Tomographic Volumetric Additive Manufacturing of Silicon Oxycarbide Ceramics

Ceramics are highly chemically, thermally, and mechanically resistant. These remarkable propertiers make them useful across multiple industries; but also, difficult to mold into complex shapes. A possibility to make convoluted ceramic parts is to use preceramic polymers (PCPs) in liquid form. The PC...

Full description

Saved in:
Bibliographic Details
Published inAdvanced engineering materials Vol. 24; no. 7
Main Authors Kollep, Max, Konstantinou, Georgia, Madrid-Wolff, Jorge, Boniface, Antoine, Hagelüken, Lorenz, Sasikumar, Pradeep Vallachira Warriam, Blugan, Gurdial, Delrot, Paul, Loterie, Damien, Brugger, Juergen, Moser, Christophe
Format Journal Article
LanguageEnglish
Published 01.07.2022
Subjects
Online AccessGet full text
ISSN1438-1656
1527-2648
DOI10.1002/adem.202101345

Cover

Loading…
Abstract Ceramics are highly chemically, thermally, and mechanically resistant. These remarkable propertiers make them useful across multiple industries; but also, difficult to mold into complex shapes. A possibility to make convoluted ceramic parts is to use preceramic polymers (PCPs) in liquid form. The PCP resin is first solidified in a desired geometry and then transformed into ceramic compounds through a pyrolysis step that preserves the shape. Light‐based additive manufacturing (AM) is a promising route to achieve solidification of the PCP resin. Different approaches, such as stereolithography, have already been proposed but they all rely on a layer‐by‐layer printing process which limits printing speed and object geometry. Herein, the fabrication of complex 3D centimeter‐scale ceramic parts by using tomographic volumetric printing is presented, which is fast and offers a high‐resolution and geometrical design freedom. First, a photosensitive polysiloxane preceramic resin that is solidified by projecting light patterns from multiple angles is formulated. Then, the obtained 3D printed parts are converted into ceramics by pyrolysis. The strength of this approach is demonstrated through the fabrication of smooth, dense microcomponents exhibiting overhangs and hollow geometries without the need of supporting structures. Their resistance to thermal stress and harsh chemical treatments is characterized. The fabrication of complex 3D centimeter‐scale ceramic parts by using tomographic volumetric additive manufacturing is presented. It is fast, exhibits high resolution (≈100 μm), and provides geometrical freedom. Polymerized green bodies are then pyrolyzed at 1000 °C to produce thermally and chemically resistant silicon oxycarbide ceramics.
AbstractList Ceramics are highly chemically, thermally, and mechanically resistant. These remarkable propertiers make them useful across multiple industries; but also, difficult to mold into complex shapes. A possibility to make convoluted ceramic parts is to use preceramic polymers (PCPs) in liquid form. The PCP resin is first solidified in a desired geometry and then transformed into ceramic compounds through a pyrolysis step that preserves the shape. Light‐based additive manufacturing (AM) is a promising route to achieve solidification of the PCP resin. Different approaches, such as stereolithography, have already been proposed but they all rely on a layer‐by‐layer printing process which limits printing speed and object geometry. Herein, the fabrication of complex 3D centimeter‐scale ceramic parts by using tomographic volumetric printing is presented, which is fast and offers a high‐resolution and geometrical design freedom. First, a photosensitive polysiloxane preceramic resin that is solidified by projecting light patterns from multiple angles is formulated. Then, the obtained 3D printed parts are converted into ceramics by pyrolysis. The strength of this approach is demonstrated through the fabrication of smooth, dense microcomponents exhibiting overhangs and hollow geometries without the need of supporting structures. Their resistance to thermal stress and harsh chemical treatments is characterized. The fabrication of complex 3D centimeter‐scale ceramic parts by using tomographic volumetric additive manufacturing is presented. It is fast, exhibits high resolution (≈100 μm), and provides geometrical freedom. Polymerized green bodies are then pyrolyzed at 1000 °C to produce thermally and chemically resistant silicon oxycarbide ceramics.
Author Madrid-Wolff, Jorge
Sasikumar, Pradeep Vallachira Warriam
Moser, Christophe
Blugan, Gurdial
Kollep, Max
Loterie, Damien
Konstantinou, Georgia
Delrot, Paul
Boniface, Antoine
Hagelüken, Lorenz
Brugger, Juergen
Author_xml – sequence: 1
  givenname: Max
  surname: Kollep
  fullname: Kollep, Max
  organization: École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 2
  givenname: Georgia
  surname: Konstantinou
  fullname: Konstantinou, Georgia
  organization: École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 3
  givenname: Jorge
  orcidid: 0000-0003-3945-538X
  surname: Madrid-Wolff
  fullname: Madrid-Wolff, Jorge
  organization: École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 4
  givenname: Antoine
  orcidid: 0000-0002-6551-8519
  surname: Boniface
  fullname: Boniface, Antoine
  organization: École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 5
  givenname: Lorenz
  surname: Hagelüken
  fullname: Hagelüken, Lorenz
  organization: École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 6
  givenname: Pradeep Vallachira Warriam
  orcidid: 0000-0001-6550-0784
  surname: Sasikumar
  fullname: Sasikumar, Pradeep Vallachira Warriam
  organization: Swiss Federal Laboratories for Material Science and Technology (Empa)
– sequence: 7
  givenname: Gurdial
  orcidid: 0000-0002-2088-7767
  surname: Blugan
  fullname: Blugan, Gurdial
  organization: Swiss Federal Laboratories for Material Science and Technology (Empa)
– sequence: 8
  givenname: Paul
  orcidid: 0000-0001-8349-9019
  surname: Delrot
  fullname: Delrot, Paul
  organization: Readily3D SA
– sequence: 9
  givenname: Damien
  orcidid: 0000-0003-0020-9384
  surname: Loterie
  fullname: Loterie, Damien
  organization: Readily3D SA
– sequence: 10
  givenname: Juergen
  surname: Brugger
  fullname: Brugger, Juergen
  organization: École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 11
  givenname: Christophe
  orcidid: 0000-0002-2078-0273
  surname: Moser
  fullname: Moser, Christophe
  email: christophe.moser@epfl.ch
  organization: École Polytechnique Fédérale de Lausanne (EPFL)
BookMark eNqFkLFOwzAURS1UJNrCypwfSLGd2HHGqBSKlKoDhTWyn-1ilMSVkwL9e1IVgYSEWN69wz1vOBM0an1rELomeEYwpjdSm2ZGMSWYJCk7Q2PCaBZTnorR0NNExIQzfoEmXfeKMTnOxqjc-MZvg9y9OIiefb1vTB-GWmjtevdmopVs91ZCvw-u3UbeRo-uduDbaP1xABmU0yaamyAbB90lOrey7szVV07R091iM1_G5fr-YV6UMSQ0ZzHBGquccq5Sha3g3EorEpCcMKwpAMkyLXI1HAIqZ6mhmmnIhFA5WEZFMkXp6S8E33XB2ApcL3vn2z5IV1cEV0cj1dFI9W1kwGa_sF1wjQyHv4H8BLy72hz-WVfF7WL1w34Ckg93Ag
CitedBy_id crossref_primary_10_1038_s41578_025_00785_3
crossref_primary_10_1515_nanoph_2022_0512
crossref_primary_10_1021_acs_chemrev_4c00134
crossref_primary_10_1007_s40964_024_00758_y
crossref_primary_10_1016_j_addma_2025_104752
crossref_primary_10_1080_17452759_2024_2407473
crossref_primary_10_1016_j_addma_2024_104094
crossref_primary_10_1002_marc_202300602
crossref_primary_10_1016_j_addma_2024_104536
crossref_primary_10_1108_RPJ_03_2024_0145
crossref_primary_10_1038_s41467_023_39886_4
crossref_primary_10_3390_ma16134636
crossref_primary_10_1016_j_progpolymsci_2023_101755
crossref_primary_10_1016_j_addma_2024_104552
crossref_primary_10_1115_1_4056663
crossref_primary_10_1016_j_addma_2024_104232
crossref_primary_10_1002_adma_202306716
crossref_primary_10_1016_j_addma_2023_103889
crossref_primary_10_1557_s43579_023_00447_x
crossref_primary_10_1002_advs_202105144
crossref_primary_10_1002_smll_202402356
crossref_primary_10_3390_hardware3010002
crossref_primary_10_1016_j_oceram_2023_100402
crossref_primary_10_1002_admt_202301054
crossref_primary_10_1021_acsbiomaterials_4c01837
crossref_primary_10_1063_5_0151661
crossref_primary_10_1088_1758_5090_ad0978
crossref_primary_10_3390_bios12121135
crossref_primary_10_1016_j_ijpx_2023_100166
crossref_primary_10_1002_pen_26186
crossref_primary_10_1111_jace_20043
crossref_primary_10_1002_adma_202307686
crossref_primary_10_1016_j_jeurceramsoc_2024_01_053
crossref_primary_10_1016_j_pmatsci_2022_100969
crossref_primary_10_1016_j_jeurceramsoc_2024_05_075
crossref_primary_10_1002_admt_202202117
crossref_primary_10_1145_3687924
Cites_doi 10.1021/cr3005197
10.1016/j.ssi.2011.12.007
10.1111/j.1551-2916.2010.03876.x
10.1016/S0924-4247(01)00723-3
10.1016/j.actamat.2020.07.067
10.1016/j.ceramint.2017.11.135
10.1039/C8PY01195H
10.1109/TVCG.2003.1196006
10.1063/1.124498
10.1002/9781119006671
10.1021/acsami.7b17394
10.1016/j.jeurceramsoc.2010.11.019
10.1016/j.addma.2017.08.009
10.1002/advs.201800937
10.1016/j.jeurceramsoc.2012.03.010
10.1016/j.addma.2020.101343
10.1016/j.matdes.2018.11.054
10.1038/s41586-020-3029-7
10.1021/jp0114900
10.1016/0167-577X(95)00245-6
10.1007/s10853-011-6140-1
10.1016/j.jpowsour.2012.11.086
10.1002/adma.202003376
10.1038/s41467-020-14630-4
10.1016/j.jeurceramsoc.2017.07.033
10.1002/1527-2648(20020503)4:5<247::AID-ADEM247>3.0.CO;2-N
10.1039/c2ta00727d
10.1016/j.ceramint.2018.08.102
10.1007/BF02436860
10.1039/C8RA02045K
10.1016/j.jeurceramsoc.2007.12.022
10.1366/0003702864509565
10.1016/j.ssi.2012.01.026
10.1111/j.1551-2916.2009.03233.x
10.1016/j.saa.2014.05.072
10.1021/acsami.0c08260
10.1038/nmeth.2019
10.1126/science.aau7114
10.1007/s40145-019-0335-3
10.1126/science.aax1562
10.1002/adma.201904209
10.1002/adma.201503470
10.1039/C7RA02509B
10.1109/CLEO/Europe-EQEC52157.2021.9541688
10.1021/ja01856a061
10.1016/j.electacta.2013.05.064
10.1002/adfm.200600009
10.3390/ma14154075
10.1557/JMR.1989.0385
ContentType Journal Article
Copyright 2022 The Authors. Advanced Engineering Materials published by Wiley‐VCH GmbH
Copyright_xml – notice: 2022 The Authors. Advanced Engineering Materials published by Wiley‐VCH GmbH
DBID 24P
AAYXX
CITATION
DOI 10.1002/adem.202101345
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1527-2648
EndPage n/a
ExternalDocumentID 10_1002_adem_202101345
ADEM202101345
Genre article
GrantInformation_xml – fundername: ETH Domain (SFA)
– fundername: Swiss National Science Foundation
  funderid: 196971
GroupedDBID -~X
05W
0R~
1L6
1OC
23M
24P
31~
33P
3SF
3WU
4.4
50Y
52U
5GY
5VS
66C
6P2
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F5P
FEDTE
G-S
GNP
GODZA
HGLYW
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XPP
XV2
ZZTAW
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c3295-10d0b9266b4b0f866faf83ca6150d2cc177d89b7d81cb954e2d5dc788b9cf5283
IEDL.DBID DR2
ISSN 1438-1656
IngestDate Tue Jul 01 02:51:11 EDT 2025
Thu Apr 24 23:03:20 EDT 2025
Wed Jan 22 16:24:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3295-10d0b9266b4b0f866faf83ca6150d2cc177d89b7d81cb954e2d5dc788b9cf5283
ORCID 0000-0001-8349-9019
0000-0002-2088-7767
0000-0001-6550-0784
0000-0002-6551-8519
0000-0002-2078-0273
0000-0003-3945-538X
0000-0003-0020-9384
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.202101345
PageCount 10
ParticipantIDs crossref_citationtrail_10_1002_adem_202101345
crossref_primary_10_1002_adem_202101345
wiley_primary_10_1002_adem_202101345_ADEM202101345
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Advanced engineering materials
PublicationYear 2022
References 1941; 63
2017; 7
2013; 1
2002; 95
2013; 244
2016; 31
2019; 366
2020; 12
2020; 11
2019; 162
2018; 44
2014; 133
2019; 363
2001; 105
1997; 8
2018; 9
2018; 8
2018; 5
1986; 40
2009; 92
2008; 28
2003; 9
1996; 27
2018; 38
2019; 8
1989; 4
2019; 31
2006; 16
2013; 106
2011; 31
2020; 588
2002; 4
2020; 35
2020; 32
2012; 225
2014; 114
2012; 32
2014; 88
2021; 14
2004–2019
2021
2020; 198
1999; 75
2015
2017; 18
2013
2012; 47
2016; 28
2018; 10
2010; 93
2012; 9
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
Schwentenwein M. (e_1_2_8_12_1) 2014
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
Smith B. (e_1_2_8_40_1) 2016; 31
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_18_1
e_1_2_8_39_1
Launer P. J. (e_1_2_8_43_1) 2013
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 95
  start-page: 120
  year: 2002
  publication-title: Sens. Actuators A: Phys.
– volume: 32
  start-page: 2495
  year: 2012
  publication-title: J. Eur. Ceram. Soc.
– volume: 225
  start-page: 522
  year: 2012
  publication-title: Solid State Ionics
– volume: 14
  start-page: 4075
  year: 2021
  publication-title: Materials
– year: 2004–2019
– year: 2021
– volume: 198
  start-page: 134
  year: 2020
  publication-title: Acta Mater.
– volume: 162
  start-page: 263
  year: 2019
  publication-title: Mater. Des.
– volume: 105
  start-page: 10520
  year: 2001
  publication-title: J. Phys. Chem. A
– volume: 16
  start-page: 1235
  year: 2006
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 676
  year: 2012
  publication-title: Nat. Methods
– volume: 114
  start-page: 557
  year: 2014
  publication-title: Chem. Rev.
– volume: 44
  start-page: 3412
  year: 2018
  publication-title: Ceram. Int.
– volume: 106
  start-page: 101
  year: 2013
  publication-title: Electrochim. Acta
– volume: 40
  start-page: 224
  year: 1986
  publication-title: Appl. Spectrosc.
– volume: 35
  start-page: 101343
  year: 2020
  publication-title: Addit. Manuf.
– volume: 75
  start-page: 737
  year: 1999
  publication-title: Appl. Phys. Lett.
– volume: 63
  start-page: 3083
  year: 1941
  publication-title: J. Am. Chem. Soc.
– volume: 363
  start-page: 1075
  year: 2019
  publication-title: Science
– volume: 133
  start-page: 619
  year: 2014
  publication-title: Spectrochim. Acta, Part A
– volume: 225
  start-page: 527
  year: 2012
  publication-title: Solid State Ionics
– volume: 366
  start-page: 360
  year: 2019
  publication-title: Science
– volume: 32
  start-page: 2003376
  year: 2020
  publication-title: Adv. Mater.
– volume: 8
  start-page: 21863
  year: 2018
  publication-title: RSC Adv.
– year: 2015
– volume: 4
  start-page: 247
  year: 2002
  publication-title: Adv. Eng. Mater
– volume: 8
  start-page: 457
  year: 2019
  publication-title: J. Adv. Ceram.
– volume: 11
  start-page: 1
  year: 2020
  publication-title: Nat. Commun.
– volume: 244
  start-page: 450
  year: 2013
  publication-title: J. Power Sources
– volume: 93
  start-page: 1805
  year: 2010
  publication-title: J. Am. Ceram. Soc.
– volume: 31
  start-page: 34
  year: 2016
  publication-title: Spectroscopy
– volume: 588
  start-page: 620
  year: 2020
  publication-title: Nature
– volume: 8
  start-page: 327
  year: 1997
  publication-title: J. Sol-Gel Sci. Technol.
– volume: 1
  start-page: 3826
  year: 2013
  publication-title: J. Mater. Chem. A
– start-page: 175
  year: 2013
  end-page: 178
– volume: 9
  start-page: 191
  year: 2003
  publication-title: IEEE Trans. Visual Comput. Graphics
– volume: 31
  start-page: 1904209
  year: 2019
  publication-title: Adv. Mater.
– volume: 10
  start-page: 2236
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 1
  year: 1996
  publication-title: Mater. Lett.
– volume: 88
  start-page: 60
  year: 2014
  end-page: 64
– volume: 38
  start-page: 57
  year: 2018
  publication-title: J. Eur. Ceram.
– volume: 9
  start-page: 5107
  year: 2018
  publication-title: Polym. Chem.
– volume: 7
  start-page: 21258
  year: 2017
  publication-title: RSC Adv.
– volume: 47
  start-page: 4211
  year: 2012
  publication-title: J. Mater. Sci.
– volume: 5
  start-page: 1800937
  year: 2018
  publication-title: Adv. Sci.
– volume: 28
  start-page: 370
  year: 2016
  publication-title: Adv. Mater.
– volume: 31
  start-page: 913
  year: 2011
  publication-title: J. Eur. Ceram. Soc.
– volume: 44
  start-page: 20961
  year: 2018
  publication-title: Ceram. Int.
– volume: 18
  start-page: 95
  year: 2017
  publication-title: Addit. Manuf.
– volume: 4
  start-page: 385
  year: 1989
  publication-title: J. Mater. Res.
– volume: 92
  start-page: 2455
  year: 2009
  publication-title: J. Am. Ceram. Soc.
– volume: 28
  start-page: 1369
  year: 2008
  publication-title: J. Eur. Ceram. Soc.
– volume: 12
  start-page: 31984
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_8_26_1
  doi: 10.1021/cr3005197
– ident: e_1_2_8_37_1
  doi: 10.1016/j.ssi.2011.12.007
– ident: e_1_2_8_8_1
  doi: 10.1111/j.1551-2916.2010.03876.x
– ident: e_1_2_8_9_1
  doi: 10.1016/S0924-4247(01)00723-3
– ident: e_1_2_8_30_1
  doi: 10.1016/j.actamat.2020.07.067
– ident: e_1_2_8_4_1
  doi: 10.1016/j.ceramint.2017.11.135
– ident: e_1_2_8_25_1
  doi: 10.1039/C8PY01195H
– ident: e_1_2_8_54_1
  doi: 10.1109/TVCG.2003.1196006
– ident: e_1_2_8_33_1
  doi: 10.1063/1.124498
– ident: e_1_2_8_24_1
  doi: 10.1002/9781119006671
– ident: e_1_2_8_49_1
  doi: 10.1021/acsami.7b17394
– ident: e_1_2_8_29_1
  doi: 10.1016/j.jeurceramsoc.2010.11.019
– ident: e_1_2_8_35_1
  doi: 10.1016/j.addma.2017.08.009
– start-page: 60
  volume-title: Advances in Science and Technology
  year: 2014
  ident: e_1_2_8_12_1
– ident: e_1_2_8_15_1
  doi: 10.1002/advs.201800937
– ident: e_1_2_8_48_1
  doi: 10.1016/j.jeurceramsoc.2012.03.010
– ident: e_1_2_8_16_1
  doi: 10.1016/j.addma.2020.101343
– ident: e_1_2_8_36_1
  doi: 10.1016/j.matdes.2018.11.054
– ident: e_1_2_8_21_1
  doi: 10.1038/s41586-020-3029-7
– ident: e_1_2_8_44_1
  doi: 10.1021/jp0114900
– ident: e_1_2_8_50_1
  doi: 10.1016/0167-577X(95)00245-6
– ident: e_1_2_8_6_1
  doi: 10.1007/s10853-011-6140-1
– ident: e_1_2_8_32_1
  doi: 10.1016/j.jpowsour.2012.11.086
– ident: e_1_2_8_22_1
  doi: 10.1002/adma.202003376
– ident: e_1_2_8_20_1
  doi: 10.1038/s41467-020-14630-4
– ident: e_1_2_8_34_1
– ident: e_1_2_8_13_1
  doi: 10.1016/j.jeurceramsoc.2017.07.033
– ident: e_1_2_8_2_1
  doi: 10.1002/1527-2648(20020503)4:5<247::AID-ADEM247>3.0.CO;2-N
– ident: e_1_2_8_11_1
  doi: 10.1039/c2ta00727d
– ident: e_1_2_8_38_1
  doi: 10.1016/j.ceramint.2018.08.102
– ident: e_1_2_8_51_1
  doi: 10.1007/BF02436860
– ident: e_1_2_8_42_1
  doi: 10.1039/C8RA02045K
– volume: 31
  start-page: 34
  year: 2016
  ident: e_1_2_8_40_1
  publication-title: Spectroscopy
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jeurceramsoc.2007.12.022
– ident: e_1_2_8_53_1
  doi: 10.1366/0003702864509565
– ident: e_1_2_8_28_1
  doi: 10.1016/j.ssi.2012.01.026
– ident: e_1_2_8_47_1
  doi: 10.1111/j.1551-2916.2009.03233.x
– ident: e_1_2_8_45_1
  doi: 10.1016/j.saa.2014.05.072
– ident: e_1_2_8_17_1
  doi: 10.1021/acsami.0c08260
– ident: e_1_2_8_56_1
  doi: 10.1038/nmeth.2019
– ident: e_1_2_8_18_1
  doi: 10.1126/science.aau7114
– ident: e_1_2_8_5_1
  doi: 10.1007/s40145-019-0335-3
– ident: e_1_2_8_10_1
  doi: 10.1126/science.aax1562
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.201904209
– ident: e_1_2_8_7_1
  doi: 10.1002/adma.201503470
– ident: e_1_2_8_55_1
– ident: e_1_2_8_39_1
  doi: 10.1039/C7RA02509B
– start-page: 175
  volume-title: Silicon Compounds
  year: 2013
  ident: e_1_2_8_43_1
– ident: e_1_2_8_41_1
– ident: e_1_2_8_23_1
  doi: 10.1109/CLEO/Europe-EQEC52157.2021.9541688
– ident: e_1_2_8_27_1
  doi: 10.1021/ja01856a061
– ident: e_1_2_8_31_1
  doi: 10.1016/j.electacta.2013.05.064
– ident: e_1_2_8_14_1
  doi: 10.1002/adfm.200600009
– ident: e_1_2_8_52_1
  doi: 10.3390/ma14154075
– ident: e_1_2_8_46_1
  doi: 10.1557/JMR.1989.0385
SSID ssj0011013
Score 2.5240653
Snippet Ceramics are highly chemically, thermally, and mechanically resistant. These remarkable propertiers make them useful across multiple industries; but also,...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms 3D printing
ceramics
polymer-derived ceramics
preceramic polymers
SiOC
volumetric additive manufacturing
Title Tomographic Volumetric Additive Manufacturing of Silicon Oxycarbide Ceramics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.202101345
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEIAH7UkPvsX6KHsQPKVNNskmOZZiKeILbaW3sK9AsabSB6i_3p1NG1tBBL0EQmYhO8zszi4z3wCcR37IdJi4ThDhbRWTyuE01A5TUsZKaE9Zuv7NLev0gqt-2F-q4i_4EOWFG3qGXa_RwbmYNL6goZg9bs535sji-QFWmWPCFkZFDyU_ysNvtrzIeDViZhbURpc2Voev7ErLUardZtrbwBc_WGSXPNdnU1GXH9_Yjf-ZwQ5szWNQ0iyMZhfWdL4Hm0tkwn247o5eCpj1QJInu4Ihyp80lbLJRuSG5zMsirBVjmSUkcfB0BhVTu7e3iUfi4HSpKXH2O1-cgC99mW31XHmjRcc6dMEyaTKFYnZukUg3CxmLONZ7EuO8HhFpfSiSMWJMA9PiiQMNFWhkuYwLRKZIS3mECr5KNdHQDKtfREJs2zEKohNLMYZ1yphWorYTDysgrNQfCrnVHJsjjFMC54yTVFLaamlKlyU8q8Fj-NHSWqV_4tYigZfvh3_ZdAJbFAsirBJvKdQmY5n-syEKlNRg3Ua3NesUX4CmNrhFg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEIAHrQf14Fuszz0IntI2m2STHEuxVG0raCveQvYRKNZUagvqr3dn08RWEEEvgZBZyA6zuzPLzDcA577jMeWFNcv18baKCWnF1FMWk0IEkitbGrp-p8tafff60cuzCbEWJuNDFBduuDLMfo0LHC-kq1_UUEwf1wGejllsx_WWYQXbepuo6q4gSNn40RQY6XWNoJmc21ij1cXxC-fSvJ9qDprmJvD8F7P8kqfKdMIr4uMbvfFfc9iCjZkbSuqZ3WzDkkp3YH0OTrgL7d7oOeNZDwR5MJsY0vxJXUqTb0Q6cTrFughT6EhGCbkfDLVdpeT27V3EYz6QijTUGBvev-5Bv3nZa7SsWe8FSzg0RDiprPFQn97c5bUkYCyJk8ARMfLjJRXC9n0ZhFw_bMFDz1VUelLoeJqHIkFgzD6U0lGqDoAkSjnc53rnCKQbaHcsZrGSIVOCB3riXhmsXPORmIHJsT_GMMqQyjRCLUWFlspwUci_ZEiOHyWp0f4vYhHafPF2-JdBZ7Da6nXaUfuqe3MEaxRrJExO7zGUJuOpOtGey4SfGtv8BGyo5Fo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dS8MwEMCDThB98Fucn3kQfOps0zZtH8fmmLpN0U32VvJVGM5uzA3Uv95cutVNEEFfCqUXaI675BLufofQeeD6VPmRbXkB3FZRIS1GfGVRKUQouXKkoes3W7Te8W66fneuij_jQ-QXbuAZZr0GBx_K5PILGgrZ4_p8p48sjuv5y2jFo3YIdl19yAFSDnw09UXarYEzM8M22uRycfzCtjQfppp9praJ2OwPs_SS59JkzEvi4xu88T9T2EIb0yAUlzOr2UZLKt1B63Nowl3UaA9eMpp1T-Ans4QByx-XpTTZRrjJ0glURZgyRzxI8GOvr60qxXdv74KNeE8qXFEjaHf_uoc6tat2pW5NOy9YwiURoEmlzSO9d3OP20lIacKS0BUM6PGSCOEEgQwjrh-O4JHvKSJ9KfRpmkciAVzMPiqkg1QdIJwo5fKA63UjlF6ogzFGmZIRVYKHeuJ-EVkzxcdiiiWH7hj9OAMqkxi0FOdaKqKLXH6YATl-lCRG-b-IxWDx-dvhXwadodX7ai1uXLduj9AagQIJk9B7jArj0USd6LBlzE-NZX4C5-7jEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tomographic+Volumetric+Additive+Manufacturing+of+Silicon+Oxycarbide+Ceramics&rft.jtitle=Advanced+engineering+materials&rft.au=Kollep%2C+Max&rft.au=Konstantinou%2C+Georgia&rft.au=Madrid-Wolff%2C+Jorge&rft.au=Boniface%2C+Antoine&rft.date=2022-07-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=24&rft.issue=7&rft_id=info:doi/10.1002%2Fadem.202101345&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adem_202101345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon