SPH simulation of hydrodynamic responses for two novel types of silt curtain under combined wave-current conditions

Traditional silt curtain is a kind of commonly-used impermeable device for short-term control of suspended solids or turbidity in the water column generated during dredging operations. It is attempted to innovatively apply the silt curtain to more violent hydrodynamic conditions, such as functioning...

Full description

Saved in:
Bibliographic Details
Published inApplied ocean research Vol. 117; p. 102906
Main Authors Liu, Xiaodong, Li, Shaowu, Ji, Zezhou, Wu, Qingwei
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.12.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditional silt curtain is a kind of commonly-used impermeable device for short-term control of suspended solids or turbidity in the water column generated during dredging operations. It is attempted to innovatively apply the silt curtain to more violent hydrodynamic conditions, such as functioning as an isolation structure for preventing sediment transportation into channels and harbor basins in a combined wave and current environment. The Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) code of Shi and Li et al. (2018), after incorporating an overlapped particle method (OPM), was applied to simulate the responses of a flexible impermeable curtain system as a thin-walled structure fixed to the sea bottom and moving violently under the action of static water pressure heads along and combined with waves. It is found that the modeled results of tensions in the curtain of a Silt Curtain System (SCS) working in emerged mode are in good consistency with the theoretical and experimental results and the SCS in submerged mode would be subject to much smaller tensions than in emerged mode. A large influx rate of q = 0.053 m3/s/m would enhance the wave-induced component of curtain tensions in the submerged mode. When subject to waves, the SCS in emerged mode imposes much more significant influence on wave transmission than in submerged mode, while the SCS in emerged mode produces lower horizontal oscillation ratio than in submerged mode.
AbstractList Traditional silt curtain is a kind of commonly-used impermeable device for short-term control of suspended solids or turbidity in the water column generated during dredging operations. It is attempted to innovatively apply the silt curtain to more violent hydrodynamic conditions, such as functioning as an isolation structure for preventing sediment transportation into channels and harbor basins in a combined wave and current environment. The Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) code of Shi and Li et al. (2018), after incorporating an overlapped particle method (OPM), was applied to simulate the responses of a flexible impermeable curtain system as a thin-walled structure fixed to the sea bottom and moving violently under the action of static water pressure heads along and combined with waves. It is found that the modeled results of tensions in the curtain of a Silt Curtain System (SCS) working in emerged mode are in good consistency with the theoretical and experimental results and the SCS in submerged mode would be subject to much smaller tensions than in emerged mode. A large influx rate of q = 0.053 m3/s/m would enhance the wave-induced component of curtain tensions in the submerged mode. When subject to waves, the SCS in emerged mode imposes much more significant influence on wave transmission than in submerged mode, while the SCS in emerged mode produces lower horizontal oscillation ratio than in submerged mode.
Traditional silt curtain is a kind of commonly-used impermeable device for short-term control of suspended solids or turbidity in the water column generated during dredging operations. It is attempted to innovatively apply the silt curtain to more violent hydrodynamic conditions, such as functioning as an isolation structure for preventing sediment transportation into channels and harbor basins in a combined wave and current environment. The Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) code of Shi and Li et al. (2018), after incorporating an overlapped particle method (OPM), was applied to simulate the responses of a flexible impermeable curtain system as a thin-walled structure fixed to the sea bottom and moving violently under the action of static water pressure heads along and combined with waves. It is found that the modeled results of tensions in the curtain of a Silt Curtain System (SCS) working in emerged mode are in good consistency with the theoretical and experimental results and the SCS in submerged mode would be subject to much smaller tensions than in emerged mode. A large influx rate of q = 0.053 m3/s/m would enhance the wave-induced component of curtain tensions in the submerged mode. When subject to waves, the SCS in emerged mode imposes much more significant influence on wave transmission than in submerged mode, while the SCS in emerged mode produces lower horizontal oscillation ratio than in submerged mode.
ArticleNumber 102906
Author Li, Shaowu
Ji, Zezhou
Liu, Xiaodong
Wu, Qingwei
Author_xml – sequence: 1
  givenname: Xiaodong
  surname: Liu
  fullname: Liu, Xiaodong
  organization: State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072 PR China
– sequence: 2
  givenname: Shaowu
  surname: Li
  fullname: Li, Shaowu
  email: lishaowu@tju.edu.cn
  organization: State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072 PR China
– sequence: 3
  givenname: Zezhou
  surname: Ji
  fullname: Ji, Zezhou
  organization: CCCC First Harbor Consultants Co. Ltd, Tianjin 300072, PR China
– sequence: 4
  givenname: Qingwei
  surname: Wu
  fullname: Wu, Qingwei
  organization: CCCC First Harbor Consultants Co. Ltd, Tianjin 300072, PR China
BookMark eNp9kEFLwzAYhoMouE3_gKeA584k7dIWvMhQJwwU1HNIk6-Y0SU1STf2782sJw87hMCb98nH90zRuXUWELqhZE4J5XebueydnzPCaApYTfgZmtCqrDO6KOpzNCG0oBlNySWahrAhhLKKVxMU3t9WOJjt0MlonMWuxV8H7Z0-WLk1CnsIvbMBAm6dx3HvsHU76HA89ClL7WC6iNXgozQWD1aDx8ptG2NB473cQZbePNjUcVab44xwhS5a2QW4_rtn6PPp8WO5ytavzy_Lh3WmclbFrGWy0E2rJStVqVk6kMuCkZpXhQRgOZGl5rxtFrJsKSdUUU1IAyRXbKHrKp-h2_Hf3rvvAUIUGzd4m0YKxmnJa1IVdWqxsaW8C8FDK3pvttIfBCXiKFdsxFGuOMoVo9wEVf8gZeKvweil6U6j9yMKafWdAS-CMmAVaONBRaGdOYX_APGomhU
CitedBy_id crossref_primary_10_1016_j_powtec_2022_118015
crossref_primary_10_1063_5_0160021
crossref_primary_10_1016_j_coastaleng_2024_104663
crossref_primary_10_1016_j_apor_2023_103527
Cites_doi 10.1080/21664250.2018.1436243
10.1016/j.jcp.2020.110028
10.1088/0034-4885/68/8/R01
10.1016/j.oceaneng.2021.108652
10.1016/j.apor.2021.102734
10.1016/j.compstruc.2007.01.002
10.1016/j.coastaleng.2005.10.007
10.1016/j.jfluidstructs.2020.102942
10.1016/j.coastaleng.2005.10.004
10.1016/j.cma.2021.113832
10.1016/j.jfluidstructs.2019.06.004
10.1061/(ASCE)WW.1943-5460.0000352
10.1061/(ASCE)0733-950X(1999)125:3(145)
10.1016/S0141-1187(03)00002-6
10.1061/9780872622647.008
10.1016/j.oceaneng.2004.08.003
10.1080/05785634.1990.11924520
10.5957/jsr.1993.37.1.58
10.1016/j.apor.2014.12.003
10.1016/0021-9991(89)90032-6
10.1103/PhysRevE.90.063011
10.1016/j.jfluidstructs.2017.09.014
10.1016/S1001-6058(16)60676-5
10.1016/j.oceaneng.2020.108552
10.1016/j.oceaneng.2019.05.034
10.1016/j.jcp.2010.01.019
10.1016/0951-8339(93)90016-V
10.1016/j.cpc.2018.05.012
10.1007/BF02123482
10.1016/j.oceaneng.2021.108772
10.2112/SI85-237.1
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV Dec 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV Dec 2021
DBID AAYXX
CITATION
7TN
F1W
DOI 10.1016/j.apor.2021.102906
DatabaseName CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitle CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Oceanic Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 1879-1549
ExternalDocumentID 10_1016_j_apor_2021_102906
S0141118721003722
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
UAO
WUQ
XPP
ZMT
~02
~A~
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
GROUPED_DOAJ
7TN
EFKBS
F1W
ID FETCH-LOGICAL-c328t-f2a4dbfda27c7d2c7de3a4209684aee230a7d66fb5a7f1601c1d00be03c25d983
IEDL.DBID .~1
ISSN 0141-1187
IngestDate Wed Aug 13 02:38:58 EDT 2025
Tue Jul 01 01:37:32 EDT 2025
Thu Apr 24 22:57:11 EDT 2025
Sun Apr 06 06:54:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Tensions
SPH
Flexible thin-walled structure
Silt curtain
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-f2a4dbfda27c7d2c7de3a4209684aee230a7d66fb5a7f1601c1d00be03c25d983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2617690849
PQPubID 2045279
ParticipantIDs proquest_journals_2617690849
crossref_primary_10_1016_j_apor_2021_102906
crossref_citationtrail_10_1016_j_apor_2021_102906
elsevier_sciencedirect_doi_10_1016_j_apor_2021_102906
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Applied ocean research
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Cao, Yang, Hou (bib0003) 2008
Vu, Tan (bib0042) 2010; 22
Khayyer, Shimizu, Gotoh, Hattori (bib0018) 2021; 226
Li, S.W., and Wu, Q.W., 2015. A feasibility study on silt curtain under steady current and combined wave-current conditions. Technical Report, Tianjin University.
Li, Wang, Liu (bib0020) 2020
Gotoh, Sakai (bib0012) 2006; 53
Yang, Liu, Peng (bib0044) 2014
Liu, Shang-Ming (bib0022) 2016
Bray (bib0002) 2008
Monaghan (bib0028) 1989; 82
Ertekin, Riggs, Che, Du (bib0007) 1993; 37
He, Gao, Xu, Ren, Wang (bib0014) 2019; 185
Trang (bib0041) 2013
Sun, Colagrossi, Le Touzé, Zhang (bib0039) 2019; 90
Crespo, Gomez-Gesteira, Dalrymple (bib0004) 2007; 3
Marrone, Colagrossi, Le Touzé, Graziani (bib0027) 2010; 229
Yasui, Deguchi, Ono (bib0045) 1999
Khayyer, Gotoh, Falahaty, Shimizu (bib0017) 2018; 232
Lo, Shao (bib0023) 2002; 24
de Wit (bib0006) 2011
Zhao, Qin, Huang (bib0048) 2005; 26
Long, Huang, Hu, Liu (bib0024) 2021; 225
Luo, Khayyer, Lin (bib0025) 2021; 114
Ren, He, Dong, Wen (bib0033) 2015; 50
Ogilvie, Middlemiss, Lee, Crossouard (bib0032) 2012
Monaghan, Kos (bib0030) 1999; 125
Gotoh, Shibahara, Sakai (bib0013) 2001; 9
Fredsøe (bib0009) 2016; 142
Hirakuchi, Kajima, Kawaguchi (bib0015) 1990; 33
Sun, Le Touzé, Oger, Zhang (bib0038) 2021; 221
Monaghan (bib0029) 2005; 68
Antoci, Gallati, Sibilla (bib0001) 2007; 85
Gotoh, Khayyer (bib0011) 2018; 60
Mansard, Funke (bib0026) 1980
Wendland (bib0043) 1995; 4
Johanson (bib0016) 1977
Shi, Li, Chen, He, Shao (bib0037) 2018; 76
Morikawa, Asai (bib0031) 2021; 381
Francingues, N.R., and Palmero, M., 2005. Silt curtains as a dredging project management practice.
Zhang, Rezavand, Hu (bib0046) 2021; 429
Zhang, Khalid, Long, Chang, Liu (bib0047) 2020; 94
Li, Ji, Wu, Zhang, Shi (bib0019) 2018; 85
Gómez-Gesteira, Cerqueiro, Crespo, Dalrymple (bib0010) 2005; 32
Dalrymple, Rogers (bib0005) 2006; 53
Tanigaki, Matsuura, Isoda, Masaru (bib0040) 2004
Rogallo, Moin (bib0036) 1984
Zhao, Hong-sheng (bib0049) 2007; 28
Riggs, Ertekin (bib0035) 1993; 6
Riggs, Enekin, Mills (bib0034) 1998
Ertekin (10.1016/j.apor.2021.102906_bib0007) 1993; 37
Mansard (10.1016/j.apor.2021.102906_bib0026) 1980
de Wit (10.1016/j.apor.2021.102906_bib0006) 2011
Long (10.1016/j.apor.2021.102906_bib0024) 2021; 225
Khayyer (10.1016/j.apor.2021.102906_bib0018) 2021; 226
Lo (10.1016/j.apor.2021.102906_bib0023) 2002; 24
Monaghan (10.1016/j.apor.2021.102906_bib0028) 1989; 82
Shi (10.1016/j.apor.2021.102906_bib0037) 2018; 76
Gotoh (10.1016/j.apor.2021.102906_bib0011) 2018; 60
Fredsøe (10.1016/j.apor.2021.102906_bib0009) 2016; 142
Gotoh (10.1016/j.apor.2021.102906_bib0013) 2001; 9
Ogilvie (10.1016/j.apor.2021.102906_bib0032) 2012
Zhang (10.1016/j.apor.2021.102906_bib0047) 2020; 94
Bray (10.1016/j.apor.2021.102906_bib0002) 2008
Cao (10.1016/j.apor.2021.102906_bib0003) 2008
Liu (10.1016/j.apor.2021.102906_bib0022) 2016
Vu (10.1016/j.apor.2021.102906_bib0042) 2010; 22
Luo (10.1016/j.apor.2021.102906_bib0025) 2021; 114
Rogallo (10.1016/j.apor.2021.102906_bib0036) 1984
Zhao (10.1016/j.apor.2021.102906_bib0049) 2007; 28
Trang (10.1016/j.apor.2021.102906_bib0041) 2013
Monaghan (10.1016/j.apor.2021.102906_bib0030) 1999; 125
Tanigaki (10.1016/j.apor.2021.102906_bib0040) 2004
Wendland (10.1016/j.apor.2021.102906_bib0043) 1995; 4
Ren (10.1016/j.apor.2021.102906_bib0033) 2015; 50
Antoci (10.1016/j.apor.2021.102906_bib0001) 2007; 85
Hirakuchi (10.1016/j.apor.2021.102906_bib0015) 1990; 33
Johanson (10.1016/j.apor.2021.102906_bib0016) 1977
Riggs (10.1016/j.apor.2021.102906_bib0035) 1993; 6
Monaghan (10.1016/j.apor.2021.102906_bib0029) 2005; 68
Gómez-Gesteira (10.1016/j.apor.2021.102906_bib0010) 2005; 32
Marrone (10.1016/j.apor.2021.102906_bib0027) 2010; 229
Sun (10.1016/j.apor.2021.102906_bib0038) 2021; 221
He (10.1016/j.apor.2021.102906_bib0014) 2019; 185
Yasui (10.1016/j.apor.2021.102906_bib0045) 1999
10.1016/j.apor.2021.102906_bib0021
Dalrymple (10.1016/j.apor.2021.102906_bib0005) 2006; 53
Morikawa (10.1016/j.apor.2021.102906_bib0031) 2021; 381
Li (10.1016/j.apor.2021.102906_bib0019) 2018; 85
Yang (10.1016/j.apor.2021.102906_bib0044) 2014
10.1016/j.apor.2021.102906_bib0008
Zhao (10.1016/j.apor.2021.102906_bib0048) 2005; 26
Riggs (10.1016/j.apor.2021.102906_bib0034) 1998
Khayyer (10.1016/j.apor.2021.102906_bib0017) 2018; 232
Li (10.1016/j.apor.2021.102906_bib0020) 2020
Zhang (10.1016/j.apor.2021.102906_bib0046) 2021; 429
Gotoh (10.1016/j.apor.2021.102906_bib0012) 2006; 53
Crespo (10.1016/j.apor.2021.102906_bib0004) 2007; 3
Sun (10.1016/j.apor.2021.102906_bib0039) 2019; 90
References_xml – volume: 114
  year: 2021
  ident: bib0025
  article-title: Particle methods in ocean and coastal engineering
  publication-title: Appl. Ocean Res.
– volume: 85
  start-page: 879
  year: 2007
  end-page: 890
  ident: bib0001
  article-title: Numerical simulation of fluid-structure interaction by SPH
  publication-title: Comput. Struct.
– volume: 94
  year: 2020
  ident: bib0047
  article-title: Investigations on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method
  publication-title: J. Fluids Struct.
– start-page: 25
  year: 2008
  end-page: 30
  ident: bib0003
  article-title: Sand movement of silt -sandy beach and the outer navigation siltation
  publication-title: J. Waterway Harbor
– volume: 76
  start-page: 272
  year: 2018
  end-page: 300
  ident: bib0037
  article-title: Improved SPH simulation of spilled oil contained by flexible floating boom under wave–current coupling condition
  publication-title: J. Fluids Struct.
– volume: 4
  start-page: 389
  year: 1995
  end-page: 396
  ident: bib0043
  article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
  publication-title: Adv. Comput. Math.
– volume: 221
  year: 2021
  ident: bib0038
  article-title: An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions
  publication-title: Ocean Eng.
– volume: 90
  start-page: 19
  year: 2019
  end-page: 42
  ident: bib0039
  article-title: Extension of the δ-Plus-SPH model for simulating Vortex-Induced-Vibration problems
  publication-title: J. Fluids Struct.
– volume: 26
  start-page: 12
  year: 2005
  end-page: 16
  ident: bib0048
  article-title: On current velocity of high concentration layer near bottom
  publication-title: J. Waterway Harbour
– volume: 82
  start-page: 1
  year: 1989
  end-page: 15
  ident: bib0028
  article-title: On the problem of penetration in particle methods
  publication-title: J. Comput. Phys.
– year: 2014
  ident: bib0044
  article-title: Smoothed particle hydrodynamics and element bending group modeling of flexible fibers interacting with viscous fluids
  publication-title: Phys. Rev. E
– start-page: 1
  year: 2012
  end-page: 17
  ident: bib0032
  article-title: Silt curtains- A review of their role in dredging projects
  publication-title: Proc. CEDA Dredging Days
– volume: 185
  start-page: 27
  year: 2019
  end-page: 46
  ident: bib0014
  article-title: Potential application of submerged horizontal plate as a wave energy breakwater: a 2D study using the WCSPH method
  publication-title: Ocean Engineering
– year: 2016
  ident: bib0022
  article-title: On the modeling of viscous incompressible flows with smoothed particle hydro-dynamics
  publication-title: J. Hydrodyn. Ser. B.
– volume: 125
  start-page: 145
  year: 1999
  end-page: 154
  ident: bib0030
  article-title: Solitary waves on a cretan beach
  publication-title: J. Waterway Port Coast. Ocean Eng.
– year: 2013
  ident: bib0041
  article-title: The Physics and Sedimrnt Containment Phenomenon of a Silt Screen
– reference: Francingues, N.R., and Palmero, M., 2005. Silt curtains as a dredging project management practice.
– volume: 232
  start-page: 139
  year: 2018
  end-page: 164
  ident: bib0017
  article-title: An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions
  publication-title: Comput. Phys. Commun.
– year: 2011
  ident: bib0006
  article-title: Monitoring the impact of land reclamation on siltation in an inland lake
  publication-title: CEDA Dredging Days
– volume: 68
  start-page: 1703
  year: 2005
  end-page: 1759
  ident: bib0029
  article-title: Smoothed particle hydrodynamics
  publication-title: Rep. Prog. Phys.
– reference: Li, S.W., and Wu, Q.W., 2015. A feasibility study on silt curtain under steady current and combined wave-current conditions. Technical Report, Tianjin University.
– volume: 9
  start-page: 339
  year: 2001
  end-page: 347
  ident: bib0013
  article-title: Sub-particle-scale turbulence model for the MPS method - Lagrangian flow model for hydraulic engineering
  publication-title: Comput. Fluid Dyn. J.
– volume: 37
  start-page: 58
  year: 1993
  end-page: 76
  ident: bib0007
  article-title: Efficient methods for hydroelastic analysis of very large floating structures
  publication-title: J. Ship Res.
– volume: 85
  start-page: 1181
  year: 2018
  end-page: 1185
  ident: bib0019
  article-title: Estimation of dynamical forces on turbidity curtain in combined wave-current flow
  publication-title: J. Coastal Res.
– volume: 142
  year: 2016
  ident: bib0009
  article-title: Pipeline–seabed Interaction
  publication-title: J. Waterway, Port Coast. Ocean Eng.
– volume: 24
  start-page: 275
  year: 2002
  end-page: 286
  ident: bib0023
  article-title: Simulation of near-shore solitary wave mechanics by an incompressible SPH method
  publication-title: Appl. Ocean Res.
– year: 1984
  ident: bib0036
  article-title: Numerical simulation of turbulent flows
  publication-title: Proceedings of the APS March Meeting
– volume: 22
  start-page: 312
  year: 2010
  end-page: 317
  ident: bib0042
  article-title: Laboratory investigation of hydraulic performance of silt screens
  publication-title: J. Hydrodyn. Ser. B (English Ed.)
– volume: 225
  year: 2021
  ident: bib0024
  article-title: Coupling edge-based smoothed finite element method with smoothed particle hydrodynamics for fluid structure interaction problems
  publication-title: Ocean Eng.
– volume: 50
  start-page: 1
  year: 2015
  end-page: 12
  ident: bib0033
  article-title: Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method
  publication-title: Appl. Ocean Res.
– volume: 33
  start-page: 11
  year: 1990
  end-page: 24
  ident: bib0015
  article-title: Application of a piston-type absorbing wavemaker to irregular wave experiments
  publication-title: Coast. Eng. Jpn.
– volume: 429
  year: 2021
  ident: bib0046
  article-title: A multi-resolution SPH method for fluid-structure interactions
  publication-title: J. Comput. Phys.
– volume: 6
  start-page: 117
  year: 1993
  end-page: 141
  ident: bib0035
  article-title: Approximate methods for dynamic response of multi-module floating structures
  publication-title: Mar. struct.
– year: 1998
  ident: bib0034
  article-title: Impact of connector stiffness on the response of a multi-module mobile offshore base
  publication-title: Proceedings of the Eighth (1998) InternaJional Offshort and Polar Engineering Conferenct
– start-page: 1
  year: 1977
  end-page: 8
  ident: bib0016
  article-title: Application and performance of silt curtains
  publication-title: Dredged Mater. Res.
– volume: 53
  start-page: 171
  year: 2006
  end-page: 179
  ident: bib0012
  article-title: Key issues in the particle method for computation of wave breaking
  publication-title: Coast. Eng.
– volume: 28
  start-page: 77
  year: 2007
  end-page: 80
  ident: bib0049
  article-title: Siltation mechanisms of Huanghua Port and 3D characteristics of nearshore suspended sediment concentration under waves
  publication-title: J. Waterway Harbor
– year: 1999
  ident: bib0045
  article-title: Performance of silt protector in three dimensional flow
  publication-title: Proceedings of the Ninth International Offshore and Polar Engineering Conference
– volume: 60
  start-page: 79
  year: 2018
  end-page: 103
  ident: bib0011
  article-title: On the state-of-the-art of particle methods for coastal and ocean engineering
  publication-title: Coast. Eng. J.
– year: 2020
  ident: bib0020
  article-title: The Development and Research of Silt Curtain
– volume: 32
  start-page: 223
  year: 2005
  end-page: 238
  ident: bib0010
  article-title: Green water overtopping analyzed with a SPH model
  publication-title: Ocean Eng.
– volume: 3
  start-page: 173
  year: 2007
  end-page: 184
  ident: bib0004
  article-title: Boundary conditions generated by dynamic particles in SPH methods
  publication-title: CMC -Tech Science Press-.
– volume: 381
  year: 2021
  ident: bib0031
  article-title: Coupling total Lagrangian SPH–EISPH for fluid–structure interaction with large deformed hyperelastic solid bodies
  publication-title: Comput. Methods Appl. Mech. Eng.
– start-page: 154
  year: 1980
  end-page: 172
  ident: bib0026
  article-title: The measurement of incident and reflected spectra using a least squares method
  publication-title: Coastal Eng.
– year: 2004
  ident: bib0040
  article-title: Large scale membrane-type barrier against extraordinary water surface elevation
  publication-title: Proceedings of The Fourteenth(2004) International Offshore and Polar Engineering Conference
– volume: 229
  start-page: 3652
  year: 2010
  end-page: 3663
  ident: bib0027
  article-title: Fast free-surface detection and level-set function definition in SPH solvers
  publication-title: J. Comput. Phys.
– year: 2008
  ident: bib0002
  article-title: Environmental Aspects of Dredging
– volume: 53
  start-page: 141
  year: 2006
  end-page: 147
  ident: bib0005
  article-title: Numerical modeling of water waves with the SPH method
  publication-title: Coast. Eng.
– volume: 226
  start-page: 108652
  year: 2021
  ident: bib0018
  article-title: Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering
  publication-title: Ocean Engineering
– year: 2008
  ident: 10.1016/j.apor.2021.102906_bib0002
– start-page: 1
  year: 2012
  ident: 10.1016/j.apor.2021.102906_bib0032
  article-title: Silt curtains- A review of their role in dredging projects
  publication-title: Proc. CEDA Dredging Days
– volume: 9
  start-page: 339
  issue: 4
  year: 2001
  ident: 10.1016/j.apor.2021.102906_bib0013
  article-title: Sub-particle-scale turbulence model for the MPS method - Lagrangian flow model for hydraulic engineering
  publication-title: Comput. Fluid Dyn. J.
– volume: 60
  start-page: 79
  issue: 1
  year: 2018
  ident: 10.1016/j.apor.2021.102906_bib0011
  article-title: On the state-of-the-art of particle methods for coastal and ocean engineering
  publication-title: Coast. Eng. J.
  doi: 10.1080/21664250.2018.1436243
– volume: 429
  year: 2021
  ident: 10.1016/j.apor.2021.102906_bib0046
  article-title: A multi-resolution SPH method for fluid-structure interactions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.110028
– volume: 68
  start-page: 1703
  issue: 8
  year: 2005
  ident: 10.1016/j.apor.2021.102906_bib0029
  article-title: Smoothed particle hydrodynamics
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/68/8/R01
– volume: 226
  start-page: 108652
  year: 2021
  ident: 10.1016/j.apor.2021.102906_bib0018
  article-title: Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2021.108652
– volume: 114
  year: 2021
  ident: 10.1016/j.apor.2021.102906_bib0025
  article-title: Particle methods in ocean and coastal engineering
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2021.102734
– volume: 85
  start-page: 879
  issue: 11–14
  year: 2007
  ident: 10.1016/j.apor.2021.102906_bib0001
  article-title: Numerical simulation of fluid-structure interaction by SPH
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2007.01.002
– volume: 53
  start-page: 171
  issue: 2–3
  year: 2006
  ident: 10.1016/j.apor.2021.102906_bib0012
  article-title: Key issues in the particle method for computation of wave breaking
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2005.10.007
– volume: 94
  year: 2020
  ident: 10.1016/j.apor.2021.102906_bib0047
  article-title: Investigations on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2020.102942
– ident: 10.1016/j.apor.2021.102906_bib0021
– year: 2020
  ident: 10.1016/j.apor.2021.102906_bib0020
– start-page: 1
  year: 1977
  ident: 10.1016/j.apor.2021.102906_bib0016
  article-title: Application and performance of silt curtains
  publication-title: Dredged Mater. Res.
– volume: 53
  start-page: 141
  issue: 2–3
  year: 2006
  ident: 10.1016/j.apor.2021.102906_bib0005
  article-title: Numerical modeling of water waves with the SPH method
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2005.10.004
– year: 2013
  ident: 10.1016/j.apor.2021.102906_bib0041
– volume: 381
  year: 2021
  ident: 10.1016/j.apor.2021.102906_bib0031
  article-title: Coupling total Lagrangian SPH–EISPH for fluid–structure interaction with large deformed hyperelastic solid bodies
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.113832
– year: 2011
  ident: 10.1016/j.apor.2021.102906_bib0006
  article-title: Monitoring the impact of land reclamation on siltation in an inland lake
  publication-title: CEDA Dredging Days
– volume: 90
  start-page: 19
  year: 2019
  ident: 10.1016/j.apor.2021.102906_bib0039
  article-title: Extension of the δ-Plus-SPH model for simulating Vortex-Induced-Vibration problems
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2019.06.004
– volume: 22
  start-page: 312
  issue: 5 SUPPL. 1
  year: 2010
  ident: 10.1016/j.apor.2021.102906_bib0042
  article-title: Laboratory investigation of hydraulic performance of silt screens
  publication-title: J. Hydrodyn. Ser. B (English Ed.)
– ident: 10.1016/j.apor.2021.102906_bib0008
– volume: 142
  issue: 6
  year: 2016
  ident: 10.1016/j.apor.2021.102906_bib0009
  article-title: Pipeline–seabed Interaction
  publication-title: J. Waterway, Port Coast. Ocean Eng.
  doi: 10.1061/(ASCE)WW.1943-5460.0000352
– volume: 125
  start-page: 145
  issue: 3
  year: 1999
  ident: 10.1016/j.apor.2021.102906_bib0030
  article-title: Solitary waves on a cretan beach
  publication-title: J. Waterway Port Coast. Ocean Eng.
  doi: 10.1061/(ASCE)0733-950X(1999)125:3(145)
– volume: 24
  start-page: 275
  issue: 5
  year: 2002
  ident: 10.1016/j.apor.2021.102906_bib0023
  article-title: Simulation of near-shore solitary wave mechanics by an incompressible SPH method
  publication-title: Appl. Ocean Res.
  doi: 10.1016/S0141-1187(03)00002-6
– start-page: 154
  year: 1980
  ident: 10.1016/j.apor.2021.102906_bib0026
  article-title: The measurement of incident and reflected spectra using a least squares method
  publication-title: Coastal Eng.
  doi: 10.1061/9780872622647.008
– volume: 32
  start-page: 223
  issue: 2
  year: 2005
  ident: 10.1016/j.apor.2021.102906_bib0010
  article-title: Green water overtopping analyzed with a SPH model
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2004.08.003
– volume: 33
  start-page: 11
  issue: 1
  year: 1990
  ident: 10.1016/j.apor.2021.102906_bib0015
  article-title: Application of a piston-type absorbing wavemaker to irregular wave experiments
  publication-title: Coast. Eng. Jpn.
  doi: 10.1080/05785634.1990.11924520
– volume: 37
  start-page: 58
  issue: 1
  year: 1993
  ident: 10.1016/j.apor.2021.102906_bib0007
  article-title: Efficient methods for hydroelastic analysis of very large floating structures
  publication-title: J. Ship Res.
  doi: 10.5957/jsr.1993.37.1.58
– volume: 50
  start-page: 1
  year: 2015
  ident: 10.1016/j.apor.2021.102906_bib0033
  article-title: Nonlinear simulations of wave-induced motions of a freely floating body using WCSPH method
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2014.12.003
– year: 1984
  ident: 10.1016/j.apor.2021.102906_bib0036
  article-title: Numerical simulation of turbulent flows
– volume: 82
  start-page: 1
  issue: 1
  year: 1989
  ident: 10.1016/j.apor.2021.102906_bib0028
  article-title: On the problem of penetration in particle methods
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(89)90032-6
– year: 2014
  ident: 10.1016/j.apor.2021.102906_bib0044
  article-title: Smoothed particle hydrodynamics and element bending group modeling of flexible fibers interacting with viscous fluids
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.90.063011
– start-page: 25
  issue: 04
  year: 2008
  ident: 10.1016/j.apor.2021.102906_bib0003
  article-title: Sand movement of silt -sandy beach and the outer navigation siltation
  publication-title: J. Waterway Harbor
– volume: 76
  start-page: 272
  year: 2018
  ident: 10.1016/j.apor.2021.102906_bib0037
  article-title: Improved SPH simulation of spilled oil contained by flexible floating boom under wave–current coupling condition
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2017.09.014
– year: 2016
  ident: 10.1016/j.apor.2021.102906_bib0022
  article-title: On the modeling of viscous incompressible flows with smoothed particle hydro-dynamics
  publication-title: J. Hydrodyn. Ser. B.
  doi: 10.1016/S1001-6058(16)60676-5
– volume: 28
  start-page: 77
  issue: 2
  year: 2007
  ident: 10.1016/j.apor.2021.102906_bib0049
  article-title: Siltation mechanisms of Huanghua Port and 3D characteristics of nearshore suspended sediment concentration under waves
  publication-title: J. Waterway Harbor
– volume: 221
  year: 2021
  ident: 10.1016/j.apor.2021.102906_bib0038
  article-title: An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.108552
– volume: 185
  start-page: 27
  year: 2019
  ident: 10.1016/j.apor.2021.102906_bib0014
  article-title: Potential application of submerged horizontal plate as a wave energy breakwater: a 2D study using the WCSPH method
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2019.05.034
– year: 2004
  ident: 10.1016/j.apor.2021.102906_bib0040
  article-title: Large scale membrane-type barrier against extraordinary water surface elevation
– volume: 229
  start-page: 3652
  issue: 10
  year: 2010
  ident: 10.1016/j.apor.2021.102906_bib0027
  article-title: Fast free-surface detection and level-set function definition in SPH solvers
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.01.019
– volume: 26
  start-page: 12
  issue: 1
  year: 2005
  ident: 10.1016/j.apor.2021.102906_bib0048
  article-title: On current velocity of high concentration layer near bottom
  publication-title: J. Waterway Harbour
– volume: 6
  start-page: 117
  issue: 2
  year: 1993
  ident: 10.1016/j.apor.2021.102906_bib0035
  article-title: Approximate methods for dynamic response of multi-module floating structures
  publication-title: Mar. struct.
  doi: 10.1016/0951-8339(93)90016-V
– year: 1998
  ident: 10.1016/j.apor.2021.102906_bib0034
  article-title: Impact of connector stiffness on the response of a multi-module mobile offshore base
– volume: 3
  start-page: 173
  issue: 3
  year: 2007
  ident: 10.1016/j.apor.2021.102906_bib0004
  article-title: Boundary conditions generated by dynamic particles in SPH methods
  publication-title: CMC -Tech Science Press-.
– volume: 232
  start-page: 139
  year: 2018
  ident: 10.1016/j.apor.2021.102906_bib0017
  article-title: An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2018.05.012
– volume: 4
  start-page: 389
  issue: 1
  year: 1995
  ident: 10.1016/j.apor.2021.102906_bib0043
  article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02123482
– year: 1999
  ident: 10.1016/j.apor.2021.102906_bib0045
  article-title: Performance of silt protector in three dimensional flow
– volume: 225
  year: 2021
  ident: 10.1016/j.apor.2021.102906_bib0024
  article-title: Coupling edge-based smoothed finite element method with smoothed particle hydrodynamics for fluid structure interaction problems
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.108772
– volume: 85
  start-page: 1181
  year: 2018
  ident: 10.1016/j.apor.2021.102906_bib0019
  article-title: Estimation of dynamical forces on turbidity curtain in combined wave-current flow
  publication-title: J. Coastal Res.
  doi: 10.2112/SI85-237.1
SSID ssj0012868
Score 2.301048
Snippet Traditional silt curtain is a kind of commonly-used impermeable device for short-term control of suspended solids or turbidity in the water column generated...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102906
SubjectTerms Bottom trawling
Dredging
Flexible thin-walled structure
Harbors
Hydrodynamics
Hydrostatic pressure
Silt
Silt curtain
SPH
Suspended particulate matter
Suspended solids
Tensions
Transport
Turbidity
Water column
Water pressure
Title SPH simulation of hydrodynamic responses for two novel types of silt curtain under combined wave-current conditions
URI https://dx.doi.org/10.1016/j.apor.2021.102906
https://www.proquest.com/docview/2617690849
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxUxEA-lvaggbVWstiUHbxJfks1-HUtpeVWsghZ6C_nEJ6_7ytttixf_dmc22aIiPXjYwy6TsGRmJzOb3_yGkDfBOlELaVnhg2NKxYo1kBWw1vOmtVHW3OKJ7sfzan6h3l-WlxvkeKqFQVhl9v3Jp4_eOj-Z5dWcXS8WM4QlCWyWDUkLL2qJflipGq383c97mAe437EcDoUZSufCmYTxMhDjQo4oBTIYtNj16N-b019uetx7TrfJ0xw00qP0XjtkI3S75PFvVIK75MknF0yX-aefkf7L5zntF1e5ORddRfrthwdnmRrQ03WCxoaeQtBKh7sV7Va3YUnxj2yP0v1iOVB3M-IFKBaarSksEaTRwdM7cxuYS8RO8BQPvdF4n5OL05Ovx3OW-yswV8hmYFEa5W30Rtau9hKuUBglIalplAkBkhNT-6qKtjR1FJC5OeE5t4EXTpa-bYoXZLNbdeElocFUvIkQ_iHqzcHEDa9iKTwES5YbUe4RMS2sdpl8HHtgLPWEMvuuURkalaGTMvbI2_sx14l640HpctKX_sOANOwND47bn5Sr8-fba6Spr1reqPbVf077mjzCuwR82Sebw_omHED4MtjD0T4PydbR2Yf5-S8PPvB4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTxUxEG8IHvxIjKBGkI8evJn62u730RDIQwFNgIRb08_wzHMfebtAuPi3O7PtEjSGg4e9dKfNptNO57f9zQwhH7yxohLSsMx5y_I8lKwGVMAax-vGBFlxgze6xyfl9Dz_clFcrJC9MRYGaZXJ9kebPljr1DJJszm5ms0mSEsSWCwbQAvPKgl2-EkO2xfLGHz6dc_zAPs7xMOhNEPxFDkTSV4anFwAiVJgCoMGyx79-3T6y04Ph8_BK_IyeY30c_ywNbLi23Xy_EEuwXXy4pv1uk0JqF-T7vT7lHazn6k6F10EennnwFrGCvR0GbmxvqPgtdL-dkHbxY2fU_wl26F0N5v31F4PhAGKkWZLCnMEONo7eqtvPLMxsxO04q03rt435Pxg_2xvylKBBWYzWfcsSJ07E5yWla2chMdnOpeAaupcew_oRFeuLIMpdBUEQDcrHOfG88zKwjV19pastovWvyPU65LXAfw_pL1ZGLjmZSiEA2_JcC2KDSLGiVU2ZR_HIhhzNdLMfihUhkJlqKiMDfLxvs9VzL3xqHQx6kv9sYIUHA6P9tsalavS_u0U5qkvG17nzeZ_DrtLnk7Pjo_U0eHJ1_fkGb6JLJgtstovr_02-DK92RnW6m-R9_IG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SPH+simulation+of+hydrodynamic+responses+for+two+novel+types+of+silt+curtain+under+combined+wave-current+conditions&rft.jtitle=Applied+ocean+research&rft.au=Liu%2C+Xiaodong&rft.au=Li%2C+Shaowu&rft.au=Ji%2C+Zezhou&rft.au=Wu%2C+Qingwei&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0141-1187&rft.volume=117&rft_id=info:doi/10.1016%2Fj.apor.2021.102906&rft.externalDocID=S0141118721003722
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-1187&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-1187&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-1187&client=summon