High‐Dimensional Quantum Communication: Benefits, Progress, and Future Challenges
In recent years, there has been a rising interest in high‐dimensional quantum states and their impact on quantum communication. Indeed, the availability of an enlarged Hilbert space offers multiple advantages, from larger information capacity and increased noise resilience, to novel fundamental rese...
Saved in:
Published in | Advanced quantum technologies (Online) Vol. 2; no. 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, there has been a rising interest in high‐dimensional quantum states and their impact on quantum communication. Indeed, the availability of an enlarged Hilbert space offers multiple advantages, from larger information capacity and increased noise resilience, to novel fundamental research possibilities in quantum physics. Multiple photonic degrees of freedom have been explored to generate high‐dimensional quantum states, both with bulk optics and integrated photonics. Furthermore, these quantum states have been propagated through various channels, for example, free‐space links, single‐mode, multicore, and multimode fibers, and also aquatic channels, experimentally demonstrating the theoretical advantages over 2D systems. Here, the state‐of‐the‐art on the generation, propagation, and detection of high‐dimensional quantum states is reviewed. Quantum communication with states living in d‐dimensional Hilbert spaces, qudits, yields great benefits. However, qudits generation, transmission, and detection is not a simple task to accomplish. This review presents the state‐of‐the‐art on the generation, propagation, and measurement of high‐dimensional quantum states, highlighting their advantages, issues, and future perspectives.
Quantum communication with states living in d‐dimensional Hilbert spaces, qudits, yields great benefits. However, qudits generation, transmission, and detection is not a simple task to accomplish. This review presents the state‐of‐the‐art on the generation, propagation, and measurement of high‐dimensional quantum states, highlighting their advantages, issues, and future perspectives. |
---|---|
AbstractList | In recent years, there has been a rising interest in high‐dimensional quantum states and their impact on quantum communication. Indeed, the availability of an enlarged Hilbert space offers multiple advantages, from larger information capacity and increased noise resilience, to novel fundamental research possibilities in quantum physics. Multiple photonic degrees of freedom have been explored to generate high‐dimensional quantum states, both with bulk optics and integrated photonics. Furthermore, these quantum states have been propagated through various channels, for example, free‐space links, single‐mode, multicore, and multimode fibers, and also aquatic channels, experimentally demonstrating the theoretical advantages over 2D systems. Here, the state‐of‐the‐art on the generation, propagation, and detection of high‐dimensional quantum states is reviewed. Quantum communication with states living in
d
‐dimensional Hilbert spaces, qudits, yields great benefits. However, qudits generation, transmission, and detection is not a simple task to accomplish. This review presents the state‐of‐the‐art on the generation, propagation, and measurement of high‐dimensional quantum states, highlighting their advantages, issues, and future perspectives. In recent years, there has been a rising interest in high‐dimensional quantum states and their impact on quantum communication. Indeed, the availability of an enlarged Hilbert space offers multiple advantages, from larger information capacity and increased noise resilience, to novel fundamental research possibilities in quantum physics. Multiple photonic degrees of freedom have been explored to generate high‐dimensional quantum states, both with bulk optics and integrated photonics. Furthermore, these quantum states have been propagated through various channels, for example, free‐space links, single‐mode, multicore, and multimode fibers, and also aquatic channels, experimentally demonstrating the theoretical advantages over 2D systems. Here, the state‐of‐the‐art on the generation, propagation, and detection of high‐dimensional quantum states is reviewed. Quantum communication with states living in d‐dimensional Hilbert spaces, qudits, yields great benefits. However, qudits generation, transmission, and detection is not a simple task to accomplish. This review presents the state‐of‐the‐art on the generation, propagation, and measurement of high‐dimensional quantum states, highlighting their advantages, issues, and future perspectives. Quantum communication with states living in d‐dimensional Hilbert spaces, qudits, yields great benefits. However, qudits generation, transmission, and detection is not a simple task to accomplish. This review presents the state‐of‐the‐art on the generation, propagation, and measurement of high‐dimensional quantum states, highlighting their advantages, issues, and future perspectives. |
Author | Oxenløwe, Leif Katsuo Cozzolino, Daniele Bacco, Davide Da Lio, Beatrice |
Author_xml | – sequence: 1 givenname: Daniele orcidid: 0000-0002-0326-4015 surname: Cozzolino fullname: Cozzolino, Daniele organization: Technical University of Denmark – sequence: 2 givenname: Beatrice surname: Da Lio fullname: Da Lio, Beatrice organization: Technical University of Denmark – sequence: 3 givenname: Davide orcidid: 0000-0002-7757-4331 surname: Bacco fullname: Bacco, Davide email: dabac@fotonik.dtu.dk organization: Technical University of Denmark – sequence: 4 givenname: Leif Katsuo surname: Oxenløwe fullname: Oxenløwe, Leif Katsuo organization: Technical University of Denmark |
BookMark | eNqFkM1Kw0AUhQdRsNZuXecBTJ3fNHGnsbVCQYvtOkwmd9qRZKIzCdKdj-Az-iSmVlQEkbu4h8v5LodzhPZtbQGhE4KHBGN69tQ2MKSYJBhjFu-hHhWEhAnmfP-HPkQD7x86C2WE8RHrofupWa3fXl6vTAXWm9rKMpi30jZtFaR1VbXWKNl09_PgEixo0_jT4M7VKwe-U9IWwaRtWgdBupZlCXYF_hgdaFl6GHzuPlpOxot0Gs5ur2_Si1moGE3iUAJTCeS8G5orVUQClI5ELnId50lEBUuI5AQYj_Co4LjQRApKCka51nksWB_x3V_lau8d6EyZ5iNs46QpM4KzbTfZtpvsq5sOG_7CHp2ppNv8DSQ74NmUsPnHnc2Xi_E3-w7gnHvY |
CitedBy_id | crossref_primary_10_1103_PhysRevA_103_062220 crossref_primary_10_1088_2058_9565_ac120a crossref_primary_10_1103_PhysRevResearch_3_023031 crossref_primary_10_3389_fphy_2020_589504 crossref_primary_10_1088_1572_9494_ad77ad crossref_primary_10_1049_qtc2_12113 crossref_primary_10_1063_5_0136233 crossref_primary_10_1088_1612_202X_ac5040 crossref_primary_10_1088_2040_8986_ada0c5 crossref_primary_10_1021_acsnano_2c11716 crossref_primary_10_1103_PhysRevLett_133_050204 crossref_primary_10_1088_1402_4896_ad76e9 crossref_primary_10_1103_PhysRevLett_133_253601 crossref_primary_10_1126_sciadv_ado3472 crossref_primary_10_1364_OPTICAQ_538134 crossref_primary_10_3389_fphy_2021_771260 crossref_primary_10_1038_s41534_025_01007_y crossref_primary_10_1088_1367_2630_abc783 crossref_primary_10_1088_1367_2630_ad49c3 crossref_primary_10_1109_COMST_2021_3109944 crossref_primary_10_1007_s12200_024_00133_3 crossref_primary_10_1116_5_0192456 crossref_primary_10_1093_bib_bbae074 crossref_primary_10_1038_s41598_024_51212_6 crossref_primary_10_1116_5_0007577 crossref_primary_10_1103_PhysRevResearch_6_033004 crossref_primary_10_54097_hset_v38i_5987 crossref_primary_10_1364_OE_528667 crossref_primary_10_1002_andp_202200535 crossref_primary_10_1103_PhysRevA_104_L060401 crossref_primary_10_1088_1367_2630_abb688 crossref_primary_10_1103_PhysRevLett_124_160401 crossref_primary_10_1364_OL_524201 crossref_primary_10_1116_5_0101179 crossref_primary_10_22331_q_2023_01_19_902 crossref_primary_10_1002_qute_202000156 crossref_primary_10_1103_PhysRevA_102_022623 crossref_primary_10_1088_1555_6611_ab85c9 crossref_primary_10_1038_s42005_021_00524_4 crossref_primary_10_1038_s42005_023_01262_5 crossref_primary_10_3390_opt5030024 crossref_primary_10_1038_s41534_021_00398_y crossref_primary_10_1109_TQE_2023_3243849 crossref_primary_10_1088_1367_2630_ad6635 crossref_primary_10_1140_epjp_s13360_022_02460_w crossref_primary_10_1364_PRJ_469340 crossref_primary_10_1088_2515_7647_aced73 crossref_primary_10_1103_PhysRevLett_125_090503 crossref_primary_10_1007_s11128_023_03886_6 crossref_primary_10_1142_S0219749920500318 crossref_primary_10_1103_PhysRevApplied_17_034017 crossref_primary_10_1515_nanoph_2021_0510 crossref_primary_10_1088_2040_8986_ac8888 crossref_primary_10_1016_j_yofte_2022_102828 crossref_primary_10_1364_OE_477509 crossref_primary_10_22331_q_2021_07_15_504 crossref_primary_10_1002_qute_202300012 crossref_primary_10_1007_s11128_021_03276_w crossref_primary_10_1038_s41534_021_00515_x crossref_primary_10_1109_JSTQE_2019_2960937 crossref_primary_10_1088_1402_4896_ab73d5 crossref_primary_10_1103_PhysRevA_109_L030201 crossref_primary_10_1002_spy2_453 crossref_primary_10_1103_PhysRevX_12_041023 crossref_primary_10_1109_JLT_2024_3450119 crossref_primary_10_1038_s41598_023_29211_w crossref_primary_10_1103_PhysRevApplied_14_014051 crossref_primary_10_1109_LCOMM_2024_3361852 crossref_primary_10_1002_qute_202400196 crossref_primary_10_1109_OJVT_2022_3202876 crossref_primary_10_1515_nanoph_2022_0466 crossref_primary_10_1103_PhysRevA_109_022425 crossref_primary_10_1364_OL_410215 crossref_primary_10_1103_PhysRevA_110_062208 crossref_primary_10_1364_OE_419568 crossref_primary_10_1002_qute_202300037 crossref_primary_10_1088_1402_4896_ad848e crossref_primary_10_1007_s10773_022_05161_3 crossref_primary_10_1103_PRXQuantum_5_010101 crossref_primary_10_1038_s42005_025_01954_0 crossref_primary_10_1038_s41598_022_16225_z crossref_primary_10_1103_PhysRevA_111_012623 crossref_primary_10_1088_1612_202X_acb043 crossref_primary_10_1103_PhysRevA_111_013704 crossref_primary_10_1109_MCOM_001_2300069 crossref_primary_10_1007_s42484_024_00146_3 crossref_primary_10_1103_PRXQuantum_4_020306 crossref_primary_10_1103_PhysRevApplied_18_054006 crossref_primary_10_1002_andp_202400231 crossref_primary_10_1142_S0217732323501419 crossref_primary_10_1002_lpor_202400720 crossref_primary_10_1002_andp_202400360 crossref_primary_10_1109_OJCOMS_2024_3380508 crossref_primary_10_1103_PhysRevResearch_2_043350 crossref_primary_10_1007_s42484_023_00125_0 crossref_primary_10_1109_TQE_2020_3018133 crossref_primary_10_1109_COMST_2023_3254481 crossref_primary_10_1088_2058_9565_ac3c19 crossref_primary_10_1103_PhysRevA_110_012452 crossref_primary_10_1007_s11467_020_1028_7 crossref_primary_10_1364_OE_426556 crossref_primary_10_1007_s11128_024_04395_w crossref_primary_10_3390_e25010016 crossref_primary_10_3390_nano14090783 crossref_primary_10_1103_PhysRevA_106_022421 crossref_primary_10_1142_S021974992340004X crossref_primary_10_1007_s11277_021_09171_y crossref_primary_10_1103_PhysRevApplied_22_034003 crossref_primary_10_1038_s41377_023_01336_7 crossref_primary_10_1038_s41377_021_00537_2 crossref_primary_10_1007_s10773_024_05832_3 crossref_primary_10_1007_s11128_022_03744_x crossref_primary_10_1007_s11432_022_3602_0 crossref_primary_10_1103_PhysRevX_13_021001 crossref_primary_10_1016_j_matpr_2023_07_067 crossref_primary_10_1109_ACCESS_2020_3045445 crossref_primary_10_1364_OE_451083 crossref_primary_10_1088_1367_2630_ab8ab1 crossref_primary_10_1126_sciadv_abn9783 crossref_primary_10_1002_qute_202400141 crossref_primary_10_1088_1674_1056_ad73ae crossref_primary_10_1103_PhysRevResearch_6_033136 crossref_primary_10_1002_qute_202400149 crossref_primary_10_1103_PhysRevA_101_032312 crossref_primary_10_1103_PhysRevResearch_6_013202 crossref_primary_10_22331_q_2021_04_28_447 crossref_primary_10_1063_5_0138224 crossref_primary_10_1119_5_0062128 crossref_primary_10_1103_PhysRevResearch_7_013060 crossref_primary_10_1103_PhysRevResearch_5_013142 crossref_primary_10_3390_s24154817 crossref_primary_10_1103_PhysRevResearch_6_033151 crossref_primary_10_1080_01468030_2020_1814907 crossref_primary_10_1103_PhysRevApplied_19_054092 crossref_primary_10_1364_OPTICA_523955 crossref_primary_10_1002_lpor_202100586 crossref_primary_10_1002_adom_202301456 crossref_primary_10_22331_q_2022_05_09_708 crossref_primary_10_1364_OE_470364 crossref_primary_10_1088_1367_2630_ad1d0e crossref_primary_10_4204_EPTCS_384_13 crossref_primary_10_1049_qtc2_12074 crossref_primary_10_3390_e25101459 crossref_primary_10_1103_PhysRevA_101_063830 crossref_primary_10_1186_s43593_024_00066_6 crossref_primary_10_1103_PhysRevX_15_011024 crossref_primary_10_1103_PhysRevA_109_022612 crossref_primary_10_1109_TQE_2024_3391654 crossref_primary_10_1103_PhysRevApplied_22_054067 crossref_primary_10_1364_OE_532747 crossref_primary_10_1088_1402_4896_ad67b2 crossref_primary_10_1364_OPTICA_454597 crossref_primary_10_1007_s10773_024_05843_0 crossref_primary_10_1038_s41467_022_31639_z crossref_primary_10_1007_s11433_023_2361_6 crossref_primary_10_1002_lpor_202400648 crossref_primary_10_1103_PhysRevLett_127_040502 crossref_primary_10_1364_OE_532512 crossref_primary_10_1088_2058_9565_ad37d4 crossref_primary_10_1364_OPTICA_427645 crossref_primary_10_1364_OE_533728 crossref_primary_10_1002_qute_202300083 crossref_primary_10_1109_ACCESS_2023_3269848 crossref_primary_10_1364_JOSAB_466304 crossref_primary_10_1364_OL_476425 crossref_primary_10_1088_1572_9494_ad48fb crossref_primary_10_1088_1751_8121_ac07ea crossref_primary_10_1038_s41467_023_43949_x crossref_primary_10_1103_PhysRevApplied_15_044017 crossref_primary_10_1103_PhysRevA_105_062402 crossref_primary_10_1007_s40766_023_00040_x crossref_primary_10_1088_1367_2630_ac0c53 crossref_primary_10_1103_PhysRevApplied_19_054060 crossref_primary_10_1088_2040_8986_ac7a48 crossref_primary_10_1364_OL_481018 crossref_primary_10_1038_s41534_025_00965_7 crossref_primary_10_1126_sciadv_adq6298 crossref_primary_10_1088_2040_8986_acea92 crossref_primary_10_1103_PhysRevA_111_032608 crossref_primary_10_1103_PhysRevResearch_5_043071 crossref_primary_10_1142_S0219749919500588 crossref_primary_10_1364_AOP_497143 crossref_primary_10_3390_e25040627 crossref_primary_10_1007_s11128_023_04018_w crossref_primary_10_1088_2058_9565_ad7315 crossref_primary_10_1038_s41467_021_25447_0 crossref_primary_10_55859_ijiss_1294840 crossref_primary_10_1021_acsphotonics_4c01516 crossref_primary_10_1103_PhysRevA_109_033712 crossref_primary_10_1103_PhysRevA_103_023708 crossref_primary_10_1088_2040_8986_acb36c crossref_primary_10_1088_1367_2630_abdbe1 crossref_primary_10_1140_epjp_s13360_023_04259_9 crossref_primary_10_1007_s12596_023_01506_1 crossref_primary_10_1103_PhysRevApplied_22_054054 crossref_primary_10_1103_PhysRevLett_133_233602 crossref_primary_10_1103_PhysRevA_105_023113 crossref_primary_10_1142_S0217732322502297 crossref_primary_10_1103_PhysRevA_107_L050402 crossref_primary_10_1103_PhysRevResearch_3_043001 crossref_primary_10_1134_S1062873824708535 crossref_primary_10_1002_widm_1568 crossref_primary_10_1063_5_0185281 crossref_primary_10_1088_2058_9565_abe5ee crossref_primary_10_1103_PhysRevA_108_012607 crossref_primary_10_22331_q_2021_06_10_472 crossref_primary_10_1002_qute_202200024 crossref_primary_10_1103_PhysRevA_104_052618 crossref_primary_10_1088_2058_9565_acdd91 crossref_primary_10_1364_OE_472034 crossref_primary_10_3390_quantum2010014 crossref_primary_10_1364_OE_476638 crossref_primary_10_1364_OE_436079 crossref_primary_10_1109_JPHOT_2024_3383780 crossref_primary_10_1103_PhysRevLett_126_200404 crossref_primary_10_1364_OPTICAQ_525957 crossref_primary_10_1103_PhysRevApplied_22_024059 crossref_primary_10_1364_PRJ_409645 crossref_primary_10_1103_PhysRevA_101_012339 crossref_primary_10_1002_lpor_202300277 crossref_primary_10_1109_TIT_2022_3141874 crossref_primary_10_1002_lpor_202200388 crossref_primary_10_1116_5_0016007 crossref_primary_10_1515_nanoph_2021_0500 crossref_primary_10_1364_OE_506098 crossref_primary_10_7498_aps_69_20200162 crossref_primary_10_1117_1_AP_7_2_026006 crossref_primary_10_4204_EPTCS_394_4 crossref_primary_10_1007_s12043_020_01989_8 crossref_primary_10_1080_23270012_2022_2089064 crossref_primary_10_1038_s41467_024_55345_0 crossref_primary_10_1088_1402_4896_ad69d9 crossref_primary_10_1140_epjp_s13360_023_04399_y crossref_primary_10_1038_s41467_024_51083_5 crossref_primary_10_1039_D3NR05811E crossref_primary_10_1103_PhysRevLett_129_100501 crossref_primary_10_1364_OPTICAQ_532334 crossref_primary_10_1103_PhysRevApplied_23_034038 crossref_primary_10_1088_2040_8986_ac3676 crossref_primary_10_1002_qute_202300224 crossref_primary_10_1103_PhysRevLett_128_240402 crossref_primary_10_1038_s41467_024_51434_2 crossref_primary_10_1103_PhysRevLett_127_110505 crossref_primary_10_1103_PhysRevLett_133_240203 crossref_primary_10_1007_s11128_021_03169_y crossref_primary_10_1364_OE_510497 crossref_primary_10_1007_s11227_025_07082_4 crossref_primary_10_1103_PhysRevA_104_012419 crossref_primary_10_1007_s11128_023_04030_0 crossref_primary_10_1038_s41598_022_19503_y crossref_primary_10_1002_andp_202400305 crossref_primary_10_1103_PhysRevA_103_042417 crossref_primary_10_1117_1_AP_5_4_046008 crossref_primary_10_1103_PhysRevA_105_022628 crossref_primary_10_1364_PRJ_425890 |
Cites_doi | 10.1016/j.physleta.2015.03.023 10.1103/PhysRevLett.49.901 10.1126/sciadv.1601915 10.1103/PhysRevA.93.032336 10.1038/nature11472 10.1103/PhysRevLett.108.130503 10.1126/science.aan3211 10.1103/PhysRevA.99.033805 10.1103/PhysRevA.96.012306 10.1103/PhysRevA.64.024101 10.1103/PhysRevLett.93.010503 10.1103/PhysRevLett.119.010402 10.1126/science.1252319 10.1103/PhysRevLett.123.070505 10.1103/PhysRevA.66.062308 10.1103/PhysRevA.82.012304 10.1103/PhysRevA.70.052305 10.1364/OE.27.018363 10.1038/ncomms15043 10.1103/PhysRevA.95.020302 10.1103/PhysRevA.55.2564 10.1103/PhysRevA.54.1844 10.1038/nature14246 10.1088/1367-2630/18/1/013021 10.1109/MC.2016.293 10.1103/PhysRevLett.92.047902 10.1103/RevModPhys.81.1301 10.1103/PhysRevLett.85.445 10.1038/s41534-017-0026-2 10.1038/nature15759 10.1103/PhysRevLett.118.110501 10.1364/OE.26.028918 10.1088/1367-2630/8/5/075 10.1103/PhysRevA.92.062324 10.1103/PhysRevA.88.032309 10.1126/sciadv.1501165 10.1126/science.1226528 10.1103/PhysRevLett.88.040404 10.1103/PhysRevLett.121.233602 10.1364/OPTICA.4.001462 10.1364/OE.26.001825 10.1126/sciadv.aat9304 10.1364/OE.25.019795 10.1088/2058-9565/aaefd4 10.1103/PhysRevLett.79.2153 10.1038/37539 10.2200/S00409ED1V01Y201203COM006 10.1103/PhysRevA.79.064305 10.1016/S0065-2458(08)60342-3 10.1038/nature09801 10.1038/ncomms8706 10.1364/OE.26.022563 10.1038/35051009 10.1364/OPTICA.4.001006 10.1103/PhysRevLett.108.143603 10.1038/s41567-018-0203-z 10.1016/0030-4018(94)90638-6 10.1038/srep02316 10.1038/s41566-018-0097-4 10.1103/PhysRevD.22.356 10.1088/1367-2630/ab006e 10.1103/PhysRevA.81.042326 10.1088/2040-8986/aa912a 10.1088/1367-2630/aa573a 10.1103/PhysRevLett.121.220404 10.1103/PhysRevA.91.042312 10.1103/PhysRevLett.104.060401 10.1103/PhysRevLett.122.020503 10.1103/PhysRevLett.117.100502 10.1103/PhysRevA.53.R1209 10.1038/s41467-019-12139-z 10.1103/PhysRevLett.96.163905 10.1142/S0219749915600266 10.22331/q-2018-12-04-111 10.1088/2058-9565/1/1/015004 10.1038/srep07982 10.1038/414883a 10.1038/nature10981 10.1038/nphys1150 10.1038/npjqi.2016.10 10.1137/S0097539797324886 10.1103/PhysRevA.78.022310 10.1103/PhysRevLett.62.2205 10.1016/0030-4018(93)90535-D 10.1103/PhysRevA.65.012318 10.1038/nphys919 10.1103/PhysRevA.90.042301 10.1103/PhysRevA.92.022321 10.1103/PhysRevA.98.062301 10.1103/PhysRevA.65.030301 10.1038/nature22986 10.1103/RevModPhys.77.1225 10.1126/science.1227193 10.1103/PhysRevA.94.030304 10.1364/OE.26.026946 10.1103/PhysRevLett.88.127902 10.1103/PhysRevA.96.022317 10.1103/PhysRevA.93.010301 10.1126/science.1160627 10.1103/PhysRevLett.92.127901 10.1038/s41567-018-0124-x 10.1103/PhysRevLett.115.250402 10.1103/PhysRevLett.121.150504 10.1038/nphoton.2016.12 10.1103/PhysRevA.98.042126 10.1038/ncomms1348 10.1103/PhysRevLett.119.180510 10.1126/sciadv.1701491 10.1038/nature23675 10.1126/science.273.5278.1073 10.1103/PhysRevA.59.3295 10.1126/science.aar7053 10.1126/sciadv.1500087 10.1364/OL.44.000041 10.1364/AOP.8.000200 10.1080/09500340008244036 10.1364/JOSAB.7.001034 10.1103/PhysRevLett.85.4418 10.1038/s41566-019-0377-7 10.1103/PhysRevLett.59.2044 10.1016/S0375-9601(99)00562-9 10.1038/ncomms1951 10.1002/qute.201900011 10.1103/PhysRevLett.118.080401 10.1103/PhysRevLett.122.120504 10.1364/OL.43.004108 10.1103/PhysRev.47.777 10.1103/PhysRevA.82.030301 10.1103/PhysRevA.45.8185 10.1126/science.1173440 10.1038/s41598-017-19078-z 10.1088/1367-2630/17/2/022002 10.1103/PhysRevApplied.11.064058 10.1103/PhysRevA.61.062308 10.1103/PhysRevA.56.1201 10.1038/nphys2258 10.1038/lsa.2016.157 10.1126/sciadv.aap9646 10.1002/lpor.200810016 10.1109/JLT.2015.2466444 10.1103/PhysRevLett.105.073602 10.1126/science.270.5234.255 10.1103/PhysRevA.68.032313 10.1103/PhysRevLett.92.047901 10.1038/s41586-018-0152-9 10.1038/lsa.2017.148 10.1364/JOSAB.36.000D70 10.1038/s42254-018-0003-5 10.1364/OL.40.001717 10.1038/nphys1652 10.1038/s41598-017-12309-3 10.1038/299802a0 10.1016/S0375-9601(99)00099-7 10.1103/PhysRevA.59.116 10.1103/PhysRevA.46.4413 10.1038/s41566-018-0257-6 10.1117/1.AP.1.4.046005 10.1038/nphys1996 10.1103/PhysRevLett.89.197901 10.1007/s11801-018-7250-7 10.1038/nphys1777 10.1088/2040-8978/13/6/064001 10.1103/PhysRevLett.67.661 10.1038/35085529 10.1103/PhysRevA.57.2368 10.1038/ncomms15971 10.1103/PhysRevA.95.052345 10.1038/s41467-017-00706-1 10.1103/PhysicsPhysiqueFizika.1.195 10.1103/PhysRevLett.113.060503 |
ContentType | Journal Article |
Copyright | 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 24P AAYXX CITATION |
DOI | 10.1002/qute.201900038 |
DatabaseName | Wiley Online Library Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2511-9044 |
EndPage | n/a |
ExternalDocumentID | 10_1002_qute_201900038 QUTE201900038 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: European Union's Seventh Framework Programme funderid: FP7/2007–2013 – fundername: People Programme – fundername: Silicon Photonics for Optical Communications – fundername: Centre of Excellence – fundername: REA funderid: 609405 |
GroupedDBID | 0R~ 1OC 24P 33P 34L AAHHS AAHQN AAMNL AANLZ AAYCA AAZKR ABCUV ACCFJ ACCZN ACGFS ACPOU ACXQS ADBBV ADKYN ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFFPM AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB ARCSS BFHJK DCZOG EBS EJD HGLYW LATKE LEEKS LUTES LYRES MEWTI O9- P2W ROL SUPJJ WXSBR ZZTAW AAYXX ABJNI ADMLS AEYWJ AGHNM AGYGG CITATION |
ID | FETCH-LOGICAL-c3298-ae3c9eb4b4b2bccd65ecf65b5bf8b9625391a41e34607d40df1a521d324ffb853 |
IEDL.DBID | 24P |
ISSN | 2511-9044 |
IngestDate | Tue Jul 01 02:03:48 EDT 2025 Thu Apr 24 23:05:23 EDT 2025 Wed Jan 22 16:36:47 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3298-ae3c9eb4b4b2bccd65ecf65b5bf8b9625391a41e34607d40df1a521d324ffb853 |
ORCID | 0000-0002-0326-4015 0000-0002-7757-4331 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.201900038 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1002_qute_201900038 crossref_primary_10_1002_qute_201900038 wiley_primary_10_1002_qute_201900038_QUTE201900038 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2019 2019-12-00 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
PublicationDecade | 2010 |
PublicationTitle | Advanced quantum technologies (Online) |
PublicationYear | 2019 |
References | 2012; 484 2013; 3 2009; 81 2019; 11 2010; 105 2019; 99 2019; 10 2019; 13 2010; 104 2000; 85 2011; 470 2012; 489 2018; 43 2016; 34 2018; 7 2018; 8 2018; 2 2018; 4 1997; 55 2015; 379 2018; 1 2019; 21 2002; 89 1999; 59 2002; 88 1997; 56 2019; 27 1984 1992; 46 2015; 91 1997; 390 2016; 49 1992; 45 2005; 77 2014; 12 2001; 412 2010; 6 2001; 414 1989; 62 2011; 2 2013; 88 2019; 2 2019; 1 2019; 36 2016; 10 1997 2016; 94 2015; 526 2016; 93 2016; 18 1995; 270 2012; 108 2011; 7 2018; 26 1987; 59 2017; 549 2016; 5 2009; 79 1982; 49 2016; 1 2016; 2 1991; 67 2015; 115 2019; 44 2002; 65 2002; 66 2015; 518 2018; 12 1935; 47 2018; 98 1990; 7 2016; 8 2001; 30 2018; 14 2017; 546 2017; 119 1964; 1 2017; 7 2017; 8 2018; 121 2017; 3 2018; 360 2017; 4 2000; 47 2008; 78 2011; 13 2008; 4 2008; 2 2017; 356 2019; 122 2019; 123 2017; 118 2004; 70 2015; 40 2000; 61 1982; 299 1999; 253 2016; 117 2012; 338 2009; 325 1998; 57 1994; 112 2015; 1 2015; 6 2006; 96 2015; 17 2015; 5 2014; 90 2012 2015; 92 2017; 25 1980; 22 2006; 8 1999; 261 2001; 409 2008; 321 2010; 81 1996; 54 1996; 53 2001; 64 2010; 82 2001; 65 2014; 113 2017; 95 2017; 96 2012; 3 2004; 92 2004; 93 2018; 557 1997; 79 1993; 96 2003; 68 2019 2018 2017; 19 2009; 5 1996; 273 2014; 345 2012; 8 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_187_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_157_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_153_1 e_1_2_9_172_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_186_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_166_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_185_1 e_1_2_9_181_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_136_1 e_1_2_9_178_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_174_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 Cover T. M. (e_1_2_9_31_1) 2012 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_184_1 e_1_2_9_161_1 e_1_2_9_180_1 e_1_2_9_63_1 e_1_2_9_40_1 Jung L. H. (e_1_2_9_163_1) 2017; 7 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_173_1 e_1_2_9_48_1 e_1_2_9_29_1 e_1_2_9_150_1 |
References_xml | – volume: 121 year: 2018 publication-title: Phys. Rev. Lett. – volume: 13 year: 2011 publication-title: J. Opt. – volume: 1 start-page: 195 year: 1964 publication-title: Physics Physique Fizika – volume: 113 year: 2014 publication-title: Phys. Rev. Lett. – volume: 46 start-page: 4413 year: 1992 publication-title: Phys. Rev. A – volume: 47 start-page: 187 year: 2000 publication-title: J. Mod. Opt. – volume: 77 start-page: 1225 year: 2005 publication-title: Rev. Mod. Phys. – volume: 7 start-page: 4302 year: 2017 publication-title: J. Light. Technol. – volume: 26 year: 2018 publication-title: Opt. Express – volume: 470 start-page: 486 year: 2011 publication-title: Nature – volume: 93 year: 2004 publication-title: Phys. Rev. Lett. – volume: 345 start-page: 420 year: 2014 publication-title: Science – volume: 2 year: 2019 publication-title: Adv. Quantum Technol. – volume: 3 start-page: 2316 year: 2013 publication-title: Sci. Rep. – volume: 57 start-page: 2368 year: 1998 publication-title: Phys. Rev. A – volume: 10 start-page: 4152 year: 2019 publication-title: Nat. Commun. – volume: 526 start-page: 682 year: 2015 publication-title: Nature – volume: 92 year: 2015 publication-title: Phys. Rev. A – volume: 4 year: 2018 publication-title: Quantum Sci. Technol. – volume: 108 year: 2012 publication-title: Phys. Rev. Lett. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 18 year: 2016 publication-title: New J. Phys. – volume: 261 start-page: 17 year: 1999 publication-title: Phys. Lett. A – volume: 484 start-page: 489 year: 2012 publication-title: Nature – volume: 409 start-page: 46 year: 2001 publication-title: Nature – volume: 5 year: 2016 publication-title: Light: Sci. Appl. – volume: 7 year: 2018 publication-title: Light: Sci. Appl. – volume: 122 year: 2019 publication-title: Phys. Rev. Lett. – volume: 49 start-page: 901 year: 1982 publication-title: Phys. Rev. Lett. – volume: 90 year: 2014 publication-title: Phys. Rev. A – volume: 338 start-page: 640 year: 2012 publication-title: Science – volume: 4 start-page: 282 year: 2008 publication-title: Nat. Phys. – volume: 26 start-page: 1825 year: 2018 publication-title: Opt. Express – year: 2019 – volume: 54 start-page: 1844 year: 1996 publication-title: Phys. Rev. A – volume: 89 year: 2002 publication-title: Phys. Rev. Lett. – volume: 49 start-page: 21 year: 2016 publication-title: Computer – volume: 6 start-page: 850 year: 2010 publication-title: Nat. Phys. – volume: 70 year: 2004 publication-title: Phys. Rev. A – volume: 549 start-page: 70 year: 2017 publication-title: Nature – volume: 59 start-page: 116 year: 1999 publication-title: Phys. Rev. A – volume: 412 start-page: 313 year: 2001 publication-title: Nature – volume: 6 start-page: 462 year: 2010 publication-title: Nat. Phys. – volume: 99 year: 2019 publication-title: Phys. Rev. A – volume: 19 year: 2017 publication-title: J. Opt. – volume: 1 year: 2016 publication-title: Quantum Sci. Technol. – volume: 44 start-page: 41 year: 2019 publication-title: Opt. Lett. – volume: 123 year: 2019 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 817 year: 2018 publication-title: Sci. Rep. – volume: 22 start-page: 356 year: 1980 publication-title: Phys. Rev. D – volume: 518 start-page: 516 year: 2015 publication-title: Nature – volume: 68 year: 2003 publication-title: Phys. Rev. A – volume: 65 year: 2002 publication-title: Phys. Rev. A – volume: 12 start-page: 759 year: 2018 publication-title: Nat. Photonics – volume: 8 start-page: 75 year: 2006 publication-title: New J. Phys. – volume: 88 year: 2002 publication-title: Phys. Rev. Lett. – year: 1984 – volume: 5 start-page: 134 year: 2009 publication-title: Nat. Phys. – volume: 66 year: 2002 publication-title: Phys. Rev. A – volume: 379 start-page: 1409 year: 2015 publication-title: Phys. Lett. A – volume: 96 start-page: 123 year: 1993 publication-title: Opt. Commun. – volume: 79 start-page: 2153 year: 1997 publication-title: Phys. Rev. Lett. – volume: 1 year: 2019 publication-title: Adv. Photon. – volume: 67 start-page: 661 year: 1991 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 677 year: 2011 publication-title: Nat. Phys. – volume: 85 start-page: 4418 year: 2000 publication-title: Phys. Rev. Lett. – volume: 47 start-page: 777 year: 1935 publication-title: Phys. Rev. – volume: 270 start-page: 255 year: 1995 publication-title: Science – volume: 82 year: 2010 publication-title: Phys. Rev. A – volume: 118 year: 2017 publication-title: Phys. Rev. Lett. – volume: 299 start-page: 802 year: 1982 publication-title: Nature – volume: 17 year: 2015 publication-title: New J. Phys. – volume: 338 start-page: 363 year: 2012 publication-title: Science – volume: 62 start-page: 2205 year: 1989 publication-title: Phys. Rev. Lett. – volume: 81 year: 2010 publication-title: Phys. Rev. A – volume: 2 year: 2016 publication-title: npj Quantum Inf. – volume: 64 year: 2001 publication-title: Phys. Rev. A – volume: 61 year: 2000 publication-title: Phys. Rev. A – volume: 40 start-page: 1717 year: 2015 publication-title: Opt. Lett. – volume: 104 year: 2010 publication-title: Phys. Rev. Lett. – volume: 55 start-page: 2564 year: 1997 publication-title: Phys. Rev. A – volume: 4 start-page: 1006 year: 2017 publication-title: Optica – volume: 81 start-page: 1301 year: 2009 publication-title: Rev. Mod. Phys. – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 4 start-page: 1462 year: 2017 publication-title: Optica – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 56 start-page: 1201 year: 1997 publication-title: Phys. Rev. A – volume: 43 start-page: 4108 year: 2018 publication-title: Opt. Lett. – year: 2018 – volume: 2 start-page: 349 year: 2011 publication-title: Nat. Commun. – volume: 117 year: 2016 publication-title: Phys. Rev. Lett. – volume: 489 start-page: 269 year: 2012 publication-title: Nature – volume: 85 start-page: 445 year: 2000 publication-title: Phys. Rev. Lett. – volume: 2 start-page: 111 year: 2018 publication-title: Quantum – volume: 12 start-page: 173 year: 2018 publication-title: Nat. Photonics – volume: 25 year: 2017 publication-title: Opt. Express – volume: 14 start-page: 595 year: 2018 publication-title: Nat. Phys. – volume: 36 start-page: D70 year: 2019 publication-title: J. Opt. Soc. Am. B – volume: 34 start-page: 55 year: 2016 publication-title: J. Light. Technol. – volume: 59 start-page: 3295 year: 1999 publication-title: Phys. Rev. A – volume: 414 start-page: 883 year: 2001 publication-title: Nature – volume: 21 year: 2019 publication-title: New J. Phys. – volume: 92 year: 2004 publication-title: Phys. Rev. Lett. – year: 1997 – volume: 95 year: 2017 publication-title: Phys. Rev. A – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 546 start-page: 622 year: 2017 publication-title: Nature – volume: 2 start-page: 429 year: 2008 publication-title: Laser Photonics Rev. – volume: 98 year: 2018 publication-title: Phys. Rev. A – volume: 253 start-page: 249 year: 1999 publication-title: Phys. Lett. A – volume: 3 start-page: 25 year: 2017 publication-title: npj Quantum Inf. – volume: 112 start-page: 321 year: 1994 publication-title: Opt. Commun. – volume: 360 start-page: 285 year: 2018 publication-title: Science – volume: 27 year: 2019 publication-title: Opt. Express – volume: 79 year: 2009 publication-title: Phys. Rev. A – volume: 115 year: 2015 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 263 year: 2012 publication-title: Nat. Phys. – volume: 6 start-page: 7706 year: 2015 publication-title: Nat. Commun. – volume: 8 start-page: 632 year: 2017 publication-title: Nat. Commun. – volume: 96 year: 2006 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 1034 year: 1990 publication-title: J. Opt. Soc. Am. B – volume: 12 year: 2014 publication-title: Int. J. Quantum Inf. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 65 year: 2001 publication-title: Phys. Rev. A – volume: 273 start-page: 1073 year: 1996 publication-title: Science – volume: 19 year: 2017 publication-title: New J. Phys. – volume: 93 year: 2016 publication-title: Phys. Rev. A – volume: 45 start-page: 8185 year: 1992 publication-title: Phys. Rev. A – volume: 14 start-page: 1032 year: 2018 publication-title: Nat. Phys. – volume: 96 year: 2017 publication-title: Phys. Rev. A – volume: 5 start-page: 7982 year: 2015 publication-title: Sci. Rep. – volume: 119 year: 2017 publication-title: Phys. Rev. Lett. – year: 2012 – volume: 91 year: 2015 publication-title: Phys. Rev. A – volume: 8 start-page: 200 year: 2016 publication-title: Adv. Opt. Photonics – volume: 59 start-page: 2044 year: 1987 publication-title: Phys. Rev. Lett. – volume: 356 start-page: 1140 year: 2017 publication-title: Science – volume: 13 start-page: 334 year: 2019 publication-title: Nat. Photonics – volume: 3 start-page: 961 year: 2012 publication-title: Nat. Commun. – volume: 11 year: 2019 publication-title: Phys. Rev. Applied – volume: 78 year: 2008 publication-title: Phys. Rev. A – volume: 88 year: 2013 publication-title: Phys. Rev. A – volume: 53 start-page: R1209 year: 1996 publication-title: Phys. Rev. A – volume: 557 start-page: 660 year: 2018 publication-title: Nature – volume: 390 start-page: 575 year: 1997 publication-title: Nature – volume: 325 start-page: 722 year: 2009 publication-title: Science – volume: 10 start-page: 248 year: 2016 publication-title: Nat. Photonics – volume: 30 start-page: 1829 year: 2001 publication-title: SIAM J. Comput. – volume: 1 start-page: 72 year: 2018 publication-title: Nat. Rev. Phys. – volume: 1 year: 2015 publication-title: Sci. Adv. – volume: 14 start-page: 216 year: 2018 publication-title: Optoelectron. Lett. – volume: 105 year: 2010 publication-title: Phys. Rev. Lett. – volume: 321 start-page: 1463 year: 2008 publication-title: Science – volume: 94 year: 2016 publication-title: Phys. Rev. A – ident: e_1_2_9_29_1 doi: 10.1016/j.physleta.2015.03.023 – ident: e_1_2_9_67_1 doi: 10.1103/PhysRevLett.49.901 – ident: e_1_2_9_48_1 – ident: e_1_2_9_138_1 – ident: e_1_2_9_59_1 doi: 10.1126/sciadv.1601915 – ident: e_1_2_9_98_1 doi: 10.1103/PhysRevA.93.032336 – ident: e_1_2_9_144_1 doi: 10.1038/nature11472 – ident: e_1_2_9_156_1 doi: 10.1103/PhysRevLett.108.130503 – ident: e_1_2_9_6_1 doi: 10.1126/science.aan3211 – ident: e_1_2_9_136_1 doi: 10.1103/PhysRevA.99.033805 – ident: e_1_2_9_20_1 doi: 10.1103/PhysRevA.96.012306 – ident: e_1_2_9_70_1 doi: 10.1103/PhysRevA.64.024101 – ident: e_1_2_9_74_1 doi: 10.1103/PhysRevLett.93.010503 – ident: e_1_2_9_65_1 doi: 10.1103/PhysRevLett.119.010402 – ident: e_1_2_9_4_1 doi: 10.1126/science.1252319 – ident: e_1_2_9_84_1 doi: 10.1103/PhysRevLett.123.070505 – ident: e_1_2_9_123_1 doi: 10.1103/PhysRevA.66.062308 – ident: e_1_2_9_165_1 doi: 10.1103/PhysRevA.82.012304 – ident: e_1_2_9_60_1 doi: 10.1103/PhysRevA.70.052305 – ident: e_1_2_9_76_1 doi: 10.1364/OE.27.018363 – ident: e_1_2_9_37_1 doi: 10.1038/ncomms15043 – ident: e_1_2_9_97_1 doi: 10.1103/PhysRevA.95.020302 – ident: e_1_2_9_128_1 doi: 10.1103/PhysRevA.55.2564 – ident: e_1_2_9_50_1 doi: 10.1103/PhysRevA.54.1844 – ident: e_1_2_9_169_1 – ident: e_1_2_9_181_1 doi: 10.1038/nature14246 – ident: e_1_2_9_73_1 doi: 10.1088/1367-2630/18/1/013021 – ident: e_1_2_9_179_1 doi: 10.1109/MC.2016.293 – ident: e_1_2_9_62_1 doi: 10.1103/PhysRevLett.92.047902 – ident: e_1_2_9_39_1 doi: 10.1103/RevModPhys.81.1301 – ident: e_1_2_9_153_1 – ident: e_1_2_9_180_1 doi: 10.1103/PhysRevLett.85.445 – ident: e_1_2_9_162_1 doi: 10.1038/s41534-017-0026-2 – ident: e_1_2_9_63_1 doi: 10.1038/nature15759 – ident: e_1_2_9_167_1 – ident: e_1_2_9_125_1 doi: 10.1103/PhysRevLett.118.110501 – ident: e_1_2_9_134_1 doi: 10.1364/OE.26.028918 – ident: e_1_2_9_148_1 doi: 10.1088/1367-2630/8/5/075 – ident: e_1_2_9_152_1 doi: 10.1103/PhysRevA.92.062324 – ident: e_1_2_9_78_1 doi: 10.1103/PhysRevA.88.032309 – ident: e_1_2_9_120_1 doi: 10.1126/sciadv.1501165 – ident: e_1_2_9_106_1 doi: 10.1126/science.1226528 – ident: e_1_2_9_71_1 doi: 10.1103/PhysRevLett.88.040404 – ident: e_1_2_9_107_1 doi: 10.1103/PhysRevLett.121.233602 – ident: e_1_2_9_117_1 doi: 10.1364/OPTICA.4.001462 – ident: e_1_2_9_140_1 doi: 10.1364/OE.26.001825 – ident: e_1_2_9_35_1 doi: 10.1126/sciadv.aat9304 – ident: e_1_2_9_174_1 doi: 10.1364/OE.25.019795 – ident: e_1_2_9_137_1 – ident: e_1_2_9_147_1 doi: 10.1088/2058-9565/aaefd4 – ident: e_1_2_9_52_1 doi: 10.1103/PhysRevLett.79.2153 – ident: e_1_2_9_7_1 doi: 10.1038/37539 – ident: e_1_2_9_171_1 doi: 10.2200/S00409ED1V01Y201203COM006 – ident: e_1_2_9_47_1 doi: 10.1103/PhysRevA.79.064305 – ident: e_1_2_9_85_1 doi: 10.1016/S0065-2458(08)60342-3 – ident: e_1_2_9_13_1 doi: 10.1038/nature09801 – ident: e_1_2_9_26_1 doi: 10.1038/ncomms8706 – ident: e_1_2_9_176_1 doi: 10.1364/OE.26.022563 – ident: e_1_2_9_3_1 doi: 10.1038/35051009 – ident: e_1_2_9_150_1 doi: 10.1364/OPTICA.4.001006 – ident: e_1_2_9_36_1 doi: 10.1103/PhysRevLett.108.143603 – ident: e_1_2_9_186_1 doi: 10.1038/s41567-018-0203-z – ident: e_1_2_9_105_1 doi: 10.1016/0030-4018(94)90638-6 – ident: e_1_2_9_154_1 doi: 10.1038/srep02316 – ident: e_1_2_9_14_1 doi: 10.1038/s41566-018-0097-4 – ident: e_1_2_9_66_1 doi: 10.1103/PhysRevD.22.356 – ident: e_1_2_9_177_1 doi: 10.1088/1367-2630/ab006e – ident: e_1_2_9_95_1 doi: 10.1103/PhysRevA.81.042326 – ident: e_1_2_9_139_1 doi: 10.1088/2040-8986/aa912a – ident: e_1_2_9_22_1 doi: 10.1088/1367-2630/aa573a – ident: e_1_2_9_187_1 doi: 10.1103/PhysRevLett.121.220404 – ident: e_1_2_9_28_1 doi: 10.1103/PhysRevA.91.042312 – ident: e_1_2_9_72_1 doi: 10.1103/PhysRevLett.104.060401 – ident: e_1_2_9_115_1 doi: 10.1103/PhysRevLett.122.020503 – ident: e_1_2_9_91_1 doi: 10.1103/PhysRevLett.117.100502 – ident: e_1_2_9_170_1 – ident: e_1_2_9_82_1 doi: 10.1103/PhysRevA.53.R1209 – ident: e_1_2_9_86_1 doi: 10.1038/s41467-019-12139-z – ident: e_1_2_9_109_1 doi: 10.1103/PhysRevLett.96.163905 – ident: e_1_2_9_173_1 – ident: e_1_2_9_75_1 doi: 10.1142/S0219749915600266 – ident: e_1_2_9_151_1 doi: 10.22331/q-2018-12-04-111 – ident: e_1_2_9_127_1 doi: 10.1088/2058-9565/1/1/015004 – ident: e_1_2_9_23_1 doi: 10.1038/srep07982 – ident: e_1_2_9_2_1 doi: 10.1038/414883a – ident: e_1_2_9_12_1 doi: 10.1038/nature10981 – ident: e_1_2_9_19_1 doi: 10.1038/nphys1150 – ident: e_1_2_9_92_1 doi: 10.1038/npjqi.2016.10 – ident: e_1_2_9_87_1 doi: 10.1137/S0097539797324886 – ident: e_1_2_9_94_1 doi: 10.1103/PhysRevA.78.022310 – ident: e_1_2_9_122_1 doi: 10.1103/PhysRevLett.62.2205 – ident: e_1_2_9_103_1 doi: 10.1016/0030-4018(93)90535-D – ident: e_1_2_9_93_1 doi: 10.1103/PhysRevA.65.012318 – ident: e_1_2_9_34_1 doi: 10.1038/nphys919 – ident: e_1_2_9_185_1 doi: 10.1103/PhysRevA.90.042301 – ident: e_1_2_9_132_1 doi: 10.1103/PhysRevA.92.022321 – ident: e_1_2_9_157_1 doi: 10.1103/PhysRevA.98.062301 – ident: e_1_2_9_79_1 doi: 10.1103/PhysRevA.65.030301 – ident: e_1_2_9_142_1 doi: 10.1038/nature22986 – ident: e_1_2_9_51_1 doi: 10.1103/RevModPhys.77.1225 – ident: e_1_2_9_24_1 doi: 10.1126/science.1227193 – ident: e_1_2_9_131_1 doi: 10.1103/PhysRevA.94.030304 – ident: e_1_2_9_149_1 doi: 10.1364/OE.26.026946 – ident: e_1_2_9_145_1 doi: 10.1126/science.aan3211 – ident: e_1_2_9_41_1 doi: 10.1103/PhysRevLett.88.127902 – ident: e_1_2_9_164_1 doi: 10.1103/PhysRevA.96.022317 – ident: e_1_2_9_146_1 doi: 10.1103/PhysRevA.93.010301 – ident: e_1_2_9_15_1 doi: 10.1126/science.1160627 – ident: e_1_2_9_89_1 doi: 10.1103/PhysRevLett.92.127901 – volume: 7 start-page: 4302 year: 2017 ident: e_1_2_9_163_1 publication-title: J. Light. Technol. – ident: e_1_2_9_5_1 doi: 10.1038/s41567-018-0124-x – ident: e_1_2_9_64_1 doi: 10.1103/PhysRevLett.115.250402 – ident: e_1_2_9_43_1 – ident: e_1_2_9_99_1 doi: 10.1103/PhysRevLett.121.150504 – ident: e_1_2_9_119_1 doi: 10.1038/nphoton.2016.12 – ident: e_1_2_9_27_1 doi: 10.1103/PhysRevA.98.042126 – ident: e_1_2_9_155_1 doi: 10.1038/ncomms1348 – ident: e_1_2_9_21_1 doi: 10.1103/PhysRevLett.119.180510 – ident: e_1_2_9_126_1 doi: 10.1126/sciadv.1701491 – ident: e_1_2_9_8_1 doi: 10.1038/nature23675 – ident: e_1_2_9_10_1 doi: 10.1126/science.273.5278.1073 – ident: e_1_2_9_38_1 – volume-title: Elements of Information Theory year: 2012 ident: e_1_2_9_31_1 – ident: e_1_2_9_80_1 doi: 10.1103/PhysRevA.59.3295 – ident: e_1_2_9_129_1 doi: 10.1126/science.aar7053 – ident: e_1_2_9_175_1 – ident: e_1_2_9_116_1 doi: 10.1126/sciadv.1500087 – ident: e_1_2_9_135_1 doi: 10.1364/OL.44.000041 – ident: e_1_2_9_110_1 doi: 10.1364/AOP.8.000200 – ident: e_1_2_9_55_1 doi: 10.1080/09500340008244036 – ident: e_1_2_9_104_1 doi: 10.1364/JOSAB.7.001034 – ident: e_1_2_9_69_1 doi: 10.1103/PhysRevLett.85.4418 – ident: e_1_2_9_9_1 doi: 10.1038/s41566-019-0377-7 – ident: e_1_2_9_121_1 doi: 10.1103/PhysRevLett.59.2044 – ident: e_1_2_9_54_1 doi: 10.1016/S0375-9601(99)00562-9 – ident: e_1_2_9_113_1 doi: 10.1038/ncomms1951 – ident: e_1_2_9_184_1 doi: 10.1002/qute.201900011 – ident: e_1_2_9_130_1 doi: 10.1103/PhysRevLett.118.080401 – ident: e_1_2_9_100_1 doi: 10.1103/PhysRevLett.122.120504 – ident: e_1_2_9_168_1 doi: 10.1364/OL.43.004108 – ident: e_1_2_9_32_1 doi: 10.1103/PhysRev.47.777 – ident: e_1_2_9_40_1 doi: 10.1103/PhysRevA.82.030301 – ident: e_1_2_9_101_1 doi: 10.1103/PhysRevA.45.8185 – ident: e_1_2_9_17_1 doi: 10.1126/science.1173440 – ident: e_1_2_9_160_1 doi: 10.1038/s41598-017-19078-z – ident: e_1_2_9_159_1 doi: 10.1088/1367-2630/17/2/022002 – ident: e_1_2_9_44_1 doi: 10.1103/PhysRevApplied.11.064058 – ident: e_1_2_9_42_1 doi: 10.1103/PhysRevA.61.062308 – ident: e_1_2_9_88_1 doi: 10.1103/PhysRevA.56.1201 – ident: e_1_2_9_178_1 doi: 10.1038/nphys2258 – ident: e_1_2_9_25_1 doi: 10.1038/lsa.2016.157 – ident: e_1_2_9_141_1 doi: 10.1126/sciadv.aap9646 – ident: e_1_2_9_166_1 doi: 10.1002/lpor.200810016 – ident: e_1_2_9_161_1 doi: 10.1109/JLT.2015.2466444 – ident: e_1_2_9_58_1 doi: 10.1103/PhysRevLett.105.073602 – ident: e_1_2_9_158_1 – ident: e_1_2_9_1_1 doi: 10.1126/science.270.5234.255 – ident: e_1_2_9_56_1 doi: 10.1103/PhysRevA.68.032313 – ident: e_1_2_9_61_1 doi: 10.1103/PhysRevLett.92.047901 – ident: e_1_2_9_11_1 doi: 10.1038/s41586-018-0152-9 – ident: e_1_2_9_143_1 doi: 10.1038/lsa.2017.148 – ident: e_1_2_9_108_1 doi: 10.1364/JOSAB.36.000D70 – ident: e_1_2_9_30_1 doi: 10.1038/s42254-018-0003-5 – ident: e_1_2_9_102_1 doi: 10.1364/OL.40.001717 – ident: e_1_2_9_16_1 doi: 10.1038/nphys1652 – ident: e_1_2_9_45_1 doi: 10.1038/s41598-017-12309-3 – ident: e_1_2_9_49_1 doi: 10.1038/299802a0 – ident: e_1_2_9_57_1 doi: 10.1016/S0375-9601(99)00099-7 – ident: e_1_2_9_81_1 doi: 10.1103/PhysRevA.59.116 – ident: e_1_2_9_68_1 doi: 10.1103/PhysRevA.46.4413 – ident: e_1_2_9_118_1 doi: 10.1038/s41566-018-0257-6 – ident: e_1_2_9_133_1 doi: 10.1117/1.AP.1.4.046005 – ident: e_1_2_9_77_1 doi: 10.1038/nphys1996 – ident: e_1_2_9_90_1 doi: 10.1103/PhysRevLett.89.197901 – ident: e_1_2_9_172_1 doi: 10.1007/s11801-018-7250-7 – ident: e_1_2_9_182_1 doi: 10.1126/sciadv.aat9304 – ident: e_1_2_9_18_1 doi: 10.1038/nphys1777 – ident: e_1_2_9_114_1 doi: 10.1088/2040-8978/13/6/064001 – ident: e_1_2_9_83_1 – ident: e_1_2_9_46_1 doi: 10.1103/PhysRevLett.67.661 – ident: e_1_2_9_111_1 doi: 10.1038/35085529 – ident: e_1_2_9_53_1 doi: 10.1103/PhysRevA.57.2368 – ident: e_1_2_9_124_1 doi: 10.1038/ncomms15971 – ident: e_1_2_9_96_1 doi: 10.1103/PhysRevA.95.052345 – ident: e_1_2_9_183_1 doi: 10.1038/s41467-017-00706-1 – ident: e_1_2_9_33_1 doi: 10.1103/PhysicsPhysiqueFizika.1.195 – ident: e_1_2_9_112_1 doi: 10.1103/PhysRevLett.113.060503 |
SSID | ssj0002313473 |
Score | 2.5997472 |
SecondaryResourceType | review_article |
Snippet | In recent years, there has been a rising interest in high‐dimensional quantum states and their impact on quantum communication. Indeed, the availability of an... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | high‐dimensional quantum states quantum communication qudits |
Title | High‐Dimensional Quantum Communication: Benefits, Progress, and Future Challenges |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.201900038 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60RfAiPrE-yh4EL12a7G7SrLfaB0VUWtpCbyH7AqHGR5q7P8Hf6C9xd9PG9iCC5JLAJIdJZubL7jffAHBFBWMcS4oM-uWIaswQIyYemeQ48luRCrUjyD6Ggym9mwWztS7-Qh-iXHCzkeHytQ3whGfNH9HQt9zJXPrM7W5tg6rtr7Xq-ZgOy1UWg14IddvMFkoj5lG6Um70cHPzERuVaR2pulLT3wd7S4wI28VLPQBbKj0EO46rKbIjMLbcjK-Pz64V5i9ENeAoNx7Kn-FGv8cNvDWZTD8tsgYcWh6WyWoNmKQS9p2SCOysJqlkx2Da7006A7ScjYAEwSxCiSKCKU7NgbkQMgyU0GHAA64jzsxPDWF-Qn1FaOi1JPWk9hNTqaXBT1pzU6NPQCV9SdUpgIQyLi0fnIWc-jyKSKSVVAbXhdyAP1UDaOWXWCyFw-38inlcSB7j2PoxLv1YA9el_WshmfGrJXZu_sMsHk0nvfLq7D83nYNde17wUC5AZfGeq0uDJha87j6YOqi2uw_3429ShMN1 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgCMEFsYqy-oDEpVYb23FjblBaFShVK1qJWxRvEhKEpc2dT-Ab-RJspwn0gJBQTokmOUwyMy_j5zcAnFDJucCKIot-BaIGc8SJjUeuBI6CZqSZ8QTZPuuO6fV9WLAJ3V6YXB-ibLi5yPD52gW4a0jXv1VDXzOvcxlwv7y1CJYow00Xm5gOyjaLhS-E-nVmh6URb1BaSDc2cH3-EXOl6SdU9bWmsw7WZiARnudvdQMs6HQTLHuyppxsgTtHzvh8_7h0yvy5qgYcZtZF2ROc2_BxBi9sKjMP00kNDhwRy6a1GkxSBTteSgS2ilEqk20w7rRHrS6aDUdAkmAeoUQTybWg9sBCSsVCLQ0LRShMJLj9qyE8SGigCWWNpqINZYLElmplAZQxwhbpHVBJn1O9CyChXChHCOdM0EBEEYmMVtoCOyYs-tNVgAq_xHKmHO4GWDzGueYxjp0f49KPVXBa2r_kmhm_WmLv5j_M4uF41C7P9v5z0zFY6Y5ue3Hvqn-zD1bd9ZyUcgAq07dMH1poMRVH_uP5AsoAxU0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60ongRn1ifexC8dGmyu0mz3rRtqA9Kiy30FrIvEDRW29z9Cf5Gf4m7mza2BxEkp4RJDpPMzJedb78B4IIKxjiWFBn0yxHVmCFGTDwyyXHkNyIVakeQ7YadIb0bBaOFXfyFPkS54GYjw-VrG-Bjqes_oqFvuZO59Jnrbq2CNdfxs9rOtFeushj0QqhrM1sojZhH6Vy50cP15UcsVaZFpOpKTbwNtmYYEV4XL3UHrKhsF6w7rqaY7IFHy834-vhsWWH-QlQD9nPjofwFLu33uII3JpPpp-mkBnuWh2WyWg2mmYSxUxKBzfkklck-GMbtQbODZrMRkCCYRShVRDDFqTkwF0KGgRI6DHjAdcSZ-akhzE-prwgNvYakntR-aiq1NPhJa25q9AGoZK-ZOgSQUMal5YOzkFOfRxGJtJLK4LqQG_CnqgDN_ZKImXC4nV_xnBSSxzixfkxKP1bBZWk_LiQzfrXEzs1_mCX94aBdnh3956ZzsNFrxcnDbff-GGzaywUl5QRUpu-5OjXAYsrP3LfzDdIRxH8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Dimensional+Quantum+Communication%3A+Benefits%2C+Progress%2C+and+Future+Challenges&rft.jtitle=Advanced+quantum+technologies+%28Online%29&rft.au=Cozzolino%2C+Daniele&rft.au=Da+Lio%2C+Beatrice&rft.au=Bacco%2C+Davide&rft.au=Oxenl%C3%B8we%2C+Leif+Katsuo&rft.date=2019-12-01&rft.issn=2511-9044&rft.eissn=2511-9044&rft.volume=2&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fqute.201900038&rft.externalDBID=10.1002%252Fqute.201900038&rft.externalDocID=QUTE201900038 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-9044&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-9044&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-9044&client=summon |