Low-Complexity SSOR-Based Precoding for Massive MIMO Systems

With the increase of the number of base station (BS) antennas in massive multiple-input multiple-output (MIMO) systems, linear precoding schemes are able to achieve the near-optimal performance, and thus are more attractive than nonlinear precoding techniques. However, conventional linear precoding...

Full description

Saved in:
Bibliographic Details
Published inIEEE communications letters Vol. 20; no. 4; pp. 744 - 747
Main Authors Xie, Tian, Dai, Linglong, Gao, Xinyu, Dai, Xiaoming, Zhao, Youping
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the increase of the number of base station (BS) antennas in massive multiple-input multiple-output (MIMO) systems, linear precoding schemes are able to achieve the near-optimal performance, and thus are more attractive than nonlinear precoding techniques. However, conventional linear precoding schemes such as zero-forcing (ZF) precoding involve the matrix inversion of large size with high computational complexity, especially in massive MIMO systems. To reduce the complexity, in this letter, we propose a low-complexity linear precoding scheme based on the symmetric successive over relaxation (SSOR) method. Moreover, we propose a simple way to approximate the optimal relaxation parameter of the SSOR-based precoding by exploiting the channel property of asymptotical orthogonality in massive MIMO systems. We show that the proposed SSOR-based precoding can reduce the complexity of the classical ZF precoding by about one order of magnitude without performance loss, and it also outperforms the recently proposed linear approximate precoding schemes in typical fading channels.
AbstractList With the increase of the number of base station (BS) antennas in massive multiple-input multiple-output (MIMO) systems, linear precoding schemes are able to achieve the near-optimal performance, and thus are more attractive than nonlinear precoding techniques. However, conventional linear precoding schemes such as zero-forcing (ZF) precoding involve the matrix inversion of large size with high computational complexity, especially in massive MIMO systems. To reduce the complexity, in this letter, we propose a low-complexity linear precoding scheme based on the symmetric successive over relaxation (SSOR) method. Moreover, we propose a simple way to approximate the optimal relaxation parameter of the SSOR-based precoding by exploiting the channel property of asymptotical orthogonality in massive MIMO systems. We show that the proposed SSOR-based precoding can reduce the complexity of the classical ZF precoding by about one order of magnitude without performance loss, and it also outperforms the recently proposed linear approximate precoding schemes in typical fading channels.
Author Linglong Dai
Tian Xie
Xiaoming Dai
Youping Zhao
Xinyu Gao
Author_xml – sequence: 1
  givenname: Tian
  surname: Xie
  fullname: Xie, Tian
– sequence: 2
  givenname: Linglong
  surname: Dai
  fullname: Dai, Linglong
– sequence: 3
  givenname: Xinyu
  surname: Gao
  fullname: Gao, Xinyu
– sequence: 4
  givenname: Xiaoming
  surname: Dai
  fullname: Dai, Xiaoming
– sequence: 5
  givenname: Youping
  surname: Zhao
  fullname: Zhao, Youping
BookMark eNp9kLtOwzAUQC1UJNrCD8ASiYUlxY86tiUWiHhUalREYbac5Aa5SuNip0D_npRWDB1YfD2cc3V1BqjXuAYQOid4RAhW19N0lmUjikkyopxyicUR6hPOZUy7p9f9sVSxEEqeoEEIC4yxpJz00c3UfcWpW65q-LbtJprPZy_xnQlQRs8eClfa5j2qnI8yE4L9hCibZLNovgktLMMpOq5MHeBsP4fo7eH-NX2Kp7PHSXo7jQtGZRuDSXBV8ZIakxcCFE5AGFZJmXOhQFIFghiDc2xKXjCZJyXwnDJOxzzBVFA2RFe7vSvvPtYQWr20oYC6Ng24ddBEEq7UmBHVoZcH6MKtfdNdp4mQoouFx7ij5I4qvAvBQ6UL25rWuqb1xtaaYL3Nqn-z6m1Wvc_aqfRAXXm7NH7zv3SxkywA_AmCKcWYYD9OAYN-
CODEN ICLEF6
CitedBy_id crossref_primary_10_1109_JSSC_2021_3069988
crossref_primary_10_1109_ACCESS_2020_2979371
crossref_primary_10_1109_TVT_2022_3185967
crossref_primary_10_1109_ACCESS_2018_2870861
crossref_primary_10_1016_j_dsp_2020_102864
crossref_primary_10_1109_TWC_2022_3182407
crossref_primary_10_3390_en12183449
crossref_primary_10_1109_TSP_2024_3355742
crossref_primary_10_1109_ACCESS_2021_3073325
crossref_primary_10_1109_TVT_2024_3381559
crossref_primary_10_1587_transcom_2017EBP3003
crossref_primary_10_1109_TCOMM_2018_2823715
crossref_primary_10_3390_telecom5030042
crossref_primary_10_1007_s10586_018_2050_1
crossref_primary_10_1109_JSTSP_2023_3299175
crossref_primary_10_1109_LCOMM_2019_2911472
crossref_primary_10_1109_TWC_2024_3419137
crossref_primary_10_1109_LCOMM_2021_3121445
crossref_primary_10_1109_ACCESS_2017_2760881
crossref_primary_10_1109_LWC_2017_2761876
crossref_primary_10_3390_electronics9060882
crossref_primary_10_1186_s13638_019_1631_x
crossref_primary_10_32604_cmc_2021_016108
crossref_primary_10_1109_JSYST_2023_3325413
crossref_primary_10_1109_TCOMM_2023_3305646
crossref_primary_10_1109_TWC_2024_3446189
crossref_primary_10_1109_OJVT_2024_3514749
crossref_primary_10_1109_TWC_2021_3132789
crossref_primary_10_3390_su12219281
crossref_primary_10_1109_ACCESS_2023_3266476
crossref_primary_10_1109_TWC_2020_3012785
crossref_primary_10_3390_electronics11142198
Cites_doi 10.1109/MSP.2011.2178495
10.1109/TSP.2015.2463260
10.1109/ICC.2015.7248549
10.1007/978-3-319-05089-8
10.1109/JSTSP.2014.2322582
10.1049/el.2014.0713
10.1109/GLOCOM.2014.7037314
10.1145/2500423.2505302
10.1109/JSTSP.2014.2317671
10.1007/978-1-4419-0661-8
10.1109/WCNC.2013.6554990
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
F28
FR3
DOI 10.1109/LCOMM.2016.2525807
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Engineering Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2558
EndPage 747
ExternalDocumentID 4046711141
10_1109_LCOMM_2016_2525807
7399337
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61571270; 61271266
  funderid: 10.13039/501100001809
– fundername: Beijing Natural Science Foundation
  grantid: 4142027
  funderid: 10.13039/501100004826
– fundername: International Science and Technology Cooperation Program of China
  grantid: 2015DFG12760
  funderid: 10.13039/501100001744
– fundername: Foundation of Shenzhen Government
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
F28
FR3
ID FETCH-LOGICAL-c328t-ea60ff5d2aabc7e906e7a3f88b579e829e71aa0b0ad5c38b6de5b235245602723
IEDL.DBID RIE
ISSN 1089-7798
IngestDate Fri Jul 11 14:14:56 EDT 2025
Mon Jun 30 10:18:02 EDT 2025
Tue Jul 01 04:15:53 EDT 2025
Thu Apr 24 22:52:04 EDT 2025
Wed Aug 27 02:48:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords linear precoding
Massive multiple-input multiple-output (MIMO)
SSOR method
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-ea60ff5d2aabc7e906e7a3f88b579e829e71aa0b0ad5c38b6de5b235245602723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1787110040
PQPubID 85419
PageCount 4
ParticipantIDs proquest_journals_1787110040
crossref_citationtrail_10_1109_LCOMM_2016_2525807
ieee_primary_7399337
crossref_primary_10_1109_LCOMM_2016_2525807
proquest_miscellaneous_1815994319
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-April
2016-4-00
20160401
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-April
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE communications letters
PublicationTitleAbbrev COML
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References cormen (ref5) 2009
ref12
ref11
ref10
ref2
ref1
ref8
ref7
ref9
ref4
ref3
ref6
(ref13) 2014
References_xml – ident: ref2
  doi: 10.1109/MSP.2011.2178495
– ident: ref12
  doi: 10.1109/TSP.2015.2463260
– ident: ref8
  doi: 10.1109/ICC.2015.7248549
– ident: ref9
  doi: 10.1007/978-3-319-05089-8
– ident: ref4
  doi: 10.1109/JSTSP.2014.2322582
– ident: ref6
  doi: 10.1049/el.2014.0713
– year: 2014
  ident: ref13
  article-title: Technical specification group radio access network; Physical channels and modulation (Release 12)
– ident: ref7
  doi: 10.1109/GLOCOM.2014.7037314
– year: 2009
  ident: ref5
  publication-title: Introduction to Algorithms
– ident: ref11
  doi: 10.1145/2500423.2505302
– ident: ref1
  doi: 10.1109/JSTSP.2014.2317671
– ident: ref10
  doi: 10.1007/978-1-4419-0661-8
– ident: ref3
  doi: 10.1109/WCNC.2013.6554990
SSID ssj0008251
Score 2.384074
Snippet With the increase of the number of base station (BS) antennas in massive multiple-input multiple-output (MIMO) systems, linear precoding schemes are able to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 744
SubjectTerms Antennas
Approximation
Asymptotic properties
Channels
Complexity
Complexity theory
Covariance matrices
Fading channels
linear precoding
Massive multiple-input multiple-output (MIMO)
MIMO
MIMO (control systems)
Optimization
Orthogonality
SSOR method
Symmetric matrices
Title Low-Complexity SSOR-Based Precoding for Massive MIMO Systems
URI https://ieeexplore.ieee.org/document/7399337
https://www.proquest.com/docview/1787110040
https://www.proquest.com/docview/1815994319
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9wwDLaAp-0B2GDiGEydxNvWI5c0aSLxwtAQmyg3jSHxViWN-wK6Q6ynafx67LZXoTFNe6vUtHXj1P7c2J8BDkxeG6N5k1XEOs1qClitjip1iEaJ6GxELk4uLszZVfb1Wl-vwMehFgYR2-QzHPNhu5cf59WCf5Ud5uxNVb4KqxS4dbVag9XlEswumd4RYnR2WSAj3OH5ybQoOIvLjKWW2nLr2CdOqO2q8swUt_7ldAOKpWRdWsnNeNGEcfXwB2nj_4q-Ces90EyOu5XxClZw9hpePqEf3IKj8_mvlA0Ck2I2v5PLy-n39BO5tZh840CZ3VpCoDYpCGGTVUyKL8U06TnOt-Hq9POPk7O076aQVkraJkVvRF3rKL0PVY5OGMy9qq0NOndopcN84r0IwkddKRtMRB0k4TOCWBS7SvUG1mbzGe5AUmdKBc_VP9ZmWlfOZS7U0nlpJzpmYgST5fSWVU81zh0vbss25BCubFVSskrKXiUj-DBcc9cRbfxz9BbP8TCyn94R7C21WPbf4s9yQjapJcYjud4Pp-kr4q0RP8P5gsaQ4PQWZI92_37nt_CCn9_l7OzBWnO_wH2CI014167DR49n2Lw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9QwDLbGeAAe-DXQbgwoEm_QW5o0aSLxAhPTDa47xDZpb1XSuC9Mdwh6muCvx2571QQI8VapaeXGif25sT8DvDRFY4zmQ1YRmzRvKGC1OqrUIRolorMRuTi5PDGz8_zDhb7YgtdjLQwidslnOOXL7iw_ruo1_yo7KNibquIG3CS_r7O-Wmu0u1yE2afTO8KMzm5KZIQ7mB8uypLzuMxUaqktN4-95oa6vip_GOPOwxzdg3IjW59Y8mW6bsO0_vkbbeP_Cn8f7g5QM3nbr40HsIXLh3DnGgHhDryZr65SNglMi9n-SE5PF5_Td-TYYvKJQ2V2bAnB2qQkjE12MSmPy0UysJw_gvOj92eHs3Top5DWSto2RW9E0-govQ91gU4YLLxqrA26cGilwyLzXgTho66VDSaiDpIQGoEsil6legzby9USdyFpcqWC5_ofa0kVtXO5C410XtpMx1xMINtMb1UPZOPc8-Ky6oIO4apOJRWrpBpUMoFX4zNfe6qNf47e4TkeRw7TO4H9jRarYTd-rzKySh01Hsn1YrxN-4gPR_wSV2saQ4LTV5BF2vv7m5_DrdlZOa_mxycfn8BtlqXP4NmH7fbbGp8SOGnDs25N_gIKg9wF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Complexity+SSOR-Based+Precoding+for+Massive+MIMO+Systems&rft.jtitle=IEEE+communications+letters&rft.au=Xie%2C+Tian&rft.au=Dai%2C+Linglong&rft.au=Gao%2C+Xinyu&rft.au=Dai%2C+Xiaoming&rft.date=2016-04-01&rft.issn=1089-7798&rft.volume=20&rft.issue=4&rft.spage=744&rft.epage=747&rft_id=info:doi/10.1109%2FLCOMM.2016.2525807&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7798&client=summon