Statistical Methods for Quantum State Verification and Fidelity Estimation

The efficient and reliable certification of quantum states is essential for various quantum information processing tasks as well as for the general progress on the implementation of quantum technologies. In the last few years several methods have been introduced which use advanced statistical method...

Full description

Saved in:
Bibliographic Details
Published inAdvanced quantum technologies (Online) Vol. 5; no. 5
Main Authors Yu, Xiao‐Dong, Shang, Jiangwei, Gühne, Otfried
Format Journal Article
LanguageEnglish
Published 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The efficient and reliable certification of quantum states is essential for various quantum information processing tasks as well as for the general progress on the implementation of quantum technologies. In the last few years several methods have been introduced which use advanced statistical methods to certify quantum states in a resource‐efficient manner. In this article, a review of the recent progress in this field is presented. How the verification and fidelity estimation of a quantum state can be discussed in the language of hypothesis testing is explained first. Then, various strategies for the verification of entangled states with local measurements or measurements assisted by local operations and classical communication are explained in detail. Finally, several extensions of the problem, such as the certification of quantum channels and the verification of entanglement are discussed. How can one verify that a certain quantum state has been prepared in a quantum device? This question is essential for various tasks in quantum information processing. This article presents a pedagogical review on this topic. Starting from the theory of hypothesis testing, the current protocols for quantum state verification and fidelity estimation are explained.
AbstractList The efficient and reliable certification of quantum states is essential for various quantum information processing tasks as well as for the general progress on the implementation of quantum technologies. In the last few years several methods have been introduced which use advanced statistical methods to certify quantum states in a resource‐efficient manner. In this article, a review of the recent progress in this field is presented. How the verification and fidelity estimation of a quantum state can be discussed in the language of hypothesis testing is explained first. Then, various strategies for the verification of entangled states with local measurements or measurements assisted by local operations and classical communication are explained in detail. Finally, several extensions of the problem, such as the certification of quantum channels and the verification of entanglement are discussed. How can one verify that a certain quantum state has been prepared in a quantum device? This question is essential for various tasks in quantum information processing. This article presents a pedagogical review on this topic. Starting from the theory of hypothesis testing, the current protocols for quantum state verification and fidelity estimation are explained.
The efficient and reliable certification of quantum states is essential for various quantum information processing tasks as well as for the general progress on the implementation of quantum technologies. In the last few years several methods have been introduced which use advanced statistical methods to certify quantum states in a resource‐efficient manner. In this article, a review of the recent progress in this field is presented. How the verification and fidelity estimation of a quantum state can be discussed in the language of hypothesis testing is explained first. Then, various strategies for the verification of entangled states with local measurements or measurements assisted by local operations and classical communication are explained in detail. Finally, several extensions of the problem, such as the certification of quantum channels and the verification of entanglement are discussed.
Author Yu, Xiao‐Dong
Gühne, Otfried
Shang, Jiangwei
Author_xml – sequence: 1
  givenname: Xiao‐Dong
  orcidid: 0000-0001-8835-5524
  surname: Yu
  fullname: Yu, Xiao‐Dong
  email: xiao-dong.yu@uni-siegen.de
  organization: Shandong University
– sequence: 2
  givenname: Jiangwei
  orcidid: 0000-0002-2332-5882
  surname: Shang
  fullname: Shang, Jiangwei
  email: jiangwei.shang@bit.edu.cn
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Otfried
  orcidid: 0000-0002-6033-0867
  surname: Gühne
  fullname: Gühne, Otfried
  email: otfried.guehne@uni-siegen.de
  organization: Universität Siegen
BookMark eNqFkF1LwzAUhoNMcM7dep0_0HqStGlzKWPzg4kMp7cla08w0rWapEj_vd0mKoJ4dT6fc17eUzJq2gYJOWcQMwB-8dYFjDnwoWBcHpExTxmLFCTJ6Ed-Qqbev8AACCaSTIzJ7UPQwfpgS13TOwzPbeWpaR1ddboJ3Zbu5kif0Fkz7ATbNlQ3FV3YCmsbejof2O2-f0aOja49Tj_jhKwX8_XsOlreX93MLpdRKbiSUSrR5CDyHFAYEBIlg1KmwDXnfCNLzEWWVkpVbKMAcsykkRteZRlPZQZKTEh8OFu61nuHpnh1gwLXFwyKnRfFzoviy4sBSH4BpQ17xcFpW_-NqQP2bmvs_3lSrB7X82_2A-MDda8
CitedBy_id crossref_primary_10_1016_j_rinp_2023_106661
crossref_primary_10_1145_3700885
crossref_primary_10_1103_PhysRevA_107_062424
crossref_primary_10_1002_qute_202200104
crossref_primary_10_1103_PhysRevLett_129_190504
crossref_primary_10_22331_q_2024_01_10_1221
crossref_primary_10_1002_qute_202400196
crossref_primary_10_1103_PhysRevA_109_052607
crossref_primary_10_1016_j_physrep_2024_09_009
crossref_primary_10_1016_j_eml_2023_102117
crossref_primary_10_1103_PhysRevLett_132_240802
crossref_primary_10_1002_andp_202400305
crossref_primary_10_1007_s11128_023_04225_5
crossref_primary_10_1103_PhysRevA_107_022616
crossref_primary_10_1002_qute_202300083
crossref_primary_10_1007_s11128_023_03881_x
crossref_primary_10_1007_s11128_024_04619_z
crossref_primary_10_1103_PhysRevA_107_022414
crossref_primary_10_1103_PhysRevA_110_022410
crossref_primary_10_1103_PhysRevResearch_7_013003
crossref_primary_10_1038_s41534_023_00783_9
crossref_primary_10_1038_s41534_023_00797_3
Cites_doi 10.1103/PhysRevLett.126.140503
10.1002/que2.73
10.1103/PhysRevLett.92.180403
10.1103/PhysRevA.96.062321
10.1103/PhysRevA.103.022601
10.1103/PhysRevA.100.062335
10.1103/PhysRevA.101.042315
10.1103/PhysRevLett.65.1838
10.12693/APhysPolA.101.357
10.1088/0305-4470/39/46/013
10.1103/PhysRevA.101.042316
10.1103/PhysRevLett.95.120405
10.1103/PhysRevA.95.062336
10.26421/QIC4.4-3
10.1088/1367-2630/15/12/123026
10.1103/PhysRevA.81.012332
10.1103/PhysRevLett.125.030506
10.1088/1751-8113/48/8/083001
10.1103/PRXQuantum.3.010317
10.1364/AOP.361502
10.1103/PhysRevA.64.052312
10.1142/S0219749910006502
10.1364/AOP.1.000238
10.1103/PhysRevA.69.010304
10.1103/PhysRevA.99.052346
10.1088/1367-2630/15/11/113022
10.1088/0034-4885/70/8/R03
10.1103/PhysRevA.87.022311
10.1038/s41467-020-19074-4
10.1038/s41534-020-00317-7
10.1016/0034-4877(72)90011-0
10.1103/RevModPhys.81.865
10.1103/PhysRevA.72.022340
10.1103/PhysRev.93.99
10.1038/ncomms6527
10.1103/PhysRevLett.86.5188
10.1103/PhysRevLett.107.190502
10.1103/PhysRevA.100.032315
10.1016/0024-3795(75)90075-0
10.1103/PhysRevLett.67.661
10.1364/JOSAB.24.000275
10.1088/1367-2630/11/4/043028
10.1103/PhysRevA.40.4277
10.1017/CBO9780511910135
10.1038/s41534-020-00328-4
10.1088/1367-2630/13/5/053054
10.1016/j.physrep.2009.02.004
10.1016/S0375-9601(96)00706-2
10.1103/PhysRevA.84.042326
10.1103/PhysRevLett.108.260502
10.1103/PhysRevLett.70.1244
10.1103/PhysRevA.62.062314
10.22331/q-2020-09-11-320
10.1007/b98673
10.1103/PhysRevLett.126.180502
10.1098/rsta.1933.0009
10.1103/PhysRevApplied.12.044020
10.1038/s41534-019-0142-2
10.1103/PhysRevLett.128.020502
10.1103/PhysRevLett.70.1895
10.1103/PhysRevA.76.030305
10.1103/PhysRevResearch.3.L042004
10.1103/PhysRevA.91.042126
10.22331/q-2020-09-30-337
10.1002/que2.37
10.1103/PhysRevLett.105.250403
10.1103/PhysRevA.65.032302
10.1103/PhysRevLett.110.180401
10.1142/S0219749911006776
10.1103/PhysRevA.100.012328
10.1002/que2.13
10.2140/pjm.1967.23.129
10.1038/s41534-017-0055-x
10.1103/PhysRevLett.120.170502
10.1103/PhysRevA.60.1888
10.1103/PhysRevApplied.12.054047
10.1103/PhysRevLett.89.277904
10.1103/PhysRevA.105.012614
10.1103/PhysRevLett.98.063604
10.1103/PhysRevResearch.2.043323
10.1103/PhysRevLett.123.260504
10.1016/j.fmre.2021.01.004
10.1103/PhysRevA.88.022327
10.1103/PhysRevLett.117.150502
10.1038/s41534-019-0226-z
10.1088/1367-2630/12/4/043034
10.1103/PhysRevA.69.062311
10.1103/PhysRevA.68.034302
10.1103/PhysRevLett.126.090504
10.1103/PhysRevLett.68.2981
10.1103/PhysRevLett.119.110501
10.1103/PhysRevApplied.13.054002
10.1103/PhysRevA.69.022316
10.1103/PhysRevLett.111.160406
10.1103/PhysRevLett.119.180511
10.1063/1.2748617
10.1103/PRXQuantum.2.010201
10.1103/PhysRevLett.94.060501
10.1103/PhysRevA.97.052308
10.1088/1751-8113/47/33/335303
10.1103/PhysRevLett.126.240503
10.1103/PhysRevLett.125.159903
10.1038/s42254-018-0003-5
10.1080/01621459.1963.10500830
10.1038/s42254-020-0186-4
10.1103/PhysRevLett.106.230501
10.1103/PhysRevA.68.022312
10.1103/PhysRevLett.77.1413
10.1038/s41567-019-0550-4
10.1103/PhysRevLett.114.080403
10.1103/PhysRevLett.124.200502
10.1103/PhysRevResearch.2.023306
10.1038/nature04279
10.1038/s41534-021-00499-8
10.1063/1.3703615
10.1103/PhysRevA.100.032316
ContentType Journal Article
Copyright 2022 The Authors. Advanced Quantum Technologies published by Wiley‐VCH GmbH
Copyright_xml – notice: 2022 The Authors. Advanced Quantum Technologies published by Wiley‐VCH GmbH
DBID 24P
AAYXX
CITATION
DOI 10.1002/qute.202100126
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2511-9044
EndPage n/a
ExternalDocumentID 10_1002_qute_202100126
QUTE202100126
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 12175014; 11805010
– fundername: Chinesisch‐Deutsche Zentrum für Wissenschaftsförderung
  funderid: M‐0294
– fundername: Deutsche Forschungsgemeinschaft
  funderid: 440958198; 447948357
– fundername: H2020 European Research Council
  funderid: 683107
GroupedDBID 0R~
1OC
24P
33P
34L
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
AAZKR
ABCUV
ACCFJ
ACCZN
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFFPM
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
ARCSS
BFHJK
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WXSBR
ZZTAW
AAYXX
ABJNI
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
ID FETCH-LOGICAL-c3296-56ef803880e3f036e610c6502a222b6ce8375d99d1b9008e76f6b2d772567093
IEDL.DBID 24P
ISSN 2511-9044
IngestDate Tue Jul 01 02:03:50 EDT 2025
Thu Apr 24 23:12:42 EDT 2025
Wed Jan 22 16:24:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3296-56ef803880e3f036e610c6502a222b6ce8375d99d1b9008e76f6b2d772567093
ORCID 0000-0002-6033-0867
0000-0001-8835-5524
0000-0002-2332-5882
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.202100126
PageCount 21
ParticipantIDs crossref_primary_10_1002_qute_202100126
crossref_citationtrail_10_1002_qute_202100126
wiley_primary_10_1002_qute_202100126_QUTE202100126
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Advanced quantum technologies (Online)
PublicationYear 2022
References 2010; 12
1989; 40
2020 2020; 124 125
2009; 81
2010; 105
2019; 99
1967; 23
2006; 39
2019; 12
2019; 15
2004; 4
2009; 474
2007; 70
2020; 13
2020; 12
2020; 11
1975; 10
2007; 76
1996; 77
2009; 11
2018; 8
2018; 4
2002; 89
2013; 111
1984
2013; 110
2015; 91
2005; 72
1989
2019; 5
2013; 88
2013; 87
2019; 1
1933; 231
2011; 84
1997
2002; 2
2014; 47
2007; 98
2019; 100
2012; 108
1963; 58
1991; 67
2022; 3
2015; 114
2002; 65
2005; 95
2005; 94
1929
2018; 97
2011; 09
2022; 105
2017; 119
2018; 120
2012; 1443
2021; 126
2004; 69
2011; 13
2020; 125
1996; 223
2019; 123
2001; 86
2004; 649
2015; 48
2020; 6
1954; 93
2013; 15
2014; 5
2020; 4
2020; 2
2000
1993; 70
2002; 101
2000; 62
2016; 117
2022; 128
2007; 24
2021; 7
2021; 3
2021; 2
2011
2021; 103
1924; 1
2005; 438
2006
2020; 101
2002
2021; 1
2010; 81
1999; 60
2001; 64
1972; 3
2017; 95
1990; 65
2017; 96
2004; 92
2011; 107
2011; 106
2010; 08
2021
2003; 68
2017
1992; 68
2015
2009; 1
2007; 48
e_1_2_8_26_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_64_2
e_1_2_8_113_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
McDiarmid C. (e_1_2_8_55_1) 1989
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_6_1
Schlingemann D. (e_1_2_8_90_1) 2002; 2
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
Liu Y.‐C. (e_1_2_8_49_1) 2021; 3
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
Rice J. A. (e_1_2_8_50_1) 2006
Nielsen M. A. (e_1_2_8_70_1) 2000
e_1_2_8_94_1
e_1_2_8_121_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
Takeuchi Y. (e_1_2_8_98_1) 2018; 8
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Bernstein S. (e_1_2_8_53_1) 1924; 1
e_1_2_8_122_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
Scheinerman E. R. (e_1_2_8_91_1) 1997
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_104_1
References_xml – year: 2011
– volume: 12
  year: 2010
  publication-title: New J. Phys.
– volume: 58
  start-page: 13
  year: 1963
  publication-title: J. Am. Stat. Assoc.
– volume: 70
  start-page: 1381
  year: 2007
  publication-title: Rep. Prog. Phys.
– volume: 87
  year: 2013
  publication-title: Phys. Rev. A
– volume: 86
  start-page: 5188
  year: 2001
  publication-title: Phys. Rev. Lett.
– volume: 101
  year: 2020
  publication-title: Phys. Rev. A
– volume: 4
  start-page: 11
  year: 2018
  publication-title: npj Quantum Inf.
– volume: 10
  start-page: 285
  year: 1975
  publication-title: Linear Algebra Appl.
– volume: 6
  start-page: 103
  year: 2020
  publication-title: npj Quantum Inf.
– volume: 70
  start-page: 1895
  year: 1993
  publication-title: Phys. Rev. Lett.
– volume: 100
  year: 2019
  publication-title: Phys. Rev. A
– volume: 2
  year: 2020
  publication-title: Phys. Rev. Res.
– volume: 95
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 307
  year: 2002
  publication-title: Quantum Inf. Comput.
– volume: 15
  year: 2013
  publication-title: New J. Phys.
– volume: 93
  start-page: 99
  year: 1954
  publication-title: Phys. Rev.
– volume: 08
  start-page: 535
  year: 2010
  publication-title: Int. J. Quantum Inf.
– volume: 69
  year: 2004
  publication-title: Phys. Rev. A
– volume: 3
  year: 2021
  publication-title: Phys. Rev. Res.
– volume: 65
  start-page: 1838
  year: 1990
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 5527
  year: 2014
  publication-title: Nat. Commun.
– volume: 40
  start-page: 4277
  year: 1989
  publication-title: Phys. Rev. A
– volume: 108
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 23
  start-page: 129
  year: 1967
  publication-title: Pacific J. Math.
– volume: 1443
  start-page: 14
  year: 2012
  publication-title: AIP Conf. Proc.
– volume: 106
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 1012
  year: 2020
  publication-title: Adv. Opt. Photonics
– volume: 5
  start-page: 27
  year: 2019
  publication-title: npj Quantum Inf.
– start-page: 47
  year: 1929
  end-page: 60
– volume: 5
  start-page: 112
  year: 2019
  publication-title: npj Quantum Inf.
– volume: 89
  year: 2002
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 90
  year: 2020
  publication-title: npj Quantum Inf.
– volume: 48
  year: 2007
  publication-title: J. Math. Phys.
– volume: 649
  year: 2004
– volume: 99
  year: 2019
  publication-title: Phys. Rev. A
– volume: 123
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 382
  year: 2020
  publication-title: Nat. Rev. Phys.
– volume: 125
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 68
  year: 2003
  publication-title: Phys. Rev. A
– volume: 101
  start-page: 357
  year: 2002
  publication-title: Acta Phys. Pol., A
– volume: 474
  start-page: 1
  year: 2009
  publication-title: Phys. Rep.
– volume: 65
  year: 2002
  publication-title: Phys. Rev. A
– volume: 2
  year: 2020
  publication-title: Phys. Rev. Research
– volume: 24
  start-page: 275
  year: 2007
  publication-title: J. Opt. Soc. Am. B
– volume: 114
  year: 2015
  publication-title: Phys. Rev. Lett.
– start-page: 148
  year: 1989
– volume: 13
  year: 2020
  publication-title: Phys. Rev. Appl.
– volume: 47
  year: 2014
  publication-title: J. Phys. A: Math. Theor.
– volume: 67
  start-page: 661
  year: 1991
  publication-title: Phys. Rev. Lett.
– volume: 70
  start-page: 1244
  year: 1993
  publication-title: Phys. Rev. Lett.
– volume: 39
  year: 2006
  publication-title: J. Phys. A: Math. Gen.
– volume: 97
  year: 2018
  publication-title: Phys. Rev. A
– volume: 110
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 1
  start-page: 72
  year: 2019
  publication-title: Nat. Rev. Phys.
– volume: 72
  year: 2005
  publication-title: Phys. Rev. A
– volume: 11
  start-page: 5396
  year: 2020
  publication-title: Nat. Commun.
– volume: 1
  start-page: 38
  year: 1924
  publication-title: Ann. Sci. Inst. Sav. Ukraine, Sect. Math
– volume: 84
  year: 2011
  publication-title: Phys. Rev. A
– volume: 81
  year: 2010
  publication-title: Phys. Rev. A
– volume: 128
  year: 2022
  publication-title: Phys. Rev. Lett.
– start-page: 175
  year: 1984
  end-page: 179
– volume: 64
  year: 2001
  publication-title: Phys. Rev. A
– year: 2021
– volume: 09
  start-page: 445
  year: 2011
  publication-title: Int. J. Quantum Inf.
– volume: 1
  year: 2019
  publication-title: Quantum Eng.
– volume: 4
  start-page: 320
  year: 2020
  publication-title: Quantum
– volume: 117
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 120
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: 273
  year: 2004
  publication-title: Quantum Inf. Comput.
– volume: 60
  start-page: 1888
  year: 1999
  publication-title: Phys. Rev. A
– volume: 15
  start-page: 935
  year: 2019
  publication-title: Nat. Phys.
– volume: 81
  start-page: 865
  year: 2009
  publication-title: Rev. Mod. Phys.
– volume: 94
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 77
  start-page: 1413
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 92
  year: 2004
  publication-title: Phys. Rev. Lett.
– year: 1997
– volume: 13
  year: 2011
  publication-title: New J. Phys.
– volume: 95
  year: 2017
  publication-title: Phys. Rev. A
– volume: 12
  year: 2019
  publication-title: Phys. Rev. Appl.
– volume: 1
  start-page: 238
  year: 2009
  publication-title: Adv. Opt. Photonics
– volume: 7
  start-page: 164
  year: 2021
  publication-title: npj Quantum Inf.
– volume: 4
  start-page: 337
  year: 2020
  publication-title: Quantum
– volume: 3
  year: 2022
  publication-title: PRX Quantum
– year: 2015
– volume: 8
  year: 2018
  publication-title: Phys. Rev. X
– volume: 98
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 68
  start-page: 2981
  year: 1992
  publication-title: Phys. Rev. Lett.
– volume: 126
  year: 2021
  publication-title: Phys. Rev. Lett.
– volume: 62
  year: 2000
  publication-title: Phys. Rev. A
– volume: 105
  year: 2022
  publication-title: Phys. Rev. A
– volume: 111
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 76
  year: 2007
  publication-title: Phys. Rev. A
– volume: 124 125
  year: 2020 2020
  publication-title: Phys. Rev. Lett. Phys. Rev. Lett.
– year: 2000
– volume: 2
  year: 2021
  publication-title: PRX Quantum
– volume: 2
  year: 2020
  publication-title: Quantum Eng.
– volume: 223
  start-page: 1
  year: 1996
  publication-title: Phys. Lett. A
– volume: 1
  start-page: 27
  year: 2021
  publication-title: Fundam. Res.
– volume: 231
  start-page: 289
  year: 1933
  publication-title: Philos. Trans. R. Soc. A
– volume: 96
  year: 2017
  publication-title: Phys. Rev. A
– volume: 119
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 91
  year: 2015
  publication-title: Phys. Rev. A
– volume: 103
  year: 2021
  publication-title: Phys. Rev. A
– volume: 48
  year: 2015
  publication-title: J. Phys. A: Math. Theor.
– volume: 12
  year: 2019
  publication-title: Phys. Rev. Applied
– start-page: 45
  year: 2002
– volume: 3
  year: 2021
  publication-title: Quantum Eng.
– volume: 88
  year: 2013
  publication-title: Phys. Rev. A
– year: 2006
– volume: 3
  start-page: 275
  year: 1972
  publication-title: Rep. Math. Phys.
– volume: 11
  year: 2009
  publication-title: New J. Phys.
– year: 2017
– volume: 107
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 438
  start-page: 643
  year: 2005
  publication-title: Nature
– volume: 105
  year: 2010
  publication-title: Phys. Rev. Lett.
– ident: e_1_2_8_65_1
  doi: 10.1103/PhysRevLett.126.140503
– volume: 2
  start-page: 307
  year: 2002
  ident: e_1_2_8_90_1
  publication-title: Quantum Inf. Comput.
– ident: e_1_2_8_7_1
  doi: 10.1002/que2.73
– ident: e_1_2_8_86_1
  doi: 10.1103/PhysRevLett.92.180403
– ident: e_1_2_8_96_1
  doi: 10.1103/PhysRevA.96.062321
– ident: e_1_2_8_113_1
  doi: 10.1103/PhysRevA.103.022601
– ident: e_1_2_8_115_1
  doi: 10.1103/PhysRevA.100.062335
– start-page: 148
  volume-title: Surveys in Combinatorics
  year: 1989
  ident: e_1_2_8_55_1
– ident: e_1_2_8_119_1
  doi: 10.1103/PhysRevA.101.042315
– ident: e_1_2_8_54_1
– ident: e_1_2_8_79_1
  doi: 10.1103/PhysRevLett.65.1838
– ident: e_1_2_8_4_1
  doi: 10.12693/APhysPolA.101.357
– ident: e_1_2_8_30_1
  doi: 10.1088/0305-4470/39/46/013
– ident: e_1_2_8_120_1
  doi: 10.1103/PhysRevA.101.042316
– ident: e_1_2_8_80_1
  doi: 10.1103/PhysRevLett.95.120405
– ident: e_1_2_8_14_1
  doi: 10.1103/PhysRevA.95.062336
– ident: e_1_2_8_126_1
– ident: e_1_2_8_129_1
  doi: 10.26421/QIC4.4-3
– ident: e_1_2_8_16_1
  doi: 10.1088/1367-2630/15/12/123026
– ident: e_1_2_8_38_1
  doi: 10.1103/PhysRevA.81.012332
– volume-title: Mathematical Statistics and Data Analysis
  year: 2006
  ident: e_1_2_8_50_1
– ident: e_1_2_8_100_1
  doi: 10.1103/PhysRevLett.125.030506
– ident: e_1_2_8_33_1
  doi: 10.1088/1751-8113/48/8/083001
– ident: e_1_2_8_85_1
  doi: 10.1103/PRXQuantum.3.010317
– ident: e_1_2_8_6_1
  doi: 10.1364/AOP.361502
– ident: e_1_2_8_11_1
  doi: 10.1103/PhysRevA.64.052312
– ident: e_1_2_8_75_1
  doi: 10.1142/S0219749910006502
– ident: e_1_2_8_32_1
  doi: 10.1364/AOP.1.000238
– ident: e_1_2_8_37_1
  doi: 10.1103/PhysRevA.69.010304
– ident: e_1_2_8_73_1
  doi: 10.1103/PhysRevA.99.052346
– ident: e_1_2_8_93_1
  doi: 10.1088/1367-2630/15/11/113022
– ident: e_1_2_8_133_1
  doi: 10.1088/0034-4885/70/8/R03
– ident: e_1_2_8_92_1
  doi: 10.1103/PhysRevA.87.022311
– ident: e_1_2_8_41_1
  doi: 10.1038/s41467-020-19074-4
– ident: e_1_2_8_34_1
– ident: e_1_2_8_107_1
  doi: 10.1038/s41534-020-00317-7
– ident: e_1_2_8_117_1
  doi: 10.1016/0034-4877(72)90011-0
– ident: e_1_2_8_102_1
  doi: 10.1103/RevModPhys.81.865
– ident: e_1_2_8_67_1
  doi: 10.1103/PhysRevA.72.022340
– ident: e_1_2_8_112_1
  doi: 10.1103/PhysRev.93.99
– ident: e_1_2_8_24_1
  doi: 10.1038/ncomms6527
– ident: e_1_2_8_8_1
  doi: 10.1103/PhysRevLett.86.5188
– ident: e_1_2_8_104_1
  doi: 10.1103/PhysRevLett.107.190502
– ident: e_1_2_8_71_1
  doi: 10.1103/PhysRevA.100.032315
– ident: e_1_2_8_116_1
  doi: 10.1016/0024-3795(75)90075-0
– ident: e_1_2_8_3_1
  doi: 10.1103/PhysRevLett.67.661
– ident: e_1_2_8_68_1
  doi: 10.1364/JOSAB.24.000275
– ident: e_1_2_8_31_1
  doi: 10.1088/1367-2630/11/4/043028
– ident: e_1_2_8_72_1
  doi: 10.1103/PhysRevA.40.4277
– ident: e_1_2_8_74_1
  doi: 10.1017/CBO9780511910135
– ident: e_1_2_8_108_1
  doi: 10.1038/s41534-020-00328-4
– ident: e_1_2_8_111_1
  doi: 10.1088/1367-2630/13/5/053054
– ident: e_1_2_8_20_1
  doi: 10.1016/j.physrep.2009.02.004
– volume: 1
  start-page: 38
  year: 1924
  ident: e_1_2_8_53_1
  publication-title: Ann. Sci. Inst. Sav. Ukraine, Sect. Math
– ident: e_1_2_8_106_1
  doi: 10.1016/S0375-9601(96)00706-2
– ident: e_1_2_8_103_1
  doi: 10.1103/PhysRevA.84.042326
– ident: e_1_2_8_83_1
  doi: 10.1103/PhysRevLett.108.260502
– ident: e_1_2_8_60_1
– volume: 8
  start-page: 021060
  year: 2018
  ident: e_1_2_8_98_1
  publication-title: Phys. Rev. X
– ident: e_1_2_8_10_1
  doi: 10.1103/PhysRevLett.70.1244
– ident: e_1_2_8_110_1
  doi: 10.1103/PhysRevA.62.062314
– ident: e_1_2_8_125_1
  doi: 10.22331/q-2020-09-11-320
– ident: e_1_2_8_12_1
  doi: 10.1007/b98673
– ident: e_1_2_8_44_1
  doi: 10.1103/PhysRevLett.126.180502
– ident: e_1_2_8_51_1
  doi: 10.1098/rsta.1933.0009
– ident: e_1_2_8_109_1
  doi: 10.1103/PhysRevApplied.12.044020
– ident: e_1_2_8_99_1
  doi: 10.1038/s41534-019-0142-2
– ident: e_1_2_8_123_1
  doi: 10.1103/PhysRevLett.128.020502
– ident: e_1_2_8_1_1
  doi: 10.1103/PhysRevLett.70.1895
– ident: e_1_2_8_27_1
  doi: 10.1103/PhysRevA.76.030305
– volume: 3
  start-page: L042004
  year: 2021
  ident: e_1_2_8_49_1
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.L042004
– ident: e_1_2_8_59_1
  doi: 10.1103/PhysRevA.91.042126
– ident: e_1_2_8_130_1
  doi: 10.22331/q-2020-09-30-337
– ident: e_1_2_8_45_1
  doi: 10.1002/que2.37
– ident: e_1_2_8_69_1
  doi: 10.1103/PhysRevLett.105.250403
– ident: e_1_2_8_89_1
– ident: e_1_2_8_28_1
– ident: e_1_2_8_5_1
  doi: 10.1103/PhysRevA.65.032302
– ident: e_1_2_8_56_1
  doi: 10.1103/PhysRevLett.110.180401
– ident: e_1_2_8_76_1
  doi: 10.1142/S0219749911006776
– ident: e_1_2_8_58_1
– volume-title: Fractional Graph Theory: A Rational Approach to the Theory of Graphs
  year: 1997
  ident: e_1_2_8_91_1
– ident: e_1_2_8_43_1
  doi: 10.1103/PhysRevA.100.012328
– ident: e_1_2_8_46_1
  doi: 10.1002/que2.13
– volume-title: Quantum Computation and Quantum Information
  year: 2000
  ident: e_1_2_8_70_1
– ident: e_1_2_8_118_1
  doi: 10.2140/pjm.1967.23.129
– ident: e_1_2_8_62_1
  doi: 10.1038/s41534-017-0055-x
– ident: e_1_2_8_132_1
– ident: e_1_2_8_29_1
  doi: 10.1103/PhysRevLett.120.170502
– ident: e_1_2_8_122_1
  doi: 10.1103/PhysRevA.60.1888
– ident: e_1_2_8_81_1
  doi: 10.1103/PhysRevApplied.12.054047
– ident: e_1_2_8_135_1
– ident: e_1_2_8_35_1
  doi: 10.1103/PhysRevLett.89.277904
– ident: e_1_2_8_124_1
  doi: 10.1103/PhysRevA.105.012614
– ident: e_1_2_8_23_1
  doi: 10.1103/PhysRevLett.98.063604
– ident: e_1_2_8_95_1
  doi: 10.1103/PhysRevResearch.2.043323
– ident: e_1_2_8_114_1
  doi: 10.1103/PhysRevLett.123.260504
– ident: e_1_2_8_22_1
  doi: 10.1016/j.fmre.2021.01.004
– ident: e_1_2_8_42_1
  doi: 10.1103/PhysRevA.88.022327
– ident: e_1_2_8_40_1
  doi: 10.1103/PhysRevLett.117.150502
– ident: e_1_2_8_61_1
  doi: 10.1038/s41534-019-0226-z
– ident: e_1_2_8_15_1
  doi: 10.1088/1367-2630/12/4/043034
– ident: e_1_2_8_87_1
  doi: 10.1103/PhysRevA.69.062311
– ident: e_1_2_8_36_1
  doi: 10.1103/PhysRevA.68.034302
– ident: e_1_2_8_127_1
  doi: 10.1103/PhysRevLett.126.090504
– ident: e_1_2_8_134_1
  doi: 10.1103/PhysRevLett.68.2981
– ident: e_1_2_8_47_1
  doi: 10.1103/PhysRevLett.119.110501
– ident: e_1_2_8_82_1
  doi: 10.1103/PhysRevApplied.13.054002
– ident: e_1_2_8_88_1
  doi: 10.1103/PhysRevA.69.022316
– ident: e_1_2_8_57_1
  doi: 10.1103/PhysRevLett.111.160406
– ident: e_1_2_8_25_1
  doi: 10.1103/PhysRevLett.119.180511
– ident: e_1_2_8_77_1
  doi: 10.1063/1.2748617
– ident: e_1_2_8_19_1
  doi: 10.1103/PRXQuantum.2.010201
– ident: e_1_2_8_66_1
  doi: 10.1103/PhysRevLett.94.060501
– ident: e_1_2_8_97_1
  doi: 10.1103/PhysRevA.97.052308
– ident: e_1_2_8_78_1
– ident: e_1_2_8_94_1
  doi: 10.1088/1751-8113/47/33/335303
– ident: e_1_2_8_48_1
  doi: 10.1103/PhysRevLett.126.240503
– ident: e_1_2_8_64_2
  doi: 10.1103/PhysRevLett.125.159903
– ident: e_1_2_8_21_1
  doi: 10.1038/s42254-018-0003-5
– ident: e_1_2_8_131_1
– ident: e_1_2_8_2_1
– ident: e_1_2_8_52_1
  doi: 10.1080/01621459.1963.10500830
– ident: e_1_2_8_18_1
  doi: 10.1038/s42254-020-0186-4
– ident: e_1_2_8_26_1
  doi: 10.1103/PhysRevLett.106.230501
– ident: e_1_2_8_9_1
  doi: 10.1103/PhysRevA.68.022312
– ident: e_1_2_8_105_1
  doi: 10.1103/PhysRevLett.77.1413
– ident: e_1_2_8_63_1
  doi: 10.1038/s41567-019-0550-4
– ident: e_1_2_8_128_1
– ident: e_1_2_8_17_1
  doi: 10.1103/PhysRevLett.114.080403
– ident: e_1_2_8_64_1
  doi: 10.1103/PhysRevLett.124.200502
– ident: e_1_2_8_121_1
  doi: 10.1103/PhysRevResearch.2.023306
– ident: e_1_2_8_13_1
  doi: 10.1038/nature04279
– ident: e_1_2_8_84_1
  doi: 10.1038/s41534-021-00499-8
– ident: e_1_2_8_39_1
  doi: 10.1063/1.3703615
– ident: e_1_2_8_101_1
  doi: 10.1103/PhysRevA.100.032316
SSID ssj0002313473
Score 2.4458306
SecondaryResourceType review_article
Snippet The efficient and reliable certification of quantum states is essential for various quantum information processing tasks as well as for the general progress on...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms fidelity estimation
hypothesis testing
quantum certification and benchmarking
quantum state verification
Title Statistical Methods for Quantum State Verification and Fidelity Estimation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.202100126
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BKyQWxKcoH5UHJKaowXGceKygFaoooqJF3aLYcSYIH23-P3dOGtoBITEmOmd4sf1eLnfPAFfSECtI68XaZPiBIqynlU09pGqLhG9MbKg5efwo72diNA_na138lT9Ek3CjleH2a1rgqV70fkxDP0tnc8nJRIjLbWhTfy0V9XHx1GRZUL0Ewv1mJintKV-IlXOjz3ubj9hgpnWl6qhmuA97tUZk_eqlHsCWLQ5hx9VqmsURjEggOn9lDBq7E6AXDLUnm5QIU_nGnIBkLzi38jojx9IiY0NytELRzQY4tupYPIbpcDC9vffqIxE8E3AlEUKbx87AxQY5ko9F9WNQZPEUeV5Lg_hGYaZUdqMVsruNZC41z1BCh2TUFpxAq3gv7Ckw1GF4Twkrg1QoGekgyv1cpmFmeRT5cQe8FRqJqe3C6dSK16QyOuYJoZc06HXguon_qIwyfo3kDtw_wpLJbDpors7-M-gcdjl1K7j6xAtoLb9Ke4kaYqm7bpp0od2_Gz88fwPWVb2t
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT4NAEJ1ojdGL8TPWzz2YeCLFZVnYozFtai2NTajxRmBZToofLf_fmYWiPRgTj5BZDo_dfY9h5w3AldTECtI4YaZz_EARxsmUSR2kaoOEr3WoqTg5msjhTIye_eVpQqqFqf0h2oQbrQy7X9MCp4R079s19KOyPpecXIS4XIcNIXlATQy4eGzTLChfPGH_M5OWdpQrxNK60eW91UesUNNPqWq5ZrALO41IZLf1W92DNVPuw6Y9rKnnBzAihWgNljEosi2g5wzFJ5tWiFP1yqyCZE84uYomJcfSMmcDsrRC1c36OLYuWTyEeNCP74ZO0xPB0R5XEjE0RWgdXIxXIPsYlD8aVRZPkegzqRHgwM-Vym8yhfRuAlnIjOeooX1yavOOoFO-leYYGAoxvKeEkV4qlAwyLyjcQqZ-bngQuGEXnCUaiW78wqltxUtSOx3zhNBLWvS6cN3Gv9dOGb9GcgvuH2HJdBb326uT_wy6hK1hHI2T8f3k4RS2OZUu2MOKZ9BZfFbmHAXFIruwU-YLMq6_hQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT4MwFH7RGY0X4884f_Zg4okMSyn0aHRkTrdsCTO7EVrKSXG68f_7WhhuB2PiEfLK4aPl-2jf-x7ADVeGFbh2Qqky_EFh2pFCpw5StUbCVypUpjh5MOS9CetP_elKFX_lD9FsuJmVYb_XZoHPsrzzYxr6WVqbS2pMhCjfhC1z4meSuigbNbssqF48Zo-ZjZR2hMvY0rnRpZ31R6wx06pStVQT7cNerRHJffVSD2BDF4ewbXM11fwI-kYgWn9lDBrYDtBzgtqTjEuEqXwnVkCSV5xbeb0jR9IiI5FxtELRTbo4tqpYPIY46sYPPaduieAojwqOEOo8tAYu2suRfDSqH4Uii6bI85IrxDfwMyGyOymQ3XXAcy5phhLaN0Zt3gm0io9CnwJBHYb3BNPcS5nggfSC3M156meaBoEbtsFZopGo2i7cdK14SyqjY5oY9JIGvTbcNvGzyijj10hqwf0jLBlP4m5zdfafQdewM3qMkpen4fM57FJTuGBTFS-gtfgq9SXKiYW8sjPmG0Qlvrc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+Methods+for+Quantum+State+Verification+and+Fidelity+Estimation&rft.jtitle=Advanced+quantum+technologies+%28Online%29&rft.au=Yu%2C+Xiao%E2%80%90Dong&rft.au=Shang%2C+Jiangwei&rft.au=G%C3%BChne%2C+Otfried&rft.date=2022-05-01&rft.issn=2511-9044&rft.eissn=2511-9044&rft.volume=5&rft.issue=5&rft_id=info:doi/10.1002%2Fqute.202100126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qute_202100126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-9044&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-9044&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-9044&client=summon