Nonlinear Hall Effect with Time‐Reversal Symmetry: Theory and Material Realizations

The appearance of a Hall conductance necessarily requires breaking of time‐reversal symmetry, either by an external magnetic field or by the internal magnetization of a material. As a second response, however, Hall dissipationless transverse currents can appear even in time‐reversal symmetric condit...

Full description

Saved in:
Bibliographic Details
Published inAdvanced quantum technologies (Online) Vol. 4; no. 9
Main Author Ortix, Carmine
Format Journal Article
LanguageEnglish
Published 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The appearance of a Hall conductance necessarily requires breaking of time‐reversal symmetry, either by an external magnetic field or by the internal magnetization of a material. As a second response, however, Hall dissipationless transverse currents can appear even in time‐reversal symmetric conditions provided the material is non‐centrosymmetric. This non‐linear Hall effect has a quantum origin: it is related to the geometric properties of the electronic wavefunctions and encoded in the dipole moment of the Berry curvature. Here, the general theory underpinning this effect is reviewed and various material platforms where non‐linear Hall transverse responses have been found are discussed. On the theoretical front, the link between the non‐linear Hall effect and the Berry curvature dipole is discussed using Boltzmann transport theory. On the material front, different platforms, including topological crystalline insulators, transition metal dichalcogenides, graphene, and Weyl semimetals are reviewed. This review summarizes recent progress on the non‐linear Hall effect: the production of a non‐linear transverse voltage in response to a driving current, appearing in non‐magnetic materials with unusually low crystalline symmetries. The author presents the general theory describing this effect, and discusses various material platforms ranging from Weyl semimetals to transition metal dichalcogenides.
AbstractList The appearance of a Hall conductance necessarily requires breaking of time‐reversal symmetry, either by an external magnetic field or by the internal magnetization of a material. As a second response, however, Hall dissipationless transverse currents can appear even in time‐reversal symmetric conditions provided the material is non‐centrosymmetric. This non‐linear Hall effect has a quantum origin: it is related to the geometric properties of the electronic wavefunctions and encoded in the dipole moment of the Berry curvature. Here, the general theory underpinning this effect is reviewed and various material platforms where non‐linear Hall transverse responses have been found are discussed. On the theoretical front, the link between the non‐linear Hall effect and the Berry curvature dipole is discussed using Boltzmann transport theory. On the material front, different platforms, including topological crystalline insulators, transition metal dichalcogenides, graphene, and Weyl semimetals are reviewed. This review summarizes recent progress on the non‐linear Hall effect: the production of a non‐linear transverse voltage in response to a driving current, appearing in non‐magnetic materials with unusually low crystalline symmetries. The author presents the general theory describing this effect, and discusses various material platforms ranging from Weyl semimetals to transition metal dichalcogenides.
The appearance of a Hall conductance necessarily requires breaking of time‐reversal symmetry, either by an external magnetic field or by the internal magnetization of a material. As a second response, however, Hall dissipationless transverse currents can appear even in time‐reversal symmetric conditions provided the material is non‐centrosymmetric. This non‐linear Hall effect has a quantum origin: it is related to the geometric properties of the electronic wavefunctions and encoded in the dipole moment of the Berry curvature. Here, the general theory underpinning this effect is reviewed and various material platforms where non‐linear Hall transverse responses have been found are discussed. On the theoretical front, the link between the non‐linear Hall effect and the Berry curvature dipole is discussed using Boltzmann transport theory. On the material front, different platforms, including topological crystalline insulators, transition metal dichalcogenides, graphene, and Weyl semimetals are reviewed.
Author Ortix, Carmine
Author_xml – sequence: 1
  givenname: Carmine
  orcidid: 0000-0002-6334-0569
  surname: Ortix
  fullname: Ortix, Carmine
  email: c.ortix@uu.nl
  organization: Università di Salerno
BookMark eNqFkM1OwzAMxyM0JMbYlXNeoCNp0nbhhqbBkAaI0Z2rNHW0oLSFNDB1Jx6BZ-RJ6BgChIQ4WLZl__zxP0S9qq4AoWNKRpSQ8OTxycMoJGGXkCjeQ_0wojQQhPPej_gADZvmvmsJGWU8YX20vK4rayqQDs-ktXiqNSiP18avcGpKeHt5XcAzuEZafNeWJXjXnuJ0BbVrsawKfCU9ONNVFyCt2Uhv6qo5Qvta2gaGn36AlufTdDIL5jcXl5OzeaBYKOIgV0InigtIqBKcJ4JALjULo5zoXEVxZwnJx4wzIhLKIeZcFlEhdD6GYvvCAI12c5Wrm8aBzh6cKaVrM0qyrS7ZVpfsS5cO4L8AZfzHzd5JY__GxA5bGwvtP0uy22U6_WbfAUNRfAU
CitedBy_id crossref_primary_10_1038_s41563_023_01498_0
crossref_primary_10_1103_PhysRevB_110_245304
crossref_primary_10_1016_j_mtelec_2024_100101
crossref_primary_10_1103_PhysRevB_108_L201405
crossref_primary_10_1103_PhysRevB_109_174443
crossref_primary_10_1103_PhysRevB_104_115420
crossref_primary_10_1103_PhysRevLett_133_226302
crossref_primary_10_1088_2053_1591_ac440b
crossref_primary_10_1103_PhysRevB_110_115123
crossref_primary_10_1002_smll_202412737
crossref_primary_10_1016_j_scib_2024_08_031
crossref_primary_10_1103_PhysRevB_108_165412
crossref_primary_10_1103_PhysRevB_110_174423
crossref_primary_10_1038_s41535_023_00545_y
crossref_primary_10_1038_s41467_023_35989_0
crossref_primary_10_1103_PhysRevB_110_085433
crossref_primary_10_1103_PhysRevB_110_245419
crossref_primary_10_1103_PhysRevLett_130_036202
crossref_primary_10_1021_acs_nanolett_4c05279
crossref_primary_10_1016_j_pquantelec_2024_100535
crossref_primary_10_1063_5_0224066
crossref_primary_10_1103_PhysRevResearch_4_033002
crossref_primary_10_1088_1361_648X_acbc02
crossref_primary_10_1103_PhysRevB_110_195131
crossref_primary_10_1038_s41699_024_00520_6
crossref_primary_10_1103_PhysRevB_109_155153
crossref_primary_10_1103_PhysRevB_111_L081115
crossref_primary_10_1002_adfm_202412896
crossref_primary_10_1088_1572_9494_aca0e1
crossref_primary_10_1103_PhysRevB_110_165140
crossref_primary_10_1080_23746149_2024_2371972
crossref_primary_10_1103_PhysRevB_107_235419
crossref_primary_10_7498_aps_72_20231324
crossref_primary_10_1038_s41377_023_01163_w
crossref_primary_10_1103_PhysRevLett_132_186302
crossref_primary_10_1038_s42005_024_01820_5
crossref_primary_10_1103_PhysRevB_110_155122
crossref_primary_10_1103_PhysRevResearch_6_023256
crossref_primary_10_1063_5_0172026
crossref_primary_10_1038_s41928_024_01118_y
crossref_primary_10_1002_adma_202209557
crossref_primary_10_1088_1361_648X_acf1eb
crossref_primary_10_1103_PhysRevB_106_245143
crossref_primary_10_1103_PhysRevLett_132_096302
crossref_primary_10_1063_5_0202692
crossref_primary_10_1002_adfm_202416204
crossref_primary_10_1103_PhysRevB_107_245141
crossref_primary_10_1103_PhysRevResearch_4_013164
crossref_primary_10_1140_epjp_s13360_024_04893_x
crossref_primary_10_1016_j_mtelec_2023_100076
crossref_primary_10_1103_PhysRevB_108_L201115
crossref_primary_10_1103_PhysRevB_111_035158
crossref_primary_10_1063_5_0090445
crossref_primary_10_1021_acs_chemmater_4c00427
crossref_primary_10_21468_SciPostPhysCore_5_3_039
crossref_primary_10_1103_PhysRevB_111_L041202
crossref_primary_10_1103_PhysRevB_111_L041403
crossref_primary_10_1007_s10853_023_09028_8
crossref_primary_10_1103_PhysRevB_109_134419
crossref_primary_10_1002_smll_202409691
crossref_primary_10_1021_acs_nanolett_4c02224
crossref_primary_10_1103_PhysRevB_108_035140
crossref_primary_10_1088_0256_307X_41_11_117502
crossref_primary_10_1103_PhysRevB_106_035423
crossref_primary_10_1103_PhysRevB_104_205422
crossref_primary_10_1103_PhysRevB_104_195410
crossref_primary_10_1103_PhysRevB_104_165303
crossref_primary_10_1038_s41535_022_00512_z
crossref_primary_10_1088_2053_1583_ac8b93
crossref_primary_10_1103_PhysRevB_107_L161102
crossref_primary_10_1103_PhysRevB_110_165401
Cites_doi 10.1103/PhysRev.95.1154
10.1038/s41928-021-00537-5
10.1103/PhysRevB.93.201101
10.1103/PhysRevB.86.115112
10.1103/PhysRevB.97.041101
10.1103/PhysRevLett.88.207208
10.1103/PhysRevResearch.3.L012006
10.1103/PhysRevLett.121.246403
10.1103/PhysRevLett.123.016801
10.1103/PhysRevLett.123.216802
10.1021/nl903868w
10.1088/0268-1242/25/3/033001
10.1103/PhysRevLett.114.217203
10.1038/nphys4091
10.1103/PhysRevLett.53.2449
10.1103/RevModPhys.82.1959
10.1103/PhysRevB.82.184112
10.1103/RevModPhys.90.015001
10.1103/PhysRevLett.125.046402
10.1103/RevModPhys.82.3045
10.1103/PhysRevB.87.245408
10.1103/PhysRevB.103.L201202
10.1103/PhysRevLett.123.196403
10.1103/PhysRevB.86.081403
10.1038/nphys2442
10.1103/PhysRevB.91.121417
10.1103/PhysRevB.102.024109
10.1038/nphys4174
10.1038/nature23290
10.1103/PhysRevB.88.241303
10.1038/s41467-021-20983-1
10.1140/epjst/e2018-800098-y
10.1103/RevModPhys.82.1539
10.1016/j.physrep.2010.07.003
10.1038/s41467-017-00938-1
10.1038/ncomms1679
10.1126/science.1234414
10.1038/nphys2272
10.1103/PhysRevLett.123.036806
10.1103/PhysRevB.100.195117
10.1088/2053-1583/aad1ae
10.1103/PhysRevB.59.14915
10.1038/nphys2954
10.1038/nature12187
10.1103/PhysRevB.84.041404
10.1103/RevModPhys.81.109
10.1103/PhysRevB.86.081405
10.1103/PhysRevB.84.153402
10.1103/PhysRevLett.49.405
10.1103/PhysRevB.95.144302
10.1088/0953-8984/20/02/023201
10.1038/nature15768
10.1146/annurev-conmatphys-031214-014501
10.1103/PhysRevLett.103.087206
10.1103/PhysRevB.103.144308
10.1103/PhysRevB.96.041108
10.1021/jp212558p
10.1126/science.aan6003
10.1038/nature26160
10.1103/PhysRevLett.108.196802
10.1002/adma.201605965
10.1103/PhysRevApplied.13.044014
10.1038/nphys3871
10.1038/ncomms15995
10.1103/PhysRev.151.581
10.1038/s41563-019-0294-7
10.1103/PhysRevLett.96.086805
10.1103/PhysRevLett.61.2015
10.1038/ncomms8373
10.1103/PhysRevB.95.241108
10.1103/PhysRevLett.105.026805
10.1126/sciadv.1501524
10.1103/PhysRevLett.115.216806
10.1126/science.1239451
10.1103/PhysRevLett.122.186801
10.1103/PhysRevLett.105.136805
10.1016/0370-2693(81)91026-1
10.1103/PhysRevLett.103.266801
10.1103/PhysRevLett.108.227205
10.1103/PhysRevB.75.045315
10.1103/PhysRev.37.405
10.1038/s41586-018-0807-6
10.1038/nmat2082
10.1103/PhysRevB.97.195151
10.1038/nphys2942
10.1103/PhysRevLett.123.246602
10.1073/pnas.1514581113
10.1103/PhysRevB.72.045346
10.1103/PhysRevLett.45.494
10.1103/PhysRevB.76.073103
10.1103/PhysRevLett.93.206602
10.1038/s41567-018-0189-6
10.1103/PhysRevB.79.115409
10.1126/science.aaa9297
10.1038/nmat4685
10.1088/0034-4885/76/5/056503
10.1016/j.ssc.2012.02.005
10.1038/s41586-019-1422-x
10.1103/RevModPhys.83.1057
10.1103/PhysRev.149.491
10.1126/science.1256815
10.1103/PhysRevB.32.2302
10.1103/PhysRevB.88.085433
10.1038/nphys1270
10.1126/sciadv.aay2497
10.1103/PhysRevB.99.155404
10.1103/PhysRevLett.121.266601
10.1103/PhysRevB.98.075106
10.1038/nature26154
10.1038/nmat3051
10.1103/PhysRevB.98.121109
10.1103/PhysRev.112.739
10.1038/s41467-019-10941-3
10.1038/ncomms1969
10.1103/PhysRevB.90.035402
10.1038/ncomms13973
10.1103/PhysRevB.100.165422
10.1038/ncomms9463
10.1103/PhysRevB.90.155316
10.1038/nphys1420
10.1103/PhysRevB.73.075318
ContentType Journal Article
Copyright 2021 The Authors. Advanced Quantum Technologies published by Wiley‐VCH GmbH
Copyright_xml – notice: 2021 The Authors. Advanced Quantum Technologies published by Wiley‐VCH GmbH
DBID 24P
AAYXX
CITATION
DOI 10.1002/qute.202100056
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2511-9044
EndPage n/a
ExternalDocumentID 10_1002_qute_202100056
QUTE202100056
Genre reviewArticle
GrantInformation_xml – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  funderid: VIDI grant (Project 680‐47‐543)
GroupedDBID 0R~
1OC
24P
33P
34L
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
AAZKR
ABCUV
ACCFJ
ACCZN
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFFPM
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
ARCSS
BFHJK
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WXSBR
ZZTAW
AAYXX
ABJNI
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
ID FETCH-LOGICAL-c3296-bc9f7c49e71c944790ebaf325b0fbc56bc570b834309714e644ad5d9fb8ed2313
IEDL.DBID 24P
ISSN 2511-9044
IngestDate Tue Jul 01 02:03:49 EDT 2025
Thu Apr 24 23:09:20 EDT 2025
Wed Jan 22 16:29:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3296-bc9f7c49e71c944790ebaf325b0fbc56bc570b834309714e644ad5d9fb8ed2313
ORCID 0000-0002-6334-0569
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.202100056
PageCount 20
ParticipantIDs crossref_primary_10_1002_qute_202100056
crossref_citationtrail_10_1002_qute_202100056
wiley_primary_10_1002_qute_202100056_QUTE202100056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Advanced quantum technologies (Online)
PublicationYear 2021
References 1966; 151
2010; 10
1958; 112
2009; 81
2010; 105
2019; 99
2019; 10
1980; 45
2019; 565
2019; 18
2020; 13
2007; 75
2007; 76
1984; 53
2018; 5
2010; 25
1999; 59
2002; 88
2015; 91
2005; 72
2010; 6
2014; 10
2019; 5
2018; 227
2013; 88
2013; 87
2011; 84
2011; 83
2015; 527
2016; 93
2013; 341
2013; 340
2016; 15
2019; 100
2012; 108
2016; 12
2016; 6
2009; 79
1982; 49
2016; 2
2015; 115
2018; 359
1966; 149
2013; 76
2015; 114
2018; 90
2018; 98
2012; 116
2018; 97
2009; 103
2018; 14
2017; 547
2019; 572
2017; 8
2018; 121
2006; 73
2008; 7
2011; 10
1981; 105
2015; 349
2020; 125
2019; 122
2019; 123
2020; 6
1954; 95
2016; 113
2007; 20
2015; 6
2006; 96
2021; 4
2015; 5
2021; 3
2014; 90
2021; 103
2009
2017; 29
2020; 102
1931; 37
2010; 82
2017; 95
2012; 152
2017; 96
2012; 3
2021; 12
2004; 93
2018; 556
2021
2020
2017; 13
2013; 497
2010; 496
1988; 61
2009; 5
1985; 32
2012; 86
2014; 346
2012; 8
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
Fang C. (e_1_2_9_37_1) 2019; 5
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_14_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_111_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_129_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_1
Weng H. (e_1_2_9_112_1) 2015; 5
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_39_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
Muechler L. (e_1_2_9_68_1) 2016; 6
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_117_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
Lv B. Q. (e_1_2_9_114_1) 2015; 5
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_116_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 121
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 61
  start-page: 2015
  year: 1988
  publication-title: Phys. Rev. Lett.
– volume: 86
  year: 2012
  publication-title: Phys. Rev. B
– volume: 151
  start-page: 581
  year: 1966
  publication-title: Phys. Rev.
– volume: 93
  year: 2004
  publication-title: Phys. Rev. Lett.
– volume: 341
  start-page: 1496
  year: 2013
  publication-title: Science
– volume: 97
  year: 2018
  publication-title: Phys. Rev. B
– volume: 3
  year: 2021
  publication-title: Phys. Rev. Res.
– volume: 37
  start-page: 405
  year: 1931
  publication-title: Phys. Rev.
– volume: 79
  year: 2009
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 942
  year: 2017
  publication-title: Nat. Commun.
– volume: 84
  year: 2011
  publication-title: Phys. Rev. B
– volume: 547
  start-page: 432
  year: 2017
  publication-title: Nature
– volume: 108
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 677
  year: 2017
  publication-title: Nat. Phys.
– volume: 10
  start-page: 451
  year: 2014
  publication-title: Nat. Phys.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 340
  start-page: 167
  year: 2013
  publication-title: Science
– volume: 49
  start-page: 405
  year: 1982
  publication-title: Phys. Rev. Lett.
– volume: 103
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 99
  year: 2019
  publication-title: Phys. Rev. B
– volume: 95
  start-page: 1154
  year: 1954
  publication-title: Phys. Rev.
– volume: 6
  start-page: 361
  year: 2015
  publication-title: Annu. Rev. Condens. Matter Phys.
– volume: 122
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 527
  start-page: 495
  year: 2015
  publication-title: Nature
– volume: 8
  start-page: 382
  year: 2012
  publication-title: Nat. Phys.
– volume: 13
  start-page: 683
  year: 2017
  publication-title: Nat. Phys.
– volume: 5
  start-page: 12
  year: 2019
  publication-title: Sci. Adv.
– volume: 59
  year: 1999
  publication-title: Phys. Rev. B
– volume: 82
  start-page: 3045
  year: 2010
  publication-title: Rev. Mod. Phys.
– volume: 45
  start-page: 494
  year: 1980
  publication-title: Phys. Rev. Lett.
– volume: 75
  year: 2007
  publication-title: Phys. Rev. B
– volume: 5
  year: 2018
  publication-title: 2D Mater.
– volume: 10
  start-page: 521
  year: 2011
  publication-title: Nat. Mater.
– volume: 3
  start-page: 679
  year: 2012
  publication-title: Nat. Commun.
– volume: 105
  start-page: 219
  year: 1981
  publication-title: Phys. Lett. B
– volume: 113
  start-page: 1180
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 88
  year: 2013
  publication-title: Phys. Rev. B
– volume: 123
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 102
  year: 2020
  publication-title: Phys. Rev. B
– volume: 82
  start-page: 1959
  year: 2010
  publication-title: Rev. Mod. Phys.
– volume: 125
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 90
  year: 2014
  publication-title: Phys. Rev. B
– volume: 497
  start-page: 594
  year: 2013
  publication-title: Nature
– volume: 349
  start-page: 613
  year: 2015
  publication-title: Science
– volume: 3
  start-page: 982
  year: 2012
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1271
  year: 2010
  publication-title: Nano Lett.
– volume: 88
  year: 2002
  publication-title: Phys. Rev. Lett.
– volume: 114
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 13
  year: 2020
  publication-title: Phys. Rev. Appl.
– volume: 15
  start-page: 1155
  year: 2016
  publication-title: Nat. Mater.
– volume: 6
  year: 2016
  publication-title: Phys. Rev. X
– volume: 73
  year: 2006
  publication-title: Phys. Rev. B
– volume: 346
  start-page: 1344
  year: 2014
  publication-title: Science
– volume: 76
  year: 2007
  publication-title: Phys. Rev. B
– volume: 76
  year: 2013
  publication-title: Rep. Prog. Phys.
– volume: 103
  year: 2021
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 151
  year: 2008
  publication-title: Nat. Mater.
– year: 2009
– volume: 91
  year: 2015
  publication-title: Phys. Rev. B
– volume: 227
  start-page: 1309
  year: 2018
  publication-title: Eur. Phys. J.: Spec. Top.
– volume: 10
  start-page: 343
  year: 2014
  publication-title: Nat. Phys.
– volume: 20
  year: 2007
  publication-title: J. Phys.: Condens. Matter
– volume: 90
  year: 2018
  publication-title: Rev. Mod. Phys.
– year: 2021
– volume: 149
  start-page: 149
  year: 1966
  publication-title: Phys. Rev.
– volume: 5
  year: 2015
  publication-title: Phys. Rev. X
– volume: 6
  start-page: 8463
  year: 2015
  publication-title: Nat. Commun.
– volume: 25
  year: 2010
  publication-title: Semicond. Sci. Technol.
– volume: 32
  start-page: 2302
  year: 1985
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 7373
  year: 2015
  publication-title: Nat. Commun.
– volume: 87
  year: 2013
  publication-title: Phys. Rev. B
– volume: 93
  year: 2016
  publication-title: Phys. Rev. B
– volume: 100
  year: 2019
  publication-title: Phys. Rev. B
– volume: 83
  start-page: 1057
  year: 2011
  publication-title: Rev. Mod. Phys.
– volume: 8
  start-page: 800
  year: 2012
  publication-title: Nat. Phys.
– volume: 112
  start-page: 739
  year: 1958
  publication-title: Phys. Rev.
– volume: 6
  start-page: 30
  year: 2010
  publication-title: Nat. Phys.
– volume: 96
  year: 2017
  publication-title: Phys. Rev. B
– volume: 2
  start-page: 5
  year: 2016
  publication-title: Sci. Adv.
– volume: 115
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 116
  start-page: 8983
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 572
  start-page: 101
  year: 2019
  publication-title: Nature
– volume: 12
  start-page: 698
  year: 2021
  publication-title: Nat. Commun.
– volume: 12
  start-page: 1105
  year: 2016
  publication-title: Nat. Phys.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 81
  start-page: 109
  year: 2009
  publication-title: Rev. Mod. Phys.
– volume: 96
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 18
  start-page: 324
  year: 2019
  publication-title: Nat. Mater.
– volume: 95
  year: 2017
  publication-title: Phys. Rev. B
– volume: 152
  start-page: 909
  year: 2012
  publication-title: Solid State Commun.
– volume: 6
  start-page: 13
  year: 2020
  publication-title: Sci. Adv.
– volume: 72
  year: 2005
  publication-title: Phys. Rev. B
– volume: 98
  year: 2018
  publication-title: Phys. Rev. B
– volume: 14
  start-page: 900
  year: 2018
  publication-title: Nat. Phys.
– volume: 82
  year: 2010
  publication-title: Phys. Rev. B
– volume: 496
  start-page: 109
  year: 2010
  publication-title: Phys. Rep.
– volume: 359
  start-page: 76
  year: 2018
  publication-title: Science
– volume: 4
  start-page: 116
  year: 2021
  publication-title: Nat. Electron.
– volume: 556
  start-page: 80
  year: 2018
  publication-title: Nature
– volume: 5
  start-page: 438
  year: 2009
  publication-title: Nat. Phys.
– volume: 53
  start-page: 2449
  year: 1984
  publication-title: Phys. Rev. Lett.
– volume: 82
  start-page: 1539
  year: 2010
  publication-title: Rev. Mod. Phys.
– volume: 565
  start-page: 337
  year: 2019
  publication-title: Nature
– year: 2020
– volume: 10
  start-page: 3047
  year: 2019
  publication-title: Nat. Commun.
– volume: 103
  start-page: 14
  year: 2021
  publication-title: Phys. Rev. B
– volume: 105
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 556
  start-page: 43
  year: 2018
  publication-title: Nature
– ident: e_1_2_9_5_1
  doi: 10.1103/PhysRev.95.1154
– ident: e_1_2_9_80_1
  doi: 10.1038/s41928-021-00537-5
– ident: e_1_2_9_101_1
  doi: 10.1103/PhysRevB.93.201101
– volume: 6
  start-page: 041069
  year: 2016
  ident: e_1_2_9_68_1
  publication-title: Phys. Rev. X
– ident: e_1_2_9_24_1
  doi: 10.1103/PhysRevB.86.115112
– ident: e_1_2_9_116_1
  doi: 10.1103/PhysRevB.97.041101
– ident: e_1_2_9_7_1
  doi: 10.1103/PhysRevLett.88.207208
– ident: e_1_2_9_20_1
– ident: e_1_2_9_36_1
  doi: 10.1103/PhysRevResearch.3.L012006
– ident: e_1_2_9_115_1
  doi: 10.1103/PhysRevLett.121.246403
– ident: e_1_2_9_133_1
  doi: 10.1103/PhysRevLett.123.016801
– ident: e_1_2_9_100_1
  doi: 10.1103/PhysRevLett.123.216802
– ident: e_1_2_9_53_1
  doi: 10.1021/nl903868w
– ident: e_1_2_9_94_1
  doi: 10.1088/0268-1242/25/3/033001
– ident: e_1_2_9_35_1
  doi: 10.1103/PhysRevLett.114.217203
– ident: e_1_2_9_70_1
  doi: 10.1038/nphys4091
– ident: e_1_2_9_81_1
  doi: 10.1103/PhysRevLett.53.2449
– ident: e_1_2_9_26_1
  doi: 10.1103/RevModPhys.82.1959
– ident: e_1_2_9_49_1
  doi: 10.1103/PhysRevB.82.184112
– ident: e_1_2_9_108_1
  doi: 10.1103/RevModPhys.90.015001
– ident: e_1_2_9_107_1
  doi: 10.1103/PhysRevLett.125.046402
– ident: e_1_2_9_3_1
  doi: 10.1103/RevModPhys.82.3045
– ident: e_1_2_9_86_1
  doi: 10.1103/PhysRevB.87.245408
– ident: e_1_2_9_129_1
  doi: 10.1103/PhysRevB.103.L201202
– ident: e_1_2_9_79_1
  doi: 10.1103/PhysRevLett.123.196403
– ident: e_1_2_9_126_1
– ident: e_1_2_9_91_1
  doi: 10.1103/PhysRevB.86.081403
– ident: e_1_2_9_40_1
  doi: 10.1038/nphys2442
– ident: e_1_2_9_128_1
  doi: 10.1103/PhysRevB.91.121417
– ident: e_1_2_9_18_1
  doi: 10.1103/PhysRevB.102.024109
– ident: e_1_2_9_71_1
  doi: 10.1038/nphys4174
– ident: e_1_2_9_22_1
  doi: 10.1038/nature23290
– ident: e_1_2_9_44_1
  doi: 10.1103/PhysRevB.88.241303
– ident: e_1_2_9_131_1
  doi: 10.1038/s41467-021-20983-1
– ident: e_1_2_9_43_1
  doi: 10.1140/epjst/e2018-800098-y
– ident: e_1_2_9_9_1
  doi: 10.1103/RevModPhys.82.1539
– ident: e_1_2_9_90_1
  doi: 10.1016/j.physrep.2010.07.003
– ident: e_1_2_9_103_1
  doi: 10.1038/s41467-017-00938-1
– ident: e_1_2_9_118_1
  doi: 10.1038/ncomms1679
– ident: e_1_2_9_11_1
  doi: 10.1126/science.1234414
– ident: e_1_2_9_84_1
  doi: 10.1038/nphys2272
– ident: e_1_2_9_63_1
  doi: 10.1103/PhysRevLett.123.036806
– ident: e_1_2_9_21_1
  doi: 10.1103/PhysRevB.100.195117
– ident: e_1_2_9_74_1
  doi: 10.1088/2053-1583/aad1ae
– ident: e_1_2_9_25_1
  doi: 10.1103/PhysRevB.59.14915
– ident: e_1_2_9_87_1
  doi: 10.1038/nphys2954
– ident: e_1_2_9_85_1
  doi: 10.1038/nature12187
– ident: e_1_2_9_96_1
  doi: 10.1103/PhysRevB.84.041404
– ident: e_1_2_9_106_1
– ident: e_1_2_9_125_1
– ident: e_1_2_9_88_1
  doi: 10.1103/RevModPhys.81.109
– ident: e_1_2_9_12_1
– ident: e_1_2_9_83_1
  doi: 10.1103/PhysRevB.86.081405
– ident: e_1_2_9_57_1
  doi: 10.1103/PhysRevB.84.153402
– ident: e_1_2_9_2_1
  doi: 10.1103/PhysRevLett.49.405
– ident: e_1_2_9_50_1
  doi: 10.1103/PhysRevB.95.144302
– ident: e_1_2_9_32_1
  doi: 10.1088/0953-8984/20/02/023201
– ident: e_1_2_9_64_1
  doi: 10.1038/nature15768
– ident: e_1_2_9_41_1
  doi: 10.1146/annurev-conmatphys-031214-014501
– ident: e_1_2_9_34_1
  doi: 10.1103/PhysRevLett.103.087206
– ident: e_1_2_9_17_1
  doi: 10.1103/PhysRevB.103.144308
– ident: e_1_2_9_72_1
  doi: 10.1103/PhysRevB.96.041108
– ident: e_1_2_9_60_1
  doi: 10.1021/jp212558p
– ident: e_1_2_9_73_1
  doi: 10.1126/science.aan6003
– ident: e_1_2_9_124_1
  doi: 10.1038/nature26160
– ident: e_1_2_9_55_1
  doi: 10.1103/PhysRevLett.108.196802
– ident: e_1_2_9_120_1
  doi: 10.1002/adma.201605965
– ident: e_1_2_9_122_1
  doi: 10.1103/PhysRevApplied.13.044014
– ident: e_1_2_9_66_1
  doi: 10.1038/nphys3871
– ident: e_1_2_9_15_1
  doi: 10.1038/ncomms15995
– ident: e_1_2_9_42_1
  doi: 10.1103/PhysRev.151.581
– volume: 5
  start-page: 12
  year: 2019
  ident: e_1_2_9_37_1
  publication-title: Sci. Adv.
– ident: e_1_2_9_78_1
  doi: 10.1038/s41563-019-0294-7
– ident: e_1_2_9_93_1
  doi: 10.1103/PhysRevLett.96.086805
– ident: e_1_2_9_10_1
  doi: 10.1103/PhysRevLett.61.2015
– ident: e_1_2_9_111_1
  doi: 10.1038/ncomms8373
– ident: e_1_2_9_102_1
  doi: 10.1103/PhysRevB.95.241108
– ident: e_1_2_9_13_1
  doi: 10.1103/PhysRevLett.105.026805
– ident: e_1_2_9_16_1
  doi: 10.1126/sciadv.1501524
– ident: e_1_2_9_14_1
  doi: 10.1103/PhysRevLett.115.216806
– ident: e_1_2_9_46_1
  doi: 10.1126/science.1239451
– ident: e_1_2_9_51_1
  doi: 10.1103/PhysRevLett.122.186801
– ident: e_1_2_9_54_1
  doi: 10.1103/PhysRevLett.105.136805
– ident: e_1_2_9_38_1
  doi: 10.1016/0370-2693(81)91026-1
– ident: e_1_2_9_132_1
  doi: 10.1103/PhysRevLett.103.266801
– ident: e_1_2_9_92_1
  doi: 10.1103/PhysRevLett.108.227205
– ident: e_1_2_9_31_1
  doi: 10.1103/PhysRevB.75.045315
– ident: e_1_2_9_23_1
  doi: 10.1103/PhysRev.37.405
– ident: e_1_2_9_77_1
  doi: 10.1038/s41586-018-0807-6
– ident: e_1_2_9_97_1
  doi: 10.1038/nmat2082
– ident: e_1_2_9_109_1
  doi: 10.1103/PhysRevB.97.195151
– ident: e_1_2_9_56_1
  doi: 10.1038/nphys2942
– ident: e_1_2_9_105_1
  doi: 10.1103/PhysRevLett.123.246602
– ident: e_1_2_9_110_1
  doi: 10.1073/pnas.1514581113
– volume: 5
  start-page: 011029
  year: 2015
  ident: e_1_2_9_112_1
  publication-title: Phys. Rev. X
– ident: e_1_2_9_33_1
  doi: 10.1103/PhysRevB.72.045346
– ident: e_1_2_9_1_1
  doi: 10.1103/PhysRevLett.45.494
– ident: e_1_2_9_82_1
  doi: 10.1103/PhysRevB.76.073103
– ident: e_1_2_9_8_1
  doi: 10.1103/PhysRevLett.93.206602
– ident: e_1_2_9_75_1
  doi: 10.1038/s41567-018-0189-6
– ident: e_1_2_9_59_1
  doi: 10.1103/PhysRevB.79.115409
– ident: e_1_2_9_113_1
  doi: 10.1126/science.aaa9297
– ident: e_1_2_9_65_1
  doi: 10.1038/nmat4685
– ident: e_1_2_9_95_1
  doi: 10.1088/0034-4885/76/5/056503
– ident: e_1_2_9_104_1
– ident: e_1_2_9_58_1
  doi: 10.1016/j.ssc.2012.02.005
– ident: e_1_2_9_127_1
  doi: 10.1038/s41586-019-1422-x
– ident: e_1_2_9_4_1
  doi: 10.1103/RevModPhys.83.1057
– ident: e_1_2_9_98_1
  doi: 10.1103/PhysRev.149.491
– ident: e_1_2_9_69_1
  doi: 10.1126/science.1256815
– ident: e_1_2_9_99_1
– ident: e_1_2_9_48_1
  doi: 10.1103/PhysRevB.32.2302
– ident: e_1_2_9_61_1
  doi: 10.1103/PhysRevB.88.085433
– ident: e_1_2_9_130_1
  doi: 10.1038/nphys1270
– ident: e_1_2_9_19_1
  doi: 10.1126/sciadv.aay2497
– ident: e_1_2_9_28_1
  doi: 10.1103/PhysRevB.99.155404
– ident: e_1_2_9_121_1
– ident: e_1_2_9_76_1
  doi: 10.1103/PhysRevLett.121.266601
– ident: e_1_2_9_62_1
  doi: 10.1103/PhysRevB.98.075106
– ident: e_1_2_9_123_1
  doi: 10.1038/nature26154
– ident: e_1_2_9_117_1
  doi: 10.1038/nmat3051
– ident: e_1_2_9_52_1
  doi: 10.1103/PhysRevB.98.121109
– ident: e_1_2_9_6_1
  doi: 10.1103/PhysRev.112.739
– ident: e_1_2_9_29_1
  doi: 10.1038/s41467-019-10941-3
– ident: e_1_2_9_39_1
  doi: 10.1038/ncomms1969
– ident: e_1_2_9_45_1
  doi: 10.1103/PhysRevB.90.035402
– ident: e_1_2_9_67_1
  doi: 10.1038/ncomms13973
– ident: e_1_2_9_27_1
  doi: 10.1103/PhysRevB.100.165422
– ident: e_1_2_9_47_1
  doi: 10.1038/ncomms9463
– ident: e_1_2_9_119_1
  doi: 10.1103/PhysRevB.90.155316
– ident: e_1_2_9_89_1
  doi: 10.1038/nphys1420
– volume: 5
  start-page: 031013
  year: 2015
  ident: e_1_2_9_114_1
  publication-title: Phys. Rev. X
– ident: e_1_2_9_30_1
  doi: 10.1103/PhysRevB.73.075318
SSID ssj0002313473
Score 2.5243845
SecondaryResourceType review_article
Snippet The appearance of a Hall conductance necessarily requires breaking of time‐reversal symmetry, either by an external magnetic field or by the internal...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Berry curvature dipole
graphene
topological crystalline insulators
transition metal dichalcogenides
Weyl semimetals
Title Nonlinear Hall Effect with Time‐Reversal Symmetry: Theory and Material Realizations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.202100056
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA66IXgRP3F-jBwET2FtmrSLt6EbQ9zQbYXdSpKmp63q1h128yf4G_0l5mOr20EEDy0tvHkpT5O-D2_f9wkANyHxRURogAhX-qSoREz4PmI6mjOslCdt8XivH3Zj8jim440ufqcPUSbczMqw32uzwLmYN35EQ98XVuYSmwQ1DXdB1fTXmqI-TJ7LLItmLwGxv5kNlUbMI2St3OjhxraLrci0yVRtqOkcgoMVR4Qt91KPwI7Kj8GerdWU8xMQ993j8xns8skEOgFiaDKq0HR0fH18DpSpttA-hsvpVBWz5R10TfiQ5yns8cLOOzjQLHHdh3kK4k57dN9Fq90RkAwwC5GQLIskYSryJSMkYp4SPAswFV4mJA31EXmiGZDAyEQRpYkPT2nKMtFUqcHlDFTy11ydAxiklGmm7ZFAYKL0KBVlmfan6ZGiOsrVAFojk8iVdLjZwWKSONFjnBgkkxLJGrgt7d-caMavltgC_YdZ8hKP2uXdxX8GXYJ9c-3Kw65ApZgt1LXmE4Wo2ylTB9XWQ-9p-A2hFsM5
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagCMGCeIry9IDEZJH4kdRsCLUK0FZQGoktih1nagOUdOjGT-A38kvwowl0QEgMsZTofIoutu_T5e47AM4C6ouQMoJoqvSgmERc-D7i2ptzrJQnbfJ4rx9EMb19YlU2oamFcfwQdcDN7Ax7XpsNbgLSF9-soa9Ty3OJTYSaBctghQY4NE0MML2vwywavhBq_zMbLI24R2lF3ejhi0UVC67pJ1S1vqazCTbmIBFeua-6BZZUsQ1WbbKmfNsBcd-9fzqBUToaQcdADE1IFZqSjs_3j4Ey6RZax-NsPFblZHYJXRU-TIsM9tLSLjw40DCxKsTcBXGnPbyO0Lw9ApIE8wAJyfNQUq5CX3JKQ-4pkeYEM-HlQrJAX6EnWoQSwxNFlUY-acYynouWyoxd9kCjeC7UPoAkY1xDbY8SganSs1SY51qfxkeKaTfXBKiyTCLn3OGmhcUocazHODGWTGpLNsF5Lf_iWDN-lcTW0H-IJQ_xsF3fHfxn0ilYi4a9btK96d8dgnXz3OWKHYFGOZmqYw0uSnFil88XGJ_FEQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgCMQFsYqy-oDEyWriJam5IWhVllalNBK3KHacUxtKSQ-98Ql8I1-Clza0B4TEIZYSjUfWxPY8jWeeAbgIqC9CygiiidKNYhJx4fuIa2_OsVKetMnj7U7Qiuj9C3tZqOJ3_BBlwM2sDLtfmwU-SrPaD2no28TSXGIToGbBKlgzJ34mqQvTbhll0eiFUHvMbKA04h6lc-ZGD9eWVSx5pkWkal1NcxtszTAivHY_dQesqHwXrNtcTfm-B6KOG34yhq1kMICOgBiaiCo0FR1fH589ZbIttI7n6XCoivH0CroifJjkKWwnhZ13sKdR4rwOcx9EzUb_poVmtyMgSTAPkJA8CyXlKvQlpzTknhJJRjATXiYkC_QTeqJOKDE0UVRp4JOkLOWZqKvU2OUAVPLXXB0CSFLGNdL2KBGYKt1LhVmm9Wl4pJj2clWA5paJ5Yw63NxgMYgd6TGOjSXj0pJVcFnKjxxpxq-S2Br6D7H4Keo3yrej_3Q6Bxvd22b8eNd5OAab5rPLFDsBlWI8UacaWhTizM6ebyApxEM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Hall+Effect+with+Time%E2%80%90Reversal+Symmetry%3A+Theory+and+Material+Realizations&rft.jtitle=Advanced+quantum+technologies+%28Online%29&rft.au=Ortix%2C+Carmine&rft.date=2021-09-01&rft.issn=2511-9044&rft.eissn=2511-9044&rft.volume=4&rft.issue=9&rft_id=info:doi/10.1002%2Fqute.202100056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qute_202100056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-9044&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-9044&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-9044&client=summon