Low-Complexity SSOR-Based Precoding for Massive MIMO Systems
With the increase of the number of base station (BS) antennas in massive multiple-input multiple-output (MIMO) systems, linear precoding schemes are able to achieve the near-optimal performance, and thus are more attractive than nonlinear precoding techniques. However, conventional linear precoding...
Saved in:
Published in | IEEE communications letters Vol. 20; no. 4; pp. 744 - 747 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the increase of the number of base station (BS) antennas in massive multiple-input multiple-output (MIMO) systems, linear precoding schemes are able to achieve the near-optimal performance, and thus are more attractive than nonlinear precoding techniques. However, conventional linear precoding schemes such as zero-forcing (ZF) precoding involve the matrix inversion of large size with high computational complexity, especially in massive MIMO systems. To reduce the complexity, in this letter, we propose a low-complexity linear precoding scheme based on the symmetric successive over relaxation (SSOR) method. Moreover, we propose a simple way to approximate the optimal relaxation parameter of the SSOR-based precoding by exploiting the channel property of asymptotical orthogonality in massive MIMO systems. We show that the proposed SSOR-based precoding can reduce the complexity of the classical ZF precoding by about one order of magnitude without performance loss, and it also outperforms the recently proposed linear approximate precoding schemes in typical fading channels. |
---|---|
AbstractList | With the increase of the number of base station (BS) antennas in massive multiple-input multiple-output (MIMO) systems, linear precoding schemes are able to achieve the near-optimal performance, and thus are more attractive than nonlinear precoding techniques. However, conventional linear precoding schemes such as zero-forcing (ZF) precoding involve the matrix inversion of large size with high computational complexity, especially in massive MIMO systems. To reduce the complexity, in this letter, we propose a low-complexity linear precoding scheme based on the symmetric successive over relaxation (SSOR) method. Moreover, we propose a simple way to approximate the optimal relaxation parameter of the SSOR-based precoding by exploiting the channel property of asymptotical orthogonality in massive MIMO systems. We show that the proposed SSOR-based precoding can reduce the complexity of the classical ZF precoding by about one order of magnitude without performance loss, and it also outperforms the recently proposed linear approximate precoding schemes in typical fading channels. |
Author | Linglong Dai Tian Xie Xiaoming Dai Youping Zhao Xinyu Gao |
Author_xml | – sequence: 1 givenname: Tian surname: Xie fullname: Xie, Tian – sequence: 2 givenname: Linglong surname: Dai fullname: Dai, Linglong – sequence: 3 givenname: Xinyu surname: Gao fullname: Gao, Xinyu – sequence: 4 givenname: Xiaoming surname: Dai fullname: Dai, Xiaoming – sequence: 5 givenname: Youping surname: Zhao fullname: Zhao, Youping |
BookMark | eNp9kLtOwzAUQC1UJNrCD8ASiYUlxY86tiUWiHhUalREYbac5Aa5SuNip0D_npRWDB1YfD2cc3V1BqjXuAYQOid4RAhW19N0lmUjikkyopxyicUR6hPOZUy7p9f9sVSxEEqeoEEIC4yxpJz00c3UfcWpW65q-LbtJprPZy_xnQlQRs8eClfa5j2qnI8yE4L9hCibZLNovgktLMMpOq5MHeBsP4fo7eH-NX2Kp7PHSXo7jQtGZRuDSXBV8ZIakxcCFE5AGFZJmXOhQFIFghiDc2xKXjCZJyXwnDJOxzzBVFA2RFe7vSvvPtYQWr20oYC6Ng24ddBEEq7UmBHVoZcH6MKtfdNdp4mQoouFx7ij5I4qvAvBQ6UL25rWuqb1xtaaYL3Nqn-z6m1Wvc_aqfRAXXm7NH7zv3SxkywA_AmCKcWYYD9OAYN- |
CODEN | ICLEF6 |
CitedBy_id | crossref_primary_10_1109_JSSC_2021_3069988 crossref_primary_10_1109_ACCESS_2020_2979371 crossref_primary_10_1109_TVT_2022_3185967 crossref_primary_10_1109_ACCESS_2018_2870861 crossref_primary_10_1016_j_dsp_2020_102864 crossref_primary_10_1109_TWC_2022_3182407 crossref_primary_10_3390_en12183449 crossref_primary_10_1109_TSP_2024_3355742 crossref_primary_10_1109_ACCESS_2021_3073325 crossref_primary_10_1109_TVT_2024_3381559 crossref_primary_10_1587_transcom_2017EBP3003 crossref_primary_10_1109_TCOMM_2018_2823715 crossref_primary_10_3390_telecom5030042 crossref_primary_10_1007_s10586_018_2050_1 crossref_primary_10_1109_JSTSP_2023_3299175 crossref_primary_10_1109_LCOMM_2019_2911472 crossref_primary_10_1109_TWC_2024_3419137 crossref_primary_10_1109_LCOMM_2021_3121445 crossref_primary_10_1109_ACCESS_2017_2760881 crossref_primary_10_1109_LWC_2017_2761876 crossref_primary_10_3390_electronics9060882 crossref_primary_10_1186_s13638_019_1631_x crossref_primary_10_32604_cmc_2021_016108 crossref_primary_10_1109_JSYST_2023_3325413 crossref_primary_10_1109_TCOMM_2023_3305646 crossref_primary_10_1109_TWC_2024_3446189 crossref_primary_10_1109_OJVT_2024_3514749 crossref_primary_10_1109_TWC_2021_3132789 crossref_primary_10_3390_su12219281 crossref_primary_10_1109_ACCESS_2023_3266476 crossref_primary_10_1109_TWC_2020_3012785 crossref_primary_10_3390_electronics11142198 |
Cites_doi | 10.1109/MSP.2011.2178495 10.1109/TSP.2015.2463260 10.1109/ICC.2015.7248549 10.1007/978-3-319-05089-8 10.1109/JSTSP.2014.2322582 10.1049/el.2014.0713 10.1109/GLOCOM.2014.7037314 10.1145/2500423.2505302 10.1109/JSTSP.2014.2317671 10.1007/978-1-4419-0661-8 10.1109/WCNC.2013.6554990 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M F28 FR3 |
DOI | 10.1109/LCOMM.2016.2525807 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Engineering Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2558 |
EndPage | 747 |
ExternalDocumentID | 4046711141 10_1109_LCOMM_2016_2525807 7399337 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61571270; 61271266 funderid: 10.13039/501100001809 – fundername: Beijing Natural Science Foundation grantid: 4142027 funderid: 10.13039/501100004826 – fundername: International Science and Technology Cooperation Program of China grantid: 2015DFG12760 funderid: 10.13039/501100001744 – fundername: Foundation of Shenzhen Government |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD L7M F28 FR3 |
ID | FETCH-LOGICAL-c328t-ea60ff5d2aabc7e906e7a3f88b579e829e71aa0b0ad5c38b6de5b235245602723 |
IEDL.DBID | RIE |
ISSN | 1089-7798 |
IngestDate | Fri Jul 11 14:14:56 EDT 2025 Mon Jun 30 10:18:02 EDT 2025 Tue Jul 01 04:15:53 EDT 2025 Thu Apr 24 22:52:04 EDT 2025 Wed Aug 27 02:48:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | linear precoding Massive multiple-input multiple-output (MIMO) SSOR method |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-ea60ff5d2aabc7e906e7a3f88b579e829e71aa0b0ad5c38b6de5b235245602723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1787110040 |
PQPubID | 85419 |
PageCount | 4 |
ParticipantIDs | proquest_journals_1787110040 crossref_citationtrail_10_1109_LCOMM_2016_2525807 ieee_primary_7399337 crossref_primary_10_1109_LCOMM_2016_2525807 proquest_miscellaneous_1815994319 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-April 2016-4-00 20160401 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-April |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE communications letters |
PublicationTitleAbbrev | COML |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | cormen (ref5) 2009 ref12 ref11 ref10 ref2 ref1 ref8 ref7 ref9 ref4 ref3 ref6 (ref13) 2014 |
References_xml | – ident: ref2 doi: 10.1109/MSP.2011.2178495 – ident: ref12 doi: 10.1109/TSP.2015.2463260 – ident: ref8 doi: 10.1109/ICC.2015.7248549 – ident: ref9 doi: 10.1007/978-3-319-05089-8 – ident: ref4 doi: 10.1109/JSTSP.2014.2322582 – ident: ref6 doi: 10.1049/el.2014.0713 – year: 2014 ident: ref13 article-title: Technical specification group radio access network; Physical channels and modulation (Release 12) – ident: ref7 doi: 10.1109/GLOCOM.2014.7037314 – year: 2009 ident: ref5 publication-title: Introduction to Algorithms – ident: ref11 doi: 10.1145/2500423.2505302 – ident: ref1 doi: 10.1109/JSTSP.2014.2317671 – ident: ref10 doi: 10.1007/978-1-4419-0661-8 – ident: ref3 doi: 10.1109/WCNC.2013.6554990 |
SSID | ssj0008251 |
Score | 2.384074 |
Snippet | With the increase of the number of base station (BS) antennas in massive multiple-input multiple-output (MIMO) systems, linear precoding schemes are able to... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 744 |
SubjectTerms | Antennas Approximation Asymptotic properties Channels Complexity Complexity theory Covariance matrices Fading channels linear precoding Massive multiple-input multiple-output (MIMO) MIMO MIMO (control systems) Optimization Orthogonality SSOR method Symmetric matrices |
Title | Low-Complexity SSOR-Based Precoding for Massive MIMO Systems |
URI | https://ieeexplore.ieee.org/document/7399337 https://www.proquest.com/docview/1787110040 https://www.proquest.com/docview/1815994319 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9wwDLaAp-0B2GDiGEydxNvWI5c0aSLxwtAQmyg3jSHxViWN-wK6Q6ynafx67LZXoTFNe6vUtHXj1P7c2J8BDkxeG6N5k1XEOs1qClitjip1iEaJ6GxELk4uLszZVfb1Wl-vwMehFgYR2-QzHPNhu5cf59WCf5Ud5uxNVb4KqxS4dbVag9XlEswumd4RYnR2WSAj3OH5ybQoOIvLjKWW2nLr2CdOqO2q8swUt_7ldAOKpWRdWsnNeNGEcfXwB2nj_4q-Ces90EyOu5XxClZw9hpePqEf3IKj8_mvlA0Ck2I2v5PLy-n39BO5tZh840CZ3VpCoDYpCGGTVUyKL8U06TnOt-Hq9POPk7O076aQVkraJkVvRF3rKL0PVY5OGMy9qq0NOndopcN84r0IwkddKRtMRB0k4TOCWBS7SvUG1mbzGe5AUmdKBc_VP9ZmWlfOZS7U0nlpJzpmYgST5fSWVU81zh0vbss25BCubFVSskrKXiUj-DBcc9cRbfxz9BbP8TCyn94R7C21WPbf4s9yQjapJcYjud4Pp-kr4q0RP8P5gsaQ4PQWZI92_37nt_CCn9_l7OzBWnO_wH2CI014167DR49n2Lw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9QwDLbGeAAe-DXQbgwoEm_QW5o0aSLxAhPTDa47xDZpb1XSuC9Mdwh6muCvx2571QQI8VapaeXGif25sT8DvDRFY4zmQ1YRmzRvKGC1OqrUIRolorMRuTi5PDGz8_zDhb7YgtdjLQwidslnOOXL7iw_ruo1_yo7KNibquIG3CS_r7O-Wmu0u1yE2afTO8KMzm5KZIQ7mB8uypLzuMxUaqktN4-95oa6vip_GOPOwxzdg3IjW59Y8mW6bsO0_vkbbeP_Cn8f7g5QM3nbr40HsIXLh3DnGgHhDryZr65SNglMi9n-SE5PF5_Td-TYYvKJQ2V2bAnB2qQkjE12MSmPy0UysJw_gvOj92eHs3Top5DWSto2RW9E0-govQ91gU4YLLxqrA26cGilwyLzXgTho66VDSaiDpIQGoEsil6legzby9USdyFpcqWC5_ofa0kVtXO5C410XtpMx1xMINtMb1UPZOPc8-Ky6oIO4apOJRWrpBpUMoFX4zNfe6qNf47e4TkeRw7TO4H9jRarYTd-rzKySh01Hsn1YrxN-4gPR_wSV2saQ4LTV5BF2vv7m5_DrdlZOa_mxycfn8BtlqXP4NmH7fbbGp8SOGnDs25N_gIKg9wF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Complexity+SSOR-Based+Precoding+for+Massive+MIMO+Systems&rft.jtitle=IEEE+communications+letters&rft.au=Xie%2C+Tian&rft.au=Dai%2C+Linglong&rft.au=Gao%2C+Xinyu&rft.au=Dai%2C+Xiaoming&rft.date=2016-04-01&rft.issn=1089-7798&rft.volume=20&rft.issue=4&rft.spage=744&rft.epage=747&rft_id=info:doi/10.1109%2FLCOMM.2016.2525807&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7798&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7798&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7798&client=summon |