A method for measuring intraocular pressure using artificial intelligence technology and fixed-force applanation tonometry

Purpose. To estimate the accuracy of IOP measurement using artificial intelligence (AI) technologies and applanation tonometry with fixed strength. Material and methods. 290 patients (576 eyes) underwent applanation tonometry according to Maklakov with tonometer weights of 5, 10, and 15 g using a mo...

Full description

Saved in:
Bibliographic Details
Published inRossiĭskiĭ oftalʹmologicheskiĭ zhurnal Vol. 15; no. 2 (Прил); pp. 49 - 56
Main Authors Dorofeev, D. A., Antonov, A. A., Vasilenko, D. Yu, Gorobets, A. V., Efimova, K. A., Kanafin, E. V., Karlova, E. V., Kirilik, E. V., Kozlova, I. V., Orlova, E. R., Tsyganov, A. Z.
Format Journal Article
LanguageEnglish
Russian
Published Real Time Ltd 16.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose. To estimate the accuracy of IOP measurement using artificial intelligence (AI) technologies and applanation tonometry with fixed strength. Material and methods. 290 patients (576 eyes) underwent applanation tonometry according to Maklakov with tonometer weights of 5, 10, and 15 g using a modified elastotonometry technique followed by an analysis of impression quality and diameter measurements by three independent ophthalmologist experts. The prints were then fed into a neural network to check the repeatability and reproducibility of the measurements. Results. The comparison of the diameters of the Maklakov tonometer prints determined by AI based on the neural network with the measurements data provided by three experts showed that neural network underestimates the measurement results by an average of 0.27 (-3.81; 4.35) mm Hg. At the same time, the intraclass correlation coefficient for all prints was 98.3%. The accuracy of diameter measurements of prints by neural network differs for tonometers of different weights, e.g. for a 5 g tonometer the difference was 0.06 (-3.38; 3.49) mm Hg, for 10 g and 15 g tonometers was 0.14 (-3.8; 3.51) and 0.95 (-3.84; 5.74) mm Hg, respectively. Conclusion. High accuracy and reproducibility of the measurements by the neural network, was shown to surpass the reproducibility of human-implemented measurements.
AbstractList Purpose. To estimate the accuracy of IOP measurement using artificial intelligence (AI) technologies and applanation tonometry with fixed strength. Material and methods. 290 patients (576 eyes) underwent applanation tonometry according to Maklakov with tonometer weights of 5, 10, and 15 g using a modified elastotonometry technique followed by an analysis of impression quality and diameter measurements by three independent ophthalmologist experts. The prints were then fed into a neural network to check the repeatability and reproducibility of the measurements. Results. The comparison of the diameters of the Maklakov tonometer prints determined by AI based on the neural network with the measurements data provided by three experts showed that neural network underestimates the measurement results by an average of 0.27 (-3.81; 4.35) mm Hg. At the same time, the intraclass correlation coefficient for all prints was 98.3%. The accuracy of diameter measurements of prints by neural network differs for tonometers of different weights, e.g. for a 5 g tonometer the difference was 0.06 (-3.38; 3.49) mm Hg, for 10 g and 15 g tonometers was 0.14 (-3.8; 3.51) and 0.95 (-3.84; 5.74) mm Hg, respectively. Conclusion. High accuracy and reproducibility of the measurements by the neural network, was shown to surpass the reproducibility of human-implemented measurements.
Author Efimova, K. A.
Dorofeev, D. A.
Kozlova, I. V.
Orlova, E. R.
Kanafin, E. V.
Kirilik, E. V.
Tsyganov, A. Z.
Gorobets, A. V.
Karlova, E. V.
Vasilenko, D. Yu
Antonov, A. A.
Author_xml – sequence: 1
  givenname: D. A.
  orcidid: 0000-0003-3352-8170
  surname: Dorofeev
  fullname: Dorofeev, D. A.
  organization: City Clinical Hospital No. 2, Clinic No. 1
– sequence: 2
  givenname: A. A.
  orcidid: 0000-0002-5171-8261
  surname: Antonov
  fullname: Antonov, A. A.
  organization: Research Institute of Eye Diseases
– sequence: 3
  givenname: D. Yu
  surname: Vasilenko
  fullname: Vasilenko, D. Yu
  organization: LTD Aplit
– sequence: 4
  givenname: A. V.
  orcidid: 0000-0001-9864-9833
  surname: Gorobets
  fullname: Gorobets, A. V.
  organization: Center of additional Education; South Ural State University (National Research University)
– sequence: 5
  givenname: K. A.
  orcidid: 0000-0001-6492-7743
  surname: Efimova
  fullname: Efimova, K. A.
  organization: City Clinical Hospital No. 2, Clinic No. 1
– sequence: 6
  givenname: E. V.
  orcidid: 0000-0001-5354-4843
  surname: Kanafin
  fullname: Kanafin, E. V.
  organization: South Ural State University (National Research University)
– sequence: 7
  givenname: E. V.
  orcidid: 0000-0003-4929-8832
  surname: Karlova
  fullname: Karlova, E. V.
  organization: Eroshevsky Regional Clinical Eye Hospital
– sequence: 8
  givenname: E. V.
  orcidid: 0000-0002-0189-9586
  surname: Kirilik
  fullname: Kirilik, E. V.
  organization: City Clinical Hospital No. 2, Clinic No. 1
– sequence: 9
  givenname: I. V.
  surname: Kozlova
  fullname: Kozlova, I. V.
  organization: Research Institute of Eye Diseases
– sequence: 10
  givenname: E. R.
  orcidid: 0000-0001-9568-1715
  surname: Orlova
  fullname: Orlova, E. R.
  organization: Chelyabinsk State University
– sequence: 11
  givenname: A. Z.
  orcidid: 0000-0003-2959-4319
  surname: Tsyganov
  fullname: Tsyganov, A. Z.
  organization: S.N. Fedorov Eye Microsurgery Complex
BookMark eNpFkclqHDEQhkWwwY7jd-gXUKKltR2NcRKDIZfkLGqk0limRxqkHsjk6aO2s5yqqOWr5X9PLkotSAjl7KPgiutPghlBGTOaCiYE5YoK2k_H44IHLCudHVX6HbkWyhqqjGYXw__bckVue39hjAnHrDH2mvy6mw64Ptc4pdqGC_3UctlPuawNajgt0KZjwz7COJ36loK25pRDhmWrwmXJeywBpxXDc6lL3Z8nKIOXf2KkgzpSMNaDAmuuZVprqWNkO38glwmWjrd_7A358fnh-_1X-vTty-P93RMNUjhNdQQRjIspJbDArZYqKaZmpeeIUqrIdyJYSNwmMCDMbNScHLeSxyCZdvKGPL5xY4UXf2z5AO3sK2T_Gqht77eTwoI-QUDJleOo7KxY3I3-GKNmwe00GByshzdWaLX3hukfjzP_qo_fnu23Z_tNH8-VF_6_Pn52Xmn5GyIejjA
CitedBy_id crossref_primary_10_53432_2078_4104_2023_22_2_29_37
crossref_primary_10_53432_2078_4104_2023_22_1_115_128
Cites_doi 10.1007/s00417-016-3291-4
10.17116/oftalma202113701160
10.17116/oftalma202013602173
10.1155/2019/4519412
10.4103/ijo.IJO_1177_18
10.1016/j.ajo.2014.11.008
10.17116/oftalma2020136061100
10.1136/bjophthalmol-2019-315446
10.4103/0301-4738.181742
10.1016/j.ophtha.2020.04.033
10.1001/jamaophthalmol.2015.1468
10.1371/journal.pone.0138285
10.1136/bjophthalmol-2011-301378
10.1111/ceo.12272
10.2147/OPTH.S182022
10.1097/IJG.0000000000000499
10.2147/OPTH.S134656
10.1097/IJG.0b013e3182a0762f
10.1016/j.ophtha.2012.02.030
10.17116/oftalma202013605158
10.1001/jamaophthalmol.2015.4625
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.21516/2072-0076-2022-15-2-supplement-49-56
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2587-5760
EndPage 56
ExternalDocumentID oai_doaj_org_article_face31591e58450db069ddd60c9b6a7e
10_21516_2072_0076_2022_15_2_supplement_49_56
GroupedDBID 642
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c3296-6da2c79dfffa8a18635f5054564de335d1b2c8af18fa7a274754f91831dc30693
IEDL.DBID DOA
ISSN 2072-0076
IngestDate Mon Oct 21 19:39:54 EDT 2024
Fri Aug 23 00:58:44 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2 (Прил)
Language English
Russian
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3296-6da2c79dfffa8a18635f5054564de335d1b2c8af18fa7a274754f91831dc30693
ORCID 0000-0002-0189-9586
0000-0001-6492-7743
0000-0001-9568-1715
0000-0003-3352-8170
0000-0001-9864-9833
0000-0003-2959-4319
0000-0002-5171-8261
0000-0001-5354-4843
0000-0003-4929-8832
OpenAccessLink https://doaj.org/article/face31591e58450db069ddd60c9b6a7e
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_face31591e58450db069ddd60c9b6a7e
crossref_primary_10_21516_2072_0076_2022_15_2_supplement_49_56
PublicationCentury 2000
PublicationDate 2022-06-16
PublicationDateYYYYMMDD 2022-06-16
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-16
  day: 16
PublicationDecade 2020
PublicationTitle Rossiĭskiĭ oftalʹmologicheskiĭ zhurnal
PublicationYear 2022
Publisher Real Time Ltd
Publisher_xml – name: Real Time Ltd
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1007/s00417-016-3291-4
– ident: ref16
  doi: 10.17116/oftalma202113701160
– ident: ref19
  doi: 10.17116/oftalma202013602173
– ident: ref20
  doi: 10.1155/2019/4519412
– ident: ref12
  doi: 10.4103/ijo.IJO_1177_18
– ident: ref24
– ident: ref22
– ident: ref25
– ident: ref27
– ident: ref9
  doi: 10.1016/j.ajo.2014.11.008
– ident: ref13
  doi: 10.17116/oftalma2020136061100
– ident: ref2
  doi: 10.1136/bjophthalmol-2019-315446
– ident: ref5
  doi: 10.4103/0301-4738.181742
– ident: ref17
– ident: ref28
  doi: 10.1016/j.ophtha.2020.04.033
– ident: ref15
– ident: ref4
  doi: 10.1001/jamaophthalmol.2015.1468
– ident: ref8
  doi: 10.1371/journal.pone.0138285
– ident: ref1
  doi: 10.1136/bjophthalmol-2011-301378
– ident: ref30
  doi: 10.1111/ceo.12272
– ident: ref7
  doi: 10.2147/OPTH.S182022
– ident: ref10
  doi: 10.1097/IJG.0000000000000499
– ident: ref6
  doi: 10.2147/OPTH.S134656
– ident: ref21
– ident: ref23
– ident: ref26
– ident: ref31
  doi: 10.1097/IJG.0b013e3182a0762f
– ident: ref29
  doi: 10.1016/j.ophtha.2012.02.030
– ident: ref18
  doi: 10.17116/oftalma202013605158
– ident: ref11
  doi: 10.1001/jamaophthalmol.2015.4625
– ident: ref14
SSID ssj0002908778
Score 2.240035
Snippet Purpose. To estimate the accuracy of IOP measurement using artificial intelligence (AI) technologies and applanation tonometry with fixed strength. Material...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 49
SubjectTerms applanation tonometry
artificial intelligence
fixed force tonometry
glaucoma
intraocular pressure
ophthalmotonometry
Title A method for measuring intraocular pressure using artificial intelligence technology and fixed-force applanation tonometry
URI https://doaj.org/article/face31591e58450db069ddd60c9b6a7e
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iQbyIouL6IgevYds0SZuLsIrLIujJhb2FNA_Zy67ULqi_3pl0rb158VbSNrQf08wj0-8j5MYHEbjwkKaiUJiQ2jINnoXFXLuMWyl54il4elazuXhcyMVA6gt7wjp64A64cbQuFOBz8wCuUma-zpT23qvM6VrZMqTVN9ODZArXYK6R6C7J0WUlZ7jftEcY9j2Dh1PjfhCMBJIxeDbO3lFFM5XkmNAMBa0HjmrA558cz_SQHGwjRjrpnvSI7DSbY_I1oZ32M4WgEw6x0AdOiC6xVrtOvaU0tbhumkCxt_2V4qt2dBF4Vc_DSdu-uE7tCuZbfgTPYFY4hbvbtisX0hb_fght83lC5tOHl_sZ28ooMFdwrZjylrtS-xijrWxeQYgRIe5BHhkfikL6vOausjGvoi0tZqlSRA2feu4dJBS6OCW7q_UqnBFalEFltfSVFZBGaqVttMJnTkkXIbapRuT2BzPz1rFlGMgyEugGQTcIukHQTS4NN7-gG6GNVCNyh0j3NyP5dRoAkzBbkzB_mcT5f0xyQfaTbaBMkboku22zCVcQf7T1dTK1bzwX1-8
link.rule.ids 315,783,787,867,2109,27938,27939
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+for+measuring+intraocular+pressure+using+artificial+intelligence+technology+and+fixed-force+applanation+tonometry&rft.jtitle=Rossi%C4%ADski%C4%AD+oftal%CA%B9mologicheski%C4%AD+zhurnal&rft.au=D.+A.+Dorofeev&rft.au=A.+A.+Antonov&rft.au=D.+Yu.+Vasilenko&rft.au=A.+V.+Gorobets&rft.date=2022-06-16&rft.pub=Real+Time+Ltd&rft.issn=2072-0076&rft.eissn=2587-5760&rft.volume=15&rft.issue=2+%28%D0%9F%D1%80%D0%B8%D0%BB%29&rft.spage=49&rft.epage=56&rft_id=info:doi/10.21516%2F2072-0076-2022-15-2-supplement-49-56&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_face31591e58450db069ddd60c9b6a7e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-0076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-0076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-0076&client=summon