Nonlinear Hall Effect with Time‐Reversal Symmetry: Theory and Material Realizations
The appearance of a Hall conductance necessarily requires breaking of time‐reversal symmetry, either by an external magnetic field or by the internal magnetization of a material. As a second response, however, Hall dissipationless transverse currents can appear even in time‐reversal symmetric condit...
Saved in:
Published in | Advanced quantum technologies (Online) Vol. 4; no. 9 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The appearance of a Hall conductance necessarily requires breaking of time‐reversal symmetry, either by an external magnetic field or by the internal magnetization of a material. As a second response, however, Hall dissipationless transverse currents can appear even in time‐reversal symmetric conditions provided the material is non‐centrosymmetric. This non‐linear Hall effect has a quantum origin: it is related to the geometric properties of the electronic wavefunctions and encoded in the dipole moment of the Berry curvature. Here, the general theory underpinning this effect is reviewed and various material platforms where non‐linear Hall transverse responses have been found are discussed. On the theoretical front, the link between the non‐linear Hall effect and the Berry curvature dipole is discussed using Boltzmann transport theory. On the material front, different platforms, including topological crystalline insulators, transition metal dichalcogenides, graphene, and Weyl semimetals are reviewed.
This review summarizes recent progress on the non‐linear Hall effect: the production of a non‐linear transverse voltage in response to a driving current, appearing in non‐magnetic materials with unusually low crystalline symmetries. The author presents the general theory describing this effect, and discusses various material platforms ranging from Weyl semimetals to transition metal dichalcogenides. |
---|---|
AbstractList | The appearance of a Hall conductance necessarily requires breaking of time‐reversal symmetry, either by an external magnetic field or by the internal magnetization of a material. As a second response, however, Hall dissipationless transverse currents can appear even in time‐reversal symmetric conditions provided the material is non‐centrosymmetric. This non‐linear Hall effect has a quantum origin: it is related to the geometric properties of the electronic wavefunctions and encoded in the dipole moment of the Berry curvature. Here, the general theory underpinning this effect is reviewed and various material platforms where non‐linear Hall transverse responses have been found are discussed. On the theoretical front, the link between the non‐linear Hall effect and the Berry curvature dipole is discussed using Boltzmann transport theory. On the material front, different platforms, including topological crystalline insulators, transition metal dichalcogenides, graphene, and Weyl semimetals are reviewed.
This review summarizes recent progress on the non‐linear Hall effect: the production of a non‐linear transverse voltage in response to a driving current, appearing in non‐magnetic materials with unusually low crystalline symmetries. The author presents the general theory describing this effect, and discusses various material platforms ranging from Weyl semimetals to transition metal dichalcogenides. The appearance of a Hall conductance necessarily requires breaking of time‐reversal symmetry, either by an external magnetic field or by the internal magnetization of a material. As a second response, however, Hall dissipationless transverse currents can appear even in time‐reversal symmetric conditions provided the material is non‐centrosymmetric. This non‐linear Hall effect has a quantum origin: it is related to the geometric properties of the electronic wavefunctions and encoded in the dipole moment of the Berry curvature. Here, the general theory underpinning this effect is reviewed and various material platforms where non‐linear Hall transverse responses have been found are discussed. On the theoretical front, the link between the non‐linear Hall effect and the Berry curvature dipole is discussed using Boltzmann transport theory. On the material front, different platforms, including topological crystalline insulators, transition metal dichalcogenides, graphene, and Weyl semimetals are reviewed. |
Author | Ortix, Carmine |
Author_xml | – sequence: 1 givenname: Carmine orcidid: 0000-0002-6334-0569 surname: Ortix fullname: Ortix, Carmine email: c.ortix@uu.nl organization: Università di Salerno |
BookMark | eNqFkM1OwzAMxyM0JMbYlXNeoCNp0nbhhqbBkAaI0Z2rNHW0oLSFNDB1Jx6BZ-RJ6BgChIQ4WLZl__zxP0S9qq4AoWNKRpSQ8OTxycMoJGGXkCjeQ_0wojQQhPPej_gADZvmvmsJGWU8YX20vK4rayqQDs-ktXiqNSiP18avcGpKeHt5XcAzuEZafNeWJXjXnuJ0BbVrsawKfCU9ONNVFyCt2Uhv6qo5Qvta2gaGn36AlufTdDIL5jcXl5OzeaBYKOIgV0InigtIqBKcJ4JALjULo5zoXEVxZwnJx4wzIhLKIeZcFlEhdD6GYvvCAI12c5Wrm8aBzh6cKaVrM0qyrS7ZVpfsS5cO4L8AZfzHzd5JY__GxA5bGwvtP0uy22U6_WbfAUNRfAU |
CitedBy_id | crossref_primary_10_1038_s41563_023_01498_0 crossref_primary_10_1103_PhysRevB_110_245304 crossref_primary_10_1016_j_mtelec_2024_100101 crossref_primary_10_1103_PhysRevB_108_L201405 crossref_primary_10_1103_PhysRevB_109_174443 crossref_primary_10_1103_PhysRevB_104_115420 crossref_primary_10_1103_PhysRevLett_133_226302 crossref_primary_10_1088_2053_1591_ac440b crossref_primary_10_1103_PhysRevB_110_115123 crossref_primary_10_1002_smll_202412737 crossref_primary_10_1016_j_scib_2024_08_031 crossref_primary_10_1103_PhysRevB_108_165412 crossref_primary_10_1103_PhysRevB_110_174423 crossref_primary_10_1038_s41535_023_00545_y crossref_primary_10_1038_s41467_023_35989_0 crossref_primary_10_1103_PhysRevB_110_085433 crossref_primary_10_1103_PhysRevB_110_245419 crossref_primary_10_1103_PhysRevLett_130_036202 crossref_primary_10_1021_acs_nanolett_4c05279 crossref_primary_10_1016_j_pquantelec_2024_100535 crossref_primary_10_1063_5_0224066 crossref_primary_10_1103_PhysRevResearch_4_033002 crossref_primary_10_1088_1361_648X_acbc02 crossref_primary_10_1103_PhysRevB_110_195131 crossref_primary_10_1038_s41699_024_00520_6 crossref_primary_10_1103_PhysRevB_109_155153 crossref_primary_10_1103_PhysRevB_111_L081115 crossref_primary_10_1002_adfm_202412896 crossref_primary_10_1088_1572_9494_aca0e1 crossref_primary_10_1103_PhysRevB_110_165140 crossref_primary_10_1080_23746149_2024_2371972 crossref_primary_10_1103_PhysRevB_107_235419 crossref_primary_10_7498_aps_72_20231324 crossref_primary_10_1038_s41377_023_01163_w crossref_primary_10_1103_PhysRevLett_132_186302 crossref_primary_10_1038_s42005_024_01820_5 crossref_primary_10_1103_PhysRevB_110_155122 crossref_primary_10_1103_PhysRevResearch_6_023256 crossref_primary_10_1063_5_0172026 crossref_primary_10_1038_s41928_024_01118_y crossref_primary_10_1002_adma_202209557 crossref_primary_10_1088_1361_648X_acf1eb crossref_primary_10_1103_PhysRevB_106_245143 crossref_primary_10_1103_PhysRevLett_132_096302 crossref_primary_10_1063_5_0202692 crossref_primary_10_1002_adfm_202416204 crossref_primary_10_1103_PhysRevB_107_245141 crossref_primary_10_1103_PhysRevResearch_4_013164 crossref_primary_10_1140_epjp_s13360_024_04893_x crossref_primary_10_1016_j_mtelec_2023_100076 crossref_primary_10_1103_PhysRevB_108_L201115 crossref_primary_10_1103_PhysRevB_111_035158 crossref_primary_10_1063_5_0090445 crossref_primary_10_1021_acs_chemmater_4c00427 crossref_primary_10_21468_SciPostPhysCore_5_3_039 crossref_primary_10_1103_PhysRevB_111_L041202 crossref_primary_10_1103_PhysRevB_111_L041403 crossref_primary_10_1007_s10853_023_09028_8 crossref_primary_10_1103_PhysRevB_109_134419 crossref_primary_10_1002_smll_202409691 crossref_primary_10_1021_acs_nanolett_4c02224 crossref_primary_10_1103_PhysRevB_108_035140 crossref_primary_10_1088_0256_307X_41_11_117502 crossref_primary_10_1103_PhysRevB_106_035423 crossref_primary_10_1103_PhysRevB_104_205422 crossref_primary_10_1103_PhysRevB_104_195410 crossref_primary_10_1103_PhysRevB_104_165303 crossref_primary_10_1038_s41535_022_00512_z crossref_primary_10_1088_2053_1583_ac8b93 crossref_primary_10_1103_PhysRevB_107_L161102 crossref_primary_10_1103_PhysRevB_110_165401 |
Cites_doi | 10.1103/PhysRev.95.1154 10.1038/s41928-021-00537-5 10.1103/PhysRevB.93.201101 10.1103/PhysRevB.86.115112 10.1103/PhysRevB.97.041101 10.1103/PhysRevLett.88.207208 10.1103/PhysRevResearch.3.L012006 10.1103/PhysRevLett.121.246403 10.1103/PhysRevLett.123.016801 10.1103/PhysRevLett.123.216802 10.1021/nl903868w 10.1088/0268-1242/25/3/033001 10.1103/PhysRevLett.114.217203 10.1038/nphys4091 10.1103/PhysRevLett.53.2449 10.1103/RevModPhys.82.1959 10.1103/PhysRevB.82.184112 10.1103/RevModPhys.90.015001 10.1103/PhysRevLett.125.046402 10.1103/RevModPhys.82.3045 10.1103/PhysRevB.87.245408 10.1103/PhysRevB.103.L201202 10.1103/PhysRevLett.123.196403 10.1103/PhysRevB.86.081403 10.1038/nphys2442 10.1103/PhysRevB.91.121417 10.1103/PhysRevB.102.024109 10.1038/nphys4174 10.1038/nature23290 10.1103/PhysRevB.88.241303 10.1038/s41467-021-20983-1 10.1140/epjst/e2018-800098-y 10.1103/RevModPhys.82.1539 10.1016/j.physrep.2010.07.003 10.1038/s41467-017-00938-1 10.1038/ncomms1679 10.1126/science.1234414 10.1038/nphys2272 10.1103/PhysRevLett.123.036806 10.1103/PhysRevB.100.195117 10.1088/2053-1583/aad1ae 10.1103/PhysRevB.59.14915 10.1038/nphys2954 10.1038/nature12187 10.1103/PhysRevB.84.041404 10.1103/RevModPhys.81.109 10.1103/PhysRevB.86.081405 10.1103/PhysRevB.84.153402 10.1103/PhysRevLett.49.405 10.1103/PhysRevB.95.144302 10.1088/0953-8984/20/02/023201 10.1038/nature15768 10.1146/annurev-conmatphys-031214-014501 10.1103/PhysRevLett.103.087206 10.1103/PhysRevB.103.144308 10.1103/PhysRevB.96.041108 10.1021/jp212558p 10.1126/science.aan6003 10.1038/nature26160 10.1103/PhysRevLett.108.196802 10.1002/adma.201605965 10.1103/PhysRevApplied.13.044014 10.1038/nphys3871 10.1038/ncomms15995 10.1103/PhysRev.151.581 10.1038/s41563-019-0294-7 10.1103/PhysRevLett.96.086805 10.1103/PhysRevLett.61.2015 10.1038/ncomms8373 10.1103/PhysRevB.95.241108 10.1103/PhysRevLett.105.026805 10.1126/sciadv.1501524 10.1103/PhysRevLett.115.216806 10.1126/science.1239451 10.1103/PhysRevLett.122.186801 10.1103/PhysRevLett.105.136805 10.1016/0370-2693(81)91026-1 10.1103/PhysRevLett.103.266801 10.1103/PhysRevLett.108.227205 10.1103/PhysRevB.75.045315 10.1103/PhysRev.37.405 10.1038/s41586-018-0807-6 10.1038/nmat2082 10.1103/PhysRevB.97.195151 10.1038/nphys2942 10.1103/PhysRevLett.123.246602 10.1073/pnas.1514581113 10.1103/PhysRevB.72.045346 10.1103/PhysRevLett.45.494 10.1103/PhysRevB.76.073103 10.1103/PhysRevLett.93.206602 10.1038/s41567-018-0189-6 10.1103/PhysRevB.79.115409 10.1126/science.aaa9297 10.1038/nmat4685 10.1088/0034-4885/76/5/056503 10.1016/j.ssc.2012.02.005 10.1038/s41586-019-1422-x 10.1103/RevModPhys.83.1057 10.1103/PhysRev.149.491 10.1126/science.1256815 10.1103/PhysRevB.32.2302 10.1103/PhysRevB.88.085433 10.1038/nphys1270 10.1126/sciadv.aay2497 10.1103/PhysRevB.99.155404 10.1103/PhysRevLett.121.266601 10.1103/PhysRevB.98.075106 10.1038/nature26154 10.1038/nmat3051 10.1103/PhysRevB.98.121109 10.1103/PhysRev.112.739 10.1038/s41467-019-10941-3 10.1038/ncomms1969 10.1103/PhysRevB.90.035402 10.1038/ncomms13973 10.1103/PhysRevB.100.165422 10.1038/ncomms9463 10.1103/PhysRevB.90.155316 10.1038/nphys1420 10.1103/PhysRevB.73.075318 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Advanced Quantum Technologies published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 The Authors. Advanced Quantum Technologies published by Wiley‐VCH GmbH |
DBID | 24P AAYXX CITATION |
DOI | 10.1002/qute.202100056 |
DatabaseName | Wiley Online Library Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2511-9044 |
EndPage | n/a |
ExternalDocumentID | 10_1002_qute_202100056 QUTE202100056 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek funderid: VIDI grant (Project 680‐47‐543) |
GroupedDBID | 0R~ 1OC 24P 33P 34L AAHHS AAHQN AAMNL AANLZ AAYCA AAZKR ABCUV ACCFJ ACCZN ACGFS ACPOU ACXQS ADBBV ADKYN ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFFPM AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB ARCSS BFHJK DCZOG EBS EJD HGLYW LATKE LEEKS LUTES LYRES MEWTI O9- P2W ROL SUPJJ WXSBR ZZTAW AAYXX ABJNI ADMLS AEYWJ AGHNM AGYGG CITATION |
ID | FETCH-LOGICAL-c3296-bc9f7c49e71c944790ebaf325b0fbc56bc570b834309714e644ad5d9fb8ed2313 |
IEDL.DBID | 24P |
ISSN | 2511-9044 |
IngestDate | Tue Jul 01 02:03:49 EDT 2025 Thu Apr 24 23:09:20 EDT 2025 Wed Jan 22 16:29:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3296-bc9f7c49e71c944790ebaf325b0fbc56bc570b834309714e644ad5d9fb8ed2313 |
ORCID | 0000-0002-6334-0569 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.202100056 |
PageCount | 20 |
ParticipantIDs | crossref_primary_10_1002_qute_202100056 crossref_citationtrail_10_1002_qute_202100056 wiley_primary_10_1002_qute_202100056_QUTE202100056 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationTitle | Advanced quantum technologies (Online) |
PublicationYear | 2021 |
References | 1966; 151 2010; 10 1958; 112 2009; 81 2010; 105 2019; 99 2019; 10 1980; 45 2019; 565 2019; 18 2020; 13 2007; 75 2007; 76 1984; 53 2018; 5 2010; 25 1999; 59 2002; 88 2015; 91 2005; 72 2010; 6 2014; 10 2019; 5 2018; 227 2013; 88 2013; 87 2011; 84 2011; 83 2015; 527 2016; 93 2013; 341 2013; 340 2016; 15 2019; 100 2012; 108 2016; 12 2016; 6 2009; 79 1982; 49 2016; 2 2015; 115 2018; 359 1966; 149 2013; 76 2015; 114 2018; 90 2018; 98 2012; 116 2018; 97 2009; 103 2018; 14 2017; 547 2019; 572 2017; 8 2018; 121 2006; 73 2008; 7 2011; 10 1981; 105 2015; 349 2020; 125 2019; 122 2019; 123 2020; 6 1954; 95 2016; 113 2007; 20 2015; 6 2006; 96 2021; 4 2015; 5 2021; 3 2014; 90 2021; 103 2009 2017; 29 2020; 102 1931; 37 2010; 82 2017; 95 2012; 152 2017; 96 2012; 3 2021; 12 2004; 93 2018; 556 2021 2020 2017; 13 2013; 497 2010; 496 1988; 61 2009; 5 1985; 32 2012; 86 2014; 346 2012; 8 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 Fang C. (e_1_2_9_37_1) 2019; 5 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_14_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_111_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_129_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 Weng H. (e_1_2_9_112_1) 2015; 5 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 Muechler L. (e_1_2_9_68_1) 2016; 6 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_117_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 Lv B. Q. (e_1_2_9_114_1) 2015; 5 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_116_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 121 year: 2018 publication-title: Phys. Rev. Lett. – volume: 61 start-page: 2015 year: 1988 publication-title: Phys. Rev. Lett. – volume: 86 year: 2012 publication-title: Phys. Rev. B – volume: 151 start-page: 581 year: 1966 publication-title: Phys. Rev. – volume: 93 year: 2004 publication-title: Phys. Rev. Lett. – volume: 341 start-page: 1496 year: 2013 publication-title: Science – volume: 97 year: 2018 publication-title: Phys. Rev. B – volume: 3 year: 2021 publication-title: Phys. Rev. Res. – volume: 37 start-page: 405 year: 1931 publication-title: Phys. Rev. – volume: 79 year: 2009 publication-title: Phys. Rev. B – volume: 8 start-page: 942 year: 2017 publication-title: Nat. Commun. – volume: 84 year: 2011 publication-title: Phys. Rev. B – volume: 547 start-page: 432 year: 2017 publication-title: Nature – volume: 108 year: 2012 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 677 year: 2017 publication-title: Nat. Phys. – volume: 10 start-page: 451 year: 2014 publication-title: Nat. Phys. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 340 start-page: 167 year: 2013 publication-title: Science – volume: 49 start-page: 405 year: 1982 publication-title: Phys. Rev. Lett. – volume: 103 year: 2009 publication-title: Phys. Rev. Lett. – volume: 99 year: 2019 publication-title: Phys. Rev. B – volume: 95 start-page: 1154 year: 1954 publication-title: Phys. Rev. – volume: 6 start-page: 361 year: 2015 publication-title: Annu. Rev. Condens. Matter Phys. – volume: 122 year: 2019 publication-title: Phys. Rev. Lett. – volume: 527 start-page: 495 year: 2015 publication-title: Nature – volume: 8 start-page: 382 year: 2012 publication-title: Nat. Phys. – volume: 13 start-page: 683 year: 2017 publication-title: Nat. Phys. – volume: 5 start-page: 12 year: 2019 publication-title: Sci. Adv. – volume: 59 year: 1999 publication-title: Phys. Rev. B – volume: 82 start-page: 3045 year: 2010 publication-title: Rev. Mod. Phys. – volume: 45 start-page: 494 year: 1980 publication-title: Phys. Rev. Lett. – volume: 75 year: 2007 publication-title: Phys. Rev. B – volume: 5 year: 2018 publication-title: 2D Mater. – volume: 10 start-page: 521 year: 2011 publication-title: Nat. Mater. – volume: 3 start-page: 679 year: 2012 publication-title: Nat. Commun. – volume: 105 start-page: 219 year: 1981 publication-title: Phys. Lett. B – volume: 113 start-page: 1180 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 88 year: 2013 publication-title: Phys. Rev. B – volume: 123 year: 2019 publication-title: Phys. Rev. Lett. – volume: 102 year: 2020 publication-title: Phys. Rev. B – volume: 82 start-page: 1959 year: 2010 publication-title: Rev. Mod. Phys. – volume: 125 year: 2020 publication-title: Phys. Rev. Lett. – volume: 90 year: 2014 publication-title: Phys. Rev. B – volume: 497 start-page: 594 year: 2013 publication-title: Nature – volume: 349 start-page: 613 year: 2015 publication-title: Science – volume: 3 start-page: 982 year: 2012 publication-title: Nat. Commun. – volume: 10 start-page: 1271 year: 2010 publication-title: Nano Lett. – volume: 88 year: 2002 publication-title: Phys. Rev. Lett. – volume: 114 year: 2015 publication-title: Phys. Rev. Lett. – volume: 13 year: 2020 publication-title: Phys. Rev. Appl. – volume: 15 start-page: 1155 year: 2016 publication-title: Nat. Mater. – volume: 6 year: 2016 publication-title: Phys. Rev. X – volume: 73 year: 2006 publication-title: Phys. Rev. B – volume: 346 start-page: 1344 year: 2014 publication-title: Science – volume: 76 year: 2007 publication-title: Phys. Rev. B – volume: 76 year: 2013 publication-title: Rep. Prog. Phys. – volume: 103 year: 2021 publication-title: Phys. Rev. B – volume: 7 start-page: 151 year: 2008 publication-title: Nat. Mater. – year: 2009 – volume: 91 year: 2015 publication-title: Phys. Rev. B – volume: 227 start-page: 1309 year: 2018 publication-title: Eur. Phys. J.: Spec. Top. – volume: 10 start-page: 343 year: 2014 publication-title: Nat. Phys. – volume: 20 year: 2007 publication-title: J. Phys.: Condens. Matter – volume: 90 year: 2018 publication-title: Rev. Mod. Phys. – year: 2021 – volume: 149 start-page: 149 year: 1966 publication-title: Phys. Rev. – volume: 5 year: 2015 publication-title: Phys. Rev. X – volume: 6 start-page: 8463 year: 2015 publication-title: Nat. Commun. – volume: 25 year: 2010 publication-title: Semicond. Sci. Technol. – volume: 32 start-page: 2302 year: 1985 publication-title: Phys. Rev. B – volume: 6 start-page: 7373 year: 2015 publication-title: Nat. Commun. – volume: 87 year: 2013 publication-title: Phys. Rev. B – volume: 93 year: 2016 publication-title: Phys. Rev. B – volume: 100 year: 2019 publication-title: Phys. Rev. B – volume: 83 start-page: 1057 year: 2011 publication-title: Rev. Mod. Phys. – volume: 8 start-page: 800 year: 2012 publication-title: Nat. Phys. – volume: 112 start-page: 739 year: 1958 publication-title: Phys. Rev. – volume: 6 start-page: 30 year: 2010 publication-title: Nat. Phys. – volume: 96 year: 2017 publication-title: Phys. Rev. B – volume: 2 start-page: 5 year: 2016 publication-title: Sci. Adv. – volume: 115 year: 2015 publication-title: Phys. Rev. Lett. – volume: 116 start-page: 8983 year: 2012 publication-title: J. Phys. Chem. C – volume: 572 start-page: 101 year: 2019 publication-title: Nature – volume: 12 start-page: 698 year: 2021 publication-title: Nat. Commun. – volume: 12 start-page: 1105 year: 2016 publication-title: Nat. Phys. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 81 start-page: 109 year: 2009 publication-title: Rev. Mod. Phys. – volume: 96 year: 2006 publication-title: Phys. Rev. Lett. – volume: 18 start-page: 324 year: 2019 publication-title: Nat. Mater. – volume: 95 year: 2017 publication-title: Phys. Rev. B – volume: 152 start-page: 909 year: 2012 publication-title: Solid State Commun. – volume: 6 start-page: 13 year: 2020 publication-title: Sci. Adv. – volume: 72 year: 2005 publication-title: Phys. Rev. B – volume: 98 year: 2018 publication-title: Phys. Rev. B – volume: 14 start-page: 900 year: 2018 publication-title: Nat. Phys. – volume: 82 year: 2010 publication-title: Phys. Rev. B – volume: 496 start-page: 109 year: 2010 publication-title: Phys. Rep. – volume: 359 start-page: 76 year: 2018 publication-title: Science – volume: 4 start-page: 116 year: 2021 publication-title: Nat. Electron. – volume: 556 start-page: 80 year: 2018 publication-title: Nature – volume: 5 start-page: 438 year: 2009 publication-title: Nat. Phys. – volume: 53 start-page: 2449 year: 1984 publication-title: Phys. Rev. Lett. – volume: 82 start-page: 1539 year: 2010 publication-title: Rev. Mod. Phys. – volume: 565 start-page: 337 year: 2019 publication-title: Nature – year: 2020 – volume: 10 start-page: 3047 year: 2019 publication-title: Nat. Commun. – volume: 103 start-page: 14 year: 2021 publication-title: Phys. Rev. B – volume: 105 year: 2010 publication-title: Phys. Rev. Lett. – volume: 556 start-page: 43 year: 2018 publication-title: Nature – ident: e_1_2_9_5_1 doi: 10.1103/PhysRev.95.1154 – ident: e_1_2_9_80_1 doi: 10.1038/s41928-021-00537-5 – ident: e_1_2_9_101_1 doi: 10.1103/PhysRevB.93.201101 – volume: 6 start-page: 041069 year: 2016 ident: e_1_2_9_68_1 publication-title: Phys. Rev. X – ident: e_1_2_9_24_1 doi: 10.1103/PhysRevB.86.115112 – ident: e_1_2_9_116_1 doi: 10.1103/PhysRevB.97.041101 – ident: e_1_2_9_7_1 doi: 10.1103/PhysRevLett.88.207208 – ident: e_1_2_9_20_1 – ident: e_1_2_9_36_1 doi: 10.1103/PhysRevResearch.3.L012006 – ident: e_1_2_9_115_1 doi: 10.1103/PhysRevLett.121.246403 – ident: e_1_2_9_133_1 doi: 10.1103/PhysRevLett.123.016801 – ident: e_1_2_9_100_1 doi: 10.1103/PhysRevLett.123.216802 – ident: e_1_2_9_53_1 doi: 10.1021/nl903868w – ident: e_1_2_9_94_1 doi: 10.1088/0268-1242/25/3/033001 – ident: e_1_2_9_35_1 doi: 10.1103/PhysRevLett.114.217203 – ident: e_1_2_9_70_1 doi: 10.1038/nphys4091 – ident: e_1_2_9_81_1 doi: 10.1103/PhysRevLett.53.2449 – ident: e_1_2_9_26_1 doi: 10.1103/RevModPhys.82.1959 – ident: e_1_2_9_49_1 doi: 10.1103/PhysRevB.82.184112 – ident: e_1_2_9_108_1 doi: 10.1103/RevModPhys.90.015001 – ident: e_1_2_9_107_1 doi: 10.1103/PhysRevLett.125.046402 – ident: e_1_2_9_3_1 doi: 10.1103/RevModPhys.82.3045 – ident: e_1_2_9_86_1 doi: 10.1103/PhysRevB.87.245408 – ident: e_1_2_9_129_1 doi: 10.1103/PhysRevB.103.L201202 – ident: e_1_2_9_79_1 doi: 10.1103/PhysRevLett.123.196403 – ident: e_1_2_9_126_1 – ident: e_1_2_9_91_1 doi: 10.1103/PhysRevB.86.081403 – ident: e_1_2_9_40_1 doi: 10.1038/nphys2442 – ident: e_1_2_9_128_1 doi: 10.1103/PhysRevB.91.121417 – ident: e_1_2_9_18_1 doi: 10.1103/PhysRevB.102.024109 – ident: e_1_2_9_71_1 doi: 10.1038/nphys4174 – ident: e_1_2_9_22_1 doi: 10.1038/nature23290 – ident: e_1_2_9_44_1 doi: 10.1103/PhysRevB.88.241303 – ident: e_1_2_9_131_1 doi: 10.1038/s41467-021-20983-1 – ident: e_1_2_9_43_1 doi: 10.1140/epjst/e2018-800098-y – ident: e_1_2_9_9_1 doi: 10.1103/RevModPhys.82.1539 – ident: e_1_2_9_90_1 doi: 10.1016/j.physrep.2010.07.003 – ident: e_1_2_9_103_1 doi: 10.1038/s41467-017-00938-1 – ident: e_1_2_9_118_1 doi: 10.1038/ncomms1679 – ident: e_1_2_9_11_1 doi: 10.1126/science.1234414 – ident: e_1_2_9_84_1 doi: 10.1038/nphys2272 – ident: e_1_2_9_63_1 doi: 10.1103/PhysRevLett.123.036806 – ident: e_1_2_9_21_1 doi: 10.1103/PhysRevB.100.195117 – ident: e_1_2_9_74_1 doi: 10.1088/2053-1583/aad1ae – ident: e_1_2_9_25_1 doi: 10.1103/PhysRevB.59.14915 – ident: e_1_2_9_87_1 doi: 10.1038/nphys2954 – ident: e_1_2_9_85_1 doi: 10.1038/nature12187 – ident: e_1_2_9_96_1 doi: 10.1103/PhysRevB.84.041404 – ident: e_1_2_9_106_1 – ident: e_1_2_9_125_1 – ident: e_1_2_9_88_1 doi: 10.1103/RevModPhys.81.109 – ident: e_1_2_9_12_1 – ident: e_1_2_9_83_1 doi: 10.1103/PhysRevB.86.081405 – ident: e_1_2_9_57_1 doi: 10.1103/PhysRevB.84.153402 – ident: e_1_2_9_2_1 doi: 10.1103/PhysRevLett.49.405 – ident: e_1_2_9_50_1 doi: 10.1103/PhysRevB.95.144302 – ident: e_1_2_9_32_1 doi: 10.1088/0953-8984/20/02/023201 – ident: e_1_2_9_64_1 doi: 10.1038/nature15768 – ident: e_1_2_9_41_1 doi: 10.1146/annurev-conmatphys-031214-014501 – ident: e_1_2_9_34_1 doi: 10.1103/PhysRevLett.103.087206 – ident: e_1_2_9_17_1 doi: 10.1103/PhysRevB.103.144308 – ident: e_1_2_9_72_1 doi: 10.1103/PhysRevB.96.041108 – ident: e_1_2_9_60_1 doi: 10.1021/jp212558p – ident: e_1_2_9_73_1 doi: 10.1126/science.aan6003 – ident: e_1_2_9_124_1 doi: 10.1038/nature26160 – ident: e_1_2_9_55_1 doi: 10.1103/PhysRevLett.108.196802 – ident: e_1_2_9_120_1 doi: 10.1002/adma.201605965 – ident: e_1_2_9_122_1 doi: 10.1103/PhysRevApplied.13.044014 – ident: e_1_2_9_66_1 doi: 10.1038/nphys3871 – ident: e_1_2_9_15_1 doi: 10.1038/ncomms15995 – ident: e_1_2_9_42_1 doi: 10.1103/PhysRev.151.581 – volume: 5 start-page: 12 year: 2019 ident: e_1_2_9_37_1 publication-title: Sci. Adv. – ident: e_1_2_9_78_1 doi: 10.1038/s41563-019-0294-7 – ident: e_1_2_9_93_1 doi: 10.1103/PhysRevLett.96.086805 – ident: e_1_2_9_10_1 doi: 10.1103/PhysRevLett.61.2015 – ident: e_1_2_9_111_1 doi: 10.1038/ncomms8373 – ident: e_1_2_9_102_1 doi: 10.1103/PhysRevB.95.241108 – ident: e_1_2_9_13_1 doi: 10.1103/PhysRevLett.105.026805 – ident: e_1_2_9_16_1 doi: 10.1126/sciadv.1501524 – ident: e_1_2_9_14_1 doi: 10.1103/PhysRevLett.115.216806 – ident: e_1_2_9_46_1 doi: 10.1126/science.1239451 – ident: e_1_2_9_51_1 doi: 10.1103/PhysRevLett.122.186801 – ident: e_1_2_9_54_1 doi: 10.1103/PhysRevLett.105.136805 – ident: e_1_2_9_38_1 doi: 10.1016/0370-2693(81)91026-1 – ident: e_1_2_9_132_1 doi: 10.1103/PhysRevLett.103.266801 – ident: e_1_2_9_92_1 doi: 10.1103/PhysRevLett.108.227205 – ident: e_1_2_9_31_1 doi: 10.1103/PhysRevB.75.045315 – ident: e_1_2_9_23_1 doi: 10.1103/PhysRev.37.405 – ident: e_1_2_9_77_1 doi: 10.1038/s41586-018-0807-6 – ident: e_1_2_9_97_1 doi: 10.1038/nmat2082 – ident: e_1_2_9_109_1 doi: 10.1103/PhysRevB.97.195151 – ident: e_1_2_9_56_1 doi: 10.1038/nphys2942 – ident: e_1_2_9_105_1 doi: 10.1103/PhysRevLett.123.246602 – ident: e_1_2_9_110_1 doi: 10.1073/pnas.1514581113 – volume: 5 start-page: 011029 year: 2015 ident: e_1_2_9_112_1 publication-title: Phys. Rev. X – ident: e_1_2_9_33_1 doi: 10.1103/PhysRevB.72.045346 – ident: e_1_2_9_1_1 doi: 10.1103/PhysRevLett.45.494 – ident: e_1_2_9_82_1 doi: 10.1103/PhysRevB.76.073103 – ident: e_1_2_9_8_1 doi: 10.1103/PhysRevLett.93.206602 – ident: e_1_2_9_75_1 doi: 10.1038/s41567-018-0189-6 – ident: e_1_2_9_59_1 doi: 10.1103/PhysRevB.79.115409 – ident: e_1_2_9_113_1 doi: 10.1126/science.aaa9297 – ident: e_1_2_9_65_1 doi: 10.1038/nmat4685 – ident: e_1_2_9_95_1 doi: 10.1088/0034-4885/76/5/056503 – ident: e_1_2_9_104_1 – ident: e_1_2_9_58_1 doi: 10.1016/j.ssc.2012.02.005 – ident: e_1_2_9_127_1 doi: 10.1038/s41586-019-1422-x – ident: e_1_2_9_4_1 doi: 10.1103/RevModPhys.83.1057 – ident: e_1_2_9_98_1 doi: 10.1103/PhysRev.149.491 – ident: e_1_2_9_69_1 doi: 10.1126/science.1256815 – ident: e_1_2_9_99_1 – ident: e_1_2_9_48_1 doi: 10.1103/PhysRevB.32.2302 – ident: e_1_2_9_61_1 doi: 10.1103/PhysRevB.88.085433 – ident: e_1_2_9_130_1 doi: 10.1038/nphys1270 – ident: e_1_2_9_19_1 doi: 10.1126/sciadv.aay2497 – ident: e_1_2_9_28_1 doi: 10.1103/PhysRevB.99.155404 – ident: e_1_2_9_121_1 – ident: e_1_2_9_76_1 doi: 10.1103/PhysRevLett.121.266601 – ident: e_1_2_9_62_1 doi: 10.1103/PhysRevB.98.075106 – ident: e_1_2_9_123_1 doi: 10.1038/nature26154 – ident: e_1_2_9_117_1 doi: 10.1038/nmat3051 – ident: e_1_2_9_52_1 doi: 10.1103/PhysRevB.98.121109 – ident: e_1_2_9_6_1 doi: 10.1103/PhysRev.112.739 – ident: e_1_2_9_29_1 doi: 10.1038/s41467-019-10941-3 – ident: e_1_2_9_39_1 doi: 10.1038/ncomms1969 – ident: e_1_2_9_45_1 doi: 10.1103/PhysRevB.90.035402 – ident: e_1_2_9_67_1 doi: 10.1038/ncomms13973 – ident: e_1_2_9_27_1 doi: 10.1103/PhysRevB.100.165422 – ident: e_1_2_9_47_1 doi: 10.1038/ncomms9463 – ident: e_1_2_9_119_1 doi: 10.1103/PhysRevB.90.155316 – ident: e_1_2_9_89_1 doi: 10.1038/nphys1420 – volume: 5 start-page: 031013 year: 2015 ident: e_1_2_9_114_1 publication-title: Phys. Rev. X – ident: e_1_2_9_30_1 doi: 10.1103/PhysRevB.73.075318 |
SSID | ssj0002313473 |
Score | 2.5243845 |
SecondaryResourceType | review_article |
Snippet | The appearance of a Hall conductance necessarily requires breaking of time‐reversal symmetry, either by an external magnetic field or by the internal... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | Berry curvature dipole graphene topological crystalline insulators transition metal dichalcogenides Weyl semimetals |
Title | Nonlinear Hall Effect with Time‐Reversal Symmetry: Theory and Material Realizations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.202100056 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA66IXgRP3F-jBwET2FtmrSLt6EbQ9zQbYXdSpKmp63q1h128yf4G_0l5mOr20EEDy0tvHkpT5O-D2_f9wkANyHxRURogAhX-qSoREz4PmI6mjOslCdt8XivH3Zj8jim440ufqcPUSbczMqw32uzwLmYN35EQ98XVuYSmwQ1DXdB1fTXmqI-TJ7LLItmLwGxv5kNlUbMI2St3OjhxraLrci0yVRtqOkcgoMVR4Qt91KPwI7Kj8GerdWU8xMQ993j8xns8skEOgFiaDKq0HR0fH18DpSpttA-hsvpVBWz5R10TfiQ5yns8cLOOzjQLHHdh3kK4k57dN9Fq90RkAwwC5GQLIskYSryJSMkYp4SPAswFV4mJA31EXmiGZDAyEQRpYkPT2nKMtFUqcHlDFTy11ydAxiklGmm7ZFAYKL0KBVlmfan6ZGiOsrVAFojk8iVdLjZwWKSONFjnBgkkxLJGrgt7d-caMavltgC_YdZ8hKP2uXdxX8GXYJ9c-3Kw65ApZgt1LXmE4Wo2ylTB9XWQ-9p-A2hFsM5 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagCMGCeIry9IDEZJH4kdRsCLUK0FZQGoktih1nagOUdOjGT-A38kvwowl0QEgMsZTofIoutu_T5e47AM4C6ouQMoJoqvSgmERc-D7i2ptzrJQnbfJ4rx9EMb19YlU2oamFcfwQdcDN7Ax7XpsNbgLSF9-soa9Ty3OJTYSaBctghQY4NE0MML2vwywavhBq_zMbLI24R2lF3ejhi0UVC67pJ1S1vqazCTbmIBFeua-6BZZUsQ1WbbKmfNsBcd-9fzqBUToaQcdADE1IFZqSjs_3j4Ey6RZax-NsPFblZHYJXRU-TIsM9tLSLjw40DCxKsTcBXGnPbyO0Lw9ApIE8wAJyfNQUq5CX3JKQ-4pkeYEM-HlQrJAX6EnWoQSwxNFlUY-acYynouWyoxd9kCjeC7UPoAkY1xDbY8SganSs1SY51qfxkeKaTfXBKiyTCLn3OGmhcUocazHODGWTGpLNsF5Lf_iWDN-lcTW0H-IJQ_xsF3fHfxn0ilYi4a9btK96d8dgnXz3OWKHYFGOZmqYw0uSnFil88XGJ_FEQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgCMQFsYqy-oDEyWriJam5IWhVllalNBK3KHacUxtKSQ-98Ql8I1-Clza0B4TEIZYSjUfWxPY8jWeeAbgIqC9CygiiidKNYhJx4fuIa2_OsVKetMnj7U7Qiuj9C3tZqOJ3_BBlwM2sDLtfmwU-SrPaD2no28TSXGIToGbBKlgzJ34mqQvTbhll0eiFUHvMbKA04h6lc-ZGD9eWVSx5pkWkal1NcxtszTAivHY_dQesqHwXrNtcTfm-B6KOG34yhq1kMICOgBiaiCo0FR1fH589ZbIttI7n6XCoivH0CroifJjkKWwnhZ13sKdR4rwOcx9EzUb_poVmtyMgSTAPkJA8CyXlKvQlpzTknhJJRjATXiYkC_QTeqJOKDE0UVRp4JOkLOWZqKvU2OUAVPLXXB0CSFLGNdL2KBGYKt1LhVmm9Wl4pJj2clWA5paJ5Yw63NxgMYgd6TGOjSXj0pJVcFnKjxxpxq-S2Br6D7H4Keo3yrej_3Q6Bxvd22b8eNd5OAab5rPLFDsBlWI8UacaWhTizM6ebyApxEM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Hall+Effect+with+Time%E2%80%90Reversal+Symmetry%3A+Theory+and+Material+Realizations&rft.jtitle=Advanced+quantum+technologies+%28Online%29&rft.au=Ortix%2C+Carmine&rft.date=2021-09-01&rft.issn=2511-9044&rft.eissn=2511-9044&rft.volume=4&rft.issue=9&rft_id=info:doi/10.1002%2Fqute.202100056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qute_202100056 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-9044&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-9044&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-9044&client=summon |