Transient Neurovascular Interface for Minimally Invasive Neural Recording and Stimulation
Neural interfaces are used to mitigate the burden of traumatic injuries, neurodegenerative diseases, and mental disorders. However, the transient or permanent placement of an interface in close contact with the neural tissue requires invasive surgery, potentially entailing both short‐ and long‐term...
Saved in:
Published in | Advanced materials technologies Vol. 7; no. 2 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neural interfaces are used to mitigate the burden of traumatic injuries, neurodegenerative diseases, and mental disorders. However, the transient or permanent placement of an interface in close contact with the neural tissue requires invasive surgery, potentially entailing both short‐ and long‐term complications. To tackle this problem, a transient neurovascular interface for neural recording and stimulation is developed. This endovascular array has been fabricated with facile molding techniques using solely polymeric materials. In vitro experiments have shown promising electrochemical performance for both recording and stimulation, together with a lack of cytotoxicity in cultured cells. The device is compatible with standard endovascular catheters and, once deployed, provide good apposition to a cylindrical structure mimicking a blood vessel. The advantage of this device is twofold. On the one hand, the exploitation of the cerebrovascular system as an access route to the neural tissue avoids invasive surgeries. On the other hand, a transient device may reduce the inflammatory reaction and avoid additional surgeries for removal or replacement. This neurovascular interface combines the benefits of both transient bioelectronics and stent technology in a single device to broaden the range of applications of neural interfaces from neurological diseases and mental disorders to bioelectronics medicine.
A polymeric and transient neurovascular interface have been developed and characterized for neural recording and stimulation. The device shows excellent electrochemical properties and compatibility with standard catheters for navigation inside the vasculature. After deployment in a 2‐mm diameter channel, the device induces a lumen reduction of 18%. These results are a promising step toward the minimally invasive transient endovascular interfaces. |
---|---|
AbstractList | Neural interfaces are used to mitigate the burden of traumatic injuries, neurodegenerative diseases, and mental disorders. However, the transient or permanent placement of an interface in close contact with the neural tissue requires invasive surgery, potentially entailing both short‐ and long‐term complications. To tackle this problem, a transient neurovascular interface for neural recording and stimulation is developed. This endovascular array has been fabricated with facile molding techniques using solely polymeric materials. In vitro experiments have shown promising electrochemical performance for both recording and stimulation, together with a lack of cytotoxicity in cultured cells. The device is compatible with standard endovascular catheters and, once deployed, provide good apposition to a cylindrical structure mimicking a blood vessel. The advantage of this device is twofold. On the one hand, the exploitation of the cerebrovascular system as an access route to the neural tissue avoids invasive surgeries. On the other hand, a transient device may reduce the inflammatory reaction and avoid additional surgeries for removal or replacement. This neurovascular interface combines the benefits of both transient bioelectronics and stent technology in a single device to broaden the range of applications of neural interfaces from neurological diseases and mental disorders to bioelectronics medicine.
A polymeric and transient neurovascular interface have been developed and characterized for neural recording and stimulation. The device shows excellent electrochemical properties and compatibility with standard catheters for navigation inside the vasculature. After deployment in a 2‐mm diameter channel, the device induces a lumen reduction of 18%. These results are a promising step toward the minimally invasive transient endovascular interfaces. |
Author | Fanelli, Adele Reymond, Philippe Ferlauto, Laura Machi, Paolo Brina, Olivier Zollinger, Elodie Geneviève Ghezzi, Diego |
Author_xml | – sequence: 1 givenname: Adele surname: Fanelli fullname: Fanelli, Adele organization: École polytechnique fédérale de Lausanne – sequence: 2 givenname: Laura surname: Ferlauto fullname: Ferlauto, Laura organization: École polytechnique fédérale de Lausanne – sequence: 3 givenname: Elodie Geneviève surname: Zollinger fullname: Zollinger, Elodie Geneviève organization: École polytechnique fédérale de Lausanne – sequence: 4 givenname: Olivier surname: Brina fullname: Brina, Olivier organization: Geneva University Hospital – sequence: 5 givenname: Philippe surname: Reymond fullname: Reymond, Philippe organization: Geneva University Hospital – sequence: 6 givenname: Paolo surname: Machi fullname: Machi, Paolo organization: Geneva University Hospital – sequence: 7 givenname: Diego orcidid: 0000-0002-0554-7510 surname: Ghezzi fullname: Ghezzi, Diego email: diego.ghezzi@epfl.ch organization: École polytechnique fédérale de Lausanne |
BookMark | eNpNkNtKAzEQhoNUsNbeep0X2JrTni5LPRVaBV1Br0I2mZVINivZbWXf3lSleDXzD98Mw3eOJr7zgNAlJQtKCLtSph0WjLAYaJ6doCnjWZrkpHyd_OvP0LzvP0hkSprxgk3RWxWU7y34AT_ALnR71eudUwGv_QChURpw0wW8td62yrkxziNi9_CDK4efQHfBWP-OlTf4ebBtXB9s5y_QaaNcD_O_OkMvtzfV6j7ZPN6tV8tNojkrs0SDJllNtAaRp1RQLgwjPDdGFFxoo6EoylLnNdQNA54KKBqAhnOIoNI85zNU_t79sg5G-Rnio2GUlMiDGHkQI49i5PJ6Wx0T_wbQul3k |
CitedBy_id | crossref_primary_10_1088_2516_1091_ac812c crossref_primary_10_1038_s41378_022_00433_8 crossref_primary_10_1002_admt_202201274 crossref_primary_10_1063_5_0104873 crossref_primary_10_1089_ten_tea_2022_0119 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Advanced Materials Technologies published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 The Authors. Advanced Materials Technologies published by Wiley‐VCH GmbH |
DBID | 24P WIN |
DOI | 10.1002/admt.202100176 |
DatabaseName | Open Access: Wiley-Blackwell Open Access Journals Wiley Online Library (Open Access Collection) |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 24P name: Open Access: Wiley-Blackwell Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2365-709X |
EndPage | n/a |
ExternalDocumentID | ADMT202100176 |
Genre | article |
GrantInformation_xml | – fundername: École polytechnique fédérale de Lausanne and Medtronic |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AANLZ AAXRX AAZKR ACAHQ ACCFJ ACCZN ACGFS ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AHBTC AIACR AITYG AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS BFHJK BMXJE DCZOG EBS EJD HGLYW KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI O9- P2W ROL SUPJJ WBKPD WIN WOHZO WXSBR ZZTAW |
ID | FETCH-LOGICAL-c3296-cec06b0cce47514134d2037dd4834cdce8899c7bebf2e354e8feef33e34dac373 |
IEDL.DBID | 24P |
ISSN | 2365-709X |
IngestDate | Sat Aug 24 00:57:33 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3296-cec06b0cce47514134d2037dd4834cdce8899c7bebf2e354e8feef33e34dac373 |
ORCID | 0000-0002-0554-7510 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmt.202100176 |
PageCount | 12 |
ParticipantIDs | wiley_primary_10_1002_admt_202100176_ADMT202100176 |
PublicationCentury | 2000 |
PublicationDate | February 2022 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationTitle | Advanced materials technologies |
PublicationYear | 2022 |
References | 2018; 121 2019; 11 2020; 242 2019; 10 2019; 13 2016; 32 2019; 16 2020; 15 2016; 30 2019; 19 2016; 540 2020; 14 2016; 2016 2018; 83 2010; 93B 2013; 5 2006; 899 2011; 19 2016; 34 2020; 8 2013; 19 2018; 8 2020; 5 2018; 3 2018; 2 2020; 3 2009; 10 2020; 53 2005; 148 2018; 257 2014; 16 2021; 274 2011; 23 2012; 337 2010; 4 2014; 11 2017; 63 2015; 6 2005; 195 2018; 181 2019; 3 2010; 35 2021; 2 2015; 18 2019; 37 2016; 10 2008; 10 2006; 3 2016; 247 2011; 6 2015; 7 2020; 108 2021; 13 2013; 38 2017; 17 2013; 34 2017; 55 2016; 530 2019 2007; 82 2015 2005; 17 2018; 10 2016; 8 |
References_xml | – volume: 10 start-page: 1043 year: 2019 publication-title: Nat. Commun. – volume: 17 start-page: 96 year: 2017 publication-title: Nat. Mater. – volume: 274 year: 2021 publication-title: Biomaterials – volume: 540 start-page: 379 year: 2016 publication-title: Nature – volume: 16 start-page: 603 year: 2019 publication-title: Expert Rev. Med. Devices – volume: 38 start-page: 641 year: 2013 publication-title: J. Magn. Reson. Imaging – volume: 18 start-page: 310 year: 2015 publication-title: Nat. Neurosci. – volume: 3 start-page: 37 year: 2019 publication-title: Nat. Biomed. Eng. – volume: 17 year: 2005 publication-title: Phys. Fluids – volume: 257 start-page: 753 year: 2018 publication-title: Sens. Actuators, B – volume: 899 start-page: 308 year: 2006 publication-title: Ann. N. Y. Acad. Sci. – start-page: 924 year: 2019 end-page: 927 – volume: 55 start-page: 814 year: 2017 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 23 start-page: H268 year: 2011 publication-title: Adv. Mater. – volume: 19 start-page: 895 year: 2013 publication-title: Microsyst. Technol. – volume: 14 start-page: 432 year: 2020 publication-title: Front. Neurosci. – volume: 3 start-page: 153 year: 2020 publication-title: Commun. Chem. – volume: 10 start-page: 11 year: 2016 publication-title: Front. Neurosci. – volume: 63 start-page: 164 year: 2017 publication-title: J. Biomech. – volume: 35 start-page: 1217 year: 2010 publication-title: Prog. Polym. Sci. – volume: 34 start-page: 4703 year: 2013 publication-title: Biomaterials – volume: 10 start-page: 9865 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 131 year: 2014 publication-title: Acta Bioeng. Biomech. – volume: 148 start-page: 1 year: 2005 publication-title: J. Neurosci. Methods – volume: 10 start-page: 275 year: 2008 publication-title: Annu. Rev. Biomed. Eng. – volume: 2016 start-page: 6174 year: 2016 publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. – volume: 19 start-page: 3776 year: 2019 publication-title: Lab Chip – volume: 4 year: 2010 publication-title: Biomicrofluidics – volume: 2 start-page: 138 year: 2021 publication-title: Signals – volume: 19 start-page: 820 year: 2019 publication-title: IEEE Sens. J. – volume: 108 start-page: 238 year: 2020 publication-title: Neuron – volume: 337 start-page: 1640 year: 2012 publication-title: Science – volume: 195 start-page: 115 year: 2005 publication-title: Exp. Neurol. – volume: 53 start-page: 6267 year: 2020 publication-title: Macromolecules – volume: 93B start-page: 407 year: 2010 publication-title: J. Biomed. Mater. Res. – volume: 530 start-page: 71 year: 2016 publication-title: Nature – volume: 19 start-page: 307 year: 2011 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 13 start-page: 689 year: 2019 publication-title: Front. Neurosci. – volume: 15 start-page: 3557 year: 2020 publication-title: Nat. Protoc. – volume: 6 start-page: 48 year: 2015 publication-title: ACS Chem. Neurosci. – volume: 3 start-page: 322 year: 2018 publication-title: Bioact. Mater. – volume: 5 year: 2020 publication-title: Adv. Mater. Technol. – volume: 11 year: 2014 publication-title: J. Neural Eng. – volume: 13 start-page: 102 year: 2021 publication-title: J. Neurointerv. Surg. – volume: 2 start-page: 907 year: 2018 publication-title: Nat. Biomed. Eng. – volume: 3 start-page: 59 year: 2006 publication-title: J. Neural Eng. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 121 start-page: 89 year: 2018 publication-title: Prog. Org. Coat. – volume: 5 year: 2013 publication-title: Sci. Transl. Med. – volume: 32 start-page: 57 year: 2016 publication-title: Acta Biomater. – volume: 247 start-page: 125 year: 2016 publication-title: Sens. Actuators, A – volume: 37 start-page: 428 year: 2019 publication-title: Trends Biotechnol. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 181 start-page: 1 year: 2018 publication-title: Biomaterials – volume: 6 year: 2011 publication-title: PLoS One – volume: 34 start-page: 320 year: 2016 publication-title: Nat. Biotechnol. – start-page: 781 year: 2015 end-page: 868 – volume: 10 start-page: 536 year: 2009 publication-title: Org. Electron. – volume: 30 start-page: 111 year: 2016 publication-title: Blood Rev. – volume: 242 year: 2020 publication-title: Mater. Chem. Phys. – volume: 7 year: 2015 publication-title: Nanoscale – volume: 83 start-page: 79 year: 2018 publication-title: Prog. Polym. Sci. – volume: 82 start-page: 169 year: 2007 publication-title: J. Biomed. Mater. Res., Part A – volume: 8 start-page: 8427 year: 2018 publication-title: Sci. Rep. – volume: 8 start-page: 462 year: 2020 publication-title: Front. Bioeng. Biotechnol. |
SSID | ssj0001916382 |
Score | 2.3207493 |
Snippet | Neural interfaces are used to mitigate the burden of traumatic injuries, neurodegenerative diseases, and mental disorders. However, the transient or permanent... |
SourceID | wiley |
SourceType | Publisher |
SubjectTerms | endovascular device neural interfaces polymers transient neurotechnology |
Title | Transient Neurovascular Interface for Minimally Invasive Neural Recording and Stimulation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmt.202100176 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aL3oQn_gmB6-hu0m62RyLWopQEWyhnpY8JlBoV9F68N87yfZ59ZgwO4eZncyDmW8IuYeAbtyUOdMhLxjmX8A0oF0ZJ2zGodQuj_POg5eiP5LP4854Y4q_wYdYFdyiZaT3Ohq4sd_tNWio8bPYC8kjiJAqdslehI2J_ziXr-sqi47xBk8b5ooOU5keL5EbM97eZrEdnib_0jsih4vAkHYbTR6THahPyMEGXOApeU-OJQ4w0oSpsewipamsF4wDiiEoHUzqycxMp794jyT4nCVyZN7kmsiLmtrTt_lktljedUZGvafhQ58tViMwJ7gumAOXFTZzDqTCkCcX0vNMKO9jbdB5ByXmUU5ZsIGD6EgoA0AQApAQ1aDEOWnVHzVcEGrRogEtXWOqJJWQBkIwQpfWeCS28pLwJJbqs4G_qBqgY15F6VUr6VXdx8Fwdbr6z0fXZJ_H4YLUE31DWvOvH7hFlz-3d0mrf1WKpd8 |
link.rule.ids | 315,783,787,11576,27938,27939,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07TwMxDI6gDMCAeIo3GVhPvUvS3GWsgKpAr0Kilcp0SnKOVKm9IlQG_j1Org-6MiZyPNhy_JD9mZB7cOjGdZZEyiUywvwLIgVoV9pyEzPIlE38vHPel92heBm1lt2EfhamxodYFdy8ZYT_2hu4L0g316ihupz6ZkjmUYRSuU12hBTKb29g4m1dZlE-4GBhxZxsRWmsRkvoxpg1N1lsxqfBwXQOycEiMqTtWpVHZAuqY7L_By_whHwEz-InGGkA1Vi2kdJQ13PaAsUYlObjajzVk8kP3iMJ_meBHJnXySbyoroq6ft8PF1s7zolw87T4KEbLXYjRJYzJSMLNpYmthZEijFPwkXJYp6WpS8O2tJChomUTQ0Yx4C3BGQOwHEOSIh6SPkZaVSzCs4JNWjSgKauMFcSKRcanNNcZUaXSGzEBWFBLMVnjX9R1EjHrPDSK1bSK9qP-WB1uvzPozuy2x3kvaL33H-9InvMTxqEBulr0ph_fcMN-v-5uQ0a_gViL6lK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8MwDDZbB2M7jD3Zez7sGprYbhIfy7rSPVoKa6E7BT9kKLRZGd1h_36y0-d1xwRZBxlZn4T0iZBHcBjGVZ5E0iVphPkXRBLQr5ThOmaQS5P4eeduL-0MxeuoMdqY4q_4IVYFN-8Z4b32Dj6zrr4mDVV26nshmScRytJdsic8FvfczqK_rrJIjzdY2DCXNqIslqMlc2PM6tsqtuFpiC_tY3K0AIa0Wd3kCdmB8pQcbtAFnpHPEFj8ACMNnBrLLlIaynpOGaAIQWl3XI6najL5xf8ogs9ZEEflVa6JuqgqLf2Yj6eL5V3nZNh-Hjx1osVqhMhwJtPIgIlTHRsDIkPIk3BhWcwza31t0FgDOeZRJtOgHQPeEJA7AMc5oCBeQ8YvSK38KuGSUI0eDejpElMlkXGhwDnFZa6VRWEtrggLZilmFf1FUREds8Jbr1hZr2i2uoPV1_V_Dj2Q_X6rXby_9N5uyAHzcwahPfqW1ObfP3CH0X-u78MF_wGdCKhz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transient+Neurovascular+Interface+for+Minimally+Invasive+Neural+Recording+and+Stimulation&rft.jtitle=Advanced+materials+technologies&rft.au=Fanelli%2C+Adele&rft.au=Ferlauto%2C+Laura&rft.au=Zollinger%2C+Elodie+Genevi%C3%A8ve&rft.au=Brina%2C+Olivier&rft.date=2022-02-01&rft.issn=2365-709X&rft.eissn=2365-709X&rft.volume=7&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmt.202100176&rft.externalDBID=10.1002%252Fadmt.202100176&rft.externalDocID=ADMT202100176 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-709X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-709X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-709X&client=summon |