A fractional Black-Scholes model with stochastic volatility and European option pricing

•European option pricing is studied under a FMLS model with stochastic volatility.•We have successfully solved a fractional partial differential equation system.•The derived pricing formula is truly explicit, involving no Fourier inversion. In this paper, we introduce the stochastic volatility into...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 178; p. 114983
Main Authors He, Xin-Jiang, Lin, Sha
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.09.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •European option pricing is studied under a FMLS model with stochastic volatility.•We have successfully solved a fractional partial differential equation system.•The derived pricing formula is truly explicit, involving no Fourier inversion. In this paper, we introduce the stochastic volatility into the FMLS (finite moment log-stable) model to capture the effect of both jumps and stochastic volatility. However, this additional stochastic source adds another degree of complexity in seeking for analytical formula when pricing European options, as the involved FPDE (fractional partial differential equation) system governing option prices is now of three dimensions. Albeit difficult, we have still managed to present an analytical solution expressed in terms of Fourier cosine series, after a two-step solution procedure is developed for the target FPDE system. This solution is different from the most literature as it is truly explicit, involving no Fourier inversion. It is also shown through the numerical experiments that it converges very rapidly and has potential to be applied in practice.
AbstractList In this paper, we introduce the stochastic volatility into the FMLS (finite moment log-stable) model to capture the effect of both jumps and stochastic volatility. However, this additional stochastic source adds another degree of complexity in seeking for analytical formula when pricing European options, as the involved FPDE (fractional partial differential equation) system governing option prices is now of three dimensions. Albeit difficult, we have still managed to present an analytical solution expressed in terms of Fourier cosine series, after a two-step solution procedure is developed for the target FPDE system. This solution is different from the most literature as it is truly explicit, involving no Fourier inversion. It is also shown through the numerical experiments that it converges very rapidly and has potential to be applied in practice.
•European option pricing is studied under a FMLS model with stochastic volatility.•We have successfully solved a fractional partial differential equation system.•The derived pricing formula is truly explicit, involving no Fourier inversion. In this paper, we introduce the stochastic volatility into the FMLS (finite moment log-stable) model to capture the effect of both jumps and stochastic volatility. However, this additional stochastic source adds another degree of complexity in seeking for analytical formula when pricing European options, as the involved FPDE (fractional partial differential equation) system governing option prices is now of three dimensions. Albeit difficult, we have still managed to present an analytical solution expressed in terms of Fourier cosine series, after a two-step solution procedure is developed for the target FPDE system. This solution is different from the most literature as it is truly explicit, involving no Fourier inversion. It is also shown through the numerical experiments that it converges very rapidly and has potential to be applied in practice.
ArticleNumber 114983
Author He, Xin-Jiang
Lin, Sha
Author_xml – sequence: 1
  givenname: Xin-Jiang
  surname: He
  fullname: He, Xin-Jiang
  email: xinjiang@zjut.edu.cn
  organization: School of Economics, Zhejiang University of Technology, Hangzhou, China
– sequence: 2
  givenname: Sha
  surname: Lin
  fullname: Lin, Sha
  email: linsha@mail.zjgsu.edu.cn
  organization: School of Finance, Zhejiang Gongshang University, Hangzhou, China
BookMark eNp9kDtPwzAUhS1UJNrCH2CyxJxiOw87EkupeEmVGAAxWq59Qx3SuNhuq_57EoWJodNdznd0zzdBo9a1gNA1JTNKaHFbzyAc1IwRRmeUZqVIz9CYCp4mBS_TERqTMudJRnl2gSYh1IRQTggfo885rrzS0bpWNfi-Ufo7edNr10DAG2egwQcb1zhEp9cqRKvx3jUq2sbGI1atwQ8777agWuy2fQneeqtt-3WJzivVBLj6u1P08fjwvnhOlq9PL4v5MtEpEzExtDC5ySirckpSLsqyLAxnmhu1IilUOUkrzle6AJ5RodiKCRBZFwOuMsFUOkU3Q-_Wu58dhChrt_PdliBZnlPWq8i7lBhS2rsQPFRS26j6f6NXtpGUyF6jrGWvUfYa5aCxQ9k_tFu4Uf54GrobIOim7y14GbSFVoOxHnSUxtlT-C84go3s
CitedBy_id crossref_primary_10_3934_math_2022617
crossref_primary_10_3390_info13010036
crossref_primary_10_1016_j_chaos_2022_112581
crossref_primary_10_1155_2024_6623636
crossref_primary_10_1016_j_cam_2021_113999
crossref_primary_10_3934_era_2023070
crossref_primary_10_4236_jmf_2022_123029
crossref_primary_10_3390_fractalfract8110637
crossref_primary_10_3934_math_2024836
crossref_primary_10_1016_j_techfore_2024_123429
crossref_primary_10_1142_S0219477524500603
crossref_primary_10_1007_s00500_022_06753_1
crossref_primary_10_1007_s10255_023_1082_3
crossref_primary_10_1016_j_aej_2024_08_053
crossref_primary_10_1515_math_2023_0169
crossref_primary_10_1007_s00500_023_08647_2
crossref_primary_10_1016_j_gfj_2023_100897
crossref_primary_10_1016_j_chaos_2022_111833
crossref_primary_10_3390_risks12120205
crossref_primary_10_1142_S021902492350019X
crossref_primary_10_1007_s10614_024_10628_y
crossref_primary_10_1007_s10614_021_10186_7
crossref_primary_10_1155_2022_3844001
crossref_primary_10_1017_S0269964822000018
crossref_primary_10_1007_s10614_023_10374_7
crossref_primary_10_1016_j_ribaf_2021_101595
crossref_primary_10_1002_mma_8623
crossref_primary_10_1016_j_camwa_2022_05_039
crossref_primary_10_1155_2022_7274598
crossref_primary_10_3934_era_2022005
Cites_doi 10.1016/S0370-1573(00)00070-3
10.1007/s00780-011-0157-9
10.1007/s11147-013-9091-7
10.1111/1467-9965.00020
10.1093/rfs/4.4.727
10.1287/mnsc.48.8.1086.166
10.1016/0304-405X(76)90022-2
10.1016/j.ejor.2018.08.033
10.1016/j.physa.2006.08.071
10.1080/15326349708807456
10.2307/2330793
10.1093/rfs/6.2.327
10.2139/ssrn.1941464
10.1016/0304-405X(87)90009-2
10.1023/A:1009703431535
10.1086/338705
10.21314/JCF.1999.043
10.1137/080718061
10.1080/14697688.2012.676208
10.1016/S0378-4266(98)00119-8
10.1080/1350486X.2014.960529
10.1080/14697688.2017.1412494
10.1080/14697688.2020.1741668
10.1086/260062
10.1080/14697688.2016.1149610
10.1017/S0956792515000510
10.1016/j.najef.2017.02.005
10.1111/1540-6261.00544
10.1090/S0033-569X-2014-01373-2
10.1111/j.1540-6261.1987.tb02568.x
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Sep 15, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Sep 15, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.114983
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_114983
S0957417421004243
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSH
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AAYWO
AAYXX
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
WUQ
XPP
ZMT
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-d16d5d412f5103789996d72c7dab03ef503f77bc6e7418a2b28e84899e7a482a3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Jul 25 07:48:30 EDT 2025
Thu Apr 24 22:53:39 EDT 2025
Tue Jul 01 04:05:52 EDT 2025
Sun Apr 06 06:54:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords FMLS model
Stochastic volatility
Explicit and analytical
Fractional partial differential equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-d16d5d412f5103789996d72c7dab03ef503f77bc6e7418a2b28e84899e7a482a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2551249835
PQPubID 2045477
ParticipantIDs proquest_journals_2551249835
crossref_citationtrail_10_1016_j_eswa_2021_114983
crossref_primary_10_1016_j_eswa_2021_114983
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_114983
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-15
PublicationDateYYYYMMDD 2021-09-15
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Chen, Xu, Zhu (b0040) 2014; 72
Merton (b0100) 1976; 3
Wiggins (b0155) 1987; 19
Carr, Geman, Madan, Yor (b0010) 2002; 75
Kou (b0090) 2002; 48
Carr, Lee, Wu (b0020) 2012; 16
Yamazaki (b0160) 2014; 17
Rydberg (b0120) 1997; 13
Sabino (b0125) 2020; 20
Heston (b0070) 1993; 6
Carr, Geman, Madan, Yor (b0015) 2003; 13
Cartea, del Castillo-Negrete (b0035) 2007; 374
Umezawa, Yamazaki (b0150) 2015; 22
Elliott, Lian (b0055) 2013; 13
Stein, Stein (b0140) 1991; 4
Schmelzle, M. (2010), Option pricing formulae using fourier transform: Theory and application. Preprint, http://pfadintegral.com.
Fang, Oosterlee (b0060) 2008; 31
Gong, Zhuang (b0065) 2017; 40
Metzler, Klafter (b0105) 2000; 339
Peiro (b0110) 1999; 23
Scott (b0135) 1987; 22
Hull, White (b0080) 1987; 42
Madan, Carr, Chang (b0095) 1998; 2
Dupire (b0050) 1994; 7
Tour, Thakoor, Khaliq, Tangman (b0145) 2018; 18
Carr, Wu (b0030) 2003; 58
Cui, Kirkby, Nguyen (b0045) 2019; 273
Zeng, Kwok (b0165) 2016; 16
Black, Scholes (b0005) 1973
He, Zhu (b0075) 2016; 27
Joshi, M. S. & Yang, C. (2011), Fourier transforms, option pricing and controls, Working paper, Available at SSRN: http://ssrn.com/abstract=1941464.
Rachev, Menn, Fabozzi (b0115) 2005; Vol. 139
Carr, Madan (b0025) 1999; 2
He (10.1016/j.eswa.2021.114983_b0075) 2016; 27
Cartea (10.1016/j.eswa.2021.114983_b0035) 2007; 374
Gong (10.1016/j.eswa.2021.114983_b0065) 2017; 40
Heston (10.1016/j.eswa.2021.114983_b0070) 1993; 6
Rachev (10.1016/j.eswa.2021.114983_b0115) 2005; Vol. 139
Carr (10.1016/j.eswa.2021.114983_b0010) 2002; 75
Carr (10.1016/j.eswa.2021.114983_b0025) 1999; 2
Wiggins (10.1016/j.eswa.2021.114983_b0155) 1987; 19
Madan (10.1016/j.eswa.2021.114983_b0095) 1998; 2
Sabino (10.1016/j.eswa.2021.114983_b0125) 2020; 20
Cui (10.1016/j.eswa.2021.114983_b0045) 2019; 273
Carr (10.1016/j.eswa.2021.114983_b0020) 2012; 16
10.1016/j.eswa.2021.114983_b0085
Hull (10.1016/j.eswa.2021.114983_b0080) 1987; 42
Tour (10.1016/j.eswa.2021.114983_b0145) 2018; 18
Black (10.1016/j.eswa.2021.114983_b0005) 1973
Carr (10.1016/j.eswa.2021.114983_b0030) 2003; 58
Kou (10.1016/j.eswa.2021.114983_b0090) 2002; 48
Umezawa (10.1016/j.eswa.2021.114983_b0150) 2015; 22
Peiro (10.1016/j.eswa.2021.114983_b0110) 1999; 23
Fang (10.1016/j.eswa.2021.114983_b0060) 2008; 31
Dupire (10.1016/j.eswa.2021.114983_b0050) 1994; 7
Zeng (10.1016/j.eswa.2021.114983_b0165) 2016; 16
Elliott (10.1016/j.eswa.2021.114983_b0055) 2013; 13
Merton (10.1016/j.eswa.2021.114983_b0100) 1976; 3
10.1016/j.eswa.2021.114983_b0130
Metzler (10.1016/j.eswa.2021.114983_b0105) 2000; 339
Carr (10.1016/j.eswa.2021.114983_b0015) 2003; 13
Scott (10.1016/j.eswa.2021.114983_b0135) 1987; 22
Stein (10.1016/j.eswa.2021.114983_b0140) 1991; 4
Rydberg (10.1016/j.eswa.2021.114983_b0120) 1997; 13
Chen (10.1016/j.eswa.2021.114983_b0040) 2014; 72
Yamazaki (10.1016/j.eswa.2021.114983_b0160) 2014; 17
References_xml – volume: 48
  start-page: 1086
  year: 2002
  end-page: 1101
  ident: b0090
  article-title: A jump-diffusion model for option pricing
  publication-title: Management Science
– volume: 6
  start-page: 327
  year: 1993
  end-page: 343
  ident: b0070
  article-title: A closed-form solution for options with stochastic volatility with applications to bond and currency options
  publication-title: Review of Financial Studies
– volume: 20
  start-page: 1213
  year: 2020
  end-page: 1226
  ident: b0125
  article-title: Forward or backward simulation? A comparative study
  publication-title: Quantitative Finance
– volume: 2
  start-page: 61
  year: 1999
  end-page: 73
  ident: b0025
  article-title: Option valuation using the fast Fourier transform
  publication-title: Journal of Computational Finance
– volume: 72
  start-page: 597
  year: 2014
  end-page: 611
  ident: b0040
  article-title: Analytically pricing European-style options under the modified Black-Scholes equation with a spatial-fractional derivative
  publication-title: Quarterly of Applied Mathematics
– volume: 16
  start-page: 1375
  year: 2016
  end-page: 1391
  ident: b0165
  article-title: Pricing bounds and approximations for discrete arithmetic Asian options under time-changed Lévy processes
  publication-title: Quantitative Finance
– reference: Schmelzle, M. (2010), Option pricing formulae using fourier transform: Theory and application. Preprint, http://pfadintegral.com.
– volume: 40
  start-page: 148
  year: 2017
  end-page: 159
  ident: b0065
  article-title: Measuring financial risk and portfolio reversion with time changed tempered stable Lévy processes
  publication-title: The North American Journal of Economics and Finance
– volume: 22
  start-page: 133
  year: 2015
  end-page: 161
  ident: b0150
  article-title: Pricing path-dependent options with discrete monitoring under time-changed Lévy processes
  publication-title: Applied Mathematical Finance
– volume: 22
  start-page: 419
  year: 1987
  end-page: 438
  ident: b0135
  article-title: Option pricing when the variance changes randomly: Theory, estimation, and an application
  publication-title: Journal of Financial and Quantitative analysis
– reference: Joshi, M. S. & Yang, C. (2011), Fourier transforms, option pricing and controls, Working paper, Available at SSRN: http://ssrn.com/abstract=1941464.
– volume: 3
  start-page: 125
  year: 1976
  end-page: 144
  ident: b0100
  article-title: Option pricing when underlying stock returns are discontinuous
  publication-title: Journal of Financial Economics
– volume: 75
  start-page: 305
  year: 2002
  end-page: 332
  ident: b0010
  article-title: The fine structure of asset returns: An empirical investigation
  publication-title: The Journal of Business
– volume: 27
  start-page: 233
  year: 2016
  end-page: 247
  ident: b0075
  article-title: Pricing European options with stochastic volatility under the minimal entropy martingale measure
  publication-title: European Journal of Applied Mathematics
– volume: 18
  start-page: 673
  year: 2018
  end-page: 692
  ident: b0145
  article-title: COS method for option pricing under a regime-switching model with time-changed Lévy processes
  publication-title: Quantitative Finance
– volume: 273
  start-page: 785
  year: 2019
  end-page: 800
  ident: b0045
  article-title: A general framework for time-changed markov processes and applications
  publication-title: European Journal of Operational Research
– start-page: 637
  year: 1973
  end-page: 654
  ident: b0005
  article-title: The pricing of options and corporate liabilities
  publication-title: The Journal of Political Economy
– volume: 42
  start-page: 281
  year: 1987
  end-page: 300
  ident: b0080
  article-title: The pricing of options on assets with stochastic volatilities
  publication-title: The Journal of Finance
– volume: 13
  start-page: 887
  year: 1997
  end-page: 910
  ident: b0120
  article-title: The normal inverse Gaussian Lévy process: Simulation and approximation
  publication-title: Communications in Statistics. Stochastic Models
– volume: 4
  start-page: 727
  year: 1991
  end-page: 752
  ident: b0140
  article-title: Stock price distributions with stochastic volatility: An analytic approach
  publication-title: Review of Financial Studies
– volume: 13
  start-page: 687
  year: 2013
  end-page: 698
  ident: b0055
  article-title: Pricing variance and volatility swaps in a stochastic volatility model with regime switching: Discrete observations case
  publication-title: Quantitative Finance
– volume: 58
  start-page: 753
  year: 2003
  end-page: 777
  ident: b0030
  article-title: The finite moment log stable process and option pricing
  publication-title: The Journal of Finance
– volume: 17
  start-page: 79
  year: 2014
  end-page: 111
  ident: b0160
  article-title: Pricing average options under time-changed Lévy processes
  publication-title: Review of Derivatives Research
– volume: 339
  start-page: 1
  year: 2000
  end-page: 77
  ident: b0105
  article-title: The random walk’s guide to anomalous diffusion: A fractional dynamics approach
  publication-title: Physics Reports
– volume: 16
  start-page: 335
  year: 2012
  end-page: 355
  ident: b0020
  article-title: Variance swaps on time-changed Lévy processes
  publication-title: Finance and Stochastics
– volume: 2
  start-page: 79
  year: 1998
  end-page: 105
  ident: b0095
  article-title: The variance gamma process and option pricing
  publication-title: Review of Finance
– volume: 7
  start-page: 18
  year: 1994
  end-page: 20
  ident: b0050
  article-title: Pricing with a smile
  publication-title: Risk
– volume: 13
  start-page: 345
  year: 2003
  end-page: 382
  ident: b0015
  article-title: Stochastic volatility for Lévy processes
  publication-title: Mathematical Finance
– volume: 23
  start-page: 847
  year: 1999
  end-page: 862
  ident: b0110
  article-title: Skewness in financial returns
  publication-title: Journal of Banking & Finance
– volume: 374
  start-page: 749
  year: 2007
  end-page: 763
  ident: b0035
  article-title: Fractional diffusion models of option prices in markets with jumps
  publication-title: Physica A: Statistical Mechanics and its Applications
– volume: Vol. 139
  year: 2005
  ident: b0115
  publication-title: Fat-tailed and skewed asset return distributions: Implications for risk management, portfolio selection, and option pricing
– volume: 31
  start-page: 826
  year: 2008
  end-page: 848
  ident: b0060
  article-title: A novel pricing method for european options based on fourier-cosine series expansions
  publication-title: SIAM Journal on Scientific Computing
– volume: 19
  start-page: 351
  year: 1987
  end-page: 372
  ident: b0155
  article-title: Option values under stochastic volatility: Theory and empirical estimates
  publication-title: Journal of Financial Economics
– volume: 339
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.eswa.2021.114983_b0105
  article-title: The random walk’s guide to anomalous diffusion: A fractional dynamics approach
  publication-title: Physics Reports
  doi: 10.1016/S0370-1573(00)00070-3
– volume: Vol. 139
  year: 2005
  ident: 10.1016/j.eswa.2021.114983_b0115
– volume: 16
  start-page: 335
  issue: 2
  year: 2012
  ident: 10.1016/j.eswa.2021.114983_b0020
  article-title: Variance swaps on time-changed Lévy processes
  publication-title: Finance and Stochastics
  doi: 10.1007/s00780-011-0157-9
– volume: 17
  start-page: 79
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2021.114983_b0160
  article-title: Pricing average options under time-changed Lévy processes
  publication-title: Review of Derivatives Research
  doi: 10.1007/s11147-013-9091-7
– volume: 13
  start-page: 345
  issue: 3
  year: 2003
  ident: 10.1016/j.eswa.2021.114983_b0015
  article-title: Stochastic volatility for Lévy processes
  publication-title: Mathematical Finance
  doi: 10.1111/1467-9965.00020
– volume: 4
  start-page: 727
  issue: 4
  year: 1991
  ident: 10.1016/j.eswa.2021.114983_b0140
  article-title: Stock price distributions with stochastic volatility: An analytic approach
  publication-title: Review of Financial Studies
  doi: 10.1093/rfs/4.4.727
– volume: 48
  start-page: 1086
  issue: 8
  year: 2002
  ident: 10.1016/j.eswa.2021.114983_b0090
  article-title: A jump-diffusion model for option pricing
  publication-title: Management Science
  doi: 10.1287/mnsc.48.8.1086.166
– volume: 3
  start-page: 125
  issue: 1–2
  year: 1976
  ident: 10.1016/j.eswa.2021.114983_b0100
  article-title: Option pricing when underlying stock returns are discontinuous
  publication-title: Journal of Financial Economics
  doi: 10.1016/0304-405X(76)90022-2
– volume: 7
  start-page: 18
  issue: 1
  year: 1994
  ident: 10.1016/j.eswa.2021.114983_b0050
  article-title: Pricing with a smile
  publication-title: Risk
– volume: 273
  start-page: 785
  issue: 2
  year: 2019
  ident: 10.1016/j.eswa.2021.114983_b0045
  article-title: A general framework for time-changed markov processes and applications
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2018.08.033
– volume: 374
  start-page: 749
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2021.114983_b0035
  article-title: Fractional diffusion models of option prices in markets with jumps
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2006.08.071
– ident: 10.1016/j.eswa.2021.114983_b0130
– volume: 13
  start-page: 887
  issue: 4
  year: 1997
  ident: 10.1016/j.eswa.2021.114983_b0120
  article-title: The normal inverse Gaussian Lévy process: Simulation and approximation
  publication-title: Communications in Statistics. Stochastic Models
  doi: 10.1080/15326349708807456
– volume: 22
  start-page: 419
  issue: 04
  year: 1987
  ident: 10.1016/j.eswa.2021.114983_b0135
  article-title: Option pricing when the variance changes randomly: Theory, estimation, and an application
  publication-title: Journal of Financial and Quantitative analysis
  doi: 10.2307/2330793
– volume: 6
  start-page: 327
  issue: 2
  year: 1993
  ident: 10.1016/j.eswa.2021.114983_b0070
  article-title: A closed-form solution for options with stochastic volatility with applications to bond and currency options
  publication-title: Review of Financial Studies
  doi: 10.1093/rfs/6.2.327
– ident: 10.1016/j.eswa.2021.114983_b0085
  doi: 10.2139/ssrn.1941464
– volume: 19
  start-page: 351
  issue: 2
  year: 1987
  ident: 10.1016/j.eswa.2021.114983_b0155
  article-title: Option values under stochastic volatility: Theory and empirical estimates
  publication-title: Journal of Financial Economics
  doi: 10.1016/0304-405X(87)90009-2
– volume: 2
  start-page: 79
  issue: 1
  year: 1998
  ident: 10.1016/j.eswa.2021.114983_b0095
  article-title: The variance gamma process and option pricing
  publication-title: Review of Finance
  doi: 10.1023/A:1009703431535
– volume: 75
  start-page: 305
  issue: 2
  year: 2002
  ident: 10.1016/j.eswa.2021.114983_b0010
  article-title: The fine structure of asset returns: An empirical investigation
  publication-title: The Journal of Business
  doi: 10.1086/338705
– volume: 2
  start-page: 61
  issue: 4
  year: 1999
  ident: 10.1016/j.eswa.2021.114983_b0025
  article-title: Option valuation using the fast Fourier transform
  publication-title: Journal of Computational Finance
  doi: 10.21314/JCF.1999.043
– volume: 31
  start-page: 826
  issue: 2
  year: 2008
  ident: 10.1016/j.eswa.2021.114983_b0060
  article-title: A novel pricing method for european options based on fourier-cosine series expansions
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/080718061
– volume: 13
  start-page: 687
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2021.114983_b0055
  article-title: Pricing variance and volatility swaps in a stochastic volatility model with regime switching: Discrete observations case
  publication-title: Quantitative Finance
  doi: 10.1080/14697688.2012.676208
– volume: 23
  start-page: 847
  issue: 6
  year: 1999
  ident: 10.1016/j.eswa.2021.114983_b0110
  article-title: Skewness in financial returns
  publication-title: Journal of Banking & Finance
  doi: 10.1016/S0378-4266(98)00119-8
– volume: 22
  start-page: 133
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2021.114983_b0150
  article-title: Pricing path-dependent options with discrete monitoring under time-changed Lévy processes
  publication-title: Applied Mathematical Finance
  doi: 10.1080/1350486X.2014.960529
– volume: 18
  start-page: 673
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2021.114983_b0145
  article-title: COS method for option pricing under a regime-switching model with time-changed Lévy processes
  publication-title: Quantitative Finance
  doi: 10.1080/14697688.2017.1412494
– volume: 20
  start-page: 1213
  issue: 7
  year: 2020
  ident: 10.1016/j.eswa.2021.114983_b0125
  article-title: Forward or backward simulation? A comparative study
  publication-title: Quantitative Finance
  doi: 10.1080/14697688.2020.1741668
– start-page: 637
  year: 1973
  ident: 10.1016/j.eswa.2021.114983_b0005
  article-title: The pricing of options and corporate liabilities
  publication-title: The Journal of Political Economy
  doi: 10.1086/260062
– volume: 16
  start-page: 1375
  issue: 9
  year: 2016
  ident: 10.1016/j.eswa.2021.114983_b0165
  article-title: Pricing bounds and approximations for discrete arithmetic Asian options under time-changed Lévy processes
  publication-title: Quantitative Finance
  doi: 10.1080/14697688.2016.1149610
– volume: 27
  start-page: 233
  issue: 02
  year: 2016
  ident: 10.1016/j.eswa.2021.114983_b0075
  article-title: Pricing European options with stochastic volatility under the minimal entropy martingale measure
  publication-title: European Journal of Applied Mathematics
  doi: 10.1017/S0956792515000510
– volume: 40
  start-page: 148
  year: 2017
  ident: 10.1016/j.eswa.2021.114983_b0065
  article-title: Measuring financial risk and portfolio reversion with time changed tempered stable Lévy processes
  publication-title: The North American Journal of Economics and Finance
  doi: 10.1016/j.najef.2017.02.005
– volume: 58
  start-page: 753
  issue: 2
  year: 2003
  ident: 10.1016/j.eswa.2021.114983_b0030
  article-title: The finite moment log stable process and option pricing
  publication-title: The Journal of Finance
  doi: 10.1111/1540-6261.00544
– volume: 72
  start-page: 597
  issue: 3
  year: 2014
  ident: 10.1016/j.eswa.2021.114983_b0040
  article-title: Analytically pricing European-style options under the modified Black-Scholes equation with a spatial-fractional derivative
  publication-title: Quarterly of Applied Mathematics
  doi: 10.1090/S0033-569X-2014-01373-2
– volume: 42
  start-page: 281
  issue: 2
  year: 1987
  ident: 10.1016/j.eswa.2021.114983_b0080
  article-title: The pricing of options on assets with stochastic volatilities
  publication-title: The Journal of Finance
  doi: 10.1111/j.1540-6261.1987.tb02568.x
SSID ssj0017007
Score 2.51012
Snippet •European option pricing is studied under a FMLS model with stochastic volatility.•We have successfully solved a fractional partial differential equation...
In this paper, we introduce the stochastic volatility into the FMLS (finite moment log-stable) model to capture the effect of both jumps and stochastic...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114983
SubjectTerms Cosine series
Exact solutions
Explicit and analytical
FMLS model
Fourier series
Fractional partial differential equation
Partial differential equations
Pricing
Securities prices
Stochastic models
Stochastic volatility
Volatility
Title A fractional Black-Scholes model with stochastic volatility and European option pricing
URI https://dx.doi.org/10.1016/j.eswa.2021.114983
https://www.proquest.com/docview/2551249835
Volume 178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRhRK5YENhTZ-xMlYVVQFpC5Q0c2KHQeKqrRqi9j47dwlDhJIdGCMc46iO_v8nX3-jpArxl0accOCxCZRILIoDIy0GcQ8lvFIOoQYmG0xjkYTcT-V0wYZ1HdhMK3S-_7Kp5fe2rd0vTa7y9ms-wjgAJZDCO3C8vwOGT-FUDjKbz6_0zyQfk5VfHsqQGl_cabK8XLrD-QeYiFS5iYx_2tx-uWmy7VneED2PGik_eq_DknDFUdkvy7IQP38PCbPfZqvqpsKIF7uzQVIszl3a1qWvKG47UoB79nXFAmaKTgnMA1CcZoWGa335umi9CR0ucKD95cTMhnePg1Gga-cEFjO4k2QhVEmMxGyHAnzVIxRTaaYVVlqetzlssdzpYyNHJLXpMyw2MUCxJxKRcxSfkqaxaJwZ4TyBF6AMSwziUiETNIwiQ0AtTgHnQnTImGtMm09rThWt5jrOn_sTaOaNapZV2pukevvPsuKVGOrtKwtoX8MDQ1ef2u_dm027SfmWkMEheW2AXee__OzF2QXnzBnJJRt0tys3t0lAJON6ZQjr0N2-ncPo_EXmCngrA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QD3rxbURRe_BmVuxjX0dCJKjIRYjcmm23qxgCBDDe_O3O7HZJNJGD1-202cy002_a6TeEXHFhk0Bo7sUmDjyZBszTvkkh5jFcBL5FiIHZFr2gM5APQ39YIa3yLQymVTrfX_j03Fu7Lw2nzcZsNGo8AziA7RBCO5bf34kNsilh-WIZg5uvVZ4H8s-FBeFe6KG4ezlTJHnZxSeSD3GGnLlxJP7anX756Xzzae-RHYcaabP4sX1SsZMDsltWZKBugR6SlybN5sVTBRDPD-c85Nkc2wXNa95QPHelAPjMW4IMzRS8E9gGsThNJiktD-fpNHcldDbHm_fXIzJo3_VbHc-VTvCM4NHSS1mQ-qlkPEPGvDDCsCYNuQnTRN8Km_m3IgtDbQKL7DUJ1zyykQQxGyYy4ok4JtXJdGJPCBUxNIA1DNexjKUfJyyONCC1KAOdSV0jrFSZMo5XHMtbjFWZQPauUM0K1awKNdfI9arPrGDVWCvtl5ZQP-aGAre_tl-9NJtyK3OhIITCetsAPE__Oewl2er0n7qqe997PCPb2IIJJMyvk-py_mHPAaUs9UU-C78B017iOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fractional+Black-Scholes+model+with+stochastic+volatility+and+European+option+pricing&rft.jtitle=Expert+systems+with+applications&rft.au=He%2C+Xin-Jiang&rft.au=Lin%2C+Sha&rft.date=2021-09-15&rft.issn=0957-4174&rft.volume=178&rft.spage=114983&rft_id=info:doi/10.1016%2Fj.eswa.2021.114983&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2021_114983
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon