Robust and Elastic Bioinspired MXene‐Coated Foams with Enhanced Energy Storage and Conversion Capabilities
Constructing highly porous structures using Ti3C2Tx MXene provides a promising strategy toward achieving low density, high specific surface area, and shorter ion/molecule transport paths. However, the weak MXene‐MXene or MXene‐substrate interactions hinder the development of ultra‐robust and elastic...
Saved in:
Published in | Advanced materials technologies Vol. 8; no. 8 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
24.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Constructing highly porous structures using Ti3C2Tx MXene provides a promising strategy toward achieving low density, high specific surface area, and shorter ion/molecule transport paths. However, the weak MXene‐MXene or MXene‐substrate interactions hinder the development of ultra‐robust and elastic MXene‐based architectures. To address this issue, a bio‐inspired strategy is developed to effectively adhere the MXene nanosheets onto melamine foam via covalent and hydrogen bonding interactions through polyethyleneimine/polydopamine‐modification. The enhanced interactions contribute to high MXene loading (≈94 wt.%) and reversible compressibility even after 10 000 compression/release cycles at 80% strain. The compressible supercapacitor device assembled from this foam exhibits high energy storage capability (119 F g−1 at 2 mV s−1) with capacitance retention of ≈93% after 1000 compression/release cycles at 50% strain. Moreover, the presence of polydopamine and MXene enable the absorption of light in the UV–Vis and near‐IR regions, respectively, inducing photothermal conversion functionality, with an evaporation rate of ≈1.5 kg m−2 h−1 and ≈89% solar evaporation efficiency under one sun illumination. It is envisaged that this bio‐inspired chemical modification offers a versatile strategy for the assembly of MXene nanosheets onto different substrates for various applications, such as electromagnetic interference shielding, energy storage, and conversion.
An ultra‐robust and elastic MXene based foam is fabricated by using a facial and bioinspired template strategy, which demonstrates high MXene loading (≈93.6 wt.%) and reversible compressibility even after 10 000 compression/release cycles at high strain of 80%. Given these superior attributes, the as‐prepared foam can be used for compressible supercapacitors or steam generation applications. |
---|---|
AbstractList | Constructing highly porous structures using Ti3C2Tx MXene provides a promising strategy toward achieving low density, high specific surface area, and shorter ion/molecule transport paths. However, the weak MXene‐MXene or MXene‐substrate interactions hinder the development of ultra‐robust and elastic MXene‐based architectures. To address this issue, a bio‐inspired strategy is developed to effectively adhere the MXene nanosheets onto melamine foam via covalent and hydrogen bonding interactions through polyethyleneimine/polydopamine‐modification. The enhanced interactions contribute to high MXene loading (≈94 wt.%) and reversible compressibility even after 10 000 compression/release cycles at 80% strain. The compressible supercapacitor device assembled from this foam exhibits high energy storage capability (119 F g−1 at 2 mV s−1) with capacitance retention of ≈93% after 1000 compression/release cycles at 50% strain. Moreover, the presence of polydopamine and MXene enable the absorption of light in the UV–Vis and near‐IR regions, respectively, inducing photothermal conversion functionality, with an evaporation rate of ≈1.5 kg m−2 h−1 and ≈89% solar evaporation efficiency under one sun illumination. It is envisaged that this bio‐inspired chemical modification offers a versatile strategy for the assembly of MXene nanosheets onto different substrates for various applications, such as electromagnetic interference shielding, energy storage, and conversion.
An ultra‐robust and elastic MXene based foam is fabricated by using a facial and bioinspired template strategy, which demonstrates high MXene loading (≈93.6 wt.%) and reversible compressibility even after 10 000 compression/release cycles at high strain of 80%. Given these superior attributes, the as‐prepared foam can be used for compressible supercapacitors or steam generation applications. |
Author | Hegh, Dylan Lei, Weiwei Liu, Jingquan Qin, Si Zhang, Jizhen Jiang, Degang Usman, Ken Aldren S. Bacal, Christine Jurene O. Razal, Joselito M. |
Author_xml | – sequence: 1 givenname: Degang surname: Jiang fullname: Jiang, Degang organization: Geelong Waurn Ponds Campus – sequence: 2 givenname: Christine Jurene O. surname: Bacal fullname: Bacal, Christine Jurene O. organization: Geelong Waurn Ponds Campus – sequence: 3 givenname: Ken Aldren S. surname: Usman fullname: Usman, Ken Aldren S. organization: Geelong Waurn Ponds Campus – sequence: 4 givenname: Jizhen orcidid: 0000-0002-9584-9554 surname: Zhang fullname: Zhang, Jizhen email: jizhen.zhang@deakin.edu.au organization: Chinese Academy of Tropical Agricultural Sciences (CATAS) – sequence: 5 givenname: Si surname: Qin fullname: Qin, Si organization: Geelong Waurn Ponds Campus – sequence: 6 givenname: Dylan surname: Hegh fullname: Hegh, Dylan organization: Geelong Waurn Ponds Campus – sequence: 7 givenname: Weiwei surname: Lei fullname: Lei, Weiwei organization: Geelong Waurn Ponds Campus – sequence: 8 givenname: Jingquan surname: Liu fullname: Liu, Jingquan organization: Qingdao University – sequence: 9 givenname: Joselito M. orcidid: 0000-0002-9758-3702 surname: Razal fullname: Razal, Joselito M. email: joselito.razal@deakin.edu.au organization: Geelong Waurn Ponds Campus |
BookMark | eNpNkMtOAjEYhRuDiYhsXfcFBnuhHWaJ44AmEBPFhN2k0_4DNUNLplXCzkfwGX0SQQ1xdS6Lk5zvEnWcd4DQNSUDSgi7UWYTB4wwRqik9Ax1GZciSUm27PzzF6gfwishhGZU8hHroubJV28hYuUMLhoVotX41nrrwta2YPB8CQ6-Pj5zr-IhTrzaBLyzcY0Lt1ZOH7rCQbva4-foW7WCn6Xcu3dog_UO52qrKtvYaCFcofNaNQH6f9pDL5Nikd8ns8fpQz6eJZqzjCZM6qE4_EhrIfRI8AyA1ZzLtNKUG6alToEIKSsGWarJcKhFCqaqwZiR5FzzHsp-d3e2gX25be1GtfuSkvLIqjyyKk-syvHdfHFK_Buml2Pc |
CitedBy_id | crossref_primary_10_1016_j_jcis_2023_05_013 crossref_primary_10_1002_smll_202303043 crossref_primary_10_1016_j_porgcoat_2024_108373 crossref_primary_10_1002_aesr_202300126 crossref_primary_10_1016_j_ccr_2024_215870 crossref_primary_10_1002_smll_202401573 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Materials Technologies published by Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 The Authors. Advanced Materials Technologies published by Wiley‐VCH GmbH |
DBID | 24P WIN |
DOI | 10.1002/admt.202201611 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley-Blackwell Backfiles (Open access) |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 24P name: Wiley-Blackwell Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2365-709X |
EndPage | n/a |
ExternalDocumentID | ADMT202201611 |
Genre | article |
GrantInformation_xml | – fundername: Alfred Deakin Postdoctoral Research Fellowship – fundername: National Natural Science Foundation of China funderid: 52203344; 22204174 – fundername: Australian Research Council funderid: DP190103290; FT130100380; IH210100023 – fundername: Australian National Fabrication Facility |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AANLZ AAXRX AAZKR ACAHQ ACCFJ ACCZN ACGFS ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AHBTC AIACR AITYG AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB BFHJK BMXJE DCZOG EBS HGLYW KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI P2W ROL SUPJJ WBKPD WIN WOHZO WXSBR ZZTAW |
ID | FETCH-LOGICAL-c3291-26c450167f55c8539ee2f3367bc13d2c6c7e0566b2e97c044c57edbfedd8633c3 |
IEDL.DBID | 24P |
ISSN | 2365-709X |
IngestDate | Sat Aug 24 01:21:56 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3291-26c450167f55c8539ee2f3367bc13d2c6c7e0566b2e97c044c57edbfedd8633c3 |
ORCID | 0000-0002-9584-9554 0000-0002-9758-3702 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmt.202201611 |
PageCount | 10 |
ParticipantIDs | wiley_primary_10_1002_admt_202201611_ADMT202201611 |
PublicationCentury | 2000 |
PublicationDate | April 24, 2023 |
PublicationDateYYYYMMDD | 2023-04-24 |
PublicationDate_xml | – month: 04 year: 2023 text: April 24, 2023 day: 24 |
PublicationDecade | 2020 |
PublicationTitle | Advanced materials technologies |
PublicationYear | 2023 |
References | 2021; 8 2019; 7 2018; 28 2019; 4 2017; 2 2019; 31 2019; 13 2019; 15 2020; 14 2020; 13 2020; 12 2020; 32 2020; 10 2021; 143 2021; 13 2020; 7 2018; 6 2020; 5 2021; 15 2022; 440 2021; 31 2021; 33 2020; 30 2022; 6 2017; 11 2021; 151 2019; 29 2011; 23 2022; 10 2018; 50 2022; 32 2021; 374 2018; 12 2018; 34 2022; 626 2007; 318 2018; 14 2022; 18 |
References_xml | – volume: 7 start-page: 855 year: 2020 publication-title: Mater. Horiz. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 14 start-page: 8678 year: 2020 publication-title: ACS Nano – volume: 11 start-page: 3752 year: 2017 publication-title: ACS Nano – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 18 year: 2022 publication-title: Small – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 50 start-page: 79 year: 2018 publication-title: Nano Energy – volume: 626 start-page: 35 year: 2022 publication-title: J. Colloid Interface Sci. – volume: 14 start-page: 2109 year: 2020 publication-title: ACS Nano – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 143 year: 2021 publication-title: Composites, Part A – volume: 4 year: 2019 publication-title: Adv. Mater. Technol. – volume: 10 year: 2022 publication-title: J. Mater. Chem. A – volume: 6 start-page: 389 year: 2022 publication-title: Nat. Rev. Chem. – volume: 15 start-page: 5000 year: 2021 publication-title: ACS Nano – volume: 14 year: 2018 publication-title: Small – volume: 13 start-page: 255 year: 2020 publication-title: Nano Res. – volume: 8 start-page: 2886 year: 2021 publication-title: Mater. Horiz. – volume: 13 start-page: 9161 year: 2019 publication-title: ACS Nano – volume: 23 start-page: 4248 year: 2011 publication-title: Adv. Mater. – volume: 5 year: 2020 publication-title: Adv. Mater. Technol. – volume: 374 start-page: 96 year: 2021 publication-title: Science – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 15 year: 2019 publication-title: Small – volume: 12 year: 2018 publication-title: ACS Nano – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 8 year: 2021 publication-title: Adv. Mater. Interfaces – volume: 440 year: 2022 publication-title: Chem. Eng. J. – volume: 318 start-page: 426 year: 2007 publication-title: Science – volume: 14 year: 2020 publication-title: ACS Nano – volume: 13 start-page: 3572 year: 2021 publication-title: Nanoscale – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 34 year: 2018 publication-title: Langmuir – volume: 151 year: 2021 publication-title: Composites, Part A – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. |
SSID | ssj0001916382 |
Score | 2.3131967 |
Snippet | Constructing highly porous structures using Ti3C2Tx MXene provides a promising strategy toward achieving low density, high specific surface area, and shorter... |
SourceID | wiley |
SourceType | Publisher |
SubjectTerms | compressible supercapacitors elastic foams MXene foams PEI/PDA coatings steam generation |
Title | Robust and Elastic Bioinspired MXene‐Coated Foams with Enhanced Energy Storage and Conversion Capabilities |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmt.202201611 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQucABsYpdPnC1mtqOnRxLaFUhFSFopdwibxGVaIJoe-cT-Ea-BI9Tuly5JVIyh7E882Z7g9Cd0kqUUipiI6UJT7QiisqIlMYazrSIUgrzzsMnMRjzxzzON6b4G36IVcINbkaw13DBlZ6116Shyk6hF5JSAC0-_tkF2hhgz6f8eZ1lSQFv0LBhTsRERmn-x9wY0fa2iG14GvxL_xAdLIEh7jYneYR2XHWM9jfoAk_Q-0utF7M59sE_7nnU67_E95N6UkG13Fk8zL3h-vn6zmoPIC3u12o6w5Boxb3qLVT6_QOM-uFXH2l7QxIkZdB3HpJmOPOeMzTL-vD5FI37vVE2IMttCcQwmnYIFYbHMFRQxrHxTjh1jpaMCalNh1lqhJHOox2hqUuliTg3sXRWl87aRDBm2BlqVXXlzhH2Kis7MjGxSCQXWiglqClTZqUovbDOBaJBU8VHw4hRNNzHtACFFiuFFt2H4Wj1dvmfn67QHux3h_IN5deoNf9cuBuPAub6Nhz0L5qdrEk |
link.rule.ids | 315,783,787,11574,27936,27937,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQOQAHxCp2fOAakdiO3RxLaVWWIASt1FvkLaISJAjaO5_AN_IlzLi0hSu3RErmMLZn3mzPhJxpo2WplI5crE0kmkZHmqk4Kq2zghsZZwznnfM72RuI62E66ybEWZgpP8Q84YYnI9hrPOCYkD5fsIZq94LNkIwhaoEAaFlI2I1I7izuF2mWDAEHC1fMyTRScTacUTfG7PyviL_4NDiY7gZZ_0GGtDVdyk2y5KstsvaLL3CbPD_UZvI-phD90w7AXviSXozqUYXlcu9oPgTL9fXx2a4BQTrarfXLO8VMK-1UT6HUDw8460cfIdQGSxIktbHxPGTNaBtcZ-iWhfh5hwy6nX67F_1clxBZzrIkYtKKFKcKyjS14IUz71nJuVTGJtwxK63yAHekYT5TNhbCpso7U3rnmpJzy3dJo6orv0coqKxMVNOmsqmENFJryWyZcadkCcKSfcKCporXKSVGMSU_ZgUqtJgrtGhd5v3528F_fjolK71-flvcXt3dHJJVvOwdazlMHJHG-G3ijwESjM1JWPRvECGvvQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4MJkYPxmd824PXDUvbbdkj8gg-IEQh4bbpM5LILhG4-xP8jf4SpwUBr952k905TNOZb17fIHQnleROCBmZWKqIVZWMJBFx5LTRjCoep8TPO3e6vD1gj8NkuDHFv-CHWCXc_M0I9tpf8Ilx5TVpqDRj3wtJiActEP9sM8Dinj2fsN46y5J6vEHChjmeRCJOh7_MjTEp_xXxF54G_9I6QPtLYIhri5M8RFs2P0J7G3SBx-j9pVDz6QxD8I-bgHrhS3w_Kka5r5ZbgztDMFzfn1_1AgCkwa1CjqfYJ1pxM38LlX548KN--BUibTAkQVLd952HpBmug-cMzbIQPp-gQavZr7ej5baESFOSViLCNUv8UIFLEg1OOLWWOEq5ULpCDdFcCwtohytiU6FjxnQirFHOGlPllGp6ikp5kdszhEFlriKqOuFVwbjiUnKiXUqN4A6EVc4RCZrKJgtGjGzBfUwyr9BspdCs1uj0V28X__npFu30Gq3s-aH7dIl2_ap3X8kh7AqVZh9zew2AYKZuwpn_ACjSrt0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+and+Elastic+Bioinspired+MXene%E2%80%90Coated+Foams+with+Enhanced+Energy+Storage+and+Conversion+Capabilities&rft.jtitle=Advanced+materials+technologies&rft.au=Jiang%2C+Degang&rft.au=Bacal%2C+Christine+Jurene+O.&rft.au=Usman%2C+Ken+Aldren+S.&rft.au=Zhang%2C+Jizhen&rft.date=2023-04-24&rft.issn=2365-709X&rft.eissn=2365-709X&rft.volume=8&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmt.202201611&rft.externalDBID=10.1002%252Fadmt.202201611&rft.externalDocID=ADMT202201611 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-709X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-709X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-709X&client=summon |