Robust and Elastic Bioinspired MXene‐Coated Foams with Enhanced Energy Storage and Conversion Capabilities

Constructing highly porous structures using Ti3C2Tx MXene provides a promising strategy toward achieving low density, high specific surface area, and shorter ion/molecule transport paths. However, the weak MXene‐MXene or MXene‐substrate interactions hinder the development of ultra‐robust and elastic...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials technologies Vol. 8; no. 8
Main Authors Jiang, Degang, Bacal, Christine Jurene O., Usman, Ken Aldren S., Zhang, Jizhen, Qin, Si, Hegh, Dylan, Lei, Weiwei, Liu, Jingquan, Razal, Joselito M.
Format Journal Article
LanguageEnglish
Published 24.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Constructing highly porous structures using Ti3C2Tx MXene provides a promising strategy toward achieving low density, high specific surface area, and shorter ion/molecule transport paths. However, the weak MXene‐MXene or MXene‐substrate interactions hinder the development of ultra‐robust and elastic MXene‐based architectures. To address this issue, a bio‐inspired strategy is developed to effectively adhere the MXene nanosheets onto melamine foam via covalent and hydrogen bonding interactions through polyethyleneimine/polydopamine‐modification. The enhanced interactions contribute to high MXene loading (≈94 wt.%) and reversible compressibility even after 10 000 compression/release cycles at 80% strain. The compressible supercapacitor device assembled from this foam exhibits high energy storage capability (119 F g−1 at 2 mV s−1) with capacitance retention of ≈93% after 1000 compression/release cycles at 50% strain. Moreover, the presence of polydopamine and MXene enable the absorption of light in the UV–Vis and near‐IR regions, respectively, inducing photothermal conversion functionality, with an evaporation rate of ≈1.5 kg m−2 h−1 and ≈89% solar evaporation efficiency under one sun illumination. It is envisaged that this bio‐inspired chemical modification offers a versatile strategy for the assembly of MXene nanosheets onto different substrates for various applications, such as electromagnetic interference shielding, energy storage, and conversion. An ultra‐robust and elastic MXene based foam is fabricated by using a facial and bioinspired template strategy, which demonstrates high MXene loading (≈93.6 wt.%) and reversible compressibility even after 10 000 compression/release cycles at high strain of 80%. Given these superior attributes, the as‐prepared foam can be used for compressible supercapacitors or steam generation applications.
AbstractList Constructing highly porous structures using Ti3C2Tx MXene provides a promising strategy toward achieving low density, high specific surface area, and shorter ion/molecule transport paths. However, the weak MXene‐MXene or MXene‐substrate interactions hinder the development of ultra‐robust and elastic MXene‐based architectures. To address this issue, a bio‐inspired strategy is developed to effectively adhere the MXene nanosheets onto melamine foam via covalent and hydrogen bonding interactions through polyethyleneimine/polydopamine‐modification. The enhanced interactions contribute to high MXene loading (≈94 wt.%) and reversible compressibility even after 10 000 compression/release cycles at 80% strain. The compressible supercapacitor device assembled from this foam exhibits high energy storage capability (119 F g−1 at 2 mV s−1) with capacitance retention of ≈93% after 1000 compression/release cycles at 50% strain. Moreover, the presence of polydopamine and MXene enable the absorption of light in the UV–Vis and near‐IR regions, respectively, inducing photothermal conversion functionality, with an evaporation rate of ≈1.5 kg m−2 h−1 and ≈89% solar evaporation efficiency under one sun illumination. It is envisaged that this bio‐inspired chemical modification offers a versatile strategy for the assembly of MXene nanosheets onto different substrates for various applications, such as electromagnetic interference shielding, energy storage, and conversion. An ultra‐robust and elastic MXene based foam is fabricated by using a facial and bioinspired template strategy, which demonstrates high MXene loading (≈93.6 wt.%) and reversible compressibility even after 10 000 compression/release cycles at high strain of 80%. Given these superior attributes, the as‐prepared foam can be used for compressible supercapacitors or steam generation applications.
Author Hegh, Dylan
Lei, Weiwei
Liu, Jingquan
Qin, Si
Zhang, Jizhen
Jiang, Degang
Usman, Ken Aldren S.
Bacal, Christine Jurene O.
Razal, Joselito M.
Author_xml – sequence: 1
  givenname: Degang
  surname: Jiang
  fullname: Jiang, Degang
  organization: Geelong Waurn Ponds Campus
– sequence: 2
  givenname: Christine Jurene O.
  surname: Bacal
  fullname: Bacal, Christine Jurene O.
  organization: Geelong Waurn Ponds Campus
– sequence: 3
  givenname: Ken Aldren S.
  surname: Usman
  fullname: Usman, Ken Aldren S.
  organization: Geelong Waurn Ponds Campus
– sequence: 4
  givenname: Jizhen
  orcidid: 0000-0002-9584-9554
  surname: Zhang
  fullname: Zhang, Jizhen
  email: jizhen.zhang@deakin.edu.au
  organization: Chinese Academy of Tropical Agricultural Sciences (CATAS)
– sequence: 5
  givenname: Si
  surname: Qin
  fullname: Qin, Si
  organization: Geelong Waurn Ponds Campus
– sequence: 6
  givenname: Dylan
  surname: Hegh
  fullname: Hegh, Dylan
  organization: Geelong Waurn Ponds Campus
– sequence: 7
  givenname: Weiwei
  surname: Lei
  fullname: Lei, Weiwei
  organization: Geelong Waurn Ponds Campus
– sequence: 8
  givenname: Jingquan
  surname: Liu
  fullname: Liu, Jingquan
  organization: Qingdao University
– sequence: 9
  givenname: Joselito M.
  orcidid: 0000-0002-9758-3702
  surname: Razal
  fullname: Razal, Joselito M.
  email: joselito.razal@deakin.edu.au
  organization: Geelong Waurn Ponds Campus
BookMark eNpNkMtOAjEYhRuDiYhsXfcFBnuhHWaJ44AmEBPFhN2k0_4DNUNLplXCzkfwGX0SQQ1xdS6Lk5zvEnWcd4DQNSUDSgi7UWYTB4wwRqik9Ax1GZciSUm27PzzF6gfwishhGZU8hHroubJV28hYuUMLhoVotX41nrrwta2YPB8CQ6-Pj5zr-IhTrzaBLyzcY0Lt1ZOH7rCQbva4-foW7WCn6Xcu3dog_UO52qrKtvYaCFcofNaNQH6f9pDL5Nikd8ns8fpQz6eJZqzjCZM6qE4_EhrIfRI8AyA1ZzLtNKUG6alToEIKSsGWarJcKhFCqaqwZiR5FzzHsp-d3e2gX25be1GtfuSkvLIqjyyKk-syvHdfHFK_Buml2Pc
CitedBy_id crossref_primary_10_1016_j_jcis_2023_05_013
crossref_primary_10_1002_smll_202303043
crossref_primary_10_1016_j_porgcoat_2024_108373
crossref_primary_10_1002_aesr_202300126
crossref_primary_10_1016_j_ccr_2024_215870
crossref_primary_10_1002_smll_202401573
ContentType Journal Article
Copyright 2023 The Authors. Advanced Materials Technologies published by Wiley‐VCH GmbH
Copyright_xml – notice: 2023 The Authors. Advanced Materials Technologies published by Wiley‐VCH GmbH
DBID 24P
WIN
DOI 10.1002/admt.202201611
DatabaseName Wiley-Blackwell Open Access Collection
Wiley-Blackwell Backfiles (Open access)
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2365-709X
EndPage n/a
ExternalDocumentID ADMT202201611
Genre article
GrantInformation_xml – fundername: Alfred Deakin Postdoctoral Research Fellowship
– fundername: National Natural Science Foundation of China
  funderid: 52203344; 22204174
– fundername: Australian Research Council
  funderid: DP190103290; FT130100380; IH210100023
– fundername: Australian National Fabrication Facility
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AANLZ
AAXRX
AAZKR
ACAHQ
ACCFJ
ACCZN
ACGFS
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AITYG
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
BFHJK
BMXJE
DCZOG
EBS
HGLYW
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
P2W
ROL
SUPJJ
WBKPD
WIN
WOHZO
WXSBR
ZZTAW
ID FETCH-LOGICAL-c3291-26c450167f55c8539ee2f3367bc13d2c6c7e0566b2e97c044c57edbfedd8633c3
IEDL.DBID 24P
ISSN 2365-709X
IngestDate Sat Aug 24 01:21:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3291-26c450167f55c8539ee2f3367bc13d2c6c7e0566b2e97c044c57edbfedd8633c3
ORCID 0000-0002-9584-9554
0000-0002-9758-3702
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmt.202201611
PageCount 10
ParticipantIDs wiley_primary_10_1002_admt_202201611_ADMT202201611
PublicationCentury 2000
PublicationDate April 24, 2023
PublicationDateYYYYMMDD 2023-04-24
PublicationDate_xml – month: 04
  year: 2023
  text: April 24, 2023
  day: 24
PublicationDecade 2020
PublicationTitle Advanced materials technologies
PublicationYear 2023
References 2021; 8
2019; 7
2018; 28
2019; 4
2017; 2
2019; 31
2019; 13
2019; 15
2020; 14
2020; 13
2020; 12
2020; 32
2020; 10
2021; 143
2021; 13
2020; 7
2018; 6
2020; 5
2021; 15
2022; 440
2021; 31
2021; 33
2020; 30
2022; 6
2017; 11
2021; 151
2019; 29
2011; 23
2022; 10
2018; 50
2022; 32
2021; 374
2018; 12
2018; 34
2022; 626
2007; 318
2018; 14
2022; 18
References_xml – volume: 7
  start-page: 855
  year: 2020
  publication-title: Mater. Horiz.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 8678
  year: 2020
  publication-title: ACS Nano
– volume: 11
  start-page: 3752
  year: 2017
  publication-title: ACS Nano
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 18
  year: 2022
  publication-title: Small
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 50
  start-page: 79
  year: 2018
  publication-title: Nano Energy
– volume: 626
  start-page: 35
  year: 2022
  publication-title: J. Colloid Interface Sci.
– volume: 14
  start-page: 2109
  year: 2020
  publication-title: ACS Nano
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 143
  year: 2021
  publication-title: Composites, Part A
– volume: 4
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 389
  year: 2022
  publication-title: Nat. Rev. Chem.
– volume: 15
  start-page: 5000
  year: 2021
  publication-title: ACS Nano
– volume: 14
  year: 2018
  publication-title: Small
– volume: 13
  start-page: 255
  year: 2020
  publication-title: Nano Res.
– volume: 8
  start-page: 2886
  year: 2021
  publication-title: Mater. Horiz.
– volume: 13
  start-page: 9161
  year: 2019
  publication-title: ACS Nano
– volume: 23
  start-page: 4248
  year: 2011
  publication-title: Adv. Mater.
– volume: 5
  year: 2020
  publication-title: Adv. Mater. Technol.
– volume: 374
  start-page: 96
  year: 2021
  publication-title: Science
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 15
  year: 2019
  publication-title: Small
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 8
  year: 2021
  publication-title: Adv. Mater. Interfaces
– volume: 440
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 318
  start-page: 426
  year: 2007
  publication-title: Science
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 13
  start-page: 3572
  year: 2021
  publication-title: Nanoscale
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 34
  year: 2018
  publication-title: Langmuir
– volume: 151
  year: 2021
  publication-title: Composites, Part A
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
SSID ssj0001916382
Score 2.3131967
Snippet Constructing highly porous structures using Ti3C2Tx MXene provides a promising strategy toward achieving low density, high specific surface area, and shorter...
SourceID wiley
SourceType Publisher
SubjectTerms compressible supercapacitors
elastic foams
MXene foams
PEI/PDA coatings
steam generation
Title Robust and Elastic Bioinspired MXene‐Coated Foams with Enhanced Energy Storage and Conversion Capabilities
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmt.202201611
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQucABsYpdPnC1mtqOnRxLaFUhFSFopdwibxGVaIJoe-cT-Ea-BI9Tuly5JVIyh7E882Z7g9Cd0kqUUipiI6UJT7QiisqIlMYazrSIUgrzzsMnMRjzxzzON6b4G36IVcINbkaw13DBlZ6116Shyk6hF5JSAC0-_tkF2hhgz6f8eZ1lSQFv0LBhTsRERmn-x9wY0fa2iG14GvxL_xAdLIEh7jYneYR2XHWM9jfoAk_Q-0utF7M59sE_7nnU67_E95N6UkG13Fk8zL3h-vn6zmoPIC3u12o6w5Boxb3qLVT6_QOM-uFXH2l7QxIkZdB3HpJmOPOeMzTL-vD5FI37vVE2IMttCcQwmnYIFYbHMFRQxrHxTjh1jpaMCalNh1lqhJHOox2hqUuliTg3sXRWl87aRDBm2BlqVXXlzhH2Kis7MjGxSCQXWiglqClTZqUovbDOBaJBU8VHw4hRNNzHtACFFiuFFt2H4Wj1dvmfn67QHux3h_IN5deoNf9cuBuPAub6Nhz0L5qdrEk
link.rule.ids 315,783,787,11574,27936,27937,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQOQAHxCp2fOAakdiO3RxLaVWWIASt1FvkLaISJAjaO5_AN_IlzLi0hSu3RErmMLZn3mzPhJxpo2WplI5crE0kmkZHmqk4Kq2zghsZZwznnfM72RuI62E66ybEWZgpP8Q84YYnI9hrPOCYkD5fsIZq94LNkIwhaoEAaFlI2I1I7izuF2mWDAEHC1fMyTRScTacUTfG7PyviL_4NDiY7gZZ_0GGtDVdyk2y5KstsvaLL3CbPD_UZvI-phD90w7AXviSXozqUYXlcu9oPgTL9fXx2a4BQTrarfXLO8VMK-1UT6HUDw8460cfIdQGSxIktbHxPGTNaBtcZ-iWhfh5hwy6nX67F_1clxBZzrIkYtKKFKcKyjS14IUz71nJuVTGJtwxK63yAHekYT5TNhbCpso7U3rnmpJzy3dJo6orv0coqKxMVNOmsqmENFJryWyZcadkCcKSfcKCporXKSVGMSU_ZgUqtJgrtGhd5v3528F_fjolK71-flvcXt3dHJJVvOwdazlMHJHG-G3ijwESjM1JWPRvECGvvQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4MJkYPxmd824PXDUvbbdkj8gg-IEQh4bbpM5LILhG4-xP8jf4SpwUBr952k905TNOZb17fIHQnleROCBmZWKqIVZWMJBFx5LTRjCoep8TPO3e6vD1gj8NkuDHFv-CHWCXc_M0I9tpf8Ilx5TVpqDRj3wtJiActEP9sM8Dinj2fsN46y5J6vEHChjmeRCJOh7_MjTEp_xXxF54G_9I6QPtLYIhri5M8RFs2P0J7G3SBx-j9pVDz6QxD8I-bgHrhS3w_Kka5r5ZbgztDMFzfn1_1AgCkwa1CjqfYJ1pxM38LlX548KN--BUibTAkQVLd952HpBmug-cMzbIQPp-gQavZr7ej5baESFOSViLCNUv8UIFLEg1OOLWWOEq5ULpCDdFcCwtohytiU6FjxnQirFHOGlPllGp6ikp5kdszhEFlriKqOuFVwbjiUnKiXUqN4A6EVc4RCZrKJgtGjGzBfUwyr9BspdCs1uj0V28X__npFu30Gq3s-aH7dIl2_ap3X8kh7AqVZh9zew2AYKZuwpn_ACjSrt0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+and+Elastic+Bioinspired+MXene%E2%80%90Coated+Foams+with+Enhanced+Energy+Storage+and+Conversion+Capabilities&rft.jtitle=Advanced+materials+technologies&rft.au=Jiang%2C+Degang&rft.au=Bacal%2C+Christine+Jurene+O.&rft.au=Usman%2C+Ken+Aldren+S.&rft.au=Zhang%2C+Jizhen&rft.date=2023-04-24&rft.issn=2365-709X&rft.eissn=2365-709X&rft.volume=8&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmt.202201611&rft.externalDBID=10.1002%252Fadmt.202201611&rft.externalDocID=ADMT202201611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-709X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-709X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-709X&client=summon