Transient Neurovascular Interface for Minimally Invasive Neural Recording and Stimulation

Neural interfaces are used to mitigate the burden of traumatic injuries, neurodegenerative diseases, and mental disorders. However, the transient or permanent placement of an interface in close contact with the neural tissue requires invasive surgery, potentially entailing both short‐ and long‐term...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials technologies Vol. 7; no. 2
Main Authors Fanelli, Adele, Ferlauto, Laura, Zollinger, Elodie Geneviève, Brina, Olivier, Reymond, Philippe, Machi, Paolo, Ghezzi, Diego
Format Journal Article
LanguageEnglish
Published 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neural interfaces are used to mitigate the burden of traumatic injuries, neurodegenerative diseases, and mental disorders. However, the transient or permanent placement of an interface in close contact with the neural tissue requires invasive surgery, potentially entailing both short‐ and long‐term complications. To tackle this problem, a transient neurovascular interface for neural recording and stimulation is developed. This endovascular array has been fabricated with facile molding techniques using solely polymeric materials. In vitro experiments have shown promising electrochemical performance for both recording and stimulation, together with a lack of cytotoxicity in cultured cells. The device is compatible with standard endovascular catheters and, once deployed, provide good apposition to a cylindrical structure mimicking a blood vessel. The advantage of this device is twofold. On the one hand, the exploitation of the cerebrovascular system as an access route to the neural tissue avoids invasive surgeries. On the other hand, a transient device may reduce the inflammatory reaction and avoid additional surgeries for removal or replacement. This neurovascular interface combines the benefits of both transient bioelectronics and stent technology in a single device to broaden the range of applications of neural interfaces from neurological diseases and mental disorders to bioelectronics medicine. A polymeric and transient neurovascular interface have been developed and characterized for neural recording and stimulation. The device shows excellent electrochemical properties and compatibility with standard catheters for navigation inside the vasculature. After deployment in a 2‐mm diameter channel, the device induces a lumen reduction of 18%. These results are a promising step toward the minimally invasive transient endovascular interfaces.
AbstractList Neural interfaces are used to mitigate the burden of traumatic injuries, neurodegenerative diseases, and mental disorders. However, the transient or permanent placement of an interface in close contact with the neural tissue requires invasive surgery, potentially entailing both short‐ and long‐term complications. To tackle this problem, a transient neurovascular interface for neural recording and stimulation is developed. This endovascular array has been fabricated with facile molding techniques using solely polymeric materials. In vitro experiments have shown promising electrochemical performance for both recording and stimulation, together with a lack of cytotoxicity in cultured cells. The device is compatible with standard endovascular catheters and, once deployed, provide good apposition to a cylindrical structure mimicking a blood vessel. The advantage of this device is twofold. On the one hand, the exploitation of the cerebrovascular system as an access route to the neural tissue avoids invasive surgeries. On the other hand, a transient device may reduce the inflammatory reaction and avoid additional surgeries for removal or replacement. This neurovascular interface combines the benefits of both transient bioelectronics and stent technology in a single device to broaden the range of applications of neural interfaces from neurological diseases and mental disorders to bioelectronics medicine. A polymeric and transient neurovascular interface have been developed and characterized for neural recording and stimulation. The device shows excellent electrochemical properties and compatibility with standard catheters for navigation inside the vasculature. After deployment in a 2‐mm diameter channel, the device induces a lumen reduction of 18%. These results are a promising step toward the minimally invasive transient endovascular interfaces.
Author Fanelli, Adele
Reymond, Philippe
Ferlauto, Laura
Machi, Paolo
Brina, Olivier
Zollinger, Elodie Geneviève
Ghezzi, Diego
Author_xml – sequence: 1
  givenname: Adele
  surname: Fanelli
  fullname: Fanelli, Adele
  organization: École polytechnique fédérale de Lausanne
– sequence: 2
  givenname: Laura
  surname: Ferlauto
  fullname: Ferlauto, Laura
  organization: École polytechnique fédérale de Lausanne
– sequence: 3
  givenname: Elodie Geneviève
  surname: Zollinger
  fullname: Zollinger, Elodie Geneviève
  organization: École polytechnique fédérale de Lausanne
– sequence: 4
  givenname: Olivier
  surname: Brina
  fullname: Brina, Olivier
  organization: Geneva University Hospital
– sequence: 5
  givenname: Philippe
  surname: Reymond
  fullname: Reymond, Philippe
  organization: Geneva University Hospital
– sequence: 6
  givenname: Paolo
  surname: Machi
  fullname: Machi, Paolo
  organization: Geneva University Hospital
– sequence: 7
  givenname: Diego
  orcidid: 0000-0002-0554-7510
  surname: Ghezzi
  fullname: Ghezzi, Diego
  email: diego.ghezzi@epfl.ch
  organization: École polytechnique fédérale de Lausanne
BookMark eNpNkNtKAzEQhoNUsNbeep0X2JrTni5LPRVaBV1Br0I2mZVINivZbWXf3lSleDXzD98Mw3eOJr7zgNAlJQtKCLtSph0WjLAYaJ6doCnjWZrkpHyd_OvP0LzvP0hkSprxgk3RWxWU7y34AT_ALnR71eudUwGv_QChURpw0wW8td62yrkxziNi9_CDK4efQHfBWP-OlTf4ebBtXB9s5y_QaaNcD_O_OkMvtzfV6j7ZPN6tV8tNojkrs0SDJllNtAaRp1RQLgwjPDdGFFxoo6EoylLnNdQNA54KKBqAhnOIoNI85zNU_t79sg5G-Rnio2GUlMiDGHkQI49i5PJ6Wx0T_wbQul3k
CitedBy_id crossref_primary_10_1088_2516_1091_ac812c
crossref_primary_10_1038_s41378_022_00433_8
crossref_primary_10_1002_admt_202201274
crossref_primary_10_1063_5_0104873
crossref_primary_10_1089_ten_tea_2022_0119
ContentType Journal Article
Copyright 2021 The Authors. Advanced Materials Technologies published by Wiley‐VCH GmbH
Copyright_xml – notice: 2021 The Authors. Advanced Materials Technologies published by Wiley‐VCH GmbH
DBID 24P
WIN
DOI 10.1002/admt.202100176
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
Wiley Online Library (Open Access Collection)
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2365-709X
EndPage n/a
ExternalDocumentID ADMT202100176
Genre article
GrantInformation_xml – fundername: École polytechnique fédérale de Lausanne and Medtronic
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AANLZ
AAXRX
AAZKR
ACAHQ
ACCFJ
ACCZN
ACGFS
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AITYG
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
BFHJK
BMXJE
DCZOG
EBS
EJD
HGLYW
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WBKPD
WIN
WOHZO
WXSBR
ZZTAW
ID FETCH-LOGICAL-c3296-cec06b0cce47514134d2037dd4834cdce8899c7bebf2e354e8feef33e34dac373
IEDL.DBID 24P
ISSN 2365-709X
IngestDate Sat Aug 24 00:57:33 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3296-cec06b0cce47514134d2037dd4834cdce8899c7bebf2e354e8feef33e34dac373
ORCID 0000-0002-0554-7510
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmt.202100176
PageCount 12
ParticipantIDs wiley_primary_10_1002_admt_202100176_ADMT202100176
PublicationCentury 2000
PublicationDate February 2022
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle Advanced materials technologies
PublicationYear 2022
References 2018; 121
2019; 11
2020; 242
2019; 10
2019; 13
2016; 32
2019; 16
2020; 15
2016; 30
2019; 19
2016; 540
2020; 14
2016; 2016
2018; 83
2010; 93B
2013; 5
2006; 899
2011; 19
2016; 34
2020; 8
2013; 19
2018; 8
2020; 5
2018; 3
2018; 2
2020; 3
2009; 10
2020; 53
2005; 148
2018; 257
2014; 16
2021; 274
2011; 23
2012; 337
2010; 4
2014; 11
2017; 63
2015; 6
2005; 195
2018; 181
2019; 3
2010; 35
2021; 2
2015; 18
2019; 37
2016; 10
2008; 10
2006; 3
2016; 247
2011; 6
2015; 7
2020; 108
2021; 13
2013; 38
2017; 17
2013; 34
2017; 55
2016; 530
2019
2007; 82
2015
2005; 17
2018; 10
2016; 8
References_xml – volume: 10
  start-page: 1043
  year: 2019
  publication-title: Nat. Commun.
– volume: 17
  start-page: 96
  year: 2017
  publication-title: Nat. Mater.
– volume: 274
  year: 2021
  publication-title: Biomaterials
– volume: 540
  start-page: 379
  year: 2016
  publication-title: Nature
– volume: 16
  start-page: 603
  year: 2019
  publication-title: Expert Rev. Med. Devices
– volume: 38
  start-page: 641
  year: 2013
  publication-title: J. Magn. Reson. Imaging
– volume: 18
  start-page: 310
  year: 2015
  publication-title: Nat. Neurosci.
– volume: 3
  start-page: 37
  year: 2019
  publication-title: Nat. Biomed. Eng.
– volume: 17
  year: 2005
  publication-title: Phys. Fluids
– volume: 257
  start-page: 753
  year: 2018
  publication-title: Sens. Actuators, B
– volume: 899
  start-page: 308
  year: 2006
  publication-title: Ann. N. Y. Acad. Sci.
– start-page: 924
  year: 2019
  end-page: 927
– volume: 55
  start-page: 814
  year: 2017
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 23
  start-page: H268
  year: 2011
  publication-title: Adv. Mater.
– volume: 19
  start-page: 895
  year: 2013
  publication-title: Microsyst. Technol.
– volume: 14
  start-page: 432
  year: 2020
  publication-title: Front. Neurosci.
– volume: 3
  start-page: 153
  year: 2020
  publication-title: Commun. Chem.
– volume: 10
  start-page: 11
  year: 2016
  publication-title: Front. Neurosci.
– volume: 63
  start-page: 164
  year: 2017
  publication-title: J. Biomech.
– volume: 35
  start-page: 1217
  year: 2010
  publication-title: Prog. Polym. Sci.
– volume: 34
  start-page: 4703
  year: 2013
  publication-title: Biomaterials
– volume: 10
  start-page: 9865
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 131
  year: 2014
  publication-title: Acta Bioeng. Biomech.
– volume: 148
  start-page: 1
  year: 2005
  publication-title: J. Neurosci. Methods
– volume: 10
  start-page: 275
  year: 2008
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 2016
  start-page: 6174
  year: 2016
  publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
– volume: 19
  start-page: 3776
  year: 2019
  publication-title: Lab Chip
– volume: 4
  year: 2010
  publication-title: Biomicrofluidics
– volume: 2
  start-page: 138
  year: 2021
  publication-title: Signals
– volume: 19
  start-page: 820
  year: 2019
  publication-title: IEEE Sens. J.
– volume: 108
  start-page: 238
  year: 2020
  publication-title: Neuron
– volume: 337
  start-page: 1640
  year: 2012
  publication-title: Science
– volume: 195
  start-page: 115
  year: 2005
  publication-title: Exp. Neurol.
– volume: 53
  start-page: 6267
  year: 2020
  publication-title: Macromolecules
– volume: 93B
  start-page: 407
  year: 2010
  publication-title: J. Biomed. Mater. Res.
– volume: 530
  start-page: 71
  year: 2016
  publication-title: Nature
– volume: 19
  start-page: 307
  year: 2011
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 13
  start-page: 689
  year: 2019
  publication-title: Front. Neurosci.
– volume: 15
  start-page: 3557
  year: 2020
  publication-title: Nat. Protoc.
– volume: 6
  start-page: 48
  year: 2015
  publication-title: ACS Chem. Neurosci.
– volume: 3
  start-page: 322
  year: 2018
  publication-title: Bioact. Mater.
– volume: 5
  year: 2020
  publication-title: Adv. Mater. Technol.
– volume: 11
  year: 2014
  publication-title: J. Neural Eng.
– volume: 13
  start-page: 102
  year: 2021
  publication-title: J. Neurointerv. Surg.
– volume: 2
  start-page: 907
  year: 2018
  publication-title: Nat. Biomed. Eng.
– volume: 3
  start-page: 59
  year: 2006
  publication-title: J. Neural Eng.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 121
  start-page: 89
  year: 2018
  publication-title: Prog. Org. Coat.
– volume: 5
  year: 2013
  publication-title: Sci. Transl. Med.
– volume: 32
  start-page: 57
  year: 2016
  publication-title: Acta Biomater.
– volume: 247
  start-page: 125
  year: 2016
  publication-title: Sens. Actuators, A
– volume: 37
  start-page: 428
  year: 2019
  publication-title: Trends Biotechnol.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 181
  start-page: 1
  year: 2018
  publication-title: Biomaterials
– volume: 6
  year: 2011
  publication-title: PLoS One
– volume: 34
  start-page: 320
  year: 2016
  publication-title: Nat. Biotechnol.
– start-page: 781
  year: 2015
  end-page: 868
– volume: 10
  start-page: 536
  year: 2009
  publication-title: Org. Electron.
– volume: 30
  start-page: 111
  year: 2016
  publication-title: Blood Rev.
– volume: 242
  year: 2020
  publication-title: Mater. Chem. Phys.
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 83
  start-page: 79
  year: 2018
  publication-title: Prog. Polym. Sci.
– volume: 82
  start-page: 169
  year: 2007
  publication-title: J. Biomed. Mater. Res., Part A
– volume: 8
  start-page: 8427
  year: 2018
  publication-title: Sci. Rep.
– volume: 8
  start-page: 462
  year: 2020
  publication-title: Front. Bioeng. Biotechnol.
SSID ssj0001916382
Score 2.3207493
Snippet Neural interfaces are used to mitigate the burden of traumatic injuries, neurodegenerative diseases, and mental disorders. However, the transient or permanent...
SourceID wiley
SourceType Publisher
SubjectTerms endovascular device
neural interfaces
polymers
transient neurotechnology
Title Transient Neurovascular Interface for Minimally Invasive Neural Recording and Stimulation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmt.202100176
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aL3oQn_gmB6-hu0m62RyLWopQEWyhnpY8JlBoV9F68N87yfZ59ZgwO4eZncyDmW8IuYeAbtyUOdMhLxjmX8A0oF0ZJ2zGodQuj_POg5eiP5LP4854Y4q_wYdYFdyiZaT3Ohq4sd_tNWio8bPYC8kjiJAqdslehI2J_ziXr-sqi47xBk8b5ooOU5keL5EbM97eZrEdnib_0jsih4vAkHYbTR6THahPyMEGXOApeU-OJQ4w0oSpsewipamsF4wDiiEoHUzqycxMp794jyT4nCVyZN7kmsiLmtrTt_lktljedUZGvafhQ58tViMwJ7gumAOXFTZzDqTCkCcX0vNMKO9jbdB5ByXmUU5ZsIGD6EgoA0AQApAQ1aDEOWnVHzVcEGrRogEtXWOqJJWQBkIwQpfWeCS28pLwJJbqs4G_qBqgY15F6VUr6VXdx8Fwdbr6z0fXZJ_H4YLUE31DWvOvH7hFlz-3d0mrf1WKpd8
link.rule.ids 315,783,787,11576,27938,27939,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07TwMxDI6gDMCAeIo3GVhPvUvS3GWsgKpAr0Kilcp0SnKOVKm9IlQG_j1Org-6MiZyPNhy_JD9mZB7cOjGdZZEyiUywvwLIgVoV9pyEzPIlE38vHPel92heBm1lt2EfhamxodYFdy8ZYT_2hu4L0g316ihupz6ZkjmUYRSuU12hBTKb29g4m1dZlE-4GBhxZxsRWmsRkvoxpg1N1lsxqfBwXQOycEiMqTtWpVHZAuqY7L_By_whHwEz-InGGkA1Vi2kdJQ13PaAsUYlObjajzVk8kP3iMJ_meBHJnXySbyoroq6ft8PF1s7zolw87T4KEbLXYjRJYzJSMLNpYmthZEijFPwkXJYp6WpS8O2tJChomUTQ0Yx4C3BGQOwHEOSIh6SPkZaVSzCs4JNWjSgKauMFcSKRcanNNcZUaXSGzEBWFBLMVnjX9R1EjHrPDSK1bSK9qP-WB1uvzPozuy2x3kvaL33H-9InvMTxqEBulr0ph_fcMN-v-5uQ0a_gViL6lK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8MwDDZbB2M7jD3Zez7sGprYbhIfy7rSPVoKa6E7BT9kKLRZGd1h_36y0-d1xwRZBxlZn4T0iZBHcBjGVZ5E0iVphPkXRBLQr5ThOmaQS5P4eeduL-0MxeuoMdqY4q_4IVYFN-8Z4b32Dj6zrr4mDVV26nshmScRytJdsic8FvfczqK_rrJIjzdY2DCXNqIslqMlc2PM6tsqtuFpiC_tY3K0AIa0Wd3kCdmB8pQcbtAFnpHPEFj8ACMNnBrLLlIaynpOGaAIQWl3XI6najL5xf8ogs9ZEEflVa6JuqgqLf2Yj6eL5V3nZNh-Hjx1osVqhMhwJtPIgIlTHRsDIkPIk3BhWcwza31t0FgDOeZRJtOgHQPeEJA7AMc5oCBeQ8YvSK38KuGSUI0eDejpElMlkXGhwDnFZa6VRWEtrggLZilmFf1FUREds8Jbr1hZr2i2uoPV1_V_Dj2Q_X6rXby_9N5uyAHzcwahPfqW1ObfP3CH0X-u78MF_wGdCKhz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transient+Neurovascular+Interface+for+Minimally+Invasive+Neural+Recording+and+Stimulation&rft.jtitle=Advanced+materials+technologies&rft.au=Fanelli%2C+Adele&rft.au=Ferlauto%2C+Laura&rft.au=Zollinger%2C+Elodie+Genevi%C3%A8ve&rft.au=Brina%2C+Olivier&rft.date=2022-02-01&rft.issn=2365-709X&rft.eissn=2365-709X&rft.volume=7&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmt.202100176&rft.externalDBID=10.1002%252Fadmt.202100176&rft.externalDocID=ADMT202100176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-709X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-709X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-709X&client=summon