Twin-enhanced magnetic torque

•Anisotropies of twin microstructure, magnetism, and shape create magnetic torque.•Twin microstructures with low magnetic energy produce large magnetic torque.•Magnetic torque and magnetic field orientation exhibit a bifurcation. Magnetic shape memory alloys experience magnetic-field-induced torque...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetism and magnetic materials Vol. 458; pp. 183 - 192
Main Authors Hobza, Anthony, García-Cervera, Carlos J., Müllner, Peter
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.07.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Anisotropies of twin microstructure, magnetism, and shape create magnetic torque.•Twin microstructures with low magnetic energy produce large magnetic torque.•Magnetic torque and magnetic field orientation exhibit a bifurcation. Magnetic shape memory alloys experience magnetic-field-induced torque due to magnetocrystalline anisotropy and shape anisotropy. In a homogeneous magnetic field, torque results in bending of long samples. This study investigates the torque on a single crystal of Ni-Mn-Ga magnetic shape memory alloy constrained with respect to bending in an external magnetic field. The dependence of the torque on external magnetic field magnitude, strain, and twin boundary structure was studied experimentally and with computer simulations. With increasing magnetic field, the torque increased until it reached a maximum near 700 mT. Above 200 mT, the torque was not symmetric about the equilibrium orientation for a sample with one twin boundary. The torque on two specimen with equal strain but different twin boundary structures varied systematically with the spatial arrangement of crystallographic twins. Numerical simulations show that twin boundaries suppress the formation of 180° domains if the direction of easy magnetization between two twin boundaries is parallel to a free surface and the magnetic field is perpendicular to that surface. For a particular twin microstructure, the torque decreases with increasing strain by a factor of six due to the mutual compensation of magnetocrystalline and shape anisotropy. When free rotation is suppressed such as in transducers of magneto-mechanical actuators, magnetic-field-induced torque creates strong bending forces, which may cause friction and failure under cyclic loading.
AbstractList •Anisotropies of twin microstructure, magnetism, and shape create magnetic torque.•Twin microstructures with low magnetic energy produce large magnetic torque.•Magnetic torque and magnetic field orientation exhibit a bifurcation. Magnetic shape memory alloys experience magnetic-field-induced torque due to magnetocrystalline anisotropy and shape anisotropy. In a homogeneous magnetic field, torque results in bending of long samples. This study investigates the torque on a single crystal of Ni-Mn-Ga magnetic shape memory alloy constrained with respect to bending in an external magnetic field. The dependence of the torque on external magnetic field magnitude, strain, and twin boundary structure was studied experimentally and with computer simulations. With increasing magnetic field, the torque increased until it reached a maximum near 700 mT. Above 200 mT, the torque was not symmetric about the equilibrium orientation for a sample with one twin boundary. The torque on two specimen with equal strain but different twin boundary structures varied systematically with the spatial arrangement of crystallographic twins. Numerical simulations show that twin boundaries suppress the formation of 180° domains if the direction of easy magnetization between two twin boundaries is parallel to a free surface and the magnetic field is perpendicular to that surface. For a particular twin microstructure, the torque decreases with increasing strain by a factor of six due to the mutual compensation of magnetocrystalline and shape anisotropy. When free rotation is suppressed such as in transducers of magneto-mechanical actuators, magnetic-field-induced torque creates strong bending forces, which may cause friction and failure under cyclic loading.
Magnetic shape memory alloys experience magnetic-field-induced torque due to magnetocrystalline anisotropy and shape anisotropy. In a homogeneous magnetic field, torque results in bending of long samples. This study investigates the torque on a single crystal of Ni-Mn-Ga magnetic shape memory alloy constrained with respect to bending in an external magnetic field. The dependence of the torque on external magnetic field magnitude, strain, and twin boundary structure was studied experimentally and with computer simulations. With increasing magnetic field, the torque increased until it reached a maximum near 700 mT. Above 200 mT, the torque was not symmetric about the equilibrium orientation for a sample with one twin boundary. The torque on two specimen with equal strain but different twin boundary structures varied systematically with the spatial arrangement of crystallographic twins. Numerical simulations show that twin boundaries suppress the formation of 180° domains if the direction of easy magnetization between two twin boundaries is parallel to a free surface and the magnetic field is perpendicular to that surface. For a particular twin microstructure, the torque decreases with increasing strain by a factor of six due to the mutual compensation of magnetocrystalline and shape anisotropy. When free rotation is suppressed such as in transducers of magneto-mechanical actuators, magnetic-field-induced torque creates strong bending forces, which may cause friction and failure under cyclic loading.
Author García-Cervera, Carlos J.
Müllner, Peter
Hobza, Anthony
Author_xml – sequence: 1
  givenname: Anthony
  surname: Hobza
  fullname: Hobza, Anthony
  organization: Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, United States
– sequence: 2
  givenname: Carlos J.
  surname: García-Cervera
  fullname: García-Cervera, Carlos J.
  organization: Department of Mathematics, University of California, Santa Barbara, CA 93106, United States
– sequence: 3
  givenname: Peter
  surname: Müllner
  fullname: Müllner, Peter
  email: petermullner@boisestate.edu
  organization: Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, United States
BookMark eNp9kE9LAzEUxINUsK1-AUEoeN71JdlNUvAixX9Q8FLPIZu81SxutiZbxW9vlnr29C6_mXkzCzILQ0BCLimUFKi46cqu7_uSAVUl8BJodULmVEleVFKIGZkDh6pQquZnZJFSB5ARJebkavftQ4Hh3QSLbtWbt4Cjt6txiJ8HPCenrflIePF3l-T14X63eSq2L4_Pm7ttYTlTY-HWXEjjmHCucdxJCcLVCHVrHSKXsqF1o2iDvJKsprQ10qm6hQqsYlYYx5fk-ui7j0OOTaPuhkMMOVIzkLBmXNJ1ptiRsnFIKWKr99H3Jv5oCnqaQXd6mkFPM2jgOnfMotujCPP_Xx6jTtbjVNZHtKN2g_9P_gvkWmaG
CitedBy_id crossref_primary_10_1016_j_actamat_2020_03_045
crossref_primary_10_1088_2631_8695_ac9bce
crossref_primary_10_1016_j_actamat_2020_01_011
crossref_primary_10_1016_j_jmmm_2020_166900
crossref_primary_10_1016_j_jmmm_2022_169183
Cites_doi 10.1179/1743284714Y.0000000599
10.1007/s40830-017-0106-3
10.1080/14786430500363858
10.1103/PhysRevB.69.134410
10.1063/1.2748356
10.1016/j.jallcom.2014.11.067
10.1016/j.actamat.2015.05.030
10.1016/S1359-6462(01)01061-2
10.1016/j.jmmm.2010.09.013
10.1016/j.scriptamat.2011.01.025
10.1109/TMAG.2003.810610
10.1016/j.actamat.2010.04.032
10.1002/(SICI)1521-3951(199807)208:13.0.CO;2-4
10.1109/TMAG.2002.803567
10.1016/j.jcrysgro.2012.08.014
10.1063/1.373136
10.1063/1.2737934
10.1177/1045389X07086688
10.1063/1.1513875
10.1140/epjst/e2008-00657-3
10.1140/epjst/e2008-00663-5
10.1006/jcph.2001.6793
10.1063/1.2740328
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Jul 15, 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Jul 15, 2018
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.jmmm.2018.03.014
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-4766
EndPage 192
ExternalDocumentID 10_1016_j_jmmm_2018_03_014
S0304885317336223
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABFNM
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M24
M38
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29K
5VS
AAQFI
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFFNX
AFJKZ
AGHFR
AKRWK
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
D-I
FGOYB
G-2
HMV
HZ~
NDZJH
R2-
SEW
SMS
SPG
WUQ
XXG
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c328t-d9367ad26ddbd3d7706d5e05fcdee377b15b81be3472511fa7d85f040c82c6ad3
IEDL.DBID AIKHN
ISSN 0304-8853
IngestDate Thu Oct 10 17:34:10 EDT 2024
Thu Sep 26 19:03:34 EDT 2024
Fri Feb 23 02:29:00 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-d9367ad26ddbd3d7706d5e05fcdee377b15b81be3472511fa7d85f040c82c6ad3
PQID 2070923719
PQPubID 2045450
PageCount 10
ParticipantIDs proquest_journals_2070923719
crossref_primary_10_1016_j_jmmm_2018_03_014
elsevier_sciencedirect_doi_10_1016_j_jmmm_2018_03_014
PublicationCentury 2000
PublicationDate 2018-07-15
PublicationDateYYYYMMDD 2018-07-15
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of magnetism and magnetic materials
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Kiefer, Lagoudas (b0040) 2005; 85
O'Handley (b0030) 2000
Chmielus, Glavatskyy, Hoffmann, Chernenko, Schneider, Müllner (b0110) 2011; 64
Kucza, Patrick, Dunand, Müllner (b0015) 2015; 95
Garcia-Cervera, Weinman (b0095) 2003; 39
Hobza, Müllner (b0075) 2017; 3
Onisan, Bogdanov, Roessler (b0050) 2010; 58
Heczko (b0005) 2014; 30
Lai, Scheerbaum, Hinz, Gutfleisch, Schafer, Schultz, McCord (b0065) 2007; 90
Wang, Garcia-Cervera, Weinan (b0090) 2001; 171
V.A. Chernenko, V.A. L'vov, P. Müllner, G. Kostorz, T. Takagi, Phys. Rev. B 69 (2004) 134410.
Sozinov, Likhachev, Ullakko (b0135) 2002; 38
Müllner, Chernenko, Wollgarten, Kostorz (b0025) 2002; 92
T. Schiepp, V. Detkov, M. Maier, E. Pagounis, M. Laufenberg, in: 4th Int Conf on Ferromagnetic Shape Memory Alloys, ICFSMA, edited by P. Müllner, and W. B. KnowltonBoise, ID, 2013, pp. 48.
Müllner, Ullakko (b0020) 1998; 208
Liang, Kato, Taya, Mori (b0070) 2001; 45
Kiefer, Lagoudas (b0060) 2009; 20
Sarawate, Dapino (b0055) 2007; 101
Paul, McGehee, O'Handley, Richard (b0100) 2007; 101
Runov, Stuhr (b0130) 2011; 323
Kellis, Smith, Ullakko, Müllner (b0085) 2012; 359
O'Handley, Murray, Marioni, Nembach, Allen (b0035) 2000; 87
Gabdullin, Khan (b0120) 2017; 53
Zheng, Kucza, Patrick, Müllner, Dunand (b0010) 2015; 624
Lifshits, Landau (b0080) 1935; 8
Kiselev, Dragunov, Onisan, Roessler, Bogdanov (b0045) 2008; 158
Chmielus, Chernenko, Knowlton, Kostorz, Müllner (b0115) 2008; 158
Chmielus (10.1016/j.jmmm.2018.03.014_b0115) 2008; 158
Paul (10.1016/j.jmmm.2018.03.014_b0100) 2007; 101
10.1016/j.jmmm.2018.03.014_b0125
10.1016/j.jmmm.2018.03.014_b0105
Kellis (10.1016/j.jmmm.2018.03.014_b0085) 2012; 359
Garcia-Cervera (10.1016/j.jmmm.2018.03.014_b0095) 2003; 39
O'Handley (10.1016/j.jmmm.2018.03.014_b0030) 2000
Sozinov (10.1016/j.jmmm.2018.03.014_b0135) 2002; 38
Heczko (10.1016/j.jmmm.2018.03.014_b0005) 2014; 30
O'Handley (10.1016/j.jmmm.2018.03.014_b0035) 2000; 87
Kiefer (10.1016/j.jmmm.2018.03.014_b0060) 2009; 20
Onisan (10.1016/j.jmmm.2018.03.014_b0050) 2010; 58
Liang (10.1016/j.jmmm.2018.03.014_b0070) 2001; 45
Müllner (10.1016/j.jmmm.2018.03.014_b0020) 1998; 208
Kiselev (10.1016/j.jmmm.2018.03.014_b0045) 2008; 158
Sarawate (10.1016/j.jmmm.2018.03.014_b0055) 2007; 101
Runov (10.1016/j.jmmm.2018.03.014_b0130) 2011; 323
Zheng (10.1016/j.jmmm.2018.03.014_b0010) 2015; 624
Lifshits (10.1016/j.jmmm.2018.03.014_b0080) 1935; 8
Kiefer (10.1016/j.jmmm.2018.03.014_b0040) 2005; 85
Gabdullin (10.1016/j.jmmm.2018.03.014_b0120) 2017; 53
Müllner (10.1016/j.jmmm.2018.03.014_b0025) 2002; 92
Wang (10.1016/j.jmmm.2018.03.014_b0090) 2001; 171
Hobza (10.1016/j.jmmm.2018.03.014_b0075) 2017; 3
Lai (10.1016/j.jmmm.2018.03.014_b0065) 2007; 90
Kucza (10.1016/j.jmmm.2018.03.014_b0015) 2015; 95
Chmielus (10.1016/j.jmmm.2018.03.014_b0110) 2011; 64
References_xml – volume: 101
  start-page: 123522
  year: 2007
  ident: b0055
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Dapino
– volume: 359
  start-page: 64
  year: 2012
  ident: b0085
  publication-title: J. Cryst. Growth
  contributor:
    fullname: Müllner
– volume: 171
  start-page: 357
  year: 2001
  ident: b0090
  publication-title: J. Comput. Phys.
  contributor:
    fullname: Weinan
– volume: 8
  start-page: 153
  year: 1935
  ident: b0080
  publication-title: Phys. Zeitsch. der Sow
  contributor:
    fullname: Landau
– year: 2000
  ident: b0030
  article-title: Modern Magnetic Materials
  contributor:
    fullname: O'Handley
– volume: 95
  start-page: 284
  year: 2015
  ident: b0015
  publication-title: Acta Mater.
  contributor:
    fullname: Müllner
– volume: 53
  start-page: 4900108
  year: 2017
  ident: b0120
  publication-title: Ieee Trans. Magn.
  contributor:
    fullname: Khan
– volume: 39
  start-page: 1766
  year: 2003
  ident: b0095
  publication-title: IEEE Trans. Magn.
  contributor:
    fullname: Weinman
– volume: 64
  start-page: 888
  year: 2011
  ident: b0110
  publication-title: Scr. Mater.
  contributor:
    fullname: Müllner
– volume: 624
  start-page: 226
  year: 2015
  ident: b0010
  publication-title: J. Alloy. Compd.
  contributor:
    fullname: Dunand
– volume: 92
  start-page: 6708
  year: 2002
  ident: b0025
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Kostorz
– volume: 20
  start-page: 143
  year: 2009
  ident: b0060
  publication-title: J. Intell. Mater. Syst. Struct.
  contributor:
    fullname: Lagoudas
– volume: 208
  start-page: R1
  year: 1998
  ident: b0020
  publication-title: Physica Status Solidi B-Basic Research
  contributor:
    fullname: Ullakko
– volume: 101
  start-page: 123917
  year: 2007
  ident: b0100
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Richard
– volume: 323
  start-page: 244
  year: 2011
  ident: b0130
  publication-title: J. Magn. Magn. Mater.
  contributor:
    fullname: Stuhr
– volume: 158
  start-page: 119
  year: 2008
  ident: b0045
  publication-title: Eur. Phys. J.-Spec. Top.
  contributor:
    fullname: Bogdanov
– volume: 3
  start-page: 139
  year: 2017
  ident: b0075
  publication-title: Shape Memory Superelasticity
  contributor:
    fullname: Müllner
– volume: 90
  start-page: 192504
  year: 2007
  ident: b0065
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: McCord
– volume: 30
  start-page: 1559
  year: 2014
  ident: b0005
  publication-title: Mater. Sci. Technol.
  contributor:
    fullname: Heczko
– volume: 58
  start-page: 4378
  year: 2010
  ident: b0050
  publication-title: Acta Mater.
  contributor:
    fullname: Roessler
– volume: 45
  start-page: 569
  year: 2001
  ident: b0070
  publication-title: Scr. Mater.
  contributor:
    fullname: Mori
– volume: 38
  start-page: 2814
  year: 2002
  ident: b0135
  publication-title: IEEE Trans. Magn.
  contributor:
    fullname: Ullakko
– volume: 87
  start-page: 4712
  year: 2000
  ident: b0035
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Allen
– volume: 158
  start-page: 79
  year: 2008
  ident: b0115
  publication-title: Eur. Phys. J.-Spec. Top.
  contributor:
    fullname: Müllner
– volume: 85
  start-page: 4289
  year: 2005
  ident: b0040
  publication-title: Phil. Mag.
  contributor:
    fullname: Lagoudas
– volume: 30
  start-page: 1559
  year: 2014
  ident: 10.1016/j.jmmm.2018.03.014_b0005
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/1743284714Y.0000000599
  contributor:
    fullname: Heczko
– volume: 3
  start-page: 139
  year: 2017
  ident: 10.1016/j.jmmm.2018.03.014_b0075
  publication-title: Shape Memory Superelasticity
  doi: 10.1007/s40830-017-0106-3
  contributor:
    fullname: Hobza
– volume: 85
  start-page: 4289
  year: 2005
  ident: 10.1016/j.jmmm.2018.03.014_b0040
  publication-title: Phil. Mag.
  doi: 10.1080/14786430500363858
  contributor:
    fullname: Kiefer
– ident: 10.1016/j.jmmm.2018.03.014_b0125
  doi: 10.1103/PhysRevB.69.134410
– volume: 53
  start-page: 4900108
  year: 2017
  ident: 10.1016/j.jmmm.2018.03.014_b0120
  publication-title: Ieee Trans. Magn.
  contributor:
    fullname: Gabdullin
– volume: 101
  start-page: 123522
  year: 2007
  ident: 10.1016/j.jmmm.2018.03.014_b0055
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2748356
  contributor:
    fullname: Sarawate
– volume: 624
  start-page: 226
  year: 2015
  ident: 10.1016/j.jmmm.2018.03.014_b0010
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2014.11.067
  contributor:
    fullname: Zheng
– volume: 95
  start-page: 284
  year: 2015
  ident: 10.1016/j.jmmm.2018.03.014_b0015
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.05.030
  contributor:
    fullname: Kucza
– volume: 45
  start-page: 569
  year: 2001
  ident: 10.1016/j.jmmm.2018.03.014_b0070
  publication-title: Scr. Mater.
  doi: 10.1016/S1359-6462(01)01061-2
  contributor:
    fullname: Liang
– volume: 323
  start-page: 244
  year: 2011
  ident: 10.1016/j.jmmm.2018.03.014_b0130
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2010.09.013
  contributor:
    fullname: Runov
– volume: 64
  start-page: 888
  year: 2011
  ident: 10.1016/j.jmmm.2018.03.014_b0110
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2011.01.025
  contributor:
    fullname: Chmielus
– volume: 39
  start-page: 1766
  year: 2003
  ident: 10.1016/j.jmmm.2018.03.014_b0095
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2003.810610
  contributor:
    fullname: Garcia-Cervera
– volume: 58
  start-page: 4378
  year: 2010
  ident: 10.1016/j.jmmm.2018.03.014_b0050
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.04.032
  contributor:
    fullname: Onisan
– volume: 208
  start-page: R1
  year: 1998
  ident: 10.1016/j.jmmm.2018.03.014_b0020
  publication-title: Physica Status Solidi B-Basic Research
  doi: 10.1002/(SICI)1521-3951(199807)208:13.0.CO;2-4
  contributor:
    fullname: Müllner
– volume: 38
  start-page: 2814
  year: 2002
  ident: 10.1016/j.jmmm.2018.03.014_b0135
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2002.803567
  contributor:
    fullname: Sozinov
– volume: 359
  start-page: 64
  year: 2012
  ident: 10.1016/j.jmmm.2018.03.014_b0085
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2012.08.014
  contributor:
    fullname: Kellis
– volume: 87
  start-page: 4712
  year: 2000
  ident: 10.1016/j.jmmm.2018.03.014_b0035
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.373136
  contributor:
    fullname: O'Handley
– volume: 90
  start-page: 192504
  year: 2007
  ident: 10.1016/j.jmmm.2018.03.014_b0065
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2737934
  contributor:
    fullname: Lai
– volume: 20
  start-page: 143
  year: 2009
  ident: 10.1016/j.jmmm.2018.03.014_b0060
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X07086688
  contributor:
    fullname: Kiefer
– volume: 92
  start-page: 6708
  year: 2002
  ident: 10.1016/j.jmmm.2018.03.014_b0025
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1513875
  contributor:
    fullname: Müllner
– year: 2000
  ident: 10.1016/j.jmmm.2018.03.014_b0030
  contributor:
    fullname: O'Handley
– volume: 158
  start-page: 79
  year: 2008
  ident: 10.1016/j.jmmm.2018.03.014_b0115
  publication-title: Eur. Phys. J.-Spec. Top.
  doi: 10.1140/epjst/e2008-00657-3
  contributor:
    fullname: Chmielus
– volume: 158
  start-page: 119
  year: 2008
  ident: 10.1016/j.jmmm.2018.03.014_b0045
  publication-title: Eur. Phys. J.-Spec. Top.
  doi: 10.1140/epjst/e2008-00663-5
  contributor:
    fullname: Kiselev
– volume: 8
  start-page: 153
  year: 1935
  ident: 10.1016/j.jmmm.2018.03.014_b0080
  publication-title: Phys. Zeitsch. der Sow
  contributor:
    fullname: Lifshits
– ident: 10.1016/j.jmmm.2018.03.014_b0105
– volume: 171
  start-page: 357
  year: 2001
  ident: 10.1016/j.jmmm.2018.03.014_b0090
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6793
  contributor:
    fullname: Wang
– volume: 101
  start-page: 123917
  year: 2007
  ident: 10.1016/j.jmmm.2018.03.014_b0100
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2740328
  contributor:
    fullname: Paul
SSID ssj0001486
ssib019626450
Score 2.3426802
Snippet •Anisotropies of twin microstructure, magnetism, and shape create magnetic torque.•Twin microstructures with low magnetic energy produce large magnetic...
Magnetic shape memory alloys experience magnetic-field-induced torque due to magnetocrystalline anisotropy and shape anisotropy. In a homogeneous magnetic...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 183
SubjectTerms Anisotropy
Bend strength
Computer simulation
Crystallization
Crystallography
Cyclic loads
Dependence
Free surfaces
Magnetic fields
Magnetism
Manganese
Materials fatigue
Nickel
Shape memory alloys
Single crystals
Torque
Transducers
Twin boundaries
Title Twin-enhanced magnetic torque
URI https://dx.doi.org/10.1016/j.jmmm.2018.03.014
https://www.proquest.com/docview/2070923719
Volume 458
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_sA8GL-InTbfTgTeqaJmna4xiOqbiLG-wW0iTVCavDTbz5t_vSD0FBDx7bkpD-2vze7_V9FOAi44nWwiR-oqjyGbXMjw0j6KUEXKmQ6si6auT7aTSZs9sFXzRgVNfCuLTKivtLTi_YujozqNAcrJfLwYML6sVobYjr6IdWrgltNEeMtaA9vLmbTL8IGRV_GbIMcCE4oKqdKdO8nlcrV5BO4qLXKWG_2acfTF2Yn_E-7FW60RuWSzuAhs0PYafI39SbI-jN3pe5b_OnIqDvrdRj7qoTPfSocbpjmI-vZ6OJX_35wNc0jLe-SWgklAkjY1JDjRBBZLgNeKaNtVSIlPAU9aalTDgXIVPCxDzD_ajjUEfK0BNo5S-5PQUvs7EliiaBzSxDOZNyE2rBlWWpFTRVHbis71euywYXss78epYOHenQkQGViE4HeA2J_PaYJDLwn-O6NX6y2iQbvC4C1JeCJGf_nPYcdt2R-9ZKeBda29c320ORsE370Lz6IP3qVfgE2ly6bw
link.rule.ids 315,786,790,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VIgQL4lMUWujAhkLj2I6TEVVUBdoutFI3y7Ev0EoNFS1i47dj50MIJBhY48RyXuK7d7l3F4DLlMdaCxN7saLKYxSZFxlGbJTic6UCqkN01cjDUdifsPspn9agW9XCOFllafsLm55b6_JIp0Szs5zNOo8uqRdZb0NcRz_r5TZg07EBp-u6_vjSeVi-XyQsfbsMe3pZOVOIvOaLhStHJ1He6ZSw37zTDzudO5_eHuyWrLF9UyxsH2qYHcBWrt7Uq0Nojd9nmYfZc57Oby_UU-ZqE9s2nrbTHcGkdzvu9r3yvweepkG09kxMQ6FMEBqTGGqE8EPD0eepNohUiITwxLJNpEy4ACFVwkQ8tbtRR4EOlaHHUM9eMjyBdooREkVjH1Nklswk3ARacIUsQUET1YCr6n7lsmhvISvd11w6dKRDR_pUWnQawCtI5LeHJK39_fO6ZoWfLLfIyo4L37JLQeLTf057Adv98XAgB3ejhzPYcSPuqyvhTaivX9-wZenCOjnPX4dPeFe7RA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Twin-enhanced+magnetic+torque&rft.jtitle=Journal+of+magnetism+and+magnetic+materials&rft.au=Hobza%2C+Anthony&rft.au=Garc%C3%ADa-Cervera%2C+Carlos+J.&rft.au=M%C3%BCllner%2C+Peter&rft.date=2018-07-15&rft.pub=Elsevier+B.V&rft.issn=0304-8853&rft.volume=458&rft.spage=183&rft.epage=192&rft_id=info:doi/10.1016%2Fj.jmmm.2018.03.014&rft.externalDocID=S0304885317336223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-8853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-8853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-8853&client=summon