/acs.chemmater.5b00660
10.1063/5.0012384
10.1038/s41578-021-00310-2
10.1002/solr.202000299
10.1016/j.joule.2020.03.018
10.1002/solr.202200332
10.2147/IJN.S89593
10.1038/s41565-020-0765-7
10.1289/ehp.8284
10.1021/nn506864k
10.1063/1.1736034
10.1039/C5EE03887A
10.1002/aenm.202103236
10.1016/j.scitotenv.2021.145388
10.1016/j.jhazmat.2022.128995
10.1021/acsenergylett.0c00782
10.1038/s41560-019-0406-2
10.1016/j.xcrp.2021.100341
10.1016/j.nanoen.2022.107184
10.1038/s41893-021-00789-1
10.1038/srep38150
10.1039/C6TC02307J
10.1002/adma.200305395
ContentType Journal Article
Copyright 2022 The Authors. Solar RRL published by Wiley‐VCH GmbH
Copyright_xml – notice: 2022 The Authors. Solar RRL published by Wiley‐VCH GmbH
DBID 24P
AAYXX
CITATION
DOI 10.1002/solr.202200699
DatabaseName Wiley Online Library Open Access (LAB)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2367-198X
EndPage n/a
ExternalDocumentID 10_1002_solr_202200699
SOLR202200699
Genre article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  funderid: EP/V039717/1
– fundername: Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology
  funderid: 2020B1212030010
– fundername: Royal Society of Chemistry
  funderid: E21-9668828170
– fundername: National Natural Science Foundation of China
  funderid: 22106021; 61704027
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province
  funderid: 2021A1515012372
– fundername: the Royal Society IEC\NSFC\211201-International Exchanges 2021 Cost Share
  funderid: IEC\NSFC\211201
– fundername: AXA Research Fund
GroupedDBID 0R~
1OC
24P
33P
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
AAZKR
ABCUV
ACCFJ
ACCZN
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ARCSS
BFHJK
BMXJE
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WXSBR
ZZTAW
AAYXX
ABJNI
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
ID FETCH-LOGICAL-c3299-ddfaf00d18734436fda80e1ae866f05101c1216ba4e10087fca2f2c3bc8b3c5a3
IEDL.DBID 24P
ISSN 2367-198X
IngestDate Tue Jul 01 04:12:49 EDT 2025
Thu Apr 24 23:05:50 EDT 2025
Wed Jan 22 16:25:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3299-ddfaf00d18734436fda80e1ae866f05101c1216ba4e10087fca2f2c3bc8b3c5a3
ORCID 0000-0001-5680-0486
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsolr.202200699
PageCount 28
ParticipantIDs crossref_citationtrail_10_1002_solr_202200699
crossref_primary_10_1002_solr_202200699
wiley_primary_10_1002_solr_202200699_SOLR202200699
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Solar RRL
PublicationYear 2022
References 2021; 208
2013; 3
2019; 12
2013; 126
2004; 4
2020; 15
2020; 11
2020; 10
2018; 6
2018; 9
2018; 2
2018; 5
2015; 137
2018; 1
2018; 179
2020; 578
2013; 60
2019; 29
2018; 30
2022; 32
2019; 9
2019; 4
2019; 3
2019; 31
2022; 93
2021; 149
2015; 54
2013; 342
2016; 18
2016; 16
2020; 708
2016; 15
2006; 114
2016; 4
2016; 5
2004; 55
2021; 57
2016; 6
2016; 7
2016; 1
2015; 115
2022; 3
2020; 30
2022; 4
2022; 5
2022; 6
2022; 7
2022; 12
2010; 330
2011; 85
2022; 15
2015; 119
2020; 23
2022; 97
2021; 771
2019; 570
2016; 8
2016; 9
2021; 409
2017; 1
2017; 2
2017; 3
2017; 48
2003; 15
2020; 128
2020; 249
1961; 32
2020; 7
2020; 6
2020; 5
2020; 4
2014; 5
2021; 31
2020; 3
2021; 33
2021; 598
2021; 237
1997; 14
2019; 116
2021; 590
2021; 194
2016; 116
2021; 592
2008; 64
2014; 7
2016; 88
2014; 53
2021; 9
2021; 7
2021; 6
2021; 5
2015; 6
2019; 70
2021; 4
2021; 3
2015; 18
2015; 3
2021; 2
2015; 92
2017; 25
2017; 27
2021; 226
2015; 10
2020; 77
2009; 131
2015; 9
2021; 93
2022; 436
2015; 8
2022; 433
2021; 14
2021; 13
2015; 27
2021; 12
2021; 11
2022
2022; 61
2000; 30
2022; 429
2022; 426
2003; 67
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_131_1
e_1_2_10_158_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_135_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_154_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_147_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_148_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_145_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_126_1
e_1_2_10_160_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_122_1
e_1_2_10_164_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_130_1
e_1_2_10_157_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_153_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_146_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 409
  start-page: 128167
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 88
  start-page: 12316
  year: 2016
  publication-title: Anal. Chem.
– volume: 30
  start-page: 545
  year: 2000
  publication-title: Annu. Rev. Mater. Sci.
– volume: 4
  start-page: 585
  year: 2019
  publication-title: Nat. Energy
– volume: 15
  start-page: 1069
  year: 2022
  publication-title: Nano Res.
– volume: 27
  start-page: 3397
  year: 2015
  publication-title: Chem. Mater.
– volume: 5
  start-page: 1923
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 53
  start-page: 810
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 2892
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 1231
  year: 2018
  publication-title: Joule
– volume: 77
  start-page: 105160
  year: 2020
  publication-title: Nano Energy
– volume: 9
  start-page: 3172
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 114
  start-page: 165
  year: 2006
  publication-title: Environ. Health Perspect.
– volume: 9
  start-page: 15522
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 14
  start-page: 1286
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 54
  start-page: 8208
  year: 2015
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 4
  start-page: 873
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 17830
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 116
  start-page: 7760
  year: 2019
  publication-title: Proc. Natl. Acad. Sci.
– volume: 3
  start-page: 3132
  year: 2013
  publication-title: Sci. Rep.
– volume: 12
  start-page: 3348
  year: 2021
  publication-title: Nat. Commun.
– volume: 6
  start-page: 18721
  year: 2016
  publication-title: Sci. Rep.
– volume: 92
  start-page: 144308
  year: 2015
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 1900061
  year: 2019
  publication-title: Adv. Sustainable Syst.
– volume: 4
  start-page: 1038
  year: 2021
  publication-title: Nat. Sustainable
– volume: 249
  start-page: 126564
  year: 2020
  publication-title: Chemosphere
– volume: 3
  start-page: 1044
  year: 2020
  publication-title: Nat. Sustainable
– volume: 97
  start-page: 107184
  year: 2022
  publication-title: Nano Energy
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 70
  start-page: 453
  year: 2019
  publication-title: J. Ind. Eng. Chem.
– volume: 5
  start-page: 2100212
  year: 2021
  publication-title: Sol. RRL
– volume: 11
  start-page: 574
  year: 2020
  publication-title: J. Phys. Chem. Lett.
– volume: 4
  start-page: 2522
  year: 2021
  publication-title: Matter
– volume: 30
  start-page: 2004563
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 1703060
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 433
  start-page: 134566
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 310
  year: 2020
  publication-title: Nat. Commun.
– volume: 60
  start-page: 213
  year: 2013
  publication-title: Food Chem. Toxicol.
– volume: 6
  start-page: 293
  year: 2021
  publication-title: Nat. Rev. Mater.
– volume: 30
  start-page: e1800258
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1480
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 5
  start-page: 407
  year: 2016
  publication-title: Toxicol. Res.
– volume: 32
  start-page: 2110139
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 11880
  year: 2019
  publication-title: ACS Omega
– volume: 6
  start-page: 1543
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 7
  start-page: 1901469
  year: 2020
  publication-title: Adv. Mater. Interfaces
– volume: 13
  start-page: 33995
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 1137
  year: 2022
  publication-title: Matter
– volume: 126
  start-page: 70
  year: 2013
  publication-title: J. Inorg. Biochem.
– volume: 6
  start-page: 2219
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: eaao5616
  year: 2017
  publication-title: Sci. Adv.
– volume: 4
  start-page: 7595
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 149
  start-page: 115
  year: 2021
  publication-title: Process Saf. Environ. Prot.
– volume: 25
  start-page: 1022
  year: 2017
  publication-title: Prog. Photovoltaics Res. Appl.
– volume: 2
  start-page: 100341
  year: 2021
  publication-title: Cell Rep. Phys. Sci.
– volume: 119
  start-page: 5253
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 128
  start-page: 060903
  year: 2020
  publication-title: J. Appl. Phys.
– volume: 9
  start-page: 1955
  year: 2015
  publication-title: ACS Nano
– volume: 6
  start-page: 2200332
  year: 2022
  publication-title: Sol. RRL.
– volume: 598
  start-page: 444
  year: 2021
  publication-title: Nature
– volume: 6
  start-page: 3443
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 5
  start-page: 1033
  year: 2021
  publication-title: Joule
– volume: 592
  start-page: 381
  year: 2021
  publication-title: Nature
– volume: 2
  start-page: 1662
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 8
  start-page: 12881
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 3812
  year: 2016
  publication-title: Nano Res.
– volume: 208
  start-page: 111677
  year: 2021
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 9
  start-page: 1130
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 32
  start-page: 510
  year: 1961
  publication-title: J. Appl. Phys.
– volume: 23
  start-page: 101753
  year: 2020
  publication-title: iScience
– volume: 115
  start-page: 12732
  year: 2015
  publication-title: Chem. Rev.
– volume: 330
  start-page: 63
  year: 2010
  publication-title: Science
– volume: 9
  start-page: 5261
  year: 2018
  publication-title: Nat. Commun.
– year: 2022
  publication-title: Energy Environ. Mater
– volume: 5
  start-page: 1278
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 32
  start-page: 2201036
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 343
  year: 2018
  publication-title: Acs Appl. Energ. Mater.
– volume: 1
  start-page: 1600021
  year: 2017
  publication-title: Sol. RRL
– volume: 6
  start-page: 2100841
  year: 2022
  publication-title: Sol. RRL
– volume: 4
  start-page: 970
  year: 2020
  publication-title: Joule
– volume: 771
  start-page: 145388
  year: 2021
  publication-title: Sci. Total Environ.
– volume: 7
  start-page: eabi8249
  year: 2021
  publication-title: Sci. Adv.
– volume: 237
  start-page: 105900
  year: 2021
  publication-title: Aquat. Toxicol.
– volume: 3
  start-page: 8926
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 226
  start-page: 85
  year: 2021
  publication-title: Sol. Energy
– volume: 6
  start-page: 38150
  year: 2016
  publication-title: Sci. Rep.
– volume: 9
  start-page: 16519
  year: 2021
  publication-title: ACS Sustainable Chem. Eng.
– volume: 342
  start-page: 341
  year: 2013
  publication-title: Science
– volume: 57
  start-page: 994
  year: 2021
  publication-title: Chem. Commun.
– volume: 1
  start-page: 659
  year: 2017
  publication-title: Joule
– volume: 116
  start-page: 4558
  year: 2016
  publication-title: Chem. Rev.
– volume: 15
  start-page: 1844
  year: 2003
  publication-title: Adv. Mater.
– volume: 12
  start-page: 3304
  year: 2019
  publication-title: Materials
– volume: 18
  start-page: 2946
  year: 2016
  publication-title: Green Chem.
– volume: 4
  start-page: e12185
  year: 2022
  publication-title: EcoMat
– volume: 14
  start-page: 1632
  year: 1997
  publication-title: J. Opt. Soc. Am. B
– volume: 3
  start-page: 1900213
  year: 2019
  publication-title: Sol. RRL
– volume: 67
  start-page: 155405
  year: 2003
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 1902662
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 2000299
  year: 2020
  publication-title: Sol. RRL
– volume: 64
  start-page: 702
  year: 2008
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci.
– volume: 11
  start-page: 2812
  year: 2020
  publication-title: J. Phys. Chem. Lett.
– volume: 342
  start-page: 344
  year: 2013
  publication-title: Science
– volume: 429
  start-page: 132405
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 48
  start-page: 195
  year: 2017
  publication-title: Acta Biomater.
– volume: 578
  start-page: 555
  year: 2020
  publication-title: Nature
– volume: 4
  start-page: 2163
  year: 2004
  publication-title: Nano Lett.
– volume: 4
  start-page: 1542
  year: 2020
  publication-title: Joule
– volume: 5
  start-page: 2000616
  year: 2021
  publication-title: Sol. RRL
– volume: 93
  start-page: 106158
  year: 2021
  publication-title: Org. Electron.
– volume: 1
  start-page: 834
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 3546
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 4
  start-page: 636
  year: 2021
  publication-title: Nat. Sustainable
– volume: 7
  start-page: 982
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 29
  start-page: 1807024
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: E1
  year: 2018
  publication-title: MRS Energy Sustainability
– volume: 7
  start-page: 1577
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 6773
  year: 2022
  publication-title: Mater. Adv.
– volume: 30
  start-page: 4112
  year: 2018
  publication-title: Chem. Mater.
– volume: 570
  start-page: 96
  year: 2019
  publication-title: Nature
– volume: 33
  start-page: 2102055
  year: 2021
  publication-title: Adv. Mater.
– volume: 31
  start-page: 1803792
  year: 2019
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1800256
  year: 2019
  publication-title: Sol. RRL
– volume: 15
  start-page: 247
  year: 2016
  publication-title: Nat. Mater.
– volume: 18
  start-page: 65
  year: 2015
  publication-title: Mater. Today
– volume: 6
  start-page: 624
  year: 2021
  publication-title: Nat. Energy
– volume: 137
  start-page: 1530
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 3420
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 708
  start-page: 135134
  year: 2020
  publication-title: Sci. Total Environ.
– volume: 5
  start-page: 1700331
  year: 2018
  publication-title: Adv. Sci.
– volume: 5
  start-page: 2100464
  year: 2021
  publication-title: Sol. RRL
– volume: 15
  start-page: 1375
  year: 2022
  publication-title: Nano Res.
– volume: 32
  start-page: 2202408
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 194
  start-page: 110593
  year: 2021
  publication-title: Environ. Res.
– volume: 12
  start-page: 2103236
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 23
  year: 2016
  publication-title: Nat. Mater.
– volume: 61
  start-page: e202204314
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 55
  year: 2015
  publication-title: Interdiscip. Toxicol.
– volume: 6
  start-page: eabb0055
  year: 2020
  publication-title: Sci. Adv.
– volume: 10
  start-page: 5513
  year: 2015
  publication-title: Int. J. Nanomed.
– volume: 13
  start-page: 13022
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 25
  year: 2021
  publication-title: CCS Chem.
– volume: 15
  start-page: 3891
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 1233
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 12
  start-page: 5859
  year: 2021
  publication-title: Nat. Commun.
– volume: 436
  start-page: 128995
  year: 2022
  publication-title: J. Hazard. Mater.
– volume: 31
  start-page: 2106460
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 13422
  year: 2016
  publication-title: Nat. Commun.
– volume: 85
  start-page: 787
  year: 2011
  publication-title: Arch. Toxicol.
– volume: 426
  start-page: 127848
  year: 2022
  publication-title: J. Hazard. Mater.
– volume: 15
  start-page: 934
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 55
  start-page: 209
  year: 2004
  publication-title: Annu. Rev. Med.
– volume: 179
  start-page: 169
  year: 2018
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 93
  start-page: 106853
  year: 2022
  publication-title: Nano Energy
– volume: 5
  start-page: 1003
  year: 2020
  publication-title: Nat. Energy
– volume: 11
  start-page: 2102281
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 1539
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 7558
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 12
  start-page: 2201242
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 4242
  year: 2019
  publication-title: Sci. Rep.
– volume: 6
  start-page: 1601353
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 2101257
  year: 2022
  publication-title: Small Methods
– volume: 590
  start-page: 587
  year: 2021
  publication-title: Nature
– volume: 1
  start-page: 16016
  year: 2016
  publication-title: Nat. Energy
– ident: e_1_2_10_12_1
  doi: 10.1038/s41467-018-05514-9
– ident: e_1_2_10_92_1
  doi: 10.1002/advs.201700331
– ident: e_1_2_10_27_1
  doi: 10.1038/s41467-019-13910-y
– ident: e_1_2_10_10_1
  doi: 10.1021/ja809598r
– ident: e_1_2_10_82_1
  doi: 10.1007/s00204-010-0627-4
– ident: e_1_2_10_158_1
  doi: 10.1002/eem2.12374
– ident: e_1_2_10_43_1
  doi: 10.1126/science.1243982
– ident: e_1_2_10_81_1
  doi: 10.1146/annurev.med.55.091902.103653
– ident: e_1_2_10_48_1
  doi: 10.1103/PhysRevB.92.144308
– ident: e_1_2_10_62_1
  doi: 10.1021/ja511132a
– ident: e_1_2_10_69_1
  doi: 10.1039/C7TA07674F
– ident: e_1_2_10_86_1
  doi: 10.1016/j.fct.2013.07.046
– ident: e_1_2_10_45_1
  doi: 10.1039/C6EE01969B
– ident: e_1_2_10_4_1
  doi: 10.1021/acsenergylett.7b00276
– ident: e_1_2_10_57_1
  doi: 10.1038/s41586-019-1239-7
– ident: e_1_2_10_54_1
  doi: 10.1126/science.1191462
– ident: e_1_2_10_64_1
  doi: 10.1002/anie.201503153
– ident: e_1_2_10_109_1
  doi: 10.1002/solr.202000616
– ident: e_1_2_10_161_1
  doi: 10.1002/adfm.201703060
– ident: e_1_2_10_89_1
  doi: 10.1016/j.joule.2017.09.007
– ident: e_1_2_10_22_1
  doi: 10.1002/aenm.202201242
– ident: e_1_2_10_17_1
  doi: 10.1016/j.joule.2020.05.011
– ident: e_1_2_10_34_1
  doi: 10.1016/j.ecoenv.2020.111677
– ident: e_1_2_10_29_1
  doi: 10.1016/j.aquatox.2021.105900
– ident: e_1_2_10_102_1
  doi: 10.1021/acs.jpclett.9b02191
– ident: e_1_2_10_147_1
  doi: 10.1021/nl048715d
– ident: e_1_2_10_111_1
  doi: 10.1021/acsenergylett.1c01487
– ident: e_1_2_10_159_1
  doi: 10.1002/pip.2916
– ident: e_1_2_10_101_1
  doi: 10.1021/acsenergylett.7b00414
– ident: e_1_2_10_73_1
  doi: 10.1002/adsu.201900061
– ident: e_1_2_10_119_1
  doi: 10.1038/s41560-020-00716-2
– ident: e_1_2_10_129_1
  doi: 10.1002/eom2.12185
– ident: e_1_2_10_139_1
  doi: 10.1038/s41586-020-2001-x
– ident: e_1_2_10_124_1
  doi: 10.1016/j.orgel.2021.106158
– ident: e_1_2_10_100_1
  doi: 10.1021/acsenergylett.1c00342
– ident: e_1_2_10_150_1
  doi: 10.1021/acsenergylett.6b00294
– ident: e_1_2_10_47_1
  doi: 10.1107/S0108768108032734
– ident: e_1_2_10_104_1
  doi: 10.1002/adfm.201807024
– ident: e_1_2_10_131_1
  doi: 10.1002/adfm.202202408
– ident: e_1_2_10_144_1
  doi: 10.1016/j.envres.2020.110593
– ident: e_1_2_10_149_1
  doi: 10.1146/annurev.matsci.30.1.545
– ident: e_1_2_10_128_1
  doi: 10.1016/j.cej.2022.134566
– ident: e_1_2_10_157_1
  doi: 10.1038/s41893-020-0586-6
– ident: e_1_2_10_121_1
  doi: 10.1038/srep03132
– ident: e_1_2_10_126_1
  doi: 10.31635/ccschem.021.202000516
– ident: e_1_2_10_31_1
  doi: 10.1038/s41598-018-37229-8
– ident: e_1_2_10_125_1
  doi: 10.1016/j.cej.2020.128167
– ident: e_1_2_10_145_1
  doi: 10.1002/anie.201307232
– ident: e_1_2_10_74_1
  doi: 10.1016/j.actbio.2016.10.022
– ident: e_1_2_10_130_1
  doi: 10.1002/anie.202204314
– ident: e_1_2_10_135_1
  doi: 10.1007/s12274-021-3600-z
– ident: e_1_2_10_56_1
  doi: 10.1038/nenergy.2016.16
– ident: e_1_2_10_15_1
  doi: 10.1021/acs.chemrev.5b00063
– ident: e_1_2_10_32_1
  doi: 10.1038/srep18721
– ident: e_1_2_10_115_1
  doi: 10.1007/s12274-021-3673-8
– ident: e_1_2_10_153_1
  doi: 10.1039/C5GC02734A
– ident: e_1_2_10_3_1
  doi: 10.1016/j.mattod.2014.07.007
– ident: e_1_2_10_146_1
  doi: 10.1039/D2MA00375A
– ident: e_1_2_10_6_1
  doi: 10.1038/s41560-021-00830-9
– ident: e_1_2_10_75_1
  doi: 10.1016/j.psep.2020.10.035
– ident: e_1_2_10_116_1
  doi: 10.1002/adfm.202201036
– ident: e_1_2_10_65_1
  doi: 10.1073/pnas.1814880116
– ident: e_1_2_10_97_1
  doi: 10.1002/adma.202102055
– ident: e_1_2_10_134_1
  doi: 10.1002/solr.202100464
– ident: e_1_2_10_80_1
  doi: 10.1038/nmat4572
– ident: e_1_2_10_148_1
  doi: 10.1021/acs.chemmater.8b01421
– ident: e_1_2_10_59_1
  doi: 10.1021/acs.jpclett.5b00504
– ident: e_1_2_10_83_1
  doi: 10.1007/s12274-016-1251-2
– ident: e_1_2_10_58_1
  doi: 10.1016/j.joule.2018.04.026
– ident: e_1_2_10_16_1
  doi: 10.1002/solr.201600021
– ident: e_1_2_10_95_1
  doi: 10.1002/solr.201900213
– ident: e_1_2_10_133_1
  doi: 10.1039/D0CC02957B
– ident: e_1_2_10_44_1
  doi: 10.1126/sciadv.aao5616
– ident: e_1_2_10_72_1
  doi: 10.1039/D1EE00832C
– ident: e_1_2_10_67_1
  doi: 10.1016/j.solener.2021.08.031
– ident: e_1_2_10_154_1
  doi: 10.1039/C6EE02013E
– ident: e_1_2_10_46_1
  doi: 10.1021/acs.chemrev.5b00715
– ident: e_1_2_10_14_1
  doi: 10.1039/D1TA02214H
– ident: e_1_2_10_164_1
  doi: 10.1021/acssuschemeng.1c07083
– ident: e_1_2_10_77_1
  doi: 10.1021/acsenergylett.9b00546
– ident: e_1_2_10_66_1
  doi: 10.1021/acs.analchem.6b03515
– ident: e_1_2_10_122_1
  doi: 10.1021/acsenergylett.2c00644
– ident: e_1_2_10_143_1
  doi: 10.1016/j.nanoen.2021.106853
– ident: e_1_2_10_99_1
  doi: 10.1002/solr.202100841
– ident: e_1_2_10_93_1
  doi: 10.1021/acsenergylett.6b00499
– ident: e_1_2_10_138_1
  doi: 10.1002/aenm.202102281
– ident: e_1_2_10_42_1
  doi: 10.1126/science.1243167
– ident: e_1_2_10_112_1
  doi: 10.1038/s41893-021-00701-x
– ident: e_1_2_10_26_1
  doi: 10.3390/ma12203304
– ident: e_1_2_10_18_1
  doi: 10.1002/adfm.202004563
– ident: e_1_2_10_8_1
  doi: 10.1038/nmat4676
– ident: e_1_2_10_127_1
  doi: 10.1016/j.cej.2021.132405
– ident: e_1_2_10_35_1
  doi: 10.1016/j.chemosphere.2020.126564
– ident: e_1_2_10_28_1
  doi: 10.1016/j.scitotenv.2019.135134
– ident: e_1_2_10_103_1
  doi: 10.1002/aenm.201601353
– ident: e_1_2_10_38_1
  doi: 10.1016/j.matt.2022.02.012
– ident: e_1_2_10_105_1
  doi: 10.1002/adma.201800258
– ident: e_1_2_10_141_1
  doi: 10.1126/sciadv.abi8249
– ident: e_1_2_10_78_1
  doi: 10.1016/j.jiec.2018.11.008
– ident: e_1_2_10_51_1
  doi: 10.1039/C4TA05033A
– ident: e_1_2_10_33_1
  doi: 10.1039/C5TX00303B
– ident: e_1_2_10_5_1
  doi: 10.1038/s41467-021-23788-4
– ident: e_1_2_10_79_1
  doi: 10.1515/intox-2015-0009
– ident: e_1_2_10_120_1
  doi: 10.1016/j.nanoen.2020.105160
– ident: e_1_2_10_136_1
  doi: 10.1039/D2EE01016J
– ident: e_1_2_10_20_1
– ident: e_1_2_10_107_1
  doi: 10.1039/D1TA04922D
– ident: e_1_2_10_110_1
  doi: 10.1021/acsami.0c21137
– ident: e_1_2_10_132_1
  doi: 10.1002/adfm.202106460
– ident: e_1_2_10_24_1
  doi: 10.1038/s41467-021-26121-1
– ident: e_1_2_10_85_1
  doi: 10.1016/j.jinorgbio.2013.05.008
– ident: e_1_2_10_165_1
  doi: 10.1016/j.matt.2021.05.023
– ident: e_1_2_10_166_1
  doi: 10.1126/sciadv.abb0055
– ident: e_1_2_10_49_1
  doi: 10.1103/PhysRevB.67.155405
– ident: e_1_2_10_113_1
  doi: 10.1002/smtd.202101257
– ident: e_1_2_10_117_1
  doi: 10.1002/aenm.201902662
– ident: e_1_2_10_70_1
  doi: 10.1038/ncomms13422
– ident: e_1_2_10_2_1
  doi: 10.1039/c3ee43822h
– ident: e_1_2_10_9_1
  doi: 10.1016/j.joule.2021.04.008
– ident: e_1_2_10_40_1
  doi: 10.1021/jz500480m
– ident: e_1_2_10_50_1
  doi: 10.1021/jp512077m
– ident: e_1_2_10_106_1
  doi: 10.1002/solr.201800256
– ident: e_1_2_10_7_1
  doi: 10.1038/s41586-021-03964-8
– ident: e_1_2_10_155_1
  doi: 10.1021/acsami.6b03767
– ident: e_1_2_10_94_1
  doi: 10.1021/acsaem.8b00007
– ident: e_1_2_10_55_1
  doi: 10.1016/j.isci.2020.101753
– ident: e_1_2_10_23_1
  doi: 10.1021/acs.jpclett.5b01747
– ident: e_1_2_10_123_1
  doi: 10.1002/admi.201901469
– ident: e_1_2_10_39_1
  doi: 10.1016/j.jhazmat.2021.127848
– ident: e_1_2_10_87_1
  doi: 10.1038/s41586-021-03406-5
– ident: e_1_2_10_91_1
  doi: 10.1002/solr.202100212
– ident: e_1_2_10_98_1
  doi: 10.1039/D0EE04007J
– ident: e_1_2_10_114_1
  doi: 10.1002/adfm.202110139
– ident: e_1_2_10_162_1
  doi: 10.1021/acsomega.9b01053
– ident: e_1_2_10_52_1
  doi: 10.1364/JOSAB.14.001632
– ident: e_1_2_10_13_1
  doi: 10.1038/s41586-021-03285-w
– ident: e_1_2_10_21_1
  doi: 10.1557/mre.2017.17
– ident: e_1_2_10_37_1
  doi: 10.1021/acs.jpclett.0c00503
– ident: e_1_2_10_152_1
  doi: 10.1016/j.solmat.2017.11.008
– ident: e_1_2_10_163_1
  doi: 10.1021/acssuschemeng.8b00314
– ident: e_1_2_10_88_1
  doi: 10.1021/acsami.0c17893
– ident: e_1_2_10_41_1
  doi: 10.1002/adma.201803792
– ident: e_1_2_10_61_1
  doi: 10.1021/acs.chemmater.5b00660
– ident: e_1_2_10_71_1
  doi: 10.1063/5.0012384
– ident: e_1_2_10_11_1
  doi: 10.1038/s41578-021-00310-2
– ident: e_1_2_10_90_1
  doi: 10.1002/solr.202000299
– ident: e_1_2_10_25_1
  doi: 10.1016/j.joule.2020.03.018
– ident: e_1_2_10_36_1
  doi: 10.1002/solr.202200332
– ident: e_1_2_10_84_1
  doi: 10.2147/IJN.S89593
– ident: e_1_2_10_137_1
  doi: 10.1038/s41565-020-0765-7
– ident: e_1_2_10_19_1
  doi: 10.1289/ehp.8284
– ident: e_1_2_10_60_1
  doi: 10.1021/nn506864k
– ident: e_1_2_10_96_1
  doi: 10.1063/1.1736034
– ident: e_1_2_10_151_1
  doi: 10.1039/C5EE03887A
– ident: e_1_2_10_142_1
  doi: 10.1002/aenm.202103236
– ident: e_1_2_10_30_1
  doi: 10.1016/j.scitotenv.2021.145388
– ident: e_1_2_10_76_1
  doi: 10.1016/j.jhazmat.2022.128995
– ident: e_1_2_10_108_1
  doi: 10.1021/acsenergylett.0c00782
– ident: e_1_2_10_68_1
  doi: 10.1038/s41560-019-0406-2
– ident: e_1_2_10_156_1
  doi: 10.1016/j.xcrp.2021.100341
– ident: e_1_2_10_118_1
  doi: 10.1016/j.nanoen.2022.107184
– ident: e_1_2_10_140_1
  doi: 10.1038/s41893-021-00789-1
– ident: e_1_2_10_63_1
  doi: 10.1038/srep38150
– ident: e_1_2_10_160_1
  doi: 10.1039/C6TC02307J
– ident: e_1_2_10_53_1
  doi: 10.1002/adma.200305395
SSID ssj0002447861
Score 2.2861025
SecondaryResourceType review_article
Snippet Emerging Pb‐based photovoltaic (PV) technologies, including in particular solution processed halide perovskite solar cells (PSCs) and Pb chalcogenide quantum...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms ecotoxicity
Pb-based photovoltaics
sustainability
Title Ecotoxicity and Sustainability of Emerging Pb‐Based Photovoltaics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsolr.202200699
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMcXbS96EJ9YHyUHwVNostkkm2OtLUVaLdZCb2GfKEgitoLe_Ah-Rj-JM0kb60EEb5swm8PsY_4Zdn9DyFlMQ5OE2oJy87GEGaOuFCxxY-MxUMccXmNCf3gd9SfsahpOV27xl3yIKuGGK6PYr3GBCzlrfUNDYWiQ50nxnzhJ1kkd79fiTKdsVGVZIHjFvICmIqnMhT_s6ZLc6NHWz0_8iEyrSrUINb1tsrXQiE67HNQdsmayXbK5Qg7cI52uyuf564MCEe2ITDvj5UUoPOv65uTWwXQTViByRvLz_eMCopV2RvfQCzYkMFWzfTLpde86fXdRD8FVAUQNV2srrOdpn8cBY0FkteCe8YXhUWSLxaV86kfga4PIntgqQS1VgVRcBioUwQGpZXlmDokTJjwAKcVjaRlCvziVidIh1T40PMMbxF36IlULWDjWrHhMS8wxTdF3aeW7Bjmv7J9KTMavlrRw7R9m6fhmcFs9Hf2n0zHZwHZ59uSE1ObPL-YUFMRcNotJ0iT19uVwMP4Cnae-ug
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEMctKAMwIJ6iPD0gMUVNHCdxRqhaFWhLRVupW5T4IZBQgqBIsPER-Ix8Eu6SJrQDQmJLrHOGc-z7-2T_jpCzgHk69JQB5eZgCTPOrCTmoRVom4M6FtCMCf1e3--M-fXEK08T4l2Ygg9RJdxwZuTrNU5wTEg3fqihMDYI9GS4KQ7DZbLCfRZg9QbGB1WaBaJXIHJqKqLKLNhiT0p0o80ai59YCE3zUjWPNe1NsjETifSiGNUtsqTTbbI-hw7cIc2WzKbZ24MEFU3jVNFheRMKD7u-08xQzDdhCSI6SL4-Pi8hXCk6uIdesCKBqXzZJeN2a9TsWLOCCJZ0IWxYSpnY2LZyROBy7vpGxcLWTqyF75t8dkmHOT44WyOzJzAyZoZJN5EicaUXu3uklmap3ifUC4ULWkoEieFI_RIsCaXymHLgwdaiTqzSF5Gc0cKxaMVjVHCOWYS-iyrf1cl5Zf9UcDJ-tWS5a_8wi4a33bvq7eA_nU7JamfU60bdq_7NIVnD9uIgyhGpTZ9f9THIiWlykv8w3_vTwJI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60guhBfGJ97kHwFJpsNsnmqLWlaq3BWugtJPtAQZKiFfTmT_A3-kucSdrYHkTwliyzOczu7PftZPcbQk4C5unQUwaYm4MlzDiz0oSHVqBtDuxYQDMm9G96fmfAr4becOYWf6kPUSXcMDKK9RoDfKRM40c0FIYG9TwZ7onDcJEs4R8_nOOMR1WWBcArEIVoKiqVWbDDHk6VG23WmP_EHDLNMtUCatrrZG3CEelZOagbZEFnm2R1RjlwizRbMh_nb48SSDRNMkX704tQeNb1neaGYroJKxDRKP36-DwHtFI0eoBesCCBqXzZJoN2677ZsSb1ECzpAmpYSpnE2LZyROBy7vpGJcLWTqKF75siuKTDHB98rVGyJzAyYYZJN5UidaWXuDukluWZ3iXUC4ULVEoEqeEo-iVYGkrlMeXAg61FnVhTX8RyIhaONSue4lLmmMXou7jyXZ2cVvajUibjV0tWuPYPs7h_272r3vb-0-mYLEcX7bh72bveJyvYXB5DOSC18fOrPgQyMU6PivnyDQ6Uv8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ecotoxicity+and+Sustainability+of+Emerging+Pb%E2%80%90Based+Photovoltaics&rft.jtitle=Solar+RRL&rft.au=Lu%2C+Xingwen&rft.au=Yan%2C+Dong&rft.au=Feng%2C+Jiangtao&rft.au=Li%2C+Meng&rft.date=2022-12-01&rft.issn=2367-198X&rft.eissn=2367-198X&rft.volume=6&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsolr.202200699&rft.externalDBID=10.1002%252Fsolr.202200699&rft.externalDocID=SOLR202200699
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2367-198X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2367-198X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2367-198X&client=summon