SPH simulation of hydrodynamic responses for two novel types of silt curtain under combined wave-current conditions
Traditional silt curtain is a kind of commonly-used impermeable device for short-term control of suspended solids or turbidity in the water column generated during dredging operations. It is attempted to innovatively apply the silt curtain to more violent hydrodynamic conditions, such as functioning...
Saved in:
Published in | Applied ocean research Vol. 117; p. 102906 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.12.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditional silt curtain is a kind of commonly-used impermeable device for short-term control of suspended solids or turbidity in the water column generated during dredging operations. It is attempted to innovatively apply the silt curtain to more violent hydrodynamic conditions, such as functioning as an isolation structure for preventing sediment transportation into channels and harbor basins in a combined wave and current environment. The Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) code of Shi and Li et al. (2018), after incorporating an overlapped particle method (OPM), was applied to simulate the responses of a flexible impermeable curtain system as a thin-walled structure fixed to the sea bottom and moving violently under the action of static water pressure heads along and combined with waves. It is found that the modeled results of tensions in the curtain of a Silt Curtain System (SCS) working in emerged mode are in good consistency with the theoretical and experimental results and the SCS in submerged mode would be subject to much smaller tensions than in emerged mode. A large influx rate of q = 0.053 m3/s/m would enhance the wave-induced component of curtain tensions in the submerged mode. When subject to waves, the SCS in emerged mode imposes much more significant influence on wave transmission than in submerged mode, while the SCS in emerged mode produces lower horizontal oscillation ratio than in submerged mode. |
---|---|
AbstractList | Traditional silt curtain is a kind of commonly-used impermeable device for short-term control of suspended solids or turbidity in the water column generated during dredging operations. It is attempted to innovatively apply the silt curtain to more violent hydrodynamic conditions, such as functioning as an isolation structure for preventing sediment transportation into channels and harbor basins in a combined wave and current environment. The Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) code of Shi and Li et al. (2018), after incorporating an overlapped particle method (OPM), was applied to simulate the responses of a flexible impermeable curtain system as a thin-walled structure fixed to the sea bottom and moving violently under the action of static water pressure heads along and combined with waves. It is found that the modeled results of tensions in the curtain of a Silt Curtain System (SCS) working in emerged mode are in good consistency with the theoretical and experimental results and the SCS in submerged mode would be subject to much smaller tensions than in emerged mode. A large influx rate of q = 0.053 m3/s/m would enhance the wave-induced component of curtain tensions in the submerged mode. When subject to waves, the SCS in emerged mode imposes much more significant influence on wave transmission than in submerged mode, while the SCS in emerged mode produces lower horizontal oscillation ratio than in submerged mode. Traditional silt curtain is a kind of commonly-used impermeable device for short-term control of suspended solids or turbidity in the water column generated during dredging operations. It is attempted to innovatively apply the silt curtain to more violent hydrodynamic conditions, such as functioning as an isolation structure for preventing sediment transportation into channels and harbor basins in a combined wave and current environment. The Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) code of Shi and Li et al. (2018), after incorporating an overlapped particle method (OPM), was applied to simulate the responses of a flexible impermeable curtain system as a thin-walled structure fixed to the sea bottom and moving violently under the action of static water pressure heads along and combined with waves. It is found that the modeled results of tensions in the curtain of a Silt Curtain System (SCS) working in emerged mode are in good consistency with the theoretical and experimental results and the SCS in submerged mode would be subject to much smaller tensions than in emerged mode. A large influx rate of q = 0.053 m3/s/m would enhance the wave-induced component of curtain tensions in the submerged mode. When subject to waves, the SCS in emerged mode imposes much more significant influence on wave transmission than in submerged mode, while the SCS in emerged mode produces lower horizontal oscillation ratio than in submerged mode. |
ArticleNumber | 102906 |
Author | Li, Shaowu Ji, Zezhou Liu, Xiaodong Wu, Qingwei |
Author_xml | – sequence: 1 givenname: Xiaodong surname: Liu fullname: Liu, Xiaodong organization: State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072 PR China – sequence: 2 givenname: Shaowu surname: Li fullname: Li, Shaowu email: lishaowu@tju.edu.cn organization: State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072 PR China – sequence: 3 givenname: Zezhou surname: Ji fullname: Ji, Zezhou organization: CCCC First Harbor Consultants Co. Ltd, Tianjin 300072, PR China – sequence: 4 givenname: Qingwei surname: Wu fullname: Wu, Qingwei organization: CCCC First Harbor Consultants Co. Ltd, Tianjin 300072, PR China |
BookMark | eNp9kEFLwzAYhoMouE3_gKeA584k7dIWvMhQJwwU1HNIk6-Y0SU1STf2782sJw87hMCb98nH90zRuXUWELqhZE4J5XebueydnzPCaApYTfgZmtCqrDO6KOpzNCG0oBlNySWahrAhhLKKVxMU3t9WOJjt0MlonMWuxV8H7Z0-WLk1CnsIvbMBAm6dx3HvsHU76HA89ClL7WC6iNXgozQWD1aDx8ptG2NB473cQZbePNjUcVab44xwhS5a2QW4_rtn6PPp8WO5ytavzy_Lh3WmclbFrGWy0E2rJStVqVk6kMuCkZpXhQRgOZGl5rxtFrJsKSdUUU1IAyRXbKHrKp-h2_Hf3rvvAUIUGzd4m0YKxmnJa1IVdWqxsaW8C8FDK3pvttIfBCXiKFdsxFGuOMoVo9wEVf8gZeKvweil6U6j9yMKafWdAS-CMmAVaONBRaGdOYX_APGomhU |
CitedBy_id | crossref_primary_10_1016_j_powtec_2022_118015 crossref_primary_10_1063_5_0160021 crossref_primary_10_1016_j_coastaleng_2024_104663 crossref_primary_10_1016_j_apor_2023_103527 |
Cites_doi | 10.1080/21664250.2018.1436243 10.1016/j.jcp.2020.110028 10.1088/0034-4885/68/8/R01 10.1016/j.oceaneng.2021.108652 10.1016/j.apor.2021.102734 10.1016/j.compstruc.2007.01.002 10.1016/j.coastaleng.2005.10.007 10.1016/j.jfluidstructs.2020.102942 10.1016/j.coastaleng.2005.10.004 10.1016/j.cma.2021.113832 10.1016/j.jfluidstructs.2019.06.004 10.1061/(ASCE)WW.1943-5460.0000352 10.1061/(ASCE)0733-950X(1999)125:3(145) 10.1016/S0141-1187(03)00002-6 10.1061/9780872622647.008 10.1016/j.oceaneng.2004.08.003 10.1080/05785634.1990.11924520 10.5957/jsr.1993.37.1.58 10.1016/j.apor.2014.12.003 10.1016/0021-9991(89)90032-6 10.1103/PhysRevE.90.063011 10.1016/j.jfluidstructs.2017.09.014 10.1016/S1001-6058(16)60676-5 10.1016/j.oceaneng.2020.108552 10.1016/j.oceaneng.2019.05.034 10.1016/j.jcp.2010.01.019 10.1016/0951-8339(93)90016-V 10.1016/j.cpc.2018.05.012 10.1007/BF02123482 10.1016/j.oceaneng.2021.108772 10.2112/SI85-237.1 |
ContentType | Journal Article |
Copyright | 2021 Copyright Elsevier BV Dec 2021 |
Copyright_xml | – notice: 2021 – notice: Copyright Elsevier BV Dec 2021 |
DBID | AAYXX CITATION 7TN F1W |
DOI | 10.1016/j.apor.2021.102906 |
DatabaseName | CrossRef Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitle | CrossRef Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Oceanic Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 1879-1549 |
ExternalDocumentID | 10_1016_j_apor_2021_102906 S0141118721003722 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE J1W JJJVA KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSH SST SSZ T5K TN5 UAO WUQ XPP ZMT ~02 ~A~ ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION GROUPED_DOAJ 7TN EFKBS F1W |
ID | FETCH-LOGICAL-c328t-f2a4dbfda27c7d2c7de3a4209684aee230a7d66fb5a7f1601c1d00be03c25d983 |
IEDL.DBID | .~1 |
ISSN | 0141-1187 |
IngestDate | Wed Aug 13 02:38:58 EDT 2025 Tue Jul 01 01:37:32 EDT 2025 Thu Apr 24 22:57:11 EDT 2025 Sun Apr 06 06:54:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Tensions SPH Flexible thin-walled structure Silt curtain |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-f2a4dbfda27c7d2c7de3a4209684aee230a7d66fb5a7f1601c1d00be03c25d983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2617690849 |
PQPubID | 2045279 |
ParticipantIDs | proquest_journals_2617690849 crossref_primary_10_1016_j_apor_2021_102906 crossref_citationtrail_10_1016_j_apor_2021_102906 elsevier_sciencedirect_doi_10_1016_j_apor_2021_102906 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Applied ocean research |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Cao, Yang, Hou (bib0003) 2008 Vu, Tan (bib0042) 2010; 22 Khayyer, Shimizu, Gotoh, Hattori (bib0018) 2021; 226 Li, S.W., and Wu, Q.W., 2015. A feasibility study on silt curtain under steady current and combined wave-current conditions. Technical Report, Tianjin University. Li, Wang, Liu (bib0020) 2020 Gotoh, Sakai (bib0012) 2006; 53 Yang, Liu, Peng (bib0044) 2014 Liu, Shang-Ming (bib0022) 2016 Bray (bib0002) 2008 Monaghan (bib0028) 1989; 82 Ertekin, Riggs, Che, Du (bib0007) 1993; 37 He, Gao, Xu, Ren, Wang (bib0014) 2019; 185 Trang (bib0041) 2013 Sun, Colagrossi, Le Touzé, Zhang (bib0039) 2019; 90 Crespo, Gomez-Gesteira, Dalrymple (bib0004) 2007; 3 Marrone, Colagrossi, Le Touzé, Graziani (bib0027) 2010; 229 Yasui, Deguchi, Ono (bib0045) 1999 Khayyer, Gotoh, Falahaty, Shimizu (bib0017) 2018; 232 Lo, Shao (bib0023) 2002; 24 de Wit (bib0006) 2011 Zhao, Qin, Huang (bib0048) 2005; 26 Long, Huang, Hu, Liu (bib0024) 2021; 225 Luo, Khayyer, Lin (bib0025) 2021; 114 Ren, He, Dong, Wen (bib0033) 2015; 50 Ogilvie, Middlemiss, Lee, Crossouard (bib0032) 2012 Monaghan, Kos (bib0030) 1999; 125 Gotoh, Shibahara, Sakai (bib0013) 2001; 9 Fredsøe (bib0009) 2016; 142 Hirakuchi, Kajima, Kawaguchi (bib0015) 1990; 33 Sun, Le Touzé, Oger, Zhang (bib0038) 2021; 221 Monaghan (bib0029) 2005; 68 Antoci, Gallati, Sibilla (bib0001) 2007; 85 Gotoh, Khayyer (bib0011) 2018; 60 Mansard, Funke (bib0026) 1980 Wendland (bib0043) 1995; 4 Johanson (bib0016) 1977 Shi, Li, Chen, He, Shao (bib0037) 2018; 76 Morikawa, Asai (bib0031) 2021; 381 Francingues, N.R., and Palmero, M., 2005. Silt curtains as a dredging project management practice. Zhang, Rezavand, Hu (bib0046) 2021; 429 Zhang, Khalid, Long, Chang, Liu (bib0047) 2020; 94 Li, Ji, Wu, Zhang, Shi (bib0019) 2018; 85 Gómez-Gesteira, Cerqueiro, Crespo, Dalrymple (bib0010) 2005; 32 Dalrymple, Rogers (bib0005) 2006; 53 Tanigaki, Matsuura, Isoda, Masaru (bib0040) 2004 Rogallo, Moin (bib0036) 1984 Zhao, Hong-sheng (bib0049) 2007; 28 Riggs, Ertekin (bib0035) 1993; 6 Riggs, Enekin, Mills (bib0034) 1998 Ertekin (10.1016/j.apor.2021.102906_bib0007) 1993; 37 Mansard (10.1016/j.apor.2021.102906_bib0026) 1980 de Wit (10.1016/j.apor.2021.102906_bib0006) 2011 Long (10.1016/j.apor.2021.102906_bib0024) 2021; 225 Khayyer (10.1016/j.apor.2021.102906_bib0018) 2021; 226 Lo (10.1016/j.apor.2021.102906_bib0023) 2002; 24 Monaghan (10.1016/j.apor.2021.102906_bib0028) 1989; 82 Shi (10.1016/j.apor.2021.102906_bib0037) 2018; 76 Gotoh (10.1016/j.apor.2021.102906_bib0011) 2018; 60 Fredsøe (10.1016/j.apor.2021.102906_bib0009) 2016; 142 Gotoh (10.1016/j.apor.2021.102906_bib0013) 2001; 9 Ogilvie (10.1016/j.apor.2021.102906_bib0032) 2012 Zhang (10.1016/j.apor.2021.102906_bib0047) 2020; 94 Bray (10.1016/j.apor.2021.102906_bib0002) 2008 Cao (10.1016/j.apor.2021.102906_bib0003) 2008 Liu (10.1016/j.apor.2021.102906_bib0022) 2016 Vu (10.1016/j.apor.2021.102906_bib0042) 2010; 22 Luo (10.1016/j.apor.2021.102906_bib0025) 2021; 114 Rogallo (10.1016/j.apor.2021.102906_bib0036) 1984 Zhao (10.1016/j.apor.2021.102906_bib0049) 2007; 28 Trang (10.1016/j.apor.2021.102906_bib0041) 2013 Monaghan (10.1016/j.apor.2021.102906_bib0030) 1999; 125 Tanigaki (10.1016/j.apor.2021.102906_bib0040) 2004 Wendland (10.1016/j.apor.2021.102906_bib0043) 1995; 4 Ren (10.1016/j.apor.2021.102906_bib0033) 2015; 50 Antoci (10.1016/j.apor.2021.102906_bib0001) 2007; 85 Hirakuchi (10.1016/j.apor.2021.102906_bib0015) 1990; 33 Johanson (10.1016/j.apor.2021.102906_bib0016) 1977 Riggs (10.1016/j.apor.2021.102906_bib0035) 1993; 6 Monaghan (10.1016/j.apor.2021.102906_bib0029) 2005; 68 Gómez-Gesteira (10.1016/j.apor.2021.102906_bib0010) 2005; 32 Marrone (10.1016/j.apor.2021.102906_bib0027) 2010; 229 Sun (10.1016/j.apor.2021.102906_bib0038) 2021; 221 He (10.1016/j.apor.2021.102906_bib0014) 2019; 185 Yasui (10.1016/j.apor.2021.102906_bib0045) 1999 10.1016/j.apor.2021.102906_bib0021 Dalrymple (10.1016/j.apor.2021.102906_bib0005) 2006; 53 Morikawa (10.1016/j.apor.2021.102906_bib0031) 2021; 381 Li (10.1016/j.apor.2021.102906_bib0019) 2018; 85 Yang (10.1016/j.apor.2021.102906_bib0044) 2014 10.1016/j.apor.2021.102906_bib0008 Zhao (10.1016/j.apor.2021.102906_bib0048) 2005; 26 Riggs (10.1016/j.apor.2021.102906_bib0034) 1998 Khayyer (10.1016/j.apor.2021.102906_bib0017) 2018; 232 Li (10.1016/j.apor.2021.102906_bib0020) 2020 Zhang (10.1016/j.apor.2021.102906_bib0046) 2021; 429 Gotoh (10.1016/j.apor.2021.102906_bib0012) 2006; 53 Crespo (10.1016/j.apor.2021.102906_bib0004) 2007; 3 Sun (10.1016/j.apor.2021.102906_bib0039) 2019; 90 |
References_xml | – volume: 114 year: 2021 ident: bib0025 article-title: Particle methods in ocean and coastal engineering publication-title: Appl. Ocean Res. – volume: 85 start-page: 879 year: 2007 end-page: 890 ident: bib0001 article-title: Numerical simulation of fluid-structure interaction by SPH publication-title: Comput. Struct. – volume: 94 year: 2020 ident: bib0047 article-title: Investigations on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method publication-title: J. Fluids Struct. – start-page: 25 year: 2008 end-page: 30 ident: bib0003 article-title: Sand movement of silt -sandy beach and the outer navigation siltation publication-title: J. Waterway Harbor – volume: 76 start-page: 272 year: 2018 end-page: 300 ident: bib0037 article-title: Improved SPH simulation of spilled oil contained by flexible floating boom under wave–current coupling condition publication-title: J. Fluids Struct. – volume: 4 start-page: 389 year: 1995 end-page: 396 ident: bib0043 article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree publication-title: Adv. Comput. Math. – volume: 221 year: 2021 ident: bib0038 article-title: An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions publication-title: Ocean Eng. – volume: 90 start-page: 19 year: 2019 end-page: 42 ident: bib0039 article-title: Extension of the δ-Plus-SPH model for simulating Vortex-Induced-Vibration problems publication-title: J. Fluids Struct. – volume: 26 start-page: 12 year: 2005 end-page: 16 ident: bib0048 article-title: On current velocity of high concentration layer near bottom publication-title: J. Waterway Harbour – volume: 82 start-page: 1 year: 1989 end-page: 15 ident: bib0028 article-title: On the problem of penetration in particle methods publication-title: J. Comput. Phys. – year: 2014 ident: bib0044 article-title: Smoothed particle hydrodynamics and element bending group modeling of flexible fibers interacting with viscous fluids publication-title: Phys. Rev. E – start-page: 1 year: 2012 end-page: 17 ident: bib0032 article-title: Silt curtains- A review of their role in dredging projects publication-title: Proc. CEDA Dredging Days – volume: 185 start-page: 27 year: 2019 end-page: 46 ident: bib0014 article-title: Potential application of submerged horizontal plate as a wave energy breakwater: a 2D study using the WCSPH method publication-title: Ocean Engineering – year: 2016 ident: bib0022 article-title: On the modeling of viscous incompressible flows with smoothed particle hydro-dynamics publication-title: J. Hydrodyn. Ser. B. – volume: 125 start-page: 145 year: 1999 end-page: 154 ident: bib0030 article-title: Solitary waves on a cretan beach publication-title: J. Waterway Port Coast. Ocean Eng. – year: 2013 ident: bib0041 article-title: The Physics and Sedimrnt Containment Phenomenon of a Silt Screen – reference: Francingues, N.R., and Palmero, M., 2005. Silt curtains as a dredging project management practice. – volume: 232 start-page: 139 year: 2018 end-page: 164 ident: bib0017 article-title: An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions publication-title: Comput. Phys. Commun. – year: 2011 ident: bib0006 article-title: Monitoring the impact of land reclamation on siltation in an inland lake publication-title: CEDA Dredging Days – volume: 68 start-page: 1703 year: 2005 end-page: 1759 ident: bib0029 article-title: Smoothed particle hydrodynamics publication-title: Rep. Prog. Phys. – reference: Li, S.W., and Wu, Q.W., 2015. A feasibility study on silt curtain under steady current and combined wave-current conditions. Technical Report, Tianjin University. – volume: 9 start-page: 339 year: 2001 end-page: 347 ident: bib0013 article-title: Sub-particle-scale turbulence model for the MPS method - Lagrangian flow model for hydraulic engineering publication-title: Comput. Fluid Dyn. J. – volume: 37 start-page: 58 year: 1993 end-page: 76 ident: bib0007 article-title: Efficient methods for hydroelastic analysis of very large floating structures publication-title: J. Ship Res. – volume: 85 start-page: 1181 year: 2018 end-page: 1185 ident: bib0019 article-title: Estimation of dynamical forces on turbidity curtain in combined wave-current flow publication-title: J. Coastal Res. – volume: 142 year: 2016 ident: bib0009 article-title: Pipeline–seabed Interaction publication-title: J. Waterway, Port Coast. Ocean Eng. – volume: 24 start-page: 275 year: 2002 end-page: 286 ident: bib0023 article-title: Simulation of near-shore solitary wave mechanics by an incompressible SPH method publication-title: Appl. Ocean Res. – year: 1984 ident: bib0036 article-title: Numerical simulation of turbulent flows publication-title: Proceedings of the APS March Meeting – volume: 22 start-page: 312 year: 2010 end-page: 317 ident: bib0042 article-title: Laboratory investigation of hydraulic performance of silt screens publication-title: J. Hydrodyn. Ser. B (English Ed.) – volume: 225 year: 2021 ident: bib0024 article-title: Coupling edge-based smoothed finite element method with smoothed particle hydrodynamics for fluid structure interaction problems publication-title: Ocean Eng. – volume: 50 start-page: 1 year: 2015 end-page: 12 ident: bib0033 article-title: Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method publication-title: Appl. Ocean Res. – volume: 33 start-page: 11 year: 1990 end-page: 24 ident: bib0015 article-title: Application of a piston-type absorbing wavemaker to irregular wave experiments publication-title: Coast. Eng. Jpn. – volume: 429 year: 2021 ident: bib0046 article-title: A multi-resolution SPH method for fluid-structure interactions publication-title: J. Comput. Phys. – volume: 6 start-page: 117 year: 1993 end-page: 141 ident: bib0035 article-title: Approximate methods for dynamic response of multi-module floating structures publication-title: Mar. struct. – year: 1998 ident: bib0034 article-title: Impact of connector stiffness on the response of a multi-module mobile offshore base publication-title: Proceedings of the Eighth (1998) InternaJional Offshort and Polar Engineering Conferenct – start-page: 1 year: 1977 end-page: 8 ident: bib0016 article-title: Application and performance of silt curtains publication-title: Dredged Mater. Res. – volume: 53 start-page: 171 year: 2006 end-page: 179 ident: bib0012 article-title: Key issues in the particle method for computation of wave breaking publication-title: Coast. Eng. – volume: 28 start-page: 77 year: 2007 end-page: 80 ident: bib0049 article-title: Siltation mechanisms of Huanghua Port and 3D characteristics of nearshore suspended sediment concentration under waves publication-title: J. Waterway Harbor – year: 1999 ident: bib0045 article-title: Performance of silt protector in three dimensional flow publication-title: Proceedings of the Ninth International Offshore and Polar Engineering Conference – volume: 60 start-page: 79 year: 2018 end-page: 103 ident: bib0011 article-title: On the state-of-the-art of particle methods for coastal and ocean engineering publication-title: Coast. Eng. J. – year: 2020 ident: bib0020 article-title: The Development and Research of Silt Curtain – volume: 32 start-page: 223 year: 2005 end-page: 238 ident: bib0010 article-title: Green water overtopping analyzed with a SPH model publication-title: Ocean Eng. – volume: 3 start-page: 173 year: 2007 end-page: 184 ident: bib0004 article-title: Boundary conditions generated by dynamic particles in SPH methods publication-title: CMC -Tech Science Press-. – volume: 381 year: 2021 ident: bib0031 article-title: Coupling total Lagrangian SPH–EISPH for fluid–structure interaction with large deformed hyperelastic solid bodies publication-title: Comput. Methods Appl. Mech. Eng. – start-page: 154 year: 1980 end-page: 172 ident: bib0026 article-title: The measurement of incident and reflected spectra using a least squares method publication-title: Coastal Eng. – year: 2004 ident: bib0040 article-title: Large scale membrane-type barrier against extraordinary water surface elevation publication-title: Proceedings of The Fourteenth(2004) International Offshore and Polar Engineering Conference – volume: 229 start-page: 3652 year: 2010 end-page: 3663 ident: bib0027 article-title: Fast free-surface detection and level-set function definition in SPH solvers publication-title: J. Comput. Phys. – year: 2008 ident: bib0002 article-title: Environmental Aspects of Dredging – volume: 53 start-page: 141 year: 2006 end-page: 147 ident: bib0005 article-title: Numerical modeling of water waves with the SPH method publication-title: Coast. Eng. – volume: 226 start-page: 108652 year: 2021 ident: bib0018 article-title: Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering publication-title: Ocean Engineering – year: 2008 ident: 10.1016/j.apor.2021.102906_bib0002 – start-page: 1 year: 2012 ident: 10.1016/j.apor.2021.102906_bib0032 article-title: Silt curtains- A review of their role in dredging projects publication-title: Proc. CEDA Dredging Days – volume: 9 start-page: 339 issue: 4 year: 2001 ident: 10.1016/j.apor.2021.102906_bib0013 article-title: Sub-particle-scale turbulence model for the MPS method - Lagrangian flow model for hydraulic engineering publication-title: Comput. Fluid Dyn. J. – volume: 60 start-page: 79 issue: 1 year: 2018 ident: 10.1016/j.apor.2021.102906_bib0011 article-title: On the state-of-the-art of particle methods for coastal and ocean engineering publication-title: Coast. Eng. J. doi: 10.1080/21664250.2018.1436243 – volume: 429 year: 2021 ident: 10.1016/j.apor.2021.102906_bib0046 article-title: A multi-resolution SPH method for fluid-structure interactions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.110028 – volume: 68 start-page: 1703 issue: 8 year: 2005 ident: 10.1016/j.apor.2021.102906_bib0029 article-title: Smoothed particle hydrodynamics publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/68/8/R01 – volume: 226 start-page: 108652 year: 2021 ident: 10.1016/j.apor.2021.102906_bib0018 article-title: Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2021.108652 – volume: 114 year: 2021 ident: 10.1016/j.apor.2021.102906_bib0025 article-title: Particle methods in ocean and coastal engineering publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2021.102734 – volume: 85 start-page: 879 issue: 11–14 year: 2007 ident: 10.1016/j.apor.2021.102906_bib0001 article-title: Numerical simulation of fluid-structure interaction by SPH publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2007.01.002 – volume: 53 start-page: 171 issue: 2–3 year: 2006 ident: 10.1016/j.apor.2021.102906_bib0012 article-title: Key issues in the particle method for computation of wave breaking publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2005.10.007 – volume: 94 year: 2020 ident: 10.1016/j.apor.2021.102906_bib0047 article-title: Investigations on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2020.102942 – ident: 10.1016/j.apor.2021.102906_bib0021 – year: 2020 ident: 10.1016/j.apor.2021.102906_bib0020 – start-page: 1 year: 1977 ident: 10.1016/j.apor.2021.102906_bib0016 article-title: Application and performance of silt curtains publication-title: Dredged Mater. Res. – volume: 53 start-page: 141 issue: 2–3 year: 2006 ident: 10.1016/j.apor.2021.102906_bib0005 article-title: Numerical modeling of water waves with the SPH method publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2005.10.004 – year: 2013 ident: 10.1016/j.apor.2021.102906_bib0041 – volume: 381 year: 2021 ident: 10.1016/j.apor.2021.102906_bib0031 article-title: Coupling total Lagrangian SPH–EISPH for fluid–structure interaction with large deformed hyperelastic solid bodies publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.113832 – year: 2011 ident: 10.1016/j.apor.2021.102906_bib0006 article-title: Monitoring the impact of land reclamation on siltation in an inland lake publication-title: CEDA Dredging Days – volume: 90 start-page: 19 year: 2019 ident: 10.1016/j.apor.2021.102906_bib0039 article-title: Extension of the δ-Plus-SPH model for simulating Vortex-Induced-Vibration problems publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2019.06.004 – volume: 22 start-page: 312 issue: 5 SUPPL. 1 year: 2010 ident: 10.1016/j.apor.2021.102906_bib0042 article-title: Laboratory investigation of hydraulic performance of silt screens publication-title: J. Hydrodyn. Ser. B (English Ed.) – ident: 10.1016/j.apor.2021.102906_bib0008 – volume: 142 issue: 6 year: 2016 ident: 10.1016/j.apor.2021.102906_bib0009 article-title: Pipeline–seabed Interaction publication-title: J. Waterway, Port Coast. Ocean Eng. doi: 10.1061/(ASCE)WW.1943-5460.0000352 – volume: 125 start-page: 145 issue: 3 year: 1999 ident: 10.1016/j.apor.2021.102906_bib0030 article-title: Solitary waves on a cretan beach publication-title: J. Waterway Port Coast. Ocean Eng. doi: 10.1061/(ASCE)0733-950X(1999)125:3(145) – volume: 24 start-page: 275 issue: 5 year: 2002 ident: 10.1016/j.apor.2021.102906_bib0023 article-title: Simulation of near-shore solitary wave mechanics by an incompressible SPH method publication-title: Appl. Ocean Res. doi: 10.1016/S0141-1187(03)00002-6 – start-page: 154 year: 1980 ident: 10.1016/j.apor.2021.102906_bib0026 article-title: The measurement of incident and reflected spectra using a least squares method publication-title: Coastal Eng. doi: 10.1061/9780872622647.008 – volume: 32 start-page: 223 issue: 2 year: 2005 ident: 10.1016/j.apor.2021.102906_bib0010 article-title: Green water overtopping analyzed with a SPH model publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2004.08.003 – volume: 33 start-page: 11 issue: 1 year: 1990 ident: 10.1016/j.apor.2021.102906_bib0015 article-title: Application of a piston-type absorbing wavemaker to irregular wave experiments publication-title: Coast. Eng. Jpn. doi: 10.1080/05785634.1990.11924520 – volume: 37 start-page: 58 issue: 1 year: 1993 ident: 10.1016/j.apor.2021.102906_bib0007 article-title: Efficient methods for hydroelastic analysis of very large floating structures publication-title: J. Ship Res. doi: 10.5957/jsr.1993.37.1.58 – volume: 50 start-page: 1 year: 2015 ident: 10.1016/j.apor.2021.102906_bib0033 article-title: Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2014.12.003 – year: 1984 ident: 10.1016/j.apor.2021.102906_bib0036 article-title: Numerical simulation of turbulent flows – volume: 82 start-page: 1 issue: 1 year: 1989 ident: 10.1016/j.apor.2021.102906_bib0028 article-title: On the problem of penetration in particle methods publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(89)90032-6 – year: 2014 ident: 10.1016/j.apor.2021.102906_bib0044 article-title: Smoothed particle hydrodynamics and element bending group modeling of flexible fibers interacting with viscous fluids publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.90.063011 – start-page: 25 issue: 04 year: 2008 ident: 10.1016/j.apor.2021.102906_bib0003 article-title: Sand movement of silt -sandy beach and the outer navigation siltation publication-title: J. Waterway Harbor – volume: 76 start-page: 272 year: 2018 ident: 10.1016/j.apor.2021.102906_bib0037 article-title: Improved SPH simulation of spilled oil contained by flexible floating boom under wave–current coupling condition publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2017.09.014 – year: 2016 ident: 10.1016/j.apor.2021.102906_bib0022 article-title: On the modeling of viscous incompressible flows with smoothed particle hydro-dynamics publication-title: J. Hydrodyn. Ser. B. doi: 10.1016/S1001-6058(16)60676-5 – volume: 28 start-page: 77 issue: 2 year: 2007 ident: 10.1016/j.apor.2021.102906_bib0049 article-title: Siltation mechanisms of Huanghua Port and 3D characteristics of nearshore suspended sediment concentration under waves publication-title: J. Waterway Harbor – volume: 221 year: 2021 ident: 10.1016/j.apor.2021.102906_bib0038 article-title: An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108552 – volume: 185 start-page: 27 year: 2019 ident: 10.1016/j.apor.2021.102906_bib0014 article-title: Potential application of submerged horizontal plate as a wave energy breakwater: a 2D study using the WCSPH method publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2019.05.034 – year: 2004 ident: 10.1016/j.apor.2021.102906_bib0040 article-title: Large scale membrane-type barrier against extraordinary water surface elevation – volume: 229 start-page: 3652 issue: 10 year: 2010 ident: 10.1016/j.apor.2021.102906_bib0027 article-title: Fast free-surface detection and level-set function definition in SPH solvers publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.01.019 – volume: 26 start-page: 12 issue: 1 year: 2005 ident: 10.1016/j.apor.2021.102906_bib0048 article-title: On current velocity of high concentration layer near bottom publication-title: J. Waterway Harbour – volume: 6 start-page: 117 issue: 2 year: 1993 ident: 10.1016/j.apor.2021.102906_bib0035 article-title: Approximate methods for dynamic response of multi-module floating structures publication-title: Mar. struct. doi: 10.1016/0951-8339(93)90016-V – year: 1998 ident: 10.1016/j.apor.2021.102906_bib0034 article-title: Impact of connector stiffness on the response of a multi-module mobile offshore base – volume: 3 start-page: 173 issue: 3 year: 2007 ident: 10.1016/j.apor.2021.102906_bib0004 article-title: Boundary conditions generated by dynamic particles in SPH methods publication-title: CMC -Tech Science Press-. – volume: 232 start-page: 139 year: 2018 ident: 10.1016/j.apor.2021.102906_bib0017 article-title: An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.05.012 – volume: 4 start-page: 389 issue: 1 year: 1995 ident: 10.1016/j.apor.2021.102906_bib0043 article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree publication-title: Adv. Comput. Math. doi: 10.1007/BF02123482 – year: 1999 ident: 10.1016/j.apor.2021.102906_bib0045 article-title: Performance of silt protector in three dimensional flow – volume: 225 year: 2021 ident: 10.1016/j.apor.2021.102906_bib0024 article-title: Coupling edge-based smoothed finite element method with smoothed particle hydrodynamics for fluid structure interaction problems publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108772 – volume: 85 start-page: 1181 year: 2018 ident: 10.1016/j.apor.2021.102906_bib0019 article-title: Estimation of dynamical forces on turbidity curtain in combined wave-current flow publication-title: J. Coastal Res. doi: 10.2112/SI85-237.1 |
SSID | ssj0012868 |
Score | 2.301048 |
Snippet | Traditional silt curtain is a kind of commonly-used impermeable device for short-term control of suspended solids or turbidity in the water column generated... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102906 |
SubjectTerms | Bottom trawling Dredging Flexible thin-walled structure Harbors Hydrodynamics Hydrostatic pressure Silt Silt curtain SPH Suspended particulate matter Suspended solids Tensions Transport Turbidity Water column Water pressure |
Title | SPH simulation of hydrodynamic responses for two novel types of silt curtain under combined wave-current conditions |
URI | https://dx.doi.org/10.1016/j.apor.2021.102906 https://www.proquest.com/docview/2617690849 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxUxEA-lvaggbVWstiUHbxJfks1-HUtpeVWsghZ6C_nEJ6_7ytttixf_dmc22aIiPXjYwy6TsGRmJzOb3_yGkDfBOlELaVnhg2NKxYo1kBWw1vOmtVHW3OKJ7sfzan6h3l-WlxvkeKqFQVhl9v3Jp4_eOj-Z5dWcXS8WM4QlCWyWDUkLL2qJflipGq383c97mAe437EcDoUZSufCmYTxMhDjQo4oBTIYtNj16N-b019uetx7TrfJ0xw00qP0XjtkI3S75PFvVIK75MknF0yX-aefkf7L5zntF1e5ORddRfrthwdnmRrQ03WCxoaeQtBKh7sV7Va3YUnxj2yP0v1iOVB3M-IFKBaarSksEaTRwdM7cxuYS8RO8BQPvdF4n5OL05Ovx3OW-yswV8hmYFEa5W30Rtau9hKuUBglIalplAkBkhNT-6qKtjR1FJC5OeE5t4EXTpa-bYoXZLNbdeElocFUvIkQ_iHqzcHEDa9iKTwES5YbUe4RMS2sdpl8HHtgLPWEMvuuURkalaGTMvbI2_sx14l640HpctKX_sOANOwND47bn5Sr8-fba6Spr1reqPbVf077mjzCuwR82Sebw_omHED4MtjD0T4PydbR2Yf5-S8PPvB4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTxUxEG8IHvxIjKBGkI8evJn62u730RDIQwFNgIRb08_wzHMfebtAuPi3O7PtEjSGg4e9dKfNptNO57f9zQwhH7yxohLSsMx5y_I8lKwGVMAax-vGBFlxgze6xyfl9Dz_clFcrJC9MRYGaZXJ9kebPljr1DJJszm5ms0mSEsSWCwbQAvPKgl2-EkO2xfLGHz6dc_zAPs7xMOhNEPxFDkTSV4anFwAiVJgCoMGyx79-3T6y04Ph8_BK_IyeY30c_ywNbLi23Xy_EEuwXXy4pv1uk0JqF-T7vT7lHazn6k6F10EennnwFrGCvR0GbmxvqPgtdL-dkHbxY2fU_wl26F0N5v31F4PhAGKkWZLCnMEONo7eqtvPLMxsxO04q03rt435Pxg_2xvylKBBWYzWfcsSJ07E5yWla2chMdnOpeAaupcew_oRFeuLIMpdBUEQDcrHOfG88zKwjV19pastovWvyPU65LXAfw_pL1ZGLjmZSiEA2_JcC2KDSLGiVU2ZR_HIhhzNdLMfihUhkJlqKiMDfLxvs9VzL3xqHQx6kv9sYIUHA6P9tsalavS_u0U5qkvG17nzeZ_DrtLnk7Pjo_U0eHJ1_fkGb6JLJgtstovr_02-DK92RnW6m-R9_IG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SPH+simulation+of+hydrodynamic+responses+for+two+novel+types+of+silt+curtain+under+combined+wave-current+conditions&rft.jtitle=Applied+ocean+research&rft.au=Liu%2C+Xiaodong&rft.au=Li%2C+Shaowu&rft.au=Ji%2C+Zezhou&rft.au=Wu%2C+Qingwei&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0141-1187&rft.volume=117&rft_id=info:doi/10.1016%2Fj.apor.2021.102906&rft.externalDocID=S0141118721003722 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-1187&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-1187&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-1187&client=summon |