Statistical Methods for Quantum State Verification and Fidelity Estimation
The efficient and reliable certification of quantum states is essential for various quantum information processing tasks as well as for the general progress on the implementation of quantum technologies. In the last few years several methods have been introduced which use advanced statistical method...
Saved in:
Published in | Advanced quantum technologies (Online) Vol. 5; no. 5 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The efficient and reliable certification of quantum states is essential for various quantum information processing tasks as well as for the general progress on the implementation of quantum technologies. In the last few years several methods have been introduced which use advanced statistical methods to certify quantum states in a resource‐efficient manner. In this article, a review of the recent progress in this field is presented. How the verification and fidelity estimation of a quantum state can be discussed in the language of hypothesis testing is explained first. Then, various strategies for the verification of entangled states with local measurements or measurements assisted by local operations and classical communication are explained in detail. Finally, several extensions of the problem, such as the certification of quantum channels and the verification of entanglement are discussed.
How can one verify that a certain quantum state has been prepared in a quantum device? This question is essential for various tasks in quantum information processing. This article presents a pedagogical review on this topic. Starting from the theory of hypothesis testing, the current protocols for quantum state verification and fidelity estimation are explained. |
---|---|
AbstractList | The efficient and reliable certification of quantum states is essential for various quantum information processing tasks as well as for the general progress on the implementation of quantum technologies. In the last few years several methods have been introduced which use advanced statistical methods to certify quantum states in a resource‐efficient manner. In this article, a review of the recent progress in this field is presented. How the verification and fidelity estimation of a quantum state can be discussed in the language of hypothesis testing is explained first. Then, various strategies for the verification of entangled states with local measurements or measurements assisted by local operations and classical communication are explained in detail. Finally, several extensions of the problem, such as the certification of quantum channels and the verification of entanglement are discussed.
How can one verify that a certain quantum state has been prepared in a quantum device? This question is essential for various tasks in quantum information processing. This article presents a pedagogical review on this topic. Starting from the theory of hypothesis testing, the current protocols for quantum state verification and fidelity estimation are explained. The efficient and reliable certification of quantum states is essential for various quantum information processing tasks as well as for the general progress on the implementation of quantum technologies. In the last few years several methods have been introduced which use advanced statistical methods to certify quantum states in a resource‐efficient manner. In this article, a review of the recent progress in this field is presented. How the verification and fidelity estimation of a quantum state can be discussed in the language of hypothesis testing is explained first. Then, various strategies for the verification of entangled states with local measurements or measurements assisted by local operations and classical communication are explained in detail. Finally, several extensions of the problem, such as the certification of quantum channels and the verification of entanglement are discussed. |
Author | Yu, Xiao‐Dong Gühne, Otfried Shang, Jiangwei |
Author_xml | – sequence: 1 givenname: Xiao‐Dong orcidid: 0000-0001-8835-5524 surname: Yu fullname: Yu, Xiao‐Dong email: xiao-dong.yu@uni-siegen.de organization: Shandong University – sequence: 2 givenname: Jiangwei orcidid: 0000-0002-2332-5882 surname: Shang fullname: Shang, Jiangwei email: jiangwei.shang@bit.edu.cn organization: Beijing Institute of Technology – sequence: 3 givenname: Otfried orcidid: 0000-0002-6033-0867 surname: Gühne fullname: Gühne, Otfried email: otfried.guehne@uni-siegen.de organization: Universität Siegen |
BookMark | eNqFkF1LwzAUhoNMcM7dep0_0HqStGlzKWPzg4kMp7cla08w0rWapEj_vd0mKoJ4dT6fc17eUzJq2gYJOWcQMwB-8dYFjDnwoWBcHpExTxmLFCTJ6Ed-Qqbev8AACCaSTIzJ7UPQwfpgS13TOwzPbeWpaR1ddboJ3Zbu5kif0Fkz7ATbNlQ3FV3YCmsbejof2O2-f0aOja49Tj_jhKwX8_XsOlreX93MLpdRKbiSUSrR5CDyHFAYEBIlg1KmwDXnfCNLzEWWVkpVbKMAcsykkRteZRlPZQZKTEh8OFu61nuHpnh1gwLXFwyKnRfFzoviy4sBSH4BpQ17xcFpW_-NqQP2bmvs_3lSrB7X82_2A-MDda8 |
CitedBy_id | crossref_primary_10_1016_j_rinp_2023_106661 crossref_primary_10_1145_3700885 crossref_primary_10_1103_PhysRevA_107_062424 crossref_primary_10_1002_qute_202200104 crossref_primary_10_1103_PhysRevLett_129_190504 crossref_primary_10_22331_q_2024_01_10_1221 crossref_primary_10_1002_qute_202400196 crossref_primary_10_1103_PhysRevA_109_052607 crossref_primary_10_1016_j_physrep_2024_09_009 crossref_primary_10_1016_j_eml_2023_102117 crossref_primary_10_1103_PhysRevLett_132_240802 crossref_primary_10_1002_andp_202400305 crossref_primary_10_1007_s11128_023_04225_5 crossref_primary_10_1103_PhysRevA_107_022616 crossref_primary_10_1002_qute_202300083 crossref_primary_10_1007_s11128_023_03881_x crossref_primary_10_1007_s11128_024_04619_z crossref_primary_10_1103_PhysRevA_107_022414 crossref_primary_10_1103_PhysRevA_110_022410 crossref_primary_10_1103_PhysRevResearch_7_013003 crossref_primary_10_1038_s41534_023_00783_9 crossref_primary_10_1038_s41534_023_00797_3 |
Cites_doi | 10.1103/PhysRevLett.126.140503 10.1002/que2.73 10.1103/PhysRevLett.92.180403 10.1103/PhysRevA.96.062321 10.1103/PhysRevA.103.022601 10.1103/PhysRevA.100.062335 10.1103/PhysRevA.101.042315 10.1103/PhysRevLett.65.1838 10.12693/APhysPolA.101.357 10.1088/0305-4470/39/46/013 10.1103/PhysRevA.101.042316 10.1103/PhysRevLett.95.120405 10.1103/PhysRevA.95.062336 10.26421/QIC4.4-3 10.1088/1367-2630/15/12/123026 10.1103/PhysRevA.81.012332 10.1103/PhysRevLett.125.030506 10.1088/1751-8113/48/8/083001 10.1103/PRXQuantum.3.010317 10.1364/AOP.361502 10.1103/PhysRevA.64.052312 10.1142/S0219749910006502 10.1364/AOP.1.000238 10.1103/PhysRevA.69.010304 10.1103/PhysRevA.99.052346 10.1088/1367-2630/15/11/113022 10.1088/0034-4885/70/8/R03 10.1103/PhysRevA.87.022311 10.1038/s41467-020-19074-4 10.1038/s41534-020-00317-7 10.1016/0034-4877(72)90011-0 10.1103/RevModPhys.81.865 10.1103/PhysRevA.72.022340 10.1103/PhysRev.93.99 10.1038/ncomms6527 10.1103/PhysRevLett.86.5188 10.1103/PhysRevLett.107.190502 10.1103/PhysRevA.100.032315 10.1016/0024-3795(75)90075-0 10.1103/PhysRevLett.67.661 10.1364/JOSAB.24.000275 10.1088/1367-2630/11/4/043028 10.1103/PhysRevA.40.4277 10.1017/CBO9780511910135 10.1038/s41534-020-00328-4 10.1088/1367-2630/13/5/053054 10.1016/j.physrep.2009.02.004 10.1016/S0375-9601(96)00706-2 10.1103/PhysRevA.84.042326 10.1103/PhysRevLett.108.260502 10.1103/PhysRevLett.70.1244 10.1103/PhysRevA.62.062314 10.22331/q-2020-09-11-320 10.1007/b98673 10.1103/PhysRevLett.126.180502 10.1098/rsta.1933.0009 10.1103/PhysRevApplied.12.044020 10.1038/s41534-019-0142-2 10.1103/PhysRevLett.128.020502 10.1103/PhysRevLett.70.1895 10.1103/PhysRevA.76.030305 10.1103/PhysRevResearch.3.L042004 10.1103/PhysRevA.91.042126 10.22331/q-2020-09-30-337 10.1002/que2.37 10.1103/PhysRevLett.105.250403 10.1103/PhysRevA.65.032302 10.1103/PhysRevLett.110.180401 10.1142/S0219749911006776 10.1103/PhysRevA.100.012328 10.1002/que2.13 10.2140/pjm.1967.23.129 10.1038/s41534-017-0055-x 10.1103/PhysRevLett.120.170502 10.1103/PhysRevA.60.1888 10.1103/PhysRevApplied.12.054047 10.1103/PhysRevLett.89.277904 10.1103/PhysRevA.105.012614 10.1103/PhysRevLett.98.063604 10.1103/PhysRevResearch.2.043323 10.1103/PhysRevLett.123.260504 10.1016/j.fmre.2021.01.004 10.1103/PhysRevA.88.022327 10.1103/PhysRevLett.117.150502 10.1038/s41534-019-0226-z 10.1088/1367-2630/12/4/043034 10.1103/PhysRevA.69.062311 10.1103/PhysRevA.68.034302 10.1103/PhysRevLett.126.090504 10.1103/PhysRevLett.68.2981 10.1103/PhysRevLett.119.110501 10.1103/PhysRevApplied.13.054002 10.1103/PhysRevA.69.022316 10.1103/PhysRevLett.111.160406 10.1103/PhysRevLett.119.180511 10.1063/1.2748617 10.1103/PRXQuantum.2.010201 10.1103/PhysRevLett.94.060501 10.1103/PhysRevA.97.052308 10.1088/1751-8113/47/33/335303 10.1103/PhysRevLett.126.240503 10.1103/PhysRevLett.125.159903 10.1038/s42254-018-0003-5 10.1080/01621459.1963.10500830 10.1038/s42254-020-0186-4 10.1103/PhysRevLett.106.230501 10.1103/PhysRevA.68.022312 10.1103/PhysRevLett.77.1413 10.1038/s41567-019-0550-4 10.1103/PhysRevLett.114.080403 10.1103/PhysRevLett.124.200502 10.1103/PhysRevResearch.2.023306 10.1038/nature04279 10.1038/s41534-021-00499-8 10.1063/1.3703615 10.1103/PhysRevA.100.032316 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Quantum Technologies published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 The Authors. Advanced Quantum Technologies published by Wiley‐VCH GmbH |
DBID | 24P AAYXX CITATION |
DOI | 10.1002/qute.202100126 |
DatabaseName | Wiley Online Library Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2511-9044 |
EndPage | n/a |
ExternalDocumentID | 10_1002_qute_202100126 QUTE202100126 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 12175014; 11805010 – fundername: Chinesisch‐Deutsche Zentrum für Wissenschaftsförderung funderid: M‐0294 – fundername: Deutsche Forschungsgemeinschaft funderid: 440958198; 447948357 – fundername: H2020 European Research Council funderid: 683107 |
GroupedDBID | 0R~ 1OC 24P 33P 34L AAHHS AAHQN AAMNL AANLZ AAYCA AAZKR ABCUV ACCFJ ACCZN ACGFS ACPOU ACXQS ADBBV ADKYN ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFFPM AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB ARCSS BFHJK DCZOG EBS EJD HGLYW LATKE LEEKS LUTES LYRES MEWTI O9- P2W ROL SUPJJ WXSBR ZZTAW AAYXX ABJNI ADMLS AEYWJ AGHNM AGYGG CITATION |
ID | FETCH-LOGICAL-c3296-56ef803880e3f036e610c6502a222b6ce8375d99d1b9008e76f6b2d772567093 |
IEDL.DBID | 24P |
ISSN | 2511-9044 |
IngestDate | Tue Jul 01 02:03:50 EDT 2025 Thu Apr 24 23:12:42 EDT 2025 Wed Jan 22 16:24:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3296-56ef803880e3f036e610c6502a222b6ce8375d99d1b9008e76f6b2d772567093 |
ORCID | 0000-0002-6033-0867 0000-0001-8835-5524 0000-0002-2332-5882 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.202100126 |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_1002_qute_202100126 crossref_citationtrail_10_1002_qute_202100126 wiley_primary_10_1002_qute_202100126_QUTE202100126 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationTitle | Advanced quantum technologies (Online) |
PublicationYear | 2022 |
References | 2010; 12 1989; 40 2020 2020; 124 125 2009; 81 2010; 105 2019; 99 1967; 23 2006; 39 2019; 12 2019; 15 2004; 4 2009; 474 2007; 70 2020; 13 2020; 12 2020; 11 1975; 10 2007; 76 1996; 77 2009; 11 2018; 8 2018; 4 2002; 89 2013; 111 1984 2013; 110 2015; 91 2005; 72 1989 2019; 5 2013; 88 2013; 87 2019; 1 1933; 231 2011; 84 1997 2002; 2 2014; 47 2007; 98 2019; 100 2012; 108 1963; 58 1991; 67 2022; 3 2015; 114 2002; 65 2005; 95 2005; 94 1929 2018; 97 2011; 09 2022; 105 2017; 119 2018; 120 2012; 1443 2021; 126 2004; 69 2011; 13 2020; 125 1996; 223 2019; 123 2001; 86 2004; 649 2015; 48 2020; 6 1954; 93 2013; 15 2014; 5 2020; 4 2020; 2 2000 1993; 70 2002; 101 2000; 62 2016; 117 2022; 128 2007; 24 2021; 7 2021; 3 2021; 2 2011 2021; 103 1924; 1 2005; 438 2006 2020; 101 2002 2021; 1 2010; 81 1999; 60 2001; 64 1972; 3 2017; 95 1990; 65 2017; 96 2004; 92 2011; 107 2011; 106 2010; 08 2021 2003; 68 2017 1992; 68 2015 2009; 1 2007; 48 e_1_2_8_26_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_64_2 e_1_2_8_113_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 McDiarmid C. (e_1_2_8_55_1) 1989 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_6_1 Schlingemann D. (e_1_2_8_90_1) 2002; 2 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 Liu Y.‐C. (e_1_2_8_49_1) 2021; 3 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 Rice J. A. (e_1_2_8_50_1) 2006 Nielsen M. A. (e_1_2_8_70_1) 2000 e_1_2_8_94_1 e_1_2_8_121_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 Takeuchi Y. (e_1_2_8_98_1) 2018; 8 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Bernstein S. (e_1_2_8_53_1) 1924; 1 e_1_2_8_122_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 Scheinerman E. R. (e_1_2_8_91_1) 1997 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_104_1 |
References_xml | – year: 2011 – volume: 12 year: 2010 publication-title: New J. Phys. – volume: 58 start-page: 13 year: 1963 publication-title: J. Am. Stat. Assoc. – volume: 70 start-page: 1381 year: 2007 publication-title: Rep. Prog. Phys. – volume: 87 year: 2013 publication-title: Phys. Rev. A – volume: 86 start-page: 5188 year: 2001 publication-title: Phys. Rev. Lett. – volume: 101 year: 2020 publication-title: Phys. Rev. A – volume: 4 start-page: 11 year: 2018 publication-title: npj Quantum Inf. – volume: 10 start-page: 285 year: 1975 publication-title: Linear Algebra Appl. – volume: 6 start-page: 103 year: 2020 publication-title: npj Quantum Inf. – volume: 70 start-page: 1895 year: 1993 publication-title: Phys. Rev. Lett. – volume: 100 year: 2019 publication-title: Phys. Rev. A – volume: 2 year: 2020 publication-title: Phys. Rev. Res. – volume: 95 year: 2005 publication-title: Phys. Rev. Lett. – volume: 2 start-page: 307 year: 2002 publication-title: Quantum Inf. Comput. – volume: 15 year: 2013 publication-title: New J. Phys. – volume: 93 start-page: 99 year: 1954 publication-title: Phys. Rev. – volume: 08 start-page: 535 year: 2010 publication-title: Int. J. Quantum Inf. – volume: 69 year: 2004 publication-title: Phys. Rev. A – volume: 3 year: 2021 publication-title: Phys. Rev. Res. – volume: 65 start-page: 1838 year: 1990 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 5527 year: 2014 publication-title: Nat. Commun. – volume: 40 start-page: 4277 year: 1989 publication-title: Phys. Rev. A – volume: 108 year: 2012 publication-title: Phys. Rev. Lett. – volume: 23 start-page: 129 year: 1967 publication-title: Pacific J. Math. – volume: 1443 start-page: 14 year: 2012 publication-title: AIP Conf. Proc. – volume: 106 year: 2011 publication-title: Phys. Rev. Lett. – volume: 12 start-page: 1012 year: 2020 publication-title: Adv. Opt. Photonics – volume: 5 start-page: 27 year: 2019 publication-title: npj Quantum Inf. – start-page: 47 year: 1929 end-page: 60 – volume: 5 start-page: 112 year: 2019 publication-title: npj Quantum Inf. – volume: 89 year: 2002 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 90 year: 2020 publication-title: npj Quantum Inf. – volume: 48 year: 2007 publication-title: J. Math. Phys. – volume: 649 year: 2004 – volume: 99 year: 2019 publication-title: Phys. Rev. A – volume: 123 year: 2019 publication-title: Phys. Rev. Lett. – volume: 2 start-page: 382 year: 2020 publication-title: Nat. Rev. Phys. – volume: 125 year: 2020 publication-title: Phys. Rev. Lett. – volume: 68 year: 2003 publication-title: Phys. Rev. A – volume: 101 start-page: 357 year: 2002 publication-title: Acta Phys. Pol., A – volume: 474 start-page: 1 year: 2009 publication-title: Phys. Rep. – volume: 65 year: 2002 publication-title: Phys. Rev. A – volume: 2 year: 2020 publication-title: Phys. Rev. Research – volume: 24 start-page: 275 year: 2007 publication-title: J. Opt. Soc. Am. B – volume: 114 year: 2015 publication-title: Phys. Rev. Lett. – start-page: 148 year: 1989 – volume: 13 year: 2020 publication-title: Phys. Rev. Appl. – volume: 47 year: 2014 publication-title: J. Phys. A: Math. Theor. – volume: 67 start-page: 661 year: 1991 publication-title: Phys. Rev. Lett. – volume: 70 start-page: 1244 year: 1993 publication-title: Phys. Rev. Lett. – volume: 39 year: 2006 publication-title: J. Phys. A: Math. Gen. – volume: 97 year: 2018 publication-title: Phys. Rev. A – volume: 110 year: 2013 publication-title: Phys. Rev. Lett. – volume: 1 start-page: 72 year: 2019 publication-title: Nat. Rev. Phys. – volume: 72 year: 2005 publication-title: Phys. Rev. A – volume: 11 start-page: 5396 year: 2020 publication-title: Nat. Commun. – volume: 1 start-page: 38 year: 1924 publication-title: Ann. Sci. Inst. Sav. Ukraine, Sect. Math – volume: 84 year: 2011 publication-title: Phys. Rev. A – volume: 81 year: 2010 publication-title: Phys. Rev. A – volume: 128 year: 2022 publication-title: Phys. Rev. Lett. – start-page: 175 year: 1984 end-page: 179 – volume: 64 year: 2001 publication-title: Phys. Rev. A – year: 2021 – volume: 09 start-page: 445 year: 2011 publication-title: Int. J. Quantum Inf. – volume: 1 year: 2019 publication-title: Quantum Eng. – volume: 4 start-page: 320 year: 2020 publication-title: Quantum – volume: 117 year: 2016 publication-title: Phys. Rev. Lett. – volume: 120 year: 2018 publication-title: Phys. Rev. Lett. – volume: 4 start-page: 273 year: 2004 publication-title: Quantum Inf. Comput. – volume: 60 start-page: 1888 year: 1999 publication-title: Phys. Rev. A – volume: 15 start-page: 935 year: 2019 publication-title: Nat. Phys. – volume: 81 start-page: 865 year: 2009 publication-title: Rev. Mod. Phys. – volume: 94 year: 2005 publication-title: Phys. Rev. Lett. – volume: 77 start-page: 1413 year: 1996 publication-title: Phys. Rev. Lett. – volume: 92 year: 2004 publication-title: Phys. Rev. Lett. – year: 1997 – volume: 13 year: 2011 publication-title: New J. Phys. – volume: 95 year: 2017 publication-title: Phys. Rev. A – volume: 12 year: 2019 publication-title: Phys. Rev. Appl. – volume: 1 start-page: 238 year: 2009 publication-title: Adv. Opt. Photonics – volume: 7 start-page: 164 year: 2021 publication-title: npj Quantum Inf. – volume: 4 start-page: 337 year: 2020 publication-title: Quantum – volume: 3 year: 2022 publication-title: PRX Quantum – year: 2015 – volume: 8 year: 2018 publication-title: Phys. Rev. X – volume: 98 year: 2007 publication-title: Phys. Rev. Lett. – volume: 68 start-page: 2981 year: 1992 publication-title: Phys. Rev. Lett. – volume: 126 year: 2021 publication-title: Phys. Rev. Lett. – volume: 62 year: 2000 publication-title: Phys. Rev. A – volume: 105 year: 2022 publication-title: Phys. Rev. A – volume: 111 year: 2013 publication-title: Phys. Rev. Lett. – volume: 76 year: 2007 publication-title: Phys. Rev. A – volume: 124 125 year: 2020 2020 publication-title: Phys. Rev. Lett. Phys. Rev. Lett. – year: 2000 – volume: 2 year: 2021 publication-title: PRX Quantum – volume: 2 year: 2020 publication-title: Quantum Eng. – volume: 223 start-page: 1 year: 1996 publication-title: Phys. Lett. A – volume: 1 start-page: 27 year: 2021 publication-title: Fundam. Res. – volume: 231 start-page: 289 year: 1933 publication-title: Philos. Trans. R. Soc. A – volume: 96 year: 2017 publication-title: Phys. Rev. A – volume: 119 year: 2017 publication-title: Phys. Rev. Lett. – volume: 91 year: 2015 publication-title: Phys. Rev. A – volume: 103 year: 2021 publication-title: Phys. Rev. A – volume: 48 year: 2015 publication-title: J. Phys. A: Math. Theor. – volume: 12 year: 2019 publication-title: Phys. Rev. Applied – start-page: 45 year: 2002 – volume: 3 year: 2021 publication-title: Quantum Eng. – volume: 88 year: 2013 publication-title: Phys. Rev. A – year: 2006 – volume: 3 start-page: 275 year: 1972 publication-title: Rep. Math. Phys. – volume: 11 year: 2009 publication-title: New J. Phys. – year: 2017 – volume: 107 year: 2011 publication-title: Phys. Rev. Lett. – volume: 438 start-page: 643 year: 2005 publication-title: Nature – volume: 105 year: 2010 publication-title: Phys. Rev. Lett. – ident: e_1_2_8_65_1 doi: 10.1103/PhysRevLett.126.140503 – volume: 2 start-page: 307 year: 2002 ident: e_1_2_8_90_1 publication-title: Quantum Inf. Comput. – ident: e_1_2_8_7_1 doi: 10.1002/que2.73 – ident: e_1_2_8_86_1 doi: 10.1103/PhysRevLett.92.180403 – ident: e_1_2_8_96_1 doi: 10.1103/PhysRevA.96.062321 – ident: e_1_2_8_113_1 doi: 10.1103/PhysRevA.103.022601 – ident: e_1_2_8_115_1 doi: 10.1103/PhysRevA.100.062335 – start-page: 148 volume-title: Surveys in Combinatorics year: 1989 ident: e_1_2_8_55_1 – ident: e_1_2_8_119_1 doi: 10.1103/PhysRevA.101.042315 – ident: e_1_2_8_54_1 – ident: e_1_2_8_79_1 doi: 10.1103/PhysRevLett.65.1838 – ident: e_1_2_8_4_1 doi: 10.12693/APhysPolA.101.357 – ident: e_1_2_8_30_1 doi: 10.1088/0305-4470/39/46/013 – ident: e_1_2_8_120_1 doi: 10.1103/PhysRevA.101.042316 – ident: e_1_2_8_80_1 doi: 10.1103/PhysRevLett.95.120405 – ident: e_1_2_8_14_1 doi: 10.1103/PhysRevA.95.062336 – ident: e_1_2_8_126_1 – ident: e_1_2_8_129_1 doi: 10.26421/QIC4.4-3 – ident: e_1_2_8_16_1 doi: 10.1088/1367-2630/15/12/123026 – ident: e_1_2_8_38_1 doi: 10.1103/PhysRevA.81.012332 – volume-title: Mathematical Statistics and Data Analysis year: 2006 ident: e_1_2_8_50_1 – ident: e_1_2_8_100_1 doi: 10.1103/PhysRevLett.125.030506 – ident: e_1_2_8_33_1 doi: 10.1088/1751-8113/48/8/083001 – ident: e_1_2_8_85_1 doi: 10.1103/PRXQuantum.3.010317 – ident: e_1_2_8_6_1 doi: 10.1364/AOP.361502 – ident: e_1_2_8_11_1 doi: 10.1103/PhysRevA.64.052312 – ident: e_1_2_8_75_1 doi: 10.1142/S0219749910006502 – ident: e_1_2_8_32_1 doi: 10.1364/AOP.1.000238 – ident: e_1_2_8_37_1 doi: 10.1103/PhysRevA.69.010304 – ident: e_1_2_8_73_1 doi: 10.1103/PhysRevA.99.052346 – ident: e_1_2_8_93_1 doi: 10.1088/1367-2630/15/11/113022 – ident: e_1_2_8_133_1 doi: 10.1088/0034-4885/70/8/R03 – ident: e_1_2_8_92_1 doi: 10.1103/PhysRevA.87.022311 – ident: e_1_2_8_41_1 doi: 10.1038/s41467-020-19074-4 – ident: e_1_2_8_34_1 – ident: e_1_2_8_107_1 doi: 10.1038/s41534-020-00317-7 – ident: e_1_2_8_117_1 doi: 10.1016/0034-4877(72)90011-0 – ident: e_1_2_8_102_1 doi: 10.1103/RevModPhys.81.865 – ident: e_1_2_8_67_1 doi: 10.1103/PhysRevA.72.022340 – ident: e_1_2_8_112_1 doi: 10.1103/PhysRev.93.99 – ident: e_1_2_8_24_1 doi: 10.1038/ncomms6527 – ident: e_1_2_8_8_1 doi: 10.1103/PhysRevLett.86.5188 – ident: e_1_2_8_104_1 doi: 10.1103/PhysRevLett.107.190502 – ident: e_1_2_8_71_1 doi: 10.1103/PhysRevA.100.032315 – ident: e_1_2_8_116_1 doi: 10.1016/0024-3795(75)90075-0 – ident: e_1_2_8_3_1 doi: 10.1103/PhysRevLett.67.661 – ident: e_1_2_8_68_1 doi: 10.1364/JOSAB.24.000275 – ident: e_1_2_8_31_1 doi: 10.1088/1367-2630/11/4/043028 – ident: e_1_2_8_72_1 doi: 10.1103/PhysRevA.40.4277 – ident: e_1_2_8_74_1 doi: 10.1017/CBO9780511910135 – ident: e_1_2_8_108_1 doi: 10.1038/s41534-020-00328-4 – ident: e_1_2_8_111_1 doi: 10.1088/1367-2630/13/5/053054 – ident: e_1_2_8_20_1 doi: 10.1016/j.physrep.2009.02.004 – volume: 1 start-page: 38 year: 1924 ident: e_1_2_8_53_1 publication-title: Ann. Sci. Inst. Sav. Ukraine, Sect. Math – ident: e_1_2_8_106_1 doi: 10.1016/S0375-9601(96)00706-2 – ident: e_1_2_8_103_1 doi: 10.1103/PhysRevA.84.042326 – ident: e_1_2_8_83_1 doi: 10.1103/PhysRevLett.108.260502 – ident: e_1_2_8_60_1 – volume: 8 start-page: 021060 year: 2018 ident: e_1_2_8_98_1 publication-title: Phys. Rev. X – ident: e_1_2_8_10_1 doi: 10.1103/PhysRevLett.70.1244 – ident: e_1_2_8_110_1 doi: 10.1103/PhysRevA.62.062314 – ident: e_1_2_8_125_1 doi: 10.22331/q-2020-09-11-320 – ident: e_1_2_8_12_1 doi: 10.1007/b98673 – ident: e_1_2_8_44_1 doi: 10.1103/PhysRevLett.126.180502 – ident: e_1_2_8_51_1 doi: 10.1098/rsta.1933.0009 – ident: e_1_2_8_109_1 doi: 10.1103/PhysRevApplied.12.044020 – ident: e_1_2_8_99_1 doi: 10.1038/s41534-019-0142-2 – ident: e_1_2_8_123_1 doi: 10.1103/PhysRevLett.128.020502 – ident: e_1_2_8_1_1 doi: 10.1103/PhysRevLett.70.1895 – ident: e_1_2_8_27_1 doi: 10.1103/PhysRevA.76.030305 – volume: 3 start-page: L042004 year: 2021 ident: e_1_2_8_49_1 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.L042004 – ident: e_1_2_8_59_1 doi: 10.1103/PhysRevA.91.042126 – ident: e_1_2_8_130_1 doi: 10.22331/q-2020-09-30-337 – ident: e_1_2_8_45_1 doi: 10.1002/que2.37 – ident: e_1_2_8_69_1 doi: 10.1103/PhysRevLett.105.250403 – ident: e_1_2_8_89_1 – ident: e_1_2_8_28_1 – ident: e_1_2_8_5_1 doi: 10.1103/PhysRevA.65.032302 – ident: e_1_2_8_56_1 doi: 10.1103/PhysRevLett.110.180401 – ident: e_1_2_8_76_1 doi: 10.1142/S0219749911006776 – ident: e_1_2_8_58_1 – volume-title: Fractional Graph Theory: A Rational Approach to the Theory of Graphs year: 1997 ident: e_1_2_8_91_1 – ident: e_1_2_8_43_1 doi: 10.1103/PhysRevA.100.012328 – ident: e_1_2_8_46_1 doi: 10.1002/que2.13 – volume-title: Quantum Computation and Quantum Information year: 2000 ident: e_1_2_8_70_1 – ident: e_1_2_8_118_1 doi: 10.2140/pjm.1967.23.129 – ident: e_1_2_8_62_1 doi: 10.1038/s41534-017-0055-x – ident: e_1_2_8_132_1 – ident: e_1_2_8_29_1 doi: 10.1103/PhysRevLett.120.170502 – ident: e_1_2_8_122_1 doi: 10.1103/PhysRevA.60.1888 – ident: e_1_2_8_81_1 doi: 10.1103/PhysRevApplied.12.054047 – ident: e_1_2_8_135_1 – ident: e_1_2_8_35_1 doi: 10.1103/PhysRevLett.89.277904 – ident: e_1_2_8_124_1 doi: 10.1103/PhysRevA.105.012614 – ident: e_1_2_8_23_1 doi: 10.1103/PhysRevLett.98.063604 – ident: e_1_2_8_95_1 doi: 10.1103/PhysRevResearch.2.043323 – ident: e_1_2_8_114_1 doi: 10.1103/PhysRevLett.123.260504 – ident: e_1_2_8_22_1 doi: 10.1016/j.fmre.2021.01.004 – ident: e_1_2_8_42_1 doi: 10.1103/PhysRevA.88.022327 – ident: e_1_2_8_40_1 doi: 10.1103/PhysRevLett.117.150502 – ident: e_1_2_8_61_1 doi: 10.1038/s41534-019-0226-z – ident: e_1_2_8_15_1 doi: 10.1088/1367-2630/12/4/043034 – ident: e_1_2_8_87_1 doi: 10.1103/PhysRevA.69.062311 – ident: e_1_2_8_36_1 doi: 10.1103/PhysRevA.68.034302 – ident: e_1_2_8_127_1 doi: 10.1103/PhysRevLett.126.090504 – ident: e_1_2_8_134_1 doi: 10.1103/PhysRevLett.68.2981 – ident: e_1_2_8_47_1 doi: 10.1103/PhysRevLett.119.110501 – ident: e_1_2_8_82_1 doi: 10.1103/PhysRevApplied.13.054002 – ident: e_1_2_8_88_1 doi: 10.1103/PhysRevA.69.022316 – ident: e_1_2_8_57_1 doi: 10.1103/PhysRevLett.111.160406 – ident: e_1_2_8_25_1 doi: 10.1103/PhysRevLett.119.180511 – ident: e_1_2_8_77_1 doi: 10.1063/1.2748617 – ident: e_1_2_8_19_1 doi: 10.1103/PRXQuantum.2.010201 – ident: e_1_2_8_66_1 doi: 10.1103/PhysRevLett.94.060501 – ident: e_1_2_8_97_1 doi: 10.1103/PhysRevA.97.052308 – ident: e_1_2_8_78_1 – ident: e_1_2_8_94_1 doi: 10.1088/1751-8113/47/33/335303 – ident: e_1_2_8_48_1 doi: 10.1103/PhysRevLett.126.240503 – ident: e_1_2_8_64_2 doi: 10.1103/PhysRevLett.125.159903 – ident: e_1_2_8_21_1 doi: 10.1038/s42254-018-0003-5 – ident: e_1_2_8_131_1 – ident: e_1_2_8_2_1 – ident: e_1_2_8_52_1 doi: 10.1080/01621459.1963.10500830 – ident: e_1_2_8_18_1 doi: 10.1038/s42254-020-0186-4 – ident: e_1_2_8_26_1 doi: 10.1103/PhysRevLett.106.230501 – ident: e_1_2_8_9_1 doi: 10.1103/PhysRevA.68.022312 – ident: e_1_2_8_105_1 doi: 10.1103/PhysRevLett.77.1413 – ident: e_1_2_8_63_1 doi: 10.1038/s41567-019-0550-4 – ident: e_1_2_8_128_1 – ident: e_1_2_8_17_1 doi: 10.1103/PhysRevLett.114.080403 – ident: e_1_2_8_64_1 doi: 10.1103/PhysRevLett.124.200502 – ident: e_1_2_8_121_1 doi: 10.1103/PhysRevResearch.2.023306 – ident: e_1_2_8_13_1 doi: 10.1038/nature04279 – ident: e_1_2_8_84_1 doi: 10.1038/s41534-021-00499-8 – ident: e_1_2_8_39_1 doi: 10.1063/1.3703615 – ident: e_1_2_8_101_1 doi: 10.1103/PhysRevA.100.032316 |
SSID | ssj0002313473 |
Score | 2.4458306 |
SecondaryResourceType | review_article |
Snippet | The efficient and reliable certification of quantum states is essential for various quantum information processing tasks as well as for the general progress on... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | fidelity estimation hypothesis testing quantum certification and benchmarking quantum state verification |
Title | Statistical Methods for Quantum State Verification and Fidelity Estimation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.202100126 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BKyQWxKcoH5UHJKaowXGceKygFaoooqJF3aLYcSYIH23-P3dOGtoBITEmOmd4sf1eLnfPAFfSECtI68XaZPiBIqynlU09pGqLhG9MbKg5efwo72diNA_na138lT9Ek3CjleH2a1rgqV70fkxDP0tnc8nJRIjLbWhTfy0V9XHx1GRZUL0Ewv1mJintKV-IlXOjz3ubj9hgpnWl6qhmuA97tUZk_eqlHsCWLQ5hx9VqmsURjEggOn9lDBq7E6AXDLUnm5QIU_nGnIBkLzi38jojx9IiY0NytELRzQY4tupYPIbpcDC9vffqIxE8E3AlEUKbx87AxQY5ko9F9WNQZPEUeV5Lg_hGYaZUdqMVsruNZC41z1BCh2TUFpxAq3gv7Ckw1GF4Twkrg1QoGekgyv1cpmFmeRT5cQe8FRqJqe3C6dSK16QyOuYJoZc06HXguon_qIwyfo3kDtw_wpLJbDpors7-M-gcdjl1K7j6xAtoLb9Ke4kaYqm7bpp0od2_Gz88fwPWVb2t |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT4NAEJ1ojdGL8TPWzz2YeCLFZVnYozFtai2NTajxRmBZToofLf_fmYWiPRgTj5BZDo_dfY9h5w3AldTECtI4YaZz_EARxsmUSR2kaoOEr3WoqTg5msjhTIye_eVpQqqFqf0h2oQbrQy7X9MCp4R079s19KOyPpecXIS4XIcNIXlATQy4eGzTLChfPGH_M5OWdpQrxNK60eW91UesUNNPqWq5ZrALO41IZLf1W92DNVPuw6Y9rKnnBzAihWgNljEosi2g5wzFJ5tWiFP1yqyCZE84uYomJcfSMmcDsrRC1c36OLYuWTyEeNCP74ZO0xPB0R5XEjE0RWgdXIxXIPsYlD8aVRZPkegzqRHgwM-Vym8yhfRuAlnIjOeooX1yavOOoFO-leYYGAoxvKeEkV4qlAwyLyjcQqZ-bngQuGEXnCUaiW78wqltxUtSOx3zhNBLWvS6cN3Gv9dOGb9GcgvuH2HJdBb326uT_wy6hK1hHI2T8f3k4RS2OZUu2MOKZ9BZfFbmHAXFIruwU-YLMq6_hQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT4MwFH7RGY0X4884f_Zg4okMSyn0aHRkTrdsCTO7EVrKSXG68f_7WhhuB2PiEfLK4aPl-2jf-x7ADVeGFbh2Qqky_EFh2pFCpw5StUbCVypUpjh5MOS9CetP_elKFX_lD9FsuJmVYb_XZoHPsrzzYxr6WVqbS2pMhCjfhC1z4meSuigbNbssqF48Zo-ZjZR2hMvY0rnRpZ31R6wx06pStVQT7cNerRHJffVSD2BDF4ewbXM11fwI-kYgWn9lDBrYDtBzgtqTjEuEqXwnVkCSV5xbeb0jR9IiI5FxtELRTbo4tqpYPIY46sYPPaduieAojwqOEOo8tAYu2suRfDSqH4Uii6bI85IrxDfwMyGyOymQ3XXAcy5phhLaN0Zt3gm0io9CnwJBHYb3BNPcS5nggfSC3M156meaBoEbtsFZopGo2i7cdK14SyqjY5oY9JIGvTbcNvGzyijj10hqwf0jLBlP4m5zdfafQdewM3qMkpen4fM57FJTuGBTFS-gtfgq9SXKiYW8sjPmG0Qlvrc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+Methods+for+Quantum+State+Verification+and+Fidelity+Estimation&rft.jtitle=Advanced+quantum+technologies+%28Online%29&rft.au=Yu%2C+Xiao%E2%80%90Dong&rft.au=Shang%2C+Jiangwei&rft.au=G%C3%BChne%2C+Otfried&rft.date=2022-05-01&rft.issn=2511-9044&rft.eissn=2511-9044&rft.volume=5&rft.issue=5&rft_id=info:doi/10.1002%2Fqute.202100126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qute_202100126 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-9044&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-9044&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-9044&client=summon |