Tomographic Volumetric Additive Manufacturing of Silicon Oxycarbide Ceramics
Ceramics are highly chemically, thermally, and mechanically resistant. These remarkable propertiers make them useful across multiple industries; but also, difficult to mold into complex shapes. A possibility to make convoluted ceramic parts is to use preceramic polymers (PCPs) in liquid form. The PC...
Saved in:
Published in | Advanced engineering materials Vol. 24; no. 7 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1438-1656 1527-2648 |
DOI | 10.1002/adem.202101345 |
Cover
Loading…
Abstract | Ceramics are highly chemically, thermally, and mechanically resistant. These remarkable propertiers make them useful across multiple industries; but also, difficult to mold into complex shapes. A possibility to make convoluted ceramic parts is to use preceramic polymers (PCPs) in liquid form. The PCP resin is first solidified in a desired geometry and then transformed into ceramic compounds through a pyrolysis step that preserves the shape. Light‐based additive manufacturing (AM) is a promising route to achieve solidification of the PCP resin. Different approaches, such as stereolithography, have already been proposed but they all rely on a layer‐by‐layer printing process which limits printing speed and object geometry. Herein, the fabrication of complex 3D centimeter‐scale ceramic parts by using tomographic volumetric printing is presented, which is fast and offers a high‐resolution and geometrical design freedom. First, a photosensitive polysiloxane preceramic resin that is solidified by projecting light patterns from multiple angles is formulated. Then, the obtained 3D printed parts are converted into ceramics by pyrolysis. The strength of this approach is demonstrated through the fabrication of smooth, dense microcomponents exhibiting overhangs and hollow geometries without the need of supporting structures. Their resistance to thermal stress and harsh chemical treatments is characterized.
The fabrication of complex 3D centimeter‐scale ceramic parts by using tomographic volumetric additive manufacturing is presented. It is fast, exhibits high resolution (≈100 μm), and provides geometrical freedom. Polymerized green bodies are then pyrolyzed at 1000 °C to produce thermally and chemically resistant silicon oxycarbide ceramics. |
---|---|
AbstractList | Ceramics are highly chemically, thermally, and mechanically resistant. These remarkable propertiers make them useful across multiple industries; but also, difficult to mold into complex shapes. A possibility to make convoluted ceramic parts is to use preceramic polymers (PCPs) in liquid form. The PCP resin is first solidified in a desired geometry and then transformed into ceramic compounds through a pyrolysis step that preserves the shape. Light‐based additive manufacturing (AM) is a promising route to achieve solidification of the PCP resin. Different approaches, such as stereolithography, have already been proposed but they all rely on a layer‐by‐layer printing process which limits printing speed and object geometry. Herein, the fabrication of complex 3D centimeter‐scale ceramic parts by using tomographic volumetric printing is presented, which is fast and offers a high‐resolution and geometrical design freedom. First, a photosensitive polysiloxane preceramic resin that is solidified by projecting light patterns from multiple angles is formulated. Then, the obtained 3D printed parts are converted into ceramics by pyrolysis. The strength of this approach is demonstrated through the fabrication of smooth, dense microcomponents exhibiting overhangs and hollow geometries without the need of supporting structures. Their resistance to thermal stress and harsh chemical treatments is characterized.
The fabrication of complex 3D centimeter‐scale ceramic parts by using tomographic volumetric additive manufacturing is presented. It is fast, exhibits high resolution (≈100 μm), and provides geometrical freedom. Polymerized green bodies are then pyrolyzed at 1000 °C to produce thermally and chemically resistant silicon oxycarbide ceramics. |
Author | Madrid-Wolff, Jorge Sasikumar, Pradeep Vallachira Warriam Moser, Christophe Blugan, Gurdial Kollep, Max Loterie, Damien Konstantinou, Georgia Delrot, Paul Boniface, Antoine Hagelüken, Lorenz Brugger, Juergen |
Author_xml | – sequence: 1 givenname: Max surname: Kollep fullname: Kollep, Max organization: École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 2 givenname: Georgia surname: Konstantinou fullname: Konstantinou, Georgia organization: École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 3 givenname: Jorge orcidid: 0000-0003-3945-538X surname: Madrid-Wolff fullname: Madrid-Wolff, Jorge organization: École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 4 givenname: Antoine orcidid: 0000-0002-6551-8519 surname: Boniface fullname: Boniface, Antoine organization: École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 5 givenname: Lorenz surname: Hagelüken fullname: Hagelüken, Lorenz organization: École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 6 givenname: Pradeep Vallachira Warriam orcidid: 0000-0001-6550-0784 surname: Sasikumar fullname: Sasikumar, Pradeep Vallachira Warriam organization: Swiss Federal Laboratories for Material Science and Technology (Empa) – sequence: 7 givenname: Gurdial orcidid: 0000-0002-2088-7767 surname: Blugan fullname: Blugan, Gurdial organization: Swiss Federal Laboratories for Material Science and Technology (Empa) – sequence: 8 givenname: Paul orcidid: 0000-0001-8349-9019 surname: Delrot fullname: Delrot, Paul organization: Readily3D SA – sequence: 9 givenname: Damien orcidid: 0000-0003-0020-9384 surname: Loterie fullname: Loterie, Damien organization: Readily3D SA – sequence: 10 givenname: Juergen surname: Brugger fullname: Brugger, Juergen organization: École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 11 givenname: Christophe orcidid: 0000-0002-2078-0273 surname: Moser fullname: Moser, Christophe email: christophe.moser@epfl.ch organization: École Polytechnique Fédérale de Lausanne (EPFL) |
BookMark | eNqFkLFOwzAURS1UJNrCypwfSLGd2HHGqBSKlKoDhTWyn-1ilMSVkwL9e1IVgYSEWN69wz1vOBM0an1rELomeEYwpjdSm2ZGMSWYJCk7Q2PCaBZTnorR0NNExIQzfoEmXfeKMTnOxqjc-MZvg9y9OIiefb1vTB-GWmjtevdmopVs91ZCvw-u3UbeRo-uduDbaP1xABmU0yaamyAbB90lOrey7szVV07R091iM1_G5fr-YV6UMSQ0ZzHBGquccq5Sha3g3EorEpCcMKwpAMkyLXI1HAIqZ6mhmmnIhFA5WEZFMkXp6S8E33XB2ApcL3vn2z5IV1cEV0cj1dFI9W1kwGa_sF1wjQyHv4H8BLy72hz-WVfF7WL1w34Ckg93Ag |
CitedBy_id | crossref_primary_10_1038_s41578_025_00785_3 crossref_primary_10_1515_nanoph_2022_0512 crossref_primary_10_1021_acs_chemrev_4c00134 crossref_primary_10_1007_s40964_024_00758_y crossref_primary_10_1016_j_addma_2025_104752 crossref_primary_10_1080_17452759_2024_2407473 crossref_primary_10_1016_j_addma_2024_104094 crossref_primary_10_1002_marc_202300602 crossref_primary_10_1016_j_addma_2024_104536 crossref_primary_10_1108_RPJ_03_2024_0145 crossref_primary_10_1038_s41467_023_39886_4 crossref_primary_10_3390_ma16134636 crossref_primary_10_1016_j_progpolymsci_2023_101755 crossref_primary_10_1016_j_addma_2024_104552 crossref_primary_10_1115_1_4056663 crossref_primary_10_1016_j_addma_2024_104232 crossref_primary_10_1002_adma_202306716 crossref_primary_10_1016_j_addma_2023_103889 crossref_primary_10_1557_s43579_023_00447_x crossref_primary_10_1002_advs_202105144 crossref_primary_10_1002_smll_202402356 crossref_primary_10_3390_hardware3010002 crossref_primary_10_1016_j_oceram_2023_100402 crossref_primary_10_1002_admt_202301054 crossref_primary_10_1021_acsbiomaterials_4c01837 crossref_primary_10_1063_5_0151661 crossref_primary_10_1088_1758_5090_ad0978 crossref_primary_10_3390_bios12121135 crossref_primary_10_1016_j_ijpx_2023_100166 crossref_primary_10_1002_pen_26186 crossref_primary_10_1111_jace_20043 crossref_primary_10_1002_adma_202307686 crossref_primary_10_1016_j_jeurceramsoc_2024_01_053 crossref_primary_10_1016_j_pmatsci_2022_100969 crossref_primary_10_1016_j_jeurceramsoc_2024_05_075 crossref_primary_10_1002_admt_202202117 crossref_primary_10_1145_3687924 |
Cites_doi | 10.1021/cr3005197 10.1016/j.ssi.2011.12.007 10.1111/j.1551-2916.2010.03876.x 10.1016/S0924-4247(01)00723-3 10.1016/j.actamat.2020.07.067 10.1016/j.ceramint.2017.11.135 10.1039/C8PY01195H 10.1109/TVCG.2003.1196006 10.1063/1.124498 10.1002/9781119006671 10.1021/acsami.7b17394 10.1016/j.jeurceramsoc.2010.11.019 10.1016/j.addma.2017.08.009 10.1002/advs.201800937 10.1016/j.jeurceramsoc.2012.03.010 10.1016/j.addma.2020.101343 10.1016/j.matdes.2018.11.054 10.1038/s41586-020-3029-7 10.1021/jp0114900 10.1016/0167-577X(95)00245-6 10.1007/s10853-011-6140-1 10.1016/j.jpowsour.2012.11.086 10.1002/adma.202003376 10.1038/s41467-020-14630-4 10.1016/j.jeurceramsoc.2017.07.033 10.1002/1527-2648(20020503)4:5<247::AID-ADEM247>3.0.CO;2-N 10.1039/c2ta00727d 10.1016/j.ceramint.2018.08.102 10.1007/BF02436860 10.1039/C8RA02045K 10.1016/j.jeurceramsoc.2007.12.022 10.1366/0003702864509565 10.1016/j.ssi.2012.01.026 10.1111/j.1551-2916.2009.03233.x 10.1016/j.saa.2014.05.072 10.1021/acsami.0c08260 10.1038/nmeth.2019 10.1126/science.aau7114 10.1007/s40145-019-0335-3 10.1126/science.aax1562 10.1002/adma.201904209 10.1002/adma.201503470 10.1039/C7RA02509B 10.1109/CLEO/Europe-EQEC52157.2021.9541688 10.1021/ja01856a061 10.1016/j.electacta.2013.05.064 10.1002/adfm.200600009 10.3390/ma14154075 10.1557/JMR.1989.0385 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Advanced Engineering Materials published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 The Authors. Advanced Engineering Materials published by Wiley‐VCH GmbH |
DBID | 24P AAYXX CITATION |
DOI | 10.1002/adem.202101345 |
DatabaseName | Wiley Online Library Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1527-2648 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adem_202101345 ADEM202101345 |
Genre | article |
GrantInformation_xml | – fundername: ETH Domain (SFA) – fundername: Swiss National Science Foundation funderid: 196971 |
GroupedDBID | -~X 05W 0R~ 1L6 1OC 23M 24P 31~ 33P 3SF 3WU 4.4 50Y 52U 5GY 5VS 66C 6P2 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F5P FEDTE G-S GNP GODZA HGLYW HVGLF HZ~ IX1 JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E QRW R.K ROL RWI RX1 RYL SUPJJ TUS W99 WBKPD WIH WIK WOHZO WXSBR WYJ XPP XV2 ZZTAW AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c3295-10d0b9266b4b0f866faf83ca6150d2cc177d89b7d81cb954e2d5dc788b9cf5283 |
IEDL.DBID | DR2 |
ISSN | 1438-1656 |
IngestDate | Tue Jul 01 02:51:11 EDT 2025 Thu Apr 24 23:03:20 EDT 2025 Wed Jan 22 16:24:01 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3295-10d0b9266b4b0f866faf83ca6150d2cc177d89b7d81cb954e2d5dc788b9cf5283 |
ORCID | 0000-0001-8349-9019 0000-0002-2088-7767 0000-0001-6550-0784 0000-0002-6551-8519 0000-0002-2078-0273 0000-0003-3945-538X 0000-0003-0020-9384 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.202101345 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1002_adem_202101345 crossref_primary_10_1002_adem_202101345 wiley_primary_10_1002_adem_202101345_ADEM202101345 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationTitle | Advanced engineering materials |
PublicationYear | 2022 |
References | 1941; 63 2017; 7 2013; 1 2002; 95 2013; 244 2016; 31 2019; 366 2020; 12 2020; 11 2019; 162 2018; 44 2014; 133 2019; 363 2001; 105 1997; 8 2018; 9 2018; 8 2018; 5 1986; 40 2009; 92 2008; 28 2003; 9 1996; 27 2018; 38 2019; 8 1989; 4 2019; 31 2006; 16 2013; 106 2011; 31 2020; 588 2002; 4 2020; 35 2020; 32 2012; 225 2014; 114 2012; 32 2014; 88 2021; 14 2004–2019 2021 2020; 198 1999; 75 2015 2017; 18 2013 2012; 47 2016; 28 2018; 10 2010; 93 2012; 9 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 Schwentenwein M. (e_1_2_8_12_1) 2014 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 Smith B. (e_1_2_8_40_1) 2016; 31 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_18_1 e_1_2_8_39_1 Launer P. J. (e_1_2_8_43_1) 2013 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 95 start-page: 120 year: 2002 publication-title: Sens. Actuators A: Phys. – volume: 32 start-page: 2495 year: 2012 publication-title: J. Eur. Ceram. Soc. – volume: 225 start-page: 522 year: 2012 publication-title: Solid State Ionics – volume: 14 start-page: 4075 year: 2021 publication-title: Materials – year: 2004–2019 – year: 2021 – volume: 198 start-page: 134 year: 2020 publication-title: Acta Mater. – volume: 162 start-page: 263 year: 2019 publication-title: Mater. Des. – volume: 105 start-page: 10520 year: 2001 publication-title: J. Phys. Chem. A – volume: 16 start-page: 1235 year: 2006 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 676 year: 2012 publication-title: Nat. Methods – volume: 114 start-page: 557 year: 2014 publication-title: Chem. Rev. – volume: 44 start-page: 3412 year: 2018 publication-title: Ceram. Int. – volume: 106 start-page: 101 year: 2013 publication-title: Electrochim. Acta – volume: 40 start-page: 224 year: 1986 publication-title: Appl. Spectrosc. – volume: 35 start-page: 101343 year: 2020 publication-title: Addit. Manuf. – volume: 75 start-page: 737 year: 1999 publication-title: Appl. Phys. Lett. – volume: 63 start-page: 3083 year: 1941 publication-title: J. Am. Chem. Soc. – volume: 363 start-page: 1075 year: 2019 publication-title: Science – volume: 133 start-page: 619 year: 2014 publication-title: Spectrochim. Acta, Part A – volume: 225 start-page: 527 year: 2012 publication-title: Solid State Ionics – volume: 366 start-page: 360 year: 2019 publication-title: Science – volume: 32 start-page: 2003376 year: 2020 publication-title: Adv. Mater. – volume: 8 start-page: 21863 year: 2018 publication-title: RSC Adv. – year: 2015 – volume: 4 start-page: 247 year: 2002 publication-title: Adv. Eng. Mater – volume: 8 start-page: 457 year: 2019 publication-title: J. Adv. Ceram. – volume: 11 start-page: 1 year: 2020 publication-title: Nat. Commun. – volume: 244 start-page: 450 year: 2013 publication-title: J. Power Sources – volume: 93 start-page: 1805 year: 2010 publication-title: J. Am. Ceram. Soc. – volume: 31 start-page: 34 year: 2016 publication-title: Spectroscopy – volume: 588 start-page: 620 year: 2020 publication-title: Nature – volume: 8 start-page: 327 year: 1997 publication-title: J. Sol-Gel Sci. Technol. – volume: 1 start-page: 3826 year: 2013 publication-title: J. Mater. Chem. A – start-page: 175 year: 2013 end-page: 178 – volume: 9 start-page: 191 year: 2003 publication-title: IEEE Trans. Visual Comput. Graphics – volume: 31 start-page: 1904209 year: 2019 publication-title: Adv. Mater. – volume: 10 start-page: 2236 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 1 year: 1996 publication-title: Mater. Lett. – volume: 88 start-page: 60 year: 2014 end-page: 64 – volume: 38 start-page: 57 year: 2018 publication-title: J. Eur. Ceram. – volume: 9 start-page: 5107 year: 2018 publication-title: Polym. Chem. – volume: 7 start-page: 21258 year: 2017 publication-title: RSC Adv. – volume: 47 start-page: 4211 year: 2012 publication-title: J. Mater. Sci. – volume: 5 start-page: 1800937 year: 2018 publication-title: Adv. Sci. – volume: 28 start-page: 370 year: 2016 publication-title: Adv. Mater. – volume: 31 start-page: 913 year: 2011 publication-title: J. Eur. Ceram. Soc. – volume: 44 start-page: 20961 year: 2018 publication-title: Ceram. Int. – volume: 18 start-page: 95 year: 2017 publication-title: Addit. Manuf. – volume: 4 start-page: 385 year: 1989 publication-title: J. Mater. Res. – volume: 92 start-page: 2455 year: 2009 publication-title: J. Am. Ceram. Soc. – volume: 28 start-page: 1369 year: 2008 publication-title: J. Eur. Ceram. Soc. – volume: 12 start-page: 31984 year: 2020 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_8_26_1 doi: 10.1021/cr3005197 – ident: e_1_2_8_37_1 doi: 10.1016/j.ssi.2011.12.007 – ident: e_1_2_8_8_1 doi: 10.1111/j.1551-2916.2010.03876.x – ident: e_1_2_8_9_1 doi: 10.1016/S0924-4247(01)00723-3 – ident: e_1_2_8_30_1 doi: 10.1016/j.actamat.2020.07.067 – ident: e_1_2_8_4_1 doi: 10.1016/j.ceramint.2017.11.135 – ident: e_1_2_8_25_1 doi: 10.1039/C8PY01195H – ident: e_1_2_8_54_1 doi: 10.1109/TVCG.2003.1196006 – ident: e_1_2_8_33_1 doi: 10.1063/1.124498 – ident: e_1_2_8_24_1 doi: 10.1002/9781119006671 – ident: e_1_2_8_49_1 doi: 10.1021/acsami.7b17394 – ident: e_1_2_8_29_1 doi: 10.1016/j.jeurceramsoc.2010.11.019 – ident: e_1_2_8_35_1 doi: 10.1016/j.addma.2017.08.009 – start-page: 60 volume-title: Advances in Science and Technology year: 2014 ident: e_1_2_8_12_1 – ident: e_1_2_8_15_1 doi: 10.1002/advs.201800937 – ident: e_1_2_8_48_1 doi: 10.1016/j.jeurceramsoc.2012.03.010 – ident: e_1_2_8_16_1 doi: 10.1016/j.addma.2020.101343 – ident: e_1_2_8_36_1 doi: 10.1016/j.matdes.2018.11.054 – ident: e_1_2_8_21_1 doi: 10.1038/s41586-020-3029-7 – ident: e_1_2_8_44_1 doi: 10.1021/jp0114900 – ident: e_1_2_8_50_1 doi: 10.1016/0167-577X(95)00245-6 – ident: e_1_2_8_6_1 doi: 10.1007/s10853-011-6140-1 – ident: e_1_2_8_32_1 doi: 10.1016/j.jpowsour.2012.11.086 – ident: e_1_2_8_22_1 doi: 10.1002/adma.202003376 – ident: e_1_2_8_20_1 doi: 10.1038/s41467-020-14630-4 – ident: e_1_2_8_34_1 – ident: e_1_2_8_13_1 doi: 10.1016/j.jeurceramsoc.2017.07.033 – ident: e_1_2_8_2_1 doi: 10.1002/1527-2648(20020503)4:5<247::AID-ADEM247>3.0.CO;2-N – ident: e_1_2_8_11_1 doi: 10.1039/c2ta00727d – ident: e_1_2_8_38_1 doi: 10.1016/j.ceramint.2018.08.102 – ident: e_1_2_8_51_1 doi: 10.1007/BF02436860 – ident: e_1_2_8_42_1 doi: 10.1039/C8RA02045K – volume: 31 start-page: 34 year: 2016 ident: e_1_2_8_40_1 publication-title: Spectroscopy – ident: e_1_2_8_3_1 doi: 10.1016/j.jeurceramsoc.2007.12.022 – ident: e_1_2_8_53_1 doi: 10.1366/0003702864509565 – ident: e_1_2_8_28_1 doi: 10.1016/j.ssi.2012.01.026 – ident: e_1_2_8_47_1 doi: 10.1111/j.1551-2916.2009.03233.x – ident: e_1_2_8_45_1 doi: 10.1016/j.saa.2014.05.072 – ident: e_1_2_8_17_1 doi: 10.1021/acsami.0c08260 – ident: e_1_2_8_56_1 doi: 10.1038/nmeth.2019 – ident: e_1_2_8_18_1 doi: 10.1126/science.aau7114 – ident: e_1_2_8_5_1 doi: 10.1007/s40145-019-0335-3 – ident: e_1_2_8_10_1 doi: 10.1126/science.aax1562 – ident: e_1_2_8_19_1 doi: 10.1002/adma.201904209 – ident: e_1_2_8_7_1 doi: 10.1002/adma.201503470 – ident: e_1_2_8_55_1 – ident: e_1_2_8_39_1 doi: 10.1039/C7RA02509B – start-page: 175 volume-title: Silicon Compounds year: 2013 ident: e_1_2_8_43_1 – ident: e_1_2_8_41_1 – ident: e_1_2_8_23_1 doi: 10.1109/CLEO/Europe-EQEC52157.2021.9541688 – ident: e_1_2_8_27_1 doi: 10.1021/ja01856a061 – ident: e_1_2_8_31_1 doi: 10.1016/j.electacta.2013.05.064 – ident: e_1_2_8_14_1 doi: 10.1002/adfm.200600009 – ident: e_1_2_8_52_1 doi: 10.3390/ma14154075 – ident: e_1_2_8_46_1 doi: 10.1557/JMR.1989.0385 |
SSID | ssj0011013 |
Score | 2.5240653 |
Snippet | Ceramics are highly chemically, thermally, and mechanically resistant. These remarkable propertiers make them useful across multiple industries; but also,... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | 3D printing ceramics polymer-derived ceramics preceramic polymers SiOC volumetric additive manufacturing |
Title | Tomographic Volumetric Additive Manufacturing of Silicon Oxycarbide Ceramics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.202101345 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEIAH7UkPvsX6KHsQPKVNNskmOZZiKeILbaW3sK9AsabSB6i_3p1NG1tBBL0EQmYhO8zszi4z3wCcR37IdJi4ThDhbRWTyuE01A5TUsZKaE9Zuv7NLev0gqt-2F-q4i_4EOWFG3qGXa_RwbmYNL6goZg9bs535sji-QFWmWPCFkZFDyU_ysNvtrzIeDViZhbURpc2Voev7ErLUardZtrbwBc_WGSXPNdnU1GXH9_Yjf-ZwQ5szWNQ0iyMZhfWdL4Hm0tkwn247o5eCpj1QJInu4Ihyp80lbLJRuSG5zMsirBVjmSUkcfB0BhVTu7e3iUfi4HSpKXH2O1-cgC99mW31XHmjRcc6dMEyaTKFYnZukUg3CxmLONZ7EuO8HhFpfSiSMWJMA9PiiQMNFWhkuYwLRKZIS3mECr5KNdHQDKtfREJs2zEKohNLMYZ1yphWorYTDysgrNQfCrnVHJsjjFMC54yTVFLaamlKlyU8q8Fj-NHSWqV_4tYigZfvh3_ZdAJbFAsirBJvKdQmY5n-syEKlNRg3Ua3NesUX4CmNrhFg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEIAHrQf14Fuszz0IntI2m2STHEuxVG0raCveQvYRKNZUagvqr3dn08RWEEEvgZBZyA6zuzPLzDcA577jMeWFNcv18baKCWnF1FMWk0IEkitbGrp-p8tafff60cuzCbEWJuNDFBduuDLMfo0LHC-kq1_UUEwf1wGejllsx_WWYQXbepuo6q4gSNn40RQY6XWNoJmc21ij1cXxC-fSvJ9qDprmJvD8F7P8kqfKdMIr4uMbvfFfc9iCjZkbSuqZ3WzDkkp3YH0OTrgL7d7oOeNZDwR5MJsY0vxJXUqTb0Q6cTrFughT6EhGCbkfDLVdpeT27V3EYz6QijTUGBvev-5Bv3nZa7SsWe8FSzg0RDiprPFQn97c5bUkYCyJk8ARMfLjJRXC9n0ZhFw_bMFDz1VUelLoeJqHIkFgzD6U0lGqDoAkSjnc53rnCKQbaHcsZrGSIVOCB3riXhmsXPORmIHJsT_GMMqQyjRCLUWFlspwUci_ZEiOHyWp0f4vYhHafPF2-JdBZ7Da6nXaUfuqe3MEaxRrJExO7zGUJuOpOtGey4SfGtv8BGyo5Fo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dS8MwEMCDThB98Fucn3kQfOps0zZtH8fmmLpN0U32VvJVGM5uzA3Uv95cutVNEEFfCqUXaI675BLufofQeeD6VPmRbXkB3FZRIS1GfGVRKUQouXKkoes3W7Te8W66fneuij_jQ-QXbuAZZr0GBx_K5PILGgrZ4_p8p48sjuv5y2jFo3YIdl19yAFSDnw09UXarYEzM8M22uRycfzCtjQfppp9praJ2OwPs_SS59JkzEvi4xu88T9T2EIb0yAUlzOr2UZLKt1B63Nowl3UaA9eMpp1T-Ans4QByx-XpTTZRrjJ0glURZgyRzxI8GOvr60qxXdv74KNeE8qXFEjaHf_uoc6tat2pW5NOy9YwiURoEmlzSO9d3OP20lIacKS0BUM6PGSCOEEgQwjrh-O4JHvKSJ9KfRpmkciAVzMPiqkg1QdIJwo5fKA63UjlF6ogzFGmZIRVYKHeuJ-EVkzxcdiiiWH7hj9OAMqkxi0FOdaKqKLXH6YATl-lCRG-b-IxWDx-dvhXwadodX7ai1uXLduj9AagQIJk9B7jArj0USd6LBlzE-NZX4C5-7jEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tomographic+Volumetric+Additive+Manufacturing+of+Silicon+Oxycarbide+Ceramics&rft.jtitle=Advanced+engineering+materials&rft.au=Kollep%2C+Max&rft.au=Konstantinou%2C+Georgia&rft.au=Madrid-Wolff%2C+Jorge&rft.au=Boniface%2C+Antoine&rft.date=2022-07-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=24&rft.issue=7&rft_id=info:doi/10.1002%2Fadem.202101345&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adem_202101345 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon |