High‐Dimensional Quantum Communication: Benefits, Progress, and Future Challenges

In recent years, there has been a rising interest in high‐dimensional quantum states and their impact on quantum communication. Indeed, the availability of an enlarged Hilbert space offers multiple advantages, from larger information capacity and increased noise resilience, to novel fundamental rese...

Full description

Saved in:
Bibliographic Details
Published inAdvanced quantum technologies (Online) Vol. 2; no. 12
Main Authors Cozzolino, Daniele, Da Lio, Beatrice, Bacco, Davide, Oxenløwe, Leif Katsuo
Format Journal Article
LanguageEnglish
Published 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, there has been a rising interest in high‐dimensional quantum states and their impact on quantum communication. Indeed, the availability of an enlarged Hilbert space offers multiple advantages, from larger information capacity and increased noise resilience, to novel fundamental research possibilities in quantum physics. Multiple photonic degrees of freedom have been explored to generate high‐dimensional quantum states, both with bulk optics and integrated photonics. Furthermore, these quantum states have been propagated through various channels, for example, free‐space links, single‐mode, multicore, and multimode fibers, and also aquatic channels, experimentally demonstrating the theoretical advantages over 2D systems. Here, the state‐of‐the‐art on the generation, propagation, and detection of high‐dimensional quantum states is reviewed. Quantum communication with states living in d‐dimensional Hilbert spaces, qudits, yields great benefits. However, qudits generation, transmission, and detection is not a simple task to accomplish. This review presents the state‐of‐the‐art on the generation, propagation, and measurement of high‐dimensional quantum states, highlighting their advantages, issues, and future perspectives. Quantum communication with states living in d‐dimensional Hilbert spaces, qudits, yields great benefits. However, qudits generation, transmission, and detection is not a simple task to accomplish. This review presents the state‐of‐the‐art on the generation, propagation, and measurement of high‐dimensional quantum states, highlighting their advantages, issues, and future perspectives.
AbstractList In recent years, there has been a rising interest in high‐dimensional quantum states and their impact on quantum communication. Indeed, the availability of an enlarged Hilbert space offers multiple advantages, from larger information capacity and increased noise resilience, to novel fundamental research possibilities in quantum physics. Multiple photonic degrees of freedom have been explored to generate high‐dimensional quantum states, both with bulk optics and integrated photonics. Furthermore, these quantum states have been propagated through various channels, for example, free‐space links, single‐mode, multicore, and multimode fibers, and also aquatic channels, experimentally demonstrating the theoretical advantages over 2D systems. Here, the state‐of‐the‐art on the generation, propagation, and detection of high‐dimensional quantum states is reviewed. Quantum communication with states living in d ‐dimensional Hilbert spaces, qudits, yields great benefits. However, qudits generation, transmission, and detection is not a simple task to accomplish. This review presents the state‐of‐the‐art on the generation, propagation, and measurement of high‐dimensional quantum states, highlighting their advantages, issues, and future perspectives.
In recent years, there has been a rising interest in high‐dimensional quantum states and their impact on quantum communication. Indeed, the availability of an enlarged Hilbert space offers multiple advantages, from larger information capacity and increased noise resilience, to novel fundamental research possibilities in quantum physics. Multiple photonic degrees of freedom have been explored to generate high‐dimensional quantum states, both with bulk optics and integrated photonics. Furthermore, these quantum states have been propagated through various channels, for example, free‐space links, single‐mode, multicore, and multimode fibers, and also aquatic channels, experimentally demonstrating the theoretical advantages over 2D systems. Here, the state‐of‐the‐art on the generation, propagation, and detection of high‐dimensional quantum states is reviewed. Quantum communication with states living in d‐dimensional Hilbert spaces, qudits, yields great benefits. However, qudits generation, transmission, and detection is not a simple task to accomplish. This review presents the state‐of‐the‐art on the generation, propagation, and measurement of high‐dimensional quantum states, highlighting their advantages, issues, and future perspectives. Quantum communication with states living in d‐dimensional Hilbert spaces, qudits, yields great benefits. However, qudits generation, transmission, and detection is not a simple task to accomplish. This review presents the state‐of‐the‐art on the generation, propagation, and measurement of high‐dimensional quantum states, highlighting their advantages, issues, and future perspectives.
Author Oxenløwe, Leif Katsuo
Cozzolino, Daniele
Bacco, Davide
Da Lio, Beatrice
Author_xml – sequence: 1
  givenname: Daniele
  orcidid: 0000-0002-0326-4015
  surname: Cozzolino
  fullname: Cozzolino, Daniele
  organization: Technical University of Denmark
– sequence: 2
  givenname: Beatrice
  surname: Da Lio
  fullname: Da Lio, Beatrice
  organization: Technical University of Denmark
– sequence: 3
  givenname: Davide
  orcidid: 0000-0002-7757-4331
  surname: Bacco
  fullname: Bacco, Davide
  email: dabac@fotonik.dtu.dk
  organization: Technical University of Denmark
– sequence: 4
  givenname: Leif Katsuo
  surname: Oxenløwe
  fullname: Oxenløwe, Leif Katsuo
  organization: Technical University of Denmark
BookMark eNqFkM1Kw0AUhQdRsNZuXecBTJ3fNHGnsbVCQYvtOkwmd9qRZKIzCdKdj-Az-iSmVlQEkbu4h8v5LodzhPZtbQGhE4KHBGN69tQ2MKSYJBhjFu-hHhWEhAnmfP-HPkQD7x86C2WE8RHrofupWa3fXl6vTAXWm9rKMpi30jZtFaR1VbXWKNl09_PgEixo0_jT4M7VKwe-U9IWwaRtWgdBupZlCXYF_hgdaFl6GHzuPlpOxot0Gs5ur2_Si1moGE3iUAJTCeS8G5orVUQClI5ELnId50lEBUuI5AQYj_Co4LjQRApKCka51nksWB_x3V_lau8d6EyZ5iNs46QpM4KzbTfZtpvsq5sOG_7CHp2ppNv8DSQ74NmUsPnHnc2Xi_E3-w7gnHvY
CitedBy_id crossref_primary_10_1103_PhysRevA_103_062220
crossref_primary_10_1088_2058_9565_ac120a
crossref_primary_10_1103_PhysRevResearch_3_023031
crossref_primary_10_3389_fphy_2020_589504
crossref_primary_10_1088_1572_9494_ad77ad
crossref_primary_10_1049_qtc2_12113
crossref_primary_10_1063_5_0136233
crossref_primary_10_1088_1612_202X_ac5040
crossref_primary_10_1088_2040_8986_ada0c5
crossref_primary_10_1021_acsnano_2c11716
crossref_primary_10_1103_PhysRevLett_133_050204
crossref_primary_10_1088_1402_4896_ad76e9
crossref_primary_10_1103_PhysRevLett_133_253601
crossref_primary_10_1126_sciadv_ado3472
crossref_primary_10_1364_OPTICAQ_538134
crossref_primary_10_3389_fphy_2021_771260
crossref_primary_10_1038_s41534_025_01007_y
crossref_primary_10_1088_1367_2630_abc783
crossref_primary_10_1088_1367_2630_ad49c3
crossref_primary_10_1109_COMST_2021_3109944
crossref_primary_10_1007_s12200_024_00133_3
crossref_primary_10_1116_5_0192456
crossref_primary_10_1093_bib_bbae074
crossref_primary_10_1038_s41598_024_51212_6
crossref_primary_10_1116_5_0007577
crossref_primary_10_1103_PhysRevResearch_6_033004
crossref_primary_10_54097_hset_v38i_5987
crossref_primary_10_1364_OE_528667
crossref_primary_10_1002_andp_202200535
crossref_primary_10_1103_PhysRevA_104_L060401
crossref_primary_10_1088_1367_2630_abb688
crossref_primary_10_1103_PhysRevLett_124_160401
crossref_primary_10_1364_OL_524201
crossref_primary_10_1116_5_0101179
crossref_primary_10_22331_q_2023_01_19_902
crossref_primary_10_1002_qute_202000156
crossref_primary_10_1103_PhysRevA_102_022623
crossref_primary_10_1088_1555_6611_ab85c9
crossref_primary_10_1038_s42005_021_00524_4
crossref_primary_10_1038_s42005_023_01262_5
crossref_primary_10_3390_opt5030024
crossref_primary_10_1038_s41534_021_00398_y
crossref_primary_10_1109_TQE_2023_3243849
crossref_primary_10_1088_1367_2630_ad6635
crossref_primary_10_1140_epjp_s13360_022_02460_w
crossref_primary_10_1364_PRJ_469340
crossref_primary_10_1088_2515_7647_aced73
crossref_primary_10_1103_PhysRevLett_125_090503
crossref_primary_10_1007_s11128_023_03886_6
crossref_primary_10_1142_S0219749920500318
crossref_primary_10_1103_PhysRevApplied_17_034017
crossref_primary_10_1515_nanoph_2021_0510
crossref_primary_10_1088_2040_8986_ac8888
crossref_primary_10_1016_j_yofte_2022_102828
crossref_primary_10_1364_OE_477509
crossref_primary_10_22331_q_2021_07_15_504
crossref_primary_10_1002_qute_202300012
crossref_primary_10_1007_s11128_021_03276_w
crossref_primary_10_1038_s41534_021_00515_x
crossref_primary_10_1109_JSTQE_2019_2960937
crossref_primary_10_1088_1402_4896_ab73d5
crossref_primary_10_1103_PhysRevA_109_L030201
crossref_primary_10_1002_spy2_453
crossref_primary_10_1103_PhysRevX_12_041023
crossref_primary_10_1109_JLT_2024_3450119
crossref_primary_10_1038_s41598_023_29211_w
crossref_primary_10_1103_PhysRevApplied_14_014051
crossref_primary_10_1109_LCOMM_2024_3361852
crossref_primary_10_1002_qute_202400196
crossref_primary_10_1109_OJVT_2022_3202876
crossref_primary_10_1515_nanoph_2022_0466
crossref_primary_10_1103_PhysRevA_109_022425
crossref_primary_10_1364_OL_410215
crossref_primary_10_1103_PhysRevA_110_062208
crossref_primary_10_1364_OE_419568
crossref_primary_10_1002_qute_202300037
crossref_primary_10_1088_1402_4896_ad848e
crossref_primary_10_1007_s10773_022_05161_3
crossref_primary_10_1103_PRXQuantum_5_010101
crossref_primary_10_1038_s42005_025_01954_0
crossref_primary_10_1038_s41598_022_16225_z
crossref_primary_10_1103_PhysRevA_111_012623
crossref_primary_10_1088_1612_202X_acb043
crossref_primary_10_1103_PhysRevA_111_013704
crossref_primary_10_1109_MCOM_001_2300069
crossref_primary_10_1007_s42484_024_00146_3
crossref_primary_10_1103_PRXQuantum_4_020306
crossref_primary_10_1103_PhysRevApplied_18_054006
crossref_primary_10_1002_andp_202400231
crossref_primary_10_1142_S0217732323501419
crossref_primary_10_1002_lpor_202400720
crossref_primary_10_1002_andp_202400360
crossref_primary_10_1109_OJCOMS_2024_3380508
crossref_primary_10_1103_PhysRevResearch_2_043350
crossref_primary_10_1007_s42484_023_00125_0
crossref_primary_10_1109_TQE_2020_3018133
crossref_primary_10_1109_COMST_2023_3254481
crossref_primary_10_1088_2058_9565_ac3c19
crossref_primary_10_1103_PhysRevA_110_012452
crossref_primary_10_1007_s11467_020_1028_7
crossref_primary_10_1364_OE_426556
crossref_primary_10_1007_s11128_024_04395_w
crossref_primary_10_3390_e25010016
crossref_primary_10_3390_nano14090783
crossref_primary_10_1103_PhysRevA_106_022421
crossref_primary_10_1142_S021974992340004X
crossref_primary_10_1007_s11277_021_09171_y
crossref_primary_10_1103_PhysRevApplied_22_034003
crossref_primary_10_1038_s41377_023_01336_7
crossref_primary_10_1038_s41377_021_00537_2
crossref_primary_10_1007_s10773_024_05832_3
crossref_primary_10_1007_s11128_022_03744_x
crossref_primary_10_1007_s11432_022_3602_0
crossref_primary_10_1103_PhysRevX_13_021001
crossref_primary_10_1016_j_matpr_2023_07_067
crossref_primary_10_1109_ACCESS_2020_3045445
crossref_primary_10_1364_OE_451083
crossref_primary_10_1088_1367_2630_ab8ab1
crossref_primary_10_1126_sciadv_abn9783
crossref_primary_10_1002_qute_202400141
crossref_primary_10_1088_1674_1056_ad73ae
crossref_primary_10_1103_PhysRevResearch_6_033136
crossref_primary_10_1002_qute_202400149
crossref_primary_10_1103_PhysRevA_101_032312
crossref_primary_10_1103_PhysRevResearch_6_013202
crossref_primary_10_22331_q_2021_04_28_447
crossref_primary_10_1063_5_0138224
crossref_primary_10_1119_5_0062128
crossref_primary_10_1103_PhysRevResearch_7_013060
crossref_primary_10_1103_PhysRevResearch_5_013142
crossref_primary_10_3390_s24154817
crossref_primary_10_1103_PhysRevResearch_6_033151
crossref_primary_10_1080_01468030_2020_1814907
crossref_primary_10_1103_PhysRevApplied_19_054092
crossref_primary_10_1364_OPTICA_523955
crossref_primary_10_1002_lpor_202100586
crossref_primary_10_1002_adom_202301456
crossref_primary_10_22331_q_2022_05_09_708
crossref_primary_10_1364_OE_470364
crossref_primary_10_1088_1367_2630_ad1d0e
crossref_primary_10_4204_EPTCS_384_13
crossref_primary_10_1049_qtc2_12074
crossref_primary_10_3390_e25101459
crossref_primary_10_1103_PhysRevA_101_063830
crossref_primary_10_1186_s43593_024_00066_6
crossref_primary_10_1103_PhysRevX_15_011024
crossref_primary_10_1103_PhysRevA_109_022612
crossref_primary_10_1109_TQE_2024_3391654
crossref_primary_10_1103_PhysRevApplied_22_054067
crossref_primary_10_1364_OE_532747
crossref_primary_10_1088_1402_4896_ad67b2
crossref_primary_10_1364_OPTICA_454597
crossref_primary_10_1007_s10773_024_05843_0
crossref_primary_10_1038_s41467_022_31639_z
crossref_primary_10_1007_s11433_023_2361_6
crossref_primary_10_1002_lpor_202400648
crossref_primary_10_1103_PhysRevLett_127_040502
crossref_primary_10_1364_OE_532512
crossref_primary_10_1088_2058_9565_ad37d4
crossref_primary_10_1364_OPTICA_427645
crossref_primary_10_1364_OE_533728
crossref_primary_10_1002_qute_202300083
crossref_primary_10_1109_ACCESS_2023_3269848
crossref_primary_10_1364_JOSAB_466304
crossref_primary_10_1364_OL_476425
crossref_primary_10_1088_1572_9494_ad48fb
crossref_primary_10_1088_1751_8121_ac07ea
crossref_primary_10_1038_s41467_023_43949_x
crossref_primary_10_1103_PhysRevApplied_15_044017
crossref_primary_10_1103_PhysRevA_105_062402
crossref_primary_10_1007_s40766_023_00040_x
crossref_primary_10_1088_1367_2630_ac0c53
crossref_primary_10_1103_PhysRevApplied_19_054060
crossref_primary_10_1088_2040_8986_ac7a48
crossref_primary_10_1364_OL_481018
crossref_primary_10_1038_s41534_025_00965_7
crossref_primary_10_1126_sciadv_adq6298
crossref_primary_10_1088_2040_8986_acea92
crossref_primary_10_1103_PhysRevA_111_032608
crossref_primary_10_1103_PhysRevResearch_5_043071
crossref_primary_10_1142_S0219749919500588
crossref_primary_10_1364_AOP_497143
crossref_primary_10_3390_e25040627
crossref_primary_10_1007_s11128_023_04018_w
crossref_primary_10_1088_2058_9565_ad7315
crossref_primary_10_1038_s41467_021_25447_0
crossref_primary_10_55859_ijiss_1294840
crossref_primary_10_1021_acsphotonics_4c01516
crossref_primary_10_1103_PhysRevA_109_033712
crossref_primary_10_1103_PhysRevA_103_023708
crossref_primary_10_1088_2040_8986_acb36c
crossref_primary_10_1088_1367_2630_abdbe1
crossref_primary_10_1140_epjp_s13360_023_04259_9
crossref_primary_10_1007_s12596_023_01506_1
crossref_primary_10_1103_PhysRevApplied_22_054054
crossref_primary_10_1103_PhysRevLett_133_233602
crossref_primary_10_1103_PhysRevA_105_023113
crossref_primary_10_1142_S0217732322502297
crossref_primary_10_1103_PhysRevA_107_L050402
crossref_primary_10_1103_PhysRevResearch_3_043001
crossref_primary_10_1134_S1062873824708535
crossref_primary_10_1002_widm_1568
crossref_primary_10_1063_5_0185281
crossref_primary_10_1088_2058_9565_abe5ee
crossref_primary_10_1103_PhysRevA_108_012607
crossref_primary_10_22331_q_2021_06_10_472
crossref_primary_10_1002_qute_202200024
crossref_primary_10_1103_PhysRevA_104_052618
crossref_primary_10_1088_2058_9565_acdd91
crossref_primary_10_1364_OE_472034
crossref_primary_10_3390_quantum2010014
crossref_primary_10_1364_OE_476638
crossref_primary_10_1364_OE_436079
crossref_primary_10_1109_JPHOT_2024_3383780
crossref_primary_10_1103_PhysRevLett_126_200404
crossref_primary_10_1364_OPTICAQ_525957
crossref_primary_10_1103_PhysRevApplied_22_024059
crossref_primary_10_1364_PRJ_409645
crossref_primary_10_1103_PhysRevA_101_012339
crossref_primary_10_1002_lpor_202300277
crossref_primary_10_1109_TIT_2022_3141874
crossref_primary_10_1002_lpor_202200388
crossref_primary_10_1116_5_0016007
crossref_primary_10_1515_nanoph_2021_0500
crossref_primary_10_1364_OE_506098
crossref_primary_10_7498_aps_69_20200162
crossref_primary_10_1117_1_AP_7_2_026006
crossref_primary_10_4204_EPTCS_394_4
crossref_primary_10_1007_s12043_020_01989_8
crossref_primary_10_1080_23270012_2022_2089064
crossref_primary_10_1038_s41467_024_55345_0
crossref_primary_10_1088_1402_4896_ad69d9
crossref_primary_10_1140_epjp_s13360_023_04399_y
crossref_primary_10_1038_s41467_024_51083_5
crossref_primary_10_1039_D3NR05811E
crossref_primary_10_1103_PhysRevLett_129_100501
crossref_primary_10_1364_OPTICAQ_532334
crossref_primary_10_1103_PhysRevApplied_23_034038
crossref_primary_10_1088_2040_8986_ac3676
crossref_primary_10_1002_qute_202300224
crossref_primary_10_1103_PhysRevLett_128_240402
crossref_primary_10_1038_s41467_024_51434_2
crossref_primary_10_1103_PhysRevLett_127_110505
crossref_primary_10_1103_PhysRevLett_133_240203
crossref_primary_10_1007_s11128_021_03169_y
crossref_primary_10_1364_OE_510497
crossref_primary_10_1007_s11227_025_07082_4
crossref_primary_10_1103_PhysRevA_104_012419
crossref_primary_10_1007_s11128_023_04030_0
crossref_primary_10_1038_s41598_022_19503_y
crossref_primary_10_1002_andp_202400305
crossref_primary_10_1103_PhysRevA_103_042417
crossref_primary_10_1117_1_AP_5_4_046008
crossref_primary_10_1103_PhysRevA_105_022628
crossref_primary_10_1364_PRJ_425890
Cites_doi 10.1016/j.physleta.2015.03.023
10.1103/PhysRevLett.49.901
10.1126/sciadv.1601915
10.1103/PhysRevA.93.032336
10.1038/nature11472
10.1103/PhysRevLett.108.130503
10.1126/science.aan3211
10.1103/PhysRevA.99.033805
10.1103/PhysRevA.96.012306
10.1103/PhysRevA.64.024101
10.1103/PhysRevLett.93.010503
10.1103/PhysRevLett.119.010402
10.1126/science.1252319
10.1103/PhysRevLett.123.070505
10.1103/PhysRevA.66.062308
10.1103/PhysRevA.82.012304
10.1103/PhysRevA.70.052305
10.1364/OE.27.018363
10.1038/ncomms15043
10.1103/PhysRevA.95.020302
10.1103/PhysRevA.55.2564
10.1103/PhysRevA.54.1844
10.1038/nature14246
10.1088/1367-2630/18/1/013021
10.1109/MC.2016.293
10.1103/PhysRevLett.92.047902
10.1103/RevModPhys.81.1301
10.1103/PhysRevLett.85.445
10.1038/s41534-017-0026-2
10.1038/nature15759
10.1103/PhysRevLett.118.110501
10.1364/OE.26.028918
10.1088/1367-2630/8/5/075
10.1103/PhysRevA.92.062324
10.1103/PhysRevA.88.032309
10.1126/sciadv.1501165
10.1126/science.1226528
10.1103/PhysRevLett.88.040404
10.1103/PhysRevLett.121.233602
10.1364/OPTICA.4.001462
10.1364/OE.26.001825
10.1126/sciadv.aat9304
10.1364/OE.25.019795
10.1088/2058-9565/aaefd4
10.1103/PhysRevLett.79.2153
10.1038/37539
10.2200/S00409ED1V01Y201203COM006
10.1103/PhysRevA.79.064305
10.1016/S0065-2458(08)60342-3
10.1038/nature09801
10.1038/ncomms8706
10.1364/OE.26.022563
10.1038/35051009
10.1364/OPTICA.4.001006
10.1103/PhysRevLett.108.143603
10.1038/s41567-018-0203-z
10.1016/0030-4018(94)90638-6
10.1038/srep02316
10.1038/s41566-018-0097-4
10.1103/PhysRevD.22.356
10.1088/1367-2630/ab006e
10.1103/PhysRevA.81.042326
10.1088/2040-8986/aa912a
10.1088/1367-2630/aa573a
10.1103/PhysRevLett.121.220404
10.1103/PhysRevA.91.042312
10.1103/PhysRevLett.104.060401
10.1103/PhysRevLett.122.020503
10.1103/PhysRevLett.117.100502
10.1103/PhysRevA.53.R1209
10.1038/s41467-019-12139-z
10.1103/PhysRevLett.96.163905
10.1142/S0219749915600266
10.22331/q-2018-12-04-111
10.1088/2058-9565/1/1/015004
10.1038/srep07982
10.1038/414883a
10.1038/nature10981
10.1038/nphys1150
10.1038/npjqi.2016.10
10.1137/S0097539797324886
10.1103/PhysRevA.78.022310
10.1103/PhysRevLett.62.2205
10.1016/0030-4018(93)90535-D
10.1103/PhysRevA.65.012318
10.1038/nphys919
10.1103/PhysRevA.90.042301
10.1103/PhysRevA.92.022321
10.1103/PhysRevA.98.062301
10.1103/PhysRevA.65.030301
10.1038/nature22986
10.1103/RevModPhys.77.1225
10.1126/science.1227193
10.1103/PhysRevA.94.030304
10.1364/OE.26.026946
10.1103/PhysRevLett.88.127902
10.1103/PhysRevA.96.022317
10.1103/PhysRevA.93.010301
10.1126/science.1160627
10.1103/PhysRevLett.92.127901
10.1038/s41567-018-0124-x
10.1103/PhysRevLett.115.250402
10.1103/PhysRevLett.121.150504
10.1038/nphoton.2016.12
10.1103/PhysRevA.98.042126
10.1038/ncomms1348
10.1103/PhysRevLett.119.180510
10.1126/sciadv.1701491
10.1038/nature23675
10.1126/science.273.5278.1073
10.1103/PhysRevA.59.3295
10.1126/science.aar7053
10.1126/sciadv.1500087
10.1364/OL.44.000041
10.1364/AOP.8.000200
10.1080/09500340008244036
10.1364/JOSAB.7.001034
10.1103/PhysRevLett.85.4418
10.1038/s41566-019-0377-7
10.1103/PhysRevLett.59.2044
10.1016/S0375-9601(99)00562-9
10.1038/ncomms1951
10.1002/qute.201900011
10.1103/PhysRevLett.118.080401
10.1103/PhysRevLett.122.120504
10.1364/OL.43.004108
10.1103/PhysRev.47.777
10.1103/PhysRevA.82.030301
10.1103/PhysRevA.45.8185
10.1126/science.1173440
10.1038/s41598-017-19078-z
10.1088/1367-2630/17/2/022002
10.1103/PhysRevApplied.11.064058
10.1103/PhysRevA.61.062308
10.1103/PhysRevA.56.1201
10.1038/nphys2258
10.1038/lsa.2016.157
10.1126/sciadv.aap9646
10.1002/lpor.200810016
10.1109/JLT.2015.2466444
10.1103/PhysRevLett.105.073602
10.1126/science.270.5234.255
10.1103/PhysRevA.68.032313
10.1103/PhysRevLett.92.047901
10.1038/s41586-018-0152-9
10.1038/lsa.2017.148
10.1364/JOSAB.36.000D70
10.1038/s42254-018-0003-5
10.1364/OL.40.001717
10.1038/nphys1652
10.1038/s41598-017-12309-3
10.1038/299802a0
10.1016/S0375-9601(99)00099-7
10.1103/PhysRevA.59.116
10.1103/PhysRevA.46.4413
10.1038/s41566-018-0257-6
10.1117/1.AP.1.4.046005
10.1038/nphys1996
10.1103/PhysRevLett.89.197901
10.1007/s11801-018-7250-7
10.1038/nphys1777
10.1088/2040-8978/13/6/064001
10.1103/PhysRevLett.67.661
10.1038/35085529
10.1103/PhysRevA.57.2368
10.1038/ncomms15971
10.1103/PhysRevA.95.052345
10.1038/s41467-017-00706-1
10.1103/PhysicsPhysiqueFizika.1.195
10.1103/PhysRevLett.113.060503
ContentType Journal Article
Copyright 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 24P
AAYXX
CITATION
DOI 10.1002/qute.201900038
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2511-9044
EndPage n/a
ExternalDocumentID 10_1002_qute_201900038
QUTE201900038
Genre reviewArticle
GrantInformation_xml – fundername: European Union's Seventh Framework Programme
  funderid: FP7/2007–2013
– fundername: People Programme
– fundername: Silicon Photonics for Optical Communications
– fundername: Centre of Excellence
– fundername: REA
  funderid: 609405
GroupedDBID 0R~
1OC
24P
33P
34L
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
AAZKR
ABCUV
ACCFJ
ACCZN
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFFPM
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
ARCSS
BFHJK
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WXSBR
ZZTAW
AAYXX
ABJNI
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
ID FETCH-LOGICAL-c3298-ae3c9eb4b4b2bccd65ecf65b5bf8b9625391a41e34607d40df1a521d324ffb853
IEDL.DBID 24P
ISSN 2511-9044
IngestDate Tue Jul 01 02:03:48 EDT 2025
Thu Apr 24 23:05:23 EDT 2025
Wed Jan 22 16:36:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3298-ae3c9eb4b4b2bccd65ecf65b5bf8b9625391a41e34607d40df1a521d324ffb853
ORCID 0000-0002-0326-4015
0000-0002-7757-4331
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.201900038
PageCount 17
ParticipantIDs crossref_citationtrail_10_1002_qute_201900038
crossref_primary_10_1002_qute_201900038
wiley_primary_10_1002_qute_201900038_QUTE201900038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationTitle Advanced quantum technologies (Online)
PublicationYear 2019
References 2012; 484
2013; 3
2009; 81
2019; 11
2010; 105
2019; 99
2019; 10
2019; 13
2010; 104
2000; 85
2011; 470
2012; 489
2018; 43
2016; 34
2018; 7
2018; 8
2018; 2
2018; 4
1997; 55
2015; 379
2018; 1
2019; 21
2002; 89
1999; 59
2002; 88
1997; 56
2019; 27
1984
1992; 46
2015; 91
1997; 390
2016; 49
1992; 45
2005; 77
2014; 12
2001; 412
2010; 6
2001; 414
1989; 62
2011; 2
2013; 88
2019; 2
2019; 1
2019; 36
2016; 10
1997
2016; 94
2015; 526
2016; 93
2016; 18
1995; 270
2012; 108
2011; 7
2018; 26
1987; 59
2017; 549
2016; 5
2009; 79
1982; 49
2016; 1
2016; 2
1991; 67
2015; 115
2019; 44
2002; 65
2002; 66
2015; 518
2018; 12
1935; 47
2018; 98
1990; 7
2016; 8
2001; 30
2018; 14
2017; 546
2017; 119
1964; 1
2017; 7
2017; 8
2018; 121
2017; 3
2018; 360
2017; 4
2000; 47
2008; 78
2011; 13
2008; 4
2008; 2
2017; 356
2019; 122
2019; 123
2017; 118
2004; 70
2015; 40
2000; 61
1982; 299
1999; 253
2016; 117
2012; 338
2009; 325
1998; 57
1994; 112
2015; 1
2015; 6
2006; 96
2015; 17
2015; 5
2014; 90
2012
2015; 92
2017; 25
1980; 22
2006; 8
1999; 261
2001; 409
2008; 321
2010; 81
1996; 54
1996; 53
2001; 64
2010; 82
2001; 65
2014; 113
2017; 95
2017; 96
2012; 3
2004; 92
2004; 93
2018; 557
1997; 79
1993; 96
2003; 68
2019
2018
2017; 19
2009; 5
1996; 273
2014; 345
2012; 8
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_187_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_157_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_153_1
e_1_2_9_172_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_186_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_166_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_185_1
e_1_2_9_181_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_136_1
e_1_2_9_178_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_174_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
Cover T. M. (e_1_2_9_31_1) 2012
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_104_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_184_1
e_1_2_9_161_1
e_1_2_9_180_1
e_1_2_9_63_1
e_1_2_9_40_1
Jung L. H. (e_1_2_9_163_1) 2017; 7
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_173_1
e_1_2_9_48_1
e_1_2_9_29_1
e_1_2_9_150_1
References_xml – volume: 121
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 13
  year: 2011
  publication-title: J. Opt.
– volume: 1
  start-page: 195
  year: 1964
  publication-title: Physics Physique Fizika
– volume: 113
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 46
  start-page: 4413
  year: 1992
  publication-title: Phys. Rev. A
– volume: 47
  start-page: 187
  year: 2000
  publication-title: J. Mod. Opt.
– volume: 77
  start-page: 1225
  year: 2005
  publication-title: Rev. Mod. Phys.
– volume: 7
  start-page: 4302
  year: 2017
  publication-title: J. Light. Technol.
– volume: 26
  year: 2018
  publication-title: Opt. Express
– volume: 470
  start-page: 486
  year: 2011
  publication-title: Nature
– volume: 93
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 345
  start-page: 420
  year: 2014
  publication-title: Science
– volume: 2
  year: 2019
  publication-title: Adv. Quantum Technol.
– volume: 3
  start-page: 2316
  year: 2013
  publication-title: Sci. Rep.
– volume: 57
  start-page: 2368
  year: 1998
  publication-title: Phys. Rev. A
– volume: 10
  start-page: 4152
  year: 2019
  publication-title: Nat. Commun.
– volume: 526
  start-page: 682
  year: 2015
  publication-title: Nature
– volume: 92
  year: 2015
  publication-title: Phys. Rev. A
– volume: 4
  year: 2018
  publication-title: Quantum Sci. Technol.
– volume: 108
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 18
  year: 2016
  publication-title: New J. Phys.
– volume: 261
  start-page: 17
  year: 1999
  publication-title: Phys. Lett. A
– volume: 484
  start-page: 489
  year: 2012
  publication-title: Nature
– volume: 409
  start-page: 46
  year: 2001
  publication-title: Nature
– volume: 5
  year: 2016
  publication-title: Light: Sci. Appl.
– volume: 7
  year: 2018
  publication-title: Light: Sci. Appl.
– volume: 122
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 49
  start-page: 901
  year: 1982
  publication-title: Phys. Rev. Lett.
– volume: 90
  year: 2014
  publication-title: Phys. Rev. A
– volume: 338
  start-page: 640
  year: 2012
  publication-title: Science
– volume: 4
  start-page: 282
  year: 2008
  publication-title: Nat. Phys.
– volume: 26
  start-page: 1825
  year: 2018
  publication-title: Opt. Express
– year: 2019
– volume: 54
  start-page: 1844
  year: 1996
  publication-title: Phys. Rev. A
– volume: 89
  year: 2002
  publication-title: Phys. Rev. Lett.
– volume: 49
  start-page: 21
  year: 2016
  publication-title: Computer
– volume: 6
  start-page: 850
  year: 2010
  publication-title: Nat. Phys.
– volume: 70
  year: 2004
  publication-title: Phys. Rev. A
– volume: 549
  start-page: 70
  year: 2017
  publication-title: Nature
– volume: 59
  start-page: 116
  year: 1999
  publication-title: Phys. Rev. A
– volume: 412
  start-page: 313
  year: 2001
  publication-title: Nature
– volume: 6
  start-page: 462
  year: 2010
  publication-title: Nat. Phys.
– volume: 99
  year: 2019
  publication-title: Phys. Rev. A
– volume: 19
  year: 2017
  publication-title: J. Opt.
– volume: 1
  year: 2016
  publication-title: Quantum Sci. Technol.
– volume: 44
  start-page: 41
  year: 2019
  publication-title: Opt. Lett.
– volume: 123
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 817
  year: 2018
  publication-title: Sci. Rep.
– volume: 22
  start-page: 356
  year: 1980
  publication-title: Phys. Rev. D
– volume: 518
  start-page: 516
  year: 2015
  publication-title: Nature
– volume: 68
  year: 2003
  publication-title: Phys. Rev. A
– volume: 65
  year: 2002
  publication-title: Phys. Rev. A
– volume: 12
  start-page: 759
  year: 2018
  publication-title: Nat. Photonics
– volume: 8
  start-page: 75
  year: 2006
  publication-title: New J. Phys.
– volume: 88
  year: 2002
  publication-title: Phys. Rev. Lett.
– year: 1984
– volume: 5
  start-page: 134
  year: 2009
  publication-title: Nat. Phys.
– volume: 66
  year: 2002
  publication-title: Phys. Rev. A
– volume: 379
  start-page: 1409
  year: 2015
  publication-title: Phys. Lett. A
– volume: 96
  start-page: 123
  year: 1993
  publication-title: Opt. Commun.
– volume: 79
  start-page: 2153
  year: 1997
  publication-title: Phys. Rev. Lett.
– volume: 1
  year: 2019
  publication-title: Adv. Photon.
– volume: 67
  start-page: 661
  year: 1991
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 677
  year: 2011
  publication-title: Nat. Phys.
– volume: 85
  start-page: 4418
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 47
  start-page: 777
  year: 1935
  publication-title: Phys. Rev.
– volume: 270
  start-page: 255
  year: 1995
  publication-title: Science
– volume: 82
  year: 2010
  publication-title: Phys. Rev. A
– volume: 118
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 299
  start-page: 802
  year: 1982
  publication-title: Nature
– volume: 17
  year: 2015
  publication-title: New J. Phys.
– volume: 338
  start-page: 363
  year: 2012
  publication-title: Science
– volume: 62
  start-page: 2205
  year: 1989
  publication-title: Phys. Rev. Lett.
– volume: 81
  year: 2010
  publication-title: Phys. Rev. A
– volume: 2
  year: 2016
  publication-title: npj Quantum Inf.
– volume: 64
  year: 2001
  publication-title: Phys. Rev. A
– volume: 61
  year: 2000
  publication-title: Phys. Rev. A
– volume: 40
  start-page: 1717
  year: 2015
  publication-title: Opt. Lett.
– volume: 104
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 55
  start-page: 2564
  year: 1997
  publication-title: Phys. Rev. A
– volume: 4
  start-page: 1006
  year: 2017
  publication-title: Optica
– volume: 81
  start-page: 1301
  year: 2009
  publication-title: Rev. Mod. Phys.
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 4
  start-page: 1462
  year: 2017
  publication-title: Optica
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 56
  start-page: 1201
  year: 1997
  publication-title: Phys. Rev. A
– volume: 43
  start-page: 4108
  year: 2018
  publication-title: Opt. Lett.
– year: 2018
– volume: 2
  start-page: 349
  year: 2011
  publication-title: Nat. Commun.
– volume: 117
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 489
  start-page: 269
  year: 2012
  publication-title: Nature
– volume: 85
  start-page: 445
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 111
  year: 2018
  publication-title: Quantum
– volume: 12
  start-page: 173
  year: 2018
  publication-title: Nat. Photonics
– volume: 25
  year: 2017
  publication-title: Opt. Express
– volume: 14
  start-page: 595
  year: 2018
  publication-title: Nat. Phys.
– volume: 36
  start-page: D70
  year: 2019
  publication-title: J. Opt. Soc. Am. B
– volume: 34
  start-page: 55
  year: 2016
  publication-title: J. Light. Technol.
– volume: 59
  start-page: 3295
  year: 1999
  publication-title: Phys. Rev. A
– volume: 414
  start-page: 883
  year: 2001
  publication-title: Nature
– volume: 21
  year: 2019
  publication-title: New J. Phys.
– volume: 92
  year: 2004
  publication-title: Phys. Rev. Lett.
– year: 1997
– volume: 95
  year: 2017
  publication-title: Phys. Rev. A
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 546
  start-page: 622
  year: 2017
  publication-title: Nature
– volume: 2
  start-page: 429
  year: 2008
  publication-title: Laser Photonics Rev.
– volume: 98
  year: 2018
  publication-title: Phys. Rev. A
– volume: 253
  start-page: 249
  year: 1999
  publication-title: Phys. Lett. A
– volume: 3
  start-page: 25
  year: 2017
  publication-title: npj Quantum Inf.
– volume: 112
  start-page: 321
  year: 1994
  publication-title: Opt. Commun.
– volume: 360
  start-page: 285
  year: 2018
  publication-title: Science
– volume: 27
  year: 2019
  publication-title: Opt. Express
– volume: 79
  year: 2009
  publication-title: Phys. Rev. A
– volume: 115
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 263
  year: 2012
  publication-title: Nat. Phys.
– volume: 6
  start-page: 7706
  year: 2015
  publication-title: Nat. Commun.
– volume: 8
  start-page: 632
  year: 2017
  publication-title: Nat. Commun.
– volume: 96
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 1034
  year: 1990
  publication-title: J. Opt. Soc. Am. B
– volume: 12
  year: 2014
  publication-title: Int. J. Quantum Inf.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 65
  year: 2001
  publication-title: Phys. Rev. A
– volume: 273
  start-page: 1073
  year: 1996
  publication-title: Science
– volume: 19
  year: 2017
  publication-title: New J. Phys.
– volume: 93
  year: 2016
  publication-title: Phys. Rev. A
– volume: 45
  start-page: 8185
  year: 1992
  publication-title: Phys. Rev. A
– volume: 14
  start-page: 1032
  year: 2018
  publication-title: Nat. Phys.
– volume: 96
  year: 2017
  publication-title: Phys. Rev. A
– volume: 5
  start-page: 7982
  year: 2015
  publication-title: Sci. Rep.
– volume: 119
  year: 2017
  publication-title: Phys. Rev. Lett.
– year: 2012
– volume: 91
  year: 2015
  publication-title: Phys. Rev. A
– volume: 8
  start-page: 200
  year: 2016
  publication-title: Adv. Opt. Photonics
– volume: 59
  start-page: 2044
  year: 1987
  publication-title: Phys. Rev. Lett.
– volume: 356
  start-page: 1140
  year: 2017
  publication-title: Science
– volume: 13
  start-page: 334
  year: 2019
  publication-title: Nat. Photonics
– volume: 3
  start-page: 961
  year: 2012
  publication-title: Nat. Commun.
– volume: 11
  year: 2019
  publication-title: Phys. Rev. Applied
– volume: 78
  year: 2008
  publication-title: Phys. Rev. A
– volume: 88
  year: 2013
  publication-title: Phys. Rev. A
– volume: 53
  start-page: R1209
  year: 1996
  publication-title: Phys. Rev. A
– volume: 557
  start-page: 660
  year: 2018
  publication-title: Nature
– volume: 390
  start-page: 575
  year: 1997
  publication-title: Nature
– volume: 325
  start-page: 722
  year: 2009
  publication-title: Science
– volume: 10
  start-page: 248
  year: 2016
  publication-title: Nat. Photonics
– volume: 30
  start-page: 1829
  year: 2001
  publication-title: SIAM J. Comput.
– volume: 1
  start-page: 72
  year: 2018
  publication-title: Nat. Rev. Phys.
– volume: 1
  year: 2015
  publication-title: Sci. Adv.
– volume: 14
  start-page: 216
  year: 2018
  publication-title: Optoelectron. Lett.
– volume: 105
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 321
  start-page: 1463
  year: 2008
  publication-title: Science
– volume: 94
  year: 2016
  publication-title: Phys. Rev. A
– ident: e_1_2_9_29_1
  doi: 10.1016/j.physleta.2015.03.023
– ident: e_1_2_9_67_1
  doi: 10.1103/PhysRevLett.49.901
– ident: e_1_2_9_48_1
– ident: e_1_2_9_138_1
– ident: e_1_2_9_59_1
  doi: 10.1126/sciadv.1601915
– ident: e_1_2_9_98_1
  doi: 10.1103/PhysRevA.93.032336
– ident: e_1_2_9_144_1
  doi: 10.1038/nature11472
– ident: e_1_2_9_156_1
  doi: 10.1103/PhysRevLett.108.130503
– ident: e_1_2_9_6_1
  doi: 10.1126/science.aan3211
– ident: e_1_2_9_136_1
  doi: 10.1103/PhysRevA.99.033805
– ident: e_1_2_9_20_1
  doi: 10.1103/PhysRevA.96.012306
– ident: e_1_2_9_70_1
  doi: 10.1103/PhysRevA.64.024101
– ident: e_1_2_9_74_1
  doi: 10.1103/PhysRevLett.93.010503
– ident: e_1_2_9_65_1
  doi: 10.1103/PhysRevLett.119.010402
– ident: e_1_2_9_4_1
  doi: 10.1126/science.1252319
– ident: e_1_2_9_84_1
  doi: 10.1103/PhysRevLett.123.070505
– ident: e_1_2_9_123_1
  doi: 10.1103/PhysRevA.66.062308
– ident: e_1_2_9_165_1
  doi: 10.1103/PhysRevA.82.012304
– ident: e_1_2_9_60_1
  doi: 10.1103/PhysRevA.70.052305
– ident: e_1_2_9_76_1
  doi: 10.1364/OE.27.018363
– ident: e_1_2_9_37_1
  doi: 10.1038/ncomms15043
– ident: e_1_2_9_97_1
  doi: 10.1103/PhysRevA.95.020302
– ident: e_1_2_9_128_1
  doi: 10.1103/PhysRevA.55.2564
– ident: e_1_2_9_50_1
  doi: 10.1103/PhysRevA.54.1844
– ident: e_1_2_9_169_1
– ident: e_1_2_9_181_1
  doi: 10.1038/nature14246
– ident: e_1_2_9_73_1
  doi: 10.1088/1367-2630/18/1/013021
– ident: e_1_2_9_179_1
  doi: 10.1109/MC.2016.293
– ident: e_1_2_9_62_1
  doi: 10.1103/PhysRevLett.92.047902
– ident: e_1_2_9_39_1
  doi: 10.1103/RevModPhys.81.1301
– ident: e_1_2_9_153_1
– ident: e_1_2_9_180_1
  doi: 10.1103/PhysRevLett.85.445
– ident: e_1_2_9_162_1
  doi: 10.1038/s41534-017-0026-2
– ident: e_1_2_9_63_1
  doi: 10.1038/nature15759
– ident: e_1_2_9_167_1
– ident: e_1_2_9_125_1
  doi: 10.1103/PhysRevLett.118.110501
– ident: e_1_2_9_134_1
  doi: 10.1364/OE.26.028918
– ident: e_1_2_9_148_1
  doi: 10.1088/1367-2630/8/5/075
– ident: e_1_2_9_152_1
  doi: 10.1103/PhysRevA.92.062324
– ident: e_1_2_9_78_1
  doi: 10.1103/PhysRevA.88.032309
– ident: e_1_2_9_120_1
  doi: 10.1126/sciadv.1501165
– ident: e_1_2_9_106_1
  doi: 10.1126/science.1226528
– ident: e_1_2_9_71_1
  doi: 10.1103/PhysRevLett.88.040404
– ident: e_1_2_9_107_1
  doi: 10.1103/PhysRevLett.121.233602
– ident: e_1_2_9_117_1
  doi: 10.1364/OPTICA.4.001462
– ident: e_1_2_9_140_1
  doi: 10.1364/OE.26.001825
– ident: e_1_2_9_35_1
  doi: 10.1126/sciadv.aat9304
– ident: e_1_2_9_174_1
  doi: 10.1364/OE.25.019795
– ident: e_1_2_9_137_1
– ident: e_1_2_9_147_1
  doi: 10.1088/2058-9565/aaefd4
– ident: e_1_2_9_52_1
  doi: 10.1103/PhysRevLett.79.2153
– ident: e_1_2_9_7_1
  doi: 10.1038/37539
– ident: e_1_2_9_171_1
  doi: 10.2200/S00409ED1V01Y201203COM006
– ident: e_1_2_9_47_1
  doi: 10.1103/PhysRevA.79.064305
– ident: e_1_2_9_85_1
  doi: 10.1016/S0065-2458(08)60342-3
– ident: e_1_2_9_13_1
  doi: 10.1038/nature09801
– ident: e_1_2_9_26_1
  doi: 10.1038/ncomms8706
– ident: e_1_2_9_176_1
  doi: 10.1364/OE.26.022563
– ident: e_1_2_9_3_1
  doi: 10.1038/35051009
– ident: e_1_2_9_150_1
  doi: 10.1364/OPTICA.4.001006
– ident: e_1_2_9_36_1
  doi: 10.1103/PhysRevLett.108.143603
– ident: e_1_2_9_186_1
  doi: 10.1038/s41567-018-0203-z
– ident: e_1_2_9_105_1
  doi: 10.1016/0030-4018(94)90638-6
– ident: e_1_2_9_154_1
  doi: 10.1038/srep02316
– ident: e_1_2_9_14_1
  doi: 10.1038/s41566-018-0097-4
– ident: e_1_2_9_66_1
  doi: 10.1103/PhysRevD.22.356
– ident: e_1_2_9_177_1
  doi: 10.1088/1367-2630/ab006e
– ident: e_1_2_9_95_1
  doi: 10.1103/PhysRevA.81.042326
– ident: e_1_2_9_139_1
  doi: 10.1088/2040-8986/aa912a
– ident: e_1_2_9_22_1
  doi: 10.1088/1367-2630/aa573a
– ident: e_1_2_9_187_1
  doi: 10.1103/PhysRevLett.121.220404
– ident: e_1_2_9_28_1
  doi: 10.1103/PhysRevA.91.042312
– ident: e_1_2_9_72_1
  doi: 10.1103/PhysRevLett.104.060401
– ident: e_1_2_9_115_1
  doi: 10.1103/PhysRevLett.122.020503
– ident: e_1_2_9_91_1
  doi: 10.1103/PhysRevLett.117.100502
– ident: e_1_2_9_170_1
– ident: e_1_2_9_82_1
  doi: 10.1103/PhysRevA.53.R1209
– ident: e_1_2_9_86_1
  doi: 10.1038/s41467-019-12139-z
– ident: e_1_2_9_109_1
  doi: 10.1103/PhysRevLett.96.163905
– ident: e_1_2_9_173_1
– ident: e_1_2_9_75_1
  doi: 10.1142/S0219749915600266
– ident: e_1_2_9_151_1
  doi: 10.22331/q-2018-12-04-111
– ident: e_1_2_9_127_1
  doi: 10.1088/2058-9565/1/1/015004
– ident: e_1_2_9_23_1
  doi: 10.1038/srep07982
– ident: e_1_2_9_2_1
  doi: 10.1038/414883a
– ident: e_1_2_9_12_1
  doi: 10.1038/nature10981
– ident: e_1_2_9_19_1
  doi: 10.1038/nphys1150
– ident: e_1_2_9_92_1
  doi: 10.1038/npjqi.2016.10
– ident: e_1_2_9_87_1
  doi: 10.1137/S0097539797324886
– ident: e_1_2_9_94_1
  doi: 10.1103/PhysRevA.78.022310
– ident: e_1_2_9_122_1
  doi: 10.1103/PhysRevLett.62.2205
– ident: e_1_2_9_103_1
  doi: 10.1016/0030-4018(93)90535-D
– ident: e_1_2_9_93_1
  doi: 10.1103/PhysRevA.65.012318
– ident: e_1_2_9_34_1
  doi: 10.1038/nphys919
– ident: e_1_2_9_185_1
  doi: 10.1103/PhysRevA.90.042301
– ident: e_1_2_9_132_1
  doi: 10.1103/PhysRevA.92.022321
– ident: e_1_2_9_157_1
  doi: 10.1103/PhysRevA.98.062301
– ident: e_1_2_9_79_1
  doi: 10.1103/PhysRevA.65.030301
– ident: e_1_2_9_142_1
  doi: 10.1038/nature22986
– ident: e_1_2_9_51_1
  doi: 10.1103/RevModPhys.77.1225
– ident: e_1_2_9_24_1
  doi: 10.1126/science.1227193
– ident: e_1_2_9_131_1
  doi: 10.1103/PhysRevA.94.030304
– ident: e_1_2_9_149_1
  doi: 10.1364/OE.26.026946
– ident: e_1_2_9_145_1
  doi: 10.1126/science.aan3211
– ident: e_1_2_9_41_1
  doi: 10.1103/PhysRevLett.88.127902
– ident: e_1_2_9_164_1
  doi: 10.1103/PhysRevA.96.022317
– ident: e_1_2_9_146_1
  doi: 10.1103/PhysRevA.93.010301
– ident: e_1_2_9_15_1
  doi: 10.1126/science.1160627
– ident: e_1_2_9_89_1
  doi: 10.1103/PhysRevLett.92.127901
– volume: 7
  start-page: 4302
  year: 2017
  ident: e_1_2_9_163_1
  publication-title: J. Light. Technol.
– ident: e_1_2_9_5_1
  doi: 10.1038/s41567-018-0124-x
– ident: e_1_2_9_64_1
  doi: 10.1103/PhysRevLett.115.250402
– ident: e_1_2_9_43_1
– ident: e_1_2_9_99_1
  doi: 10.1103/PhysRevLett.121.150504
– ident: e_1_2_9_119_1
  doi: 10.1038/nphoton.2016.12
– ident: e_1_2_9_27_1
  doi: 10.1103/PhysRevA.98.042126
– ident: e_1_2_9_155_1
  doi: 10.1038/ncomms1348
– ident: e_1_2_9_21_1
  doi: 10.1103/PhysRevLett.119.180510
– ident: e_1_2_9_126_1
  doi: 10.1126/sciadv.1701491
– ident: e_1_2_9_8_1
  doi: 10.1038/nature23675
– ident: e_1_2_9_10_1
  doi: 10.1126/science.273.5278.1073
– ident: e_1_2_9_38_1
– volume-title: Elements of Information Theory
  year: 2012
  ident: e_1_2_9_31_1
– ident: e_1_2_9_80_1
  doi: 10.1103/PhysRevA.59.3295
– ident: e_1_2_9_129_1
  doi: 10.1126/science.aar7053
– ident: e_1_2_9_175_1
– ident: e_1_2_9_116_1
  doi: 10.1126/sciadv.1500087
– ident: e_1_2_9_135_1
  doi: 10.1364/OL.44.000041
– ident: e_1_2_9_110_1
  doi: 10.1364/AOP.8.000200
– ident: e_1_2_9_55_1
  doi: 10.1080/09500340008244036
– ident: e_1_2_9_104_1
  doi: 10.1364/JOSAB.7.001034
– ident: e_1_2_9_69_1
  doi: 10.1103/PhysRevLett.85.4418
– ident: e_1_2_9_9_1
  doi: 10.1038/s41566-019-0377-7
– ident: e_1_2_9_121_1
  doi: 10.1103/PhysRevLett.59.2044
– ident: e_1_2_9_54_1
  doi: 10.1016/S0375-9601(99)00562-9
– ident: e_1_2_9_113_1
  doi: 10.1038/ncomms1951
– ident: e_1_2_9_184_1
  doi: 10.1002/qute.201900011
– ident: e_1_2_9_130_1
  doi: 10.1103/PhysRevLett.118.080401
– ident: e_1_2_9_100_1
  doi: 10.1103/PhysRevLett.122.120504
– ident: e_1_2_9_168_1
  doi: 10.1364/OL.43.004108
– ident: e_1_2_9_32_1
  doi: 10.1103/PhysRev.47.777
– ident: e_1_2_9_40_1
  doi: 10.1103/PhysRevA.82.030301
– ident: e_1_2_9_101_1
  doi: 10.1103/PhysRevA.45.8185
– ident: e_1_2_9_17_1
  doi: 10.1126/science.1173440
– ident: e_1_2_9_160_1
  doi: 10.1038/s41598-017-19078-z
– ident: e_1_2_9_159_1
  doi: 10.1088/1367-2630/17/2/022002
– ident: e_1_2_9_44_1
  doi: 10.1103/PhysRevApplied.11.064058
– ident: e_1_2_9_42_1
  doi: 10.1103/PhysRevA.61.062308
– ident: e_1_2_9_88_1
  doi: 10.1103/PhysRevA.56.1201
– ident: e_1_2_9_178_1
  doi: 10.1038/nphys2258
– ident: e_1_2_9_25_1
  doi: 10.1038/lsa.2016.157
– ident: e_1_2_9_141_1
  doi: 10.1126/sciadv.aap9646
– ident: e_1_2_9_166_1
  doi: 10.1002/lpor.200810016
– ident: e_1_2_9_161_1
  doi: 10.1109/JLT.2015.2466444
– ident: e_1_2_9_58_1
  doi: 10.1103/PhysRevLett.105.073602
– ident: e_1_2_9_158_1
– ident: e_1_2_9_1_1
  doi: 10.1126/science.270.5234.255
– ident: e_1_2_9_56_1
  doi: 10.1103/PhysRevA.68.032313
– ident: e_1_2_9_61_1
  doi: 10.1103/PhysRevLett.92.047901
– ident: e_1_2_9_11_1
  doi: 10.1038/s41586-018-0152-9
– ident: e_1_2_9_143_1
  doi: 10.1038/lsa.2017.148
– ident: e_1_2_9_108_1
  doi: 10.1364/JOSAB.36.000D70
– ident: e_1_2_9_30_1
  doi: 10.1038/s42254-018-0003-5
– ident: e_1_2_9_102_1
  doi: 10.1364/OL.40.001717
– ident: e_1_2_9_16_1
  doi: 10.1038/nphys1652
– ident: e_1_2_9_45_1
  doi: 10.1038/s41598-017-12309-3
– ident: e_1_2_9_49_1
  doi: 10.1038/299802a0
– ident: e_1_2_9_57_1
  doi: 10.1016/S0375-9601(99)00099-7
– ident: e_1_2_9_81_1
  doi: 10.1103/PhysRevA.59.116
– ident: e_1_2_9_68_1
  doi: 10.1103/PhysRevA.46.4413
– ident: e_1_2_9_118_1
  doi: 10.1038/s41566-018-0257-6
– ident: e_1_2_9_133_1
  doi: 10.1117/1.AP.1.4.046005
– ident: e_1_2_9_77_1
  doi: 10.1038/nphys1996
– ident: e_1_2_9_90_1
  doi: 10.1103/PhysRevLett.89.197901
– ident: e_1_2_9_172_1
  doi: 10.1007/s11801-018-7250-7
– ident: e_1_2_9_182_1
  doi: 10.1126/sciadv.aat9304
– ident: e_1_2_9_18_1
  doi: 10.1038/nphys1777
– ident: e_1_2_9_114_1
  doi: 10.1088/2040-8978/13/6/064001
– ident: e_1_2_9_83_1
– ident: e_1_2_9_46_1
  doi: 10.1103/PhysRevLett.67.661
– ident: e_1_2_9_111_1
  doi: 10.1038/35085529
– ident: e_1_2_9_53_1
  doi: 10.1103/PhysRevA.57.2368
– ident: e_1_2_9_124_1
  doi: 10.1038/ncomms15971
– ident: e_1_2_9_96_1
  doi: 10.1103/PhysRevA.95.052345
– ident: e_1_2_9_183_1
  doi: 10.1038/s41467-017-00706-1
– ident: e_1_2_9_33_1
  doi: 10.1103/PhysicsPhysiqueFizika.1.195
– ident: e_1_2_9_112_1
  doi: 10.1103/PhysRevLett.113.060503
SSID ssj0002313473
Score 2.5997472
SecondaryResourceType review_article
Snippet In recent years, there has been a rising interest in high‐dimensional quantum states and their impact on quantum communication. Indeed, the availability of an...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms high‐dimensional quantum states
quantum communication
qudits
Title High‐Dimensional Quantum Communication: Benefits, Progress, and Future Challenges
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.201900038
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60RfAiPrE-yh4EL12a7G7SrLfaB0VUWtpCbyH7AqHGR5q7P8Hf6C9xd9PG9iCC5JLAJIdJZubL7jffAHBFBWMcS4oM-uWIaswQIyYemeQ48luRCrUjyD6Ggym9mwWztS7-Qh-iXHCzkeHytQ3whGfNH9HQt9zJXPrM7W5tg6rtr7Xq-ZgOy1UWg14IddvMFkoj5lG6Um70cHPzERuVaR2pulLT3wd7S4wI28VLPQBbKj0EO46rKbIjMLbcjK-Pz64V5i9ENeAoNx7Kn-FGv8cNvDWZTD8tsgYcWh6WyWoNmKQS9p2SCOysJqlkx2Da7006A7ScjYAEwSxCiSKCKU7NgbkQMgyU0GHAA64jzsxPDWF-Qn1FaOi1JPWk9hNTqaXBT1pzU6NPQCV9SdUpgIQyLi0fnIWc-jyKSKSVVAbXhdyAP1UDaOWXWCyFw-38inlcSB7j2PoxLv1YA9el_WshmfGrJXZu_sMsHk0nvfLq7D83nYNde17wUC5AZfGeq0uDJha87j6YOqi2uw_3429ShMN1
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgCMEFsYqy-oDEpVYb23FjblBaFShVK1qJWxRvEhKEpc2dT-Ab-RJspwn0gJBQTokmOUwyMy_j5zcAnFDJucCKIot-BaIGc8SJjUeuBI6CZqSZ8QTZPuuO6fV9WLAJ3V6YXB-ibLi5yPD52gW4a0jXv1VDXzOvcxlwv7y1CJYow00Xm5gOyjaLhS-E-nVmh6URb1BaSDc2cH3-EXOl6SdU9bWmsw7WZiARnudvdQMs6HQTLHuyppxsgTtHzvh8_7h0yvy5qgYcZtZF2ROc2_BxBi9sKjMP00kNDhwRy6a1GkxSBTteSgS2ilEqk20w7rRHrS6aDUdAkmAeoUQTybWg9sBCSsVCLQ0LRShMJLj9qyE8SGigCWWNpqINZYLElmplAZQxwhbpHVBJn1O9CyChXChHCOdM0EBEEYmMVtoCOyYs-tNVgAq_xHKmHO4GWDzGueYxjp0f49KPVXBa2r_kmhm_WmLv5j_M4uF41C7P9v5z0zFY6Y5ue3Hvqn-zD1bd9ZyUcgAq07dMH1poMRVH_uP5AsoAxU0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60ongRn1ifexC8dGmyu0mz3rRtqA9Kiy30FrIvEDRW29z9Cf5Gf4m7mza2BxEkp4RJDpPMzJedb78B4IIKxjiWFBn0yxHVmCFGTDwyyXHkNyIVakeQ7YadIb0bBaOFXfyFPkS54GYjw-VrG-Bjqes_oqFvuZO59Jnrbq2CNdfxs9rOtFeushj0QqhrM1sojZhH6Vy50cP15UcsVaZFpOpKTbwNtmYYEV4XL3UHrKhsF6w7rqaY7IFHy834-vhsWWH-QlQD9nPjofwFLu33uII3JpPpp-mkBnuWh2WyWg2mmYSxUxKBzfkklck-GMbtQbODZrMRkCCYRShVRDDFqTkwF0KGgRI6DHjAdcSZ-akhzE-prwgNvYakntR-aiq1NPhJa25q9AGoZK-ZOgSQUMal5YOzkFOfRxGJtJLK4LqQG_CnqgDN_ZKImXC4nV_xnBSSxzixfkxKP1bBZWk_LiQzfrXEzs1_mCX94aBdnh3956ZzsNFrxcnDbff-GGzaywUl5QRUpu-5OjXAYsrP3LfzDdIRxH8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Dimensional+Quantum+Communication%3A+Benefits%2C+Progress%2C+and+Future+Challenges&rft.jtitle=Advanced+quantum+technologies+%28Online%29&rft.au=Cozzolino%2C+Daniele&rft.au=Da+Lio%2C+Beatrice&rft.au=Bacco%2C+Davide&rft.au=Oxenl%C3%B8we%2C+Leif+Katsuo&rft.date=2019-12-01&rft.issn=2511-9044&rft.eissn=2511-9044&rft.volume=2&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fqute.201900038&rft.externalDBID=10.1002%252Fqute.201900038&rft.externalDocID=QUTE201900038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-9044&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-9044&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-9044&client=summon