A fractional Black-Scholes model with stochastic volatility and European option pricing
•European option pricing is studied under a FMLS model with stochastic volatility.•We have successfully solved a fractional partial differential equation system.•The derived pricing formula is truly explicit, involving no Fourier inversion. In this paper, we introduce the stochastic volatility into...
Saved in:
Published in | Expert systems with applications Vol. 178; p. 114983 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
15.09.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •European option pricing is studied under a FMLS model with stochastic volatility.•We have successfully solved a fractional partial differential equation system.•The derived pricing formula is truly explicit, involving no Fourier inversion.
In this paper, we introduce the stochastic volatility into the FMLS (finite moment log-stable) model to capture the effect of both jumps and stochastic volatility. However, this additional stochastic source adds another degree of complexity in seeking for analytical formula when pricing European options, as the involved FPDE (fractional partial differential equation) system governing option prices is now of three dimensions. Albeit difficult, we have still managed to present an analytical solution expressed in terms of Fourier cosine series, after a two-step solution procedure is developed for the target FPDE system. This solution is different from the most literature as it is truly explicit, involving no Fourier inversion. It is also shown through the numerical experiments that it converges very rapidly and has potential to be applied in practice. |
---|---|
AbstractList | In this paper, we introduce the stochastic volatility into the FMLS (finite moment log-stable) model to capture the effect of both jumps and stochastic volatility. However, this additional stochastic source adds another degree of complexity in seeking for analytical formula when pricing European options, as the involved FPDE (fractional partial differential equation) system governing option prices is now of three dimensions. Albeit difficult, we have still managed to present an analytical solution expressed in terms of Fourier cosine series, after a two-step solution procedure is developed for the target FPDE system. This solution is different from the most literature as it is truly explicit, involving no Fourier inversion. It is also shown through the numerical experiments that it converges very rapidly and has potential to be applied in practice. •European option pricing is studied under a FMLS model with stochastic volatility.•We have successfully solved a fractional partial differential equation system.•The derived pricing formula is truly explicit, involving no Fourier inversion. In this paper, we introduce the stochastic volatility into the FMLS (finite moment log-stable) model to capture the effect of both jumps and stochastic volatility. However, this additional stochastic source adds another degree of complexity in seeking for analytical formula when pricing European options, as the involved FPDE (fractional partial differential equation) system governing option prices is now of three dimensions. Albeit difficult, we have still managed to present an analytical solution expressed in terms of Fourier cosine series, after a two-step solution procedure is developed for the target FPDE system. This solution is different from the most literature as it is truly explicit, involving no Fourier inversion. It is also shown through the numerical experiments that it converges very rapidly and has potential to be applied in practice. |
ArticleNumber | 114983 |
Author | He, Xin-Jiang Lin, Sha |
Author_xml | – sequence: 1 givenname: Xin-Jiang surname: He fullname: He, Xin-Jiang email: xinjiang@zjut.edu.cn organization: School of Economics, Zhejiang University of Technology, Hangzhou, China – sequence: 2 givenname: Sha surname: Lin fullname: Lin, Sha email: linsha@mail.zjgsu.edu.cn organization: School of Finance, Zhejiang Gongshang University, Hangzhou, China |
BookMark | eNp9kDtPwzAUhS1UJNrCH2CyxJxiOw87EkupeEmVGAAxWq59Qx3SuNhuq_57EoWJodNdznd0zzdBo9a1gNA1JTNKaHFbzyAc1IwRRmeUZqVIz9CYCp4mBS_TERqTMudJRnl2gSYh1IRQTggfo885rrzS0bpWNfi-Ufo7edNr10DAG2egwQcb1zhEp9cqRKvx3jUq2sbGI1atwQ8777agWuy2fQneeqtt-3WJzivVBLj6u1P08fjwvnhOlq9PL4v5MtEpEzExtDC5ySirckpSLsqyLAxnmhu1IilUOUkrzle6AJ5RodiKCRBZFwOuMsFUOkU3Q-_Wu58dhChrt_PdliBZnlPWq8i7lBhS2rsQPFRS26j6f6NXtpGUyF6jrGWvUfYa5aCxQ9k_tFu4Uf54GrobIOim7y14GbSFVoOxHnSUxtlT-C84go3s |
CitedBy_id | crossref_primary_10_3934_math_2022617 crossref_primary_10_3390_info13010036 crossref_primary_10_1016_j_chaos_2022_112581 crossref_primary_10_1155_2024_6623636 crossref_primary_10_1016_j_cam_2021_113999 crossref_primary_10_3934_era_2023070 crossref_primary_10_4236_jmf_2022_123029 crossref_primary_10_3390_fractalfract8110637 crossref_primary_10_3934_math_2024836 crossref_primary_10_1016_j_techfore_2024_123429 crossref_primary_10_1142_S0219477524500603 crossref_primary_10_1007_s00500_022_06753_1 crossref_primary_10_1007_s10255_023_1082_3 crossref_primary_10_1016_j_aej_2024_08_053 crossref_primary_10_1515_math_2023_0169 crossref_primary_10_1007_s00500_023_08647_2 crossref_primary_10_1016_j_gfj_2023_100897 crossref_primary_10_1016_j_chaos_2022_111833 crossref_primary_10_3390_risks12120205 crossref_primary_10_1142_S021902492350019X crossref_primary_10_1007_s10614_024_10628_y crossref_primary_10_1007_s10614_021_10186_7 crossref_primary_10_1155_2022_3844001 crossref_primary_10_1017_S0269964822000018 crossref_primary_10_1007_s10614_023_10374_7 crossref_primary_10_1016_j_ribaf_2021_101595 crossref_primary_10_1002_mma_8623 crossref_primary_10_1016_j_camwa_2022_05_039 crossref_primary_10_1155_2022_7274598 crossref_primary_10_3934_era_2022005 |
Cites_doi | 10.1016/S0370-1573(00)00070-3 10.1007/s00780-011-0157-9 10.1007/s11147-013-9091-7 10.1111/1467-9965.00020 10.1093/rfs/4.4.727 10.1287/mnsc.48.8.1086.166 10.1016/0304-405X(76)90022-2 10.1016/j.ejor.2018.08.033 10.1016/j.physa.2006.08.071 10.1080/15326349708807456 10.2307/2330793 10.1093/rfs/6.2.327 10.2139/ssrn.1941464 10.1016/0304-405X(87)90009-2 10.1023/A:1009703431535 10.1086/338705 10.21314/JCF.1999.043 10.1137/080718061 10.1080/14697688.2012.676208 10.1016/S0378-4266(98)00119-8 10.1080/1350486X.2014.960529 10.1080/14697688.2017.1412494 10.1080/14697688.2020.1741668 10.1086/260062 10.1080/14697688.2016.1149610 10.1017/S0956792515000510 10.1016/j.najef.2017.02.005 10.1111/1540-6261.00544 10.1090/S0033-569X-2014-01373-2 10.1111/j.1540-6261.1987.tb02568.x |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Sep 15, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Sep 15, 2021 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2021.114983 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2021_114983 S0957417421004243 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNPGV BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSH SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AAYWO AAYXX ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW WUQ XPP ZMT 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c328t-d16d5d412f5103789996d72c7dab03ef503f77bc6e7418a2b28e84899e7a482a3 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Fri Jul 25 07:48:30 EDT 2025 Thu Apr 24 22:53:39 EDT 2025 Tue Jul 01 04:05:52 EDT 2025 Sun Apr 06 06:54:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | FMLS model Stochastic volatility Explicit and analytical Fractional partial differential equation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-d16d5d412f5103789996d72c7dab03ef503f77bc6e7418a2b28e84899e7a482a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2551249835 |
PQPubID | 2045477 |
ParticipantIDs | proquest_journals_2551249835 crossref_citationtrail_10_1016_j_eswa_2021_114983 crossref_primary_10_1016_j_eswa_2021_114983 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_114983 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-15 |
PublicationDateYYYYMMDD | 2021-09-15 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Expert systems with applications |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Chen, Xu, Zhu (b0040) 2014; 72 Merton (b0100) 1976; 3 Wiggins (b0155) 1987; 19 Carr, Geman, Madan, Yor (b0010) 2002; 75 Kou (b0090) 2002; 48 Carr, Lee, Wu (b0020) 2012; 16 Yamazaki (b0160) 2014; 17 Rydberg (b0120) 1997; 13 Sabino (b0125) 2020; 20 Heston (b0070) 1993; 6 Carr, Geman, Madan, Yor (b0015) 2003; 13 Cartea, del Castillo-Negrete (b0035) 2007; 374 Umezawa, Yamazaki (b0150) 2015; 22 Elliott, Lian (b0055) 2013; 13 Stein, Stein (b0140) 1991; 4 Schmelzle, M. (2010), Option pricing formulae using fourier transform: Theory and application. Preprint, http://pfadintegral.com. Fang, Oosterlee (b0060) 2008; 31 Gong, Zhuang (b0065) 2017; 40 Metzler, Klafter (b0105) 2000; 339 Peiro (b0110) 1999; 23 Scott (b0135) 1987; 22 Hull, White (b0080) 1987; 42 Madan, Carr, Chang (b0095) 1998; 2 Dupire (b0050) 1994; 7 Tour, Thakoor, Khaliq, Tangman (b0145) 2018; 18 Carr, Wu (b0030) 2003; 58 Cui, Kirkby, Nguyen (b0045) 2019; 273 Zeng, Kwok (b0165) 2016; 16 Black, Scholes (b0005) 1973 He, Zhu (b0075) 2016; 27 Joshi, M. S. & Yang, C. (2011), Fourier transforms, option pricing and controls, Working paper, Available at SSRN: http://ssrn.com/abstract=1941464. Rachev, Menn, Fabozzi (b0115) 2005; Vol. 139 Carr, Madan (b0025) 1999; 2 He (10.1016/j.eswa.2021.114983_b0075) 2016; 27 Cartea (10.1016/j.eswa.2021.114983_b0035) 2007; 374 Gong (10.1016/j.eswa.2021.114983_b0065) 2017; 40 Heston (10.1016/j.eswa.2021.114983_b0070) 1993; 6 Rachev (10.1016/j.eswa.2021.114983_b0115) 2005; Vol. 139 Carr (10.1016/j.eswa.2021.114983_b0010) 2002; 75 Carr (10.1016/j.eswa.2021.114983_b0025) 1999; 2 Wiggins (10.1016/j.eswa.2021.114983_b0155) 1987; 19 Madan (10.1016/j.eswa.2021.114983_b0095) 1998; 2 Sabino (10.1016/j.eswa.2021.114983_b0125) 2020; 20 Cui (10.1016/j.eswa.2021.114983_b0045) 2019; 273 Carr (10.1016/j.eswa.2021.114983_b0020) 2012; 16 10.1016/j.eswa.2021.114983_b0085 Hull (10.1016/j.eswa.2021.114983_b0080) 1987; 42 Tour (10.1016/j.eswa.2021.114983_b0145) 2018; 18 Black (10.1016/j.eswa.2021.114983_b0005) 1973 Carr (10.1016/j.eswa.2021.114983_b0030) 2003; 58 Kou (10.1016/j.eswa.2021.114983_b0090) 2002; 48 Umezawa (10.1016/j.eswa.2021.114983_b0150) 2015; 22 Peiro (10.1016/j.eswa.2021.114983_b0110) 1999; 23 Fang (10.1016/j.eswa.2021.114983_b0060) 2008; 31 Dupire (10.1016/j.eswa.2021.114983_b0050) 1994; 7 Zeng (10.1016/j.eswa.2021.114983_b0165) 2016; 16 Elliott (10.1016/j.eswa.2021.114983_b0055) 2013; 13 Merton (10.1016/j.eswa.2021.114983_b0100) 1976; 3 10.1016/j.eswa.2021.114983_b0130 Metzler (10.1016/j.eswa.2021.114983_b0105) 2000; 339 Carr (10.1016/j.eswa.2021.114983_b0015) 2003; 13 Scott (10.1016/j.eswa.2021.114983_b0135) 1987; 22 Stein (10.1016/j.eswa.2021.114983_b0140) 1991; 4 Rydberg (10.1016/j.eswa.2021.114983_b0120) 1997; 13 Chen (10.1016/j.eswa.2021.114983_b0040) 2014; 72 Yamazaki (10.1016/j.eswa.2021.114983_b0160) 2014; 17 |
References_xml | – volume: 48 start-page: 1086 year: 2002 end-page: 1101 ident: b0090 article-title: A jump-diffusion model for option pricing publication-title: Management Science – volume: 6 start-page: 327 year: 1993 end-page: 343 ident: b0070 article-title: A closed-form solution for options with stochastic volatility with applications to bond and currency options publication-title: Review of Financial Studies – volume: 20 start-page: 1213 year: 2020 end-page: 1226 ident: b0125 article-title: Forward or backward simulation? A comparative study publication-title: Quantitative Finance – volume: 2 start-page: 61 year: 1999 end-page: 73 ident: b0025 article-title: Option valuation using the fast Fourier transform publication-title: Journal of Computational Finance – volume: 72 start-page: 597 year: 2014 end-page: 611 ident: b0040 article-title: Analytically pricing European-style options under the modified Black-Scholes equation with a spatial-fractional derivative publication-title: Quarterly of Applied Mathematics – volume: 16 start-page: 1375 year: 2016 end-page: 1391 ident: b0165 article-title: Pricing bounds and approximations for discrete arithmetic Asian options under time-changed Lévy processes publication-title: Quantitative Finance – reference: Schmelzle, M. (2010), Option pricing formulae using fourier transform: Theory and application. Preprint, http://pfadintegral.com. – volume: 40 start-page: 148 year: 2017 end-page: 159 ident: b0065 article-title: Measuring financial risk and portfolio reversion with time changed tempered stable Lévy processes publication-title: The North American Journal of Economics and Finance – volume: 22 start-page: 133 year: 2015 end-page: 161 ident: b0150 article-title: Pricing path-dependent options with discrete monitoring under time-changed Lévy processes publication-title: Applied Mathematical Finance – volume: 22 start-page: 419 year: 1987 end-page: 438 ident: b0135 article-title: Option pricing when the variance changes randomly: Theory, estimation, and an application publication-title: Journal of Financial and Quantitative analysis – reference: Joshi, M. S. & Yang, C. (2011), Fourier transforms, option pricing and controls, Working paper, Available at SSRN: http://ssrn.com/abstract=1941464. – volume: 3 start-page: 125 year: 1976 end-page: 144 ident: b0100 article-title: Option pricing when underlying stock returns are discontinuous publication-title: Journal of Financial Economics – volume: 75 start-page: 305 year: 2002 end-page: 332 ident: b0010 article-title: The fine structure of asset returns: An empirical investigation publication-title: The Journal of Business – volume: 27 start-page: 233 year: 2016 end-page: 247 ident: b0075 article-title: Pricing European options with stochastic volatility under the minimal entropy martingale measure publication-title: European Journal of Applied Mathematics – volume: 18 start-page: 673 year: 2018 end-page: 692 ident: b0145 article-title: COS method for option pricing under a regime-switching model with time-changed Lévy processes publication-title: Quantitative Finance – volume: 273 start-page: 785 year: 2019 end-page: 800 ident: b0045 article-title: A general framework for time-changed markov processes and applications publication-title: European Journal of Operational Research – start-page: 637 year: 1973 end-page: 654 ident: b0005 article-title: The pricing of options and corporate liabilities publication-title: The Journal of Political Economy – volume: 42 start-page: 281 year: 1987 end-page: 300 ident: b0080 article-title: The pricing of options on assets with stochastic volatilities publication-title: The Journal of Finance – volume: 13 start-page: 887 year: 1997 end-page: 910 ident: b0120 article-title: The normal inverse Gaussian Lévy process: Simulation and approximation publication-title: Communications in Statistics. Stochastic Models – volume: 4 start-page: 727 year: 1991 end-page: 752 ident: b0140 article-title: Stock price distributions with stochastic volatility: An analytic approach publication-title: Review of Financial Studies – volume: 13 start-page: 687 year: 2013 end-page: 698 ident: b0055 article-title: Pricing variance and volatility swaps in a stochastic volatility model with regime switching: Discrete observations case publication-title: Quantitative Finance – volume: 58 start-page: 753 year: 2003 end-page: 777 ident: b0030 article-title: The finite moment log stable process and option pricing publication-title: The Journal of Finance – volume: 17 start-page: 79 year: 2014 end-page: 111 ident: b0160 article-title: Pricing average options under time-changed Lévy processes publication-title: Review of Derivatives Research – volume: 339 start-page: 1 year: 2000 end-page: 77 ident: b0105 article-title: The random walk’s guide to anomalous diffusion: A fractional dynamics approach publication-title: Physics Reports – volume: 16 start-page: 335 year: 2012 end-page: 355 ident: b0020 article-title: Variance swaps on time-changed Lévy processes publication-title: Finance and Stochastics – volume: 2 start-page: 79 year: 1998 end-page: 105 ident: b0095 article-title: The variance gamma process and option pricing publication-title: Review of Finance – volume: 7 start-page: 18 year: 1994 end-page: 20 ident: b0050 article-title: Pricing with a smile publication-title: Risk – volume: 13 start-page: 345 year: 2003 end-page: 382 ident: b0015 article-title: Stochastic volatility for Lévy processes publication-title: Mathematical Finance – volume: 23 start-page: 847 year: 1999 end-page: 862 ident: b0110 article-title: Skewness in financial returns publication-title: Journal of Banking & Finance – volume: 374 start-page: 749 year: 2007 end-page: 763 ident: b0035 article-title: Fractional diffusion models of option prices in markets with jumps publication-title: Physica A: Statistical Mechanics and its Applications – volume: Vol. 139 year: 2005 ident: b0115 publication-title: Fat-tailed and skewed asset return distributions: Implications for risk management, portfolio selection, and option pricing – volume: 31 start-page: 826 year: 2008 end-page: 848 ident: b0060 article-title: A novel pricing method for european options based on fourier-cosine series expansions publication-title: SIAM Journal on Scientific Computing – volume: 19 start-page: 351 year: 1987 end-page: 372 ident: b0155 article-title: Option values under stochastic volatility: Theory and empirical estimates publication-title: Journal of Financial Economics – volume: 339 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.eswa.2021.114983_b0105 article-title: The random walk’s guide to anomalous diffusion: A fractional dynamics approach publication-title: Physics Reports doi: 10.1016/S0370-1573(00)00070-3 – volume: Vol. 139 year: 2005 ident: 10.1016/j.eswa.2021.114983_b0115 – volume: 16 start-page: 335 issue: 2 year: 2012 ident: 10.1016/j.eswa.2021.114983_b0020 article-title: Variance swaps on time-changed Lévy processes publication-title: Finance and Stochastics doi: 10.1007/s00780-011-0157-9 – volume: 17 start-page: 79 issue: 1 year: 2014 ident: 10.1016/j.eswa.2021.114983_b0160 article-title: Pricing average options under time-changed Lévy processes publication-title: Review of Derivatives Research doi: 10.1007/s11147-013-9091-7 – volume: 13 start-page: 345 issue: 3 year: 2003 ident: 10.1016/j.eswa.2021.114983_b0015 article-title: Stochastic volatility for Lévy processes publication-title: Mathematical Finance doi: 10.1111/1467-9965.00020 – volume: 4 start-page: 727 issue: 4 year: 1991 ident: 10.1016/j.eswa.2021.114983_b0140 article-title: Stock price distributions with stochastic volatility: An analytic approach publication-title: Review of Financial Studies doi: 10.1093/rfs/4.4.727 – volume: 48 start-page: 1086 issue: 8 year: 2002 ident: 10.1016/j.eswa.2021.114983_b0090 article-title: A jump-diffusion model for option pricing publication-title: Management Science doi: 10.1287/mnsc.48.8.1086.166 – volume: 3 start-page: 125 issue: 1–2 year: 1976 ident: 10.1016/j.eswa.2021.114983_b0100 article-title: Option pricing when underlying stock returns are discontinuous publication-title: Journal of Financial Economics doi: 10.1016/0304-405X(76)90022-2 – volume: 7 start-page: 18 issue: 1 year: 1994 ident: 10.1016/j.eswa.2021.114983_b0050 article-title: Pricing with a smile publication-title: Risk – volume: 273 start-page: 785 issue: 2 year: 2019 ident: 10.1016/j.eswa.2021.114983_b0045 article-title: A general framework for time-changed markov processes and applications publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2018.08.033 – volume: 374 start-page: 749 issue: 2 year: 2007 ident: 10.1016/j.eswa.2021.114983_b0035 article-title: Fractional diffusion models of option prices in markets with jumps publication-title: Physica A: Statistical Mechanics and its Applications doi: 10.1016/j.physa.2006.08.071 – ident: 10.1016/j.eswa.2021.114983_b0130 – volume: 13 start-page: 887 issue: 4 year: 1997 ident: 10.1016/j.eswa.2021.114983_b0120 article-title: The normal inverse Gaussian Lévy process: Simulation and approximation publication-title: Communications in Statistics. Stochastic Models doi: 10.1080/15326349708807456 – volume: 22 start-page: 419 issue: 04 year: 1987 ident: 10.1016/j.eswa.2021.114983_b0135 article-title: Option pricing when the variance changes randomly: Theory, estimation, and an application publication-title: Journal of Financial and Quantitative analysis doi: 10.2307/2330793 – volume: 6 start-page: 327 issue: 2 year: 1993 ident: 10.1016/j.eswa.2021.114983_b0070 article-title: A closed-form solution for options with stochastic volatility with applications to bond and currency options publication-title: Review of Financial Studies doi: 10.1093/rfs/6.2.327 – ident: 10.1016/j.eswa.2021.114983_b0085 doi: 10.2139/ssrn.1941464 – volume: 19 start-page: 351 issue: 2 year: 1987 ident: 10.1016/j.eswa.2021.114983_b0155 article-title: Option values under stochastic volatility: Theory and empirical estimates publication-title: Journal of Financial Economics doi: 10.1016/0304-405X(87)90009-2 – volume: 2 start-page: 79 issue: 1 year: 1998 ident: 10.1016/j.eswa.2021.114983_b0095 article-title: The variance gamma process and option pricing publication-title: Review of Finance doi: 10.1023/A:1009703431535 – volume: 75 start-page: 305 issue: 2 year: 2002 ident: 10.1016/j.eswa.2021.114983_b0010 article-title: The fine structure of asset returns: An empirical investigation publication-title: The Journal of Business doi: 10.1086/338705 – volume: 2 start-page: 61 issue: 4 year: 1999 ident: 10.1016/j.eswa.2021.114983_b0025 article-title: Option valuation using the fast Fourier transform publication-title: Journal of Computational Finance doi: 10.21314/JCF.1999.043 – volume: 31 start-page: 826 issue: 2 year: 2008 ident: 10.1016/j.eswa.2021.114983_b0060 article-title: A novel pricing method for european options based on fourier-cosine series expansions publication-title: SIAM Journal on Scientific Computing doi: 10.1137/080718061 – volume: 13 start-page: 687 issue: 5 year: 2013 ident: 10.1016/j.eswa.2021.114983_b0055 article-title: Pricing variance and volatility swaps in a stochastic volatility model with regime switching: Discrete observations case publication-title: Quantitative Finance doi: 10.1080/14697688.2012.676208 – volume: 23 start-page: 847 issue: 6 year: 1999 ident: 10.1016/j.eswa.2021.114983_b0110 article-title: Skewness in financial returns publication-title: Journal of Banking & Finance doi: 10.1016/S0378-4266(98)00119-8 – volume: 22 start-page: 133 issue: 2 year: 2015 ident: 10.1016/j.eswa.2021.114983_b0150 article-title: Pricing path-dependent options with discrete monitoring under time-changed Lévy processes publication-title: Applied Mathematical Finance doi: 10.1080/1350486X.2014.960529 – volume: 18 start-page: 673 issue: 4 year: 2018 ident: 10.1016/j.eswa.2021.114983_b0145 article-title: COS method for option pricing under a regime-switching model with time-changed Lévy processes publication-title: Quantitative Finance doi: 10.1080/14697688.2017.1412494 – volume: 20 start-page: 1213 issue: 7 year: 2020 ident: 10.1016/j.eswa.2021.114983_b0125 article-title: Forward or backward simulation? A comparative study publication-title: Quantitative Finance doi: 10.1080/14697688.2020.1741668 – start-page: 637 year: 1973 ident: 10.1016/j.eswa.2021.114983_b0005 article-title: The pricing of options and corporate liabilities publication-title: The Journal of Political Economy doi: 10.1086/260062 – volume: 16 start-page: 1375 issue: 9 year: 2016 ident: 10.1016/j.eswa.2021.114983_b0165 article-title: Pricing bounds and approximations for discrete arithmetic Asian options under time-changed Lévy processes publication-title: Quantitative Finance doi: 10.1080/14697688.2016.1149610 – volume: 27 start-page: 233 issue: 02 year: 2016 ident: 10.1016/j.eswa.2021.114983_b0075 article-title: Pricing European options with stochastic volatility under the minimal entropy martingale measure publication-title: European Journal of Applied Mathematics doi: 10.1017/S0956792515000510 – volume: 40 start-page: 148 year: 2017 ident: 10.1016/j.eswa.2021.114983_b0065 article-title: Measuring financial risk and portfolio reversion with time changed tempered stable Lévy processes publication-title: The North American Journal of Economics and Finance doi: 10.1016/j.najef.2017.02.005 – volume: 58 start-page: 753 issue: 2 year: 2003 ident: 10.1016/j.eswa.2021.114983_b0030 article-title: The finite moment log stable process and option pricing publication-title: The Journal of Finance doi: 10.1111/1540-6261.00544 – volume: 72 start-page: 597 issue: 3 year: 2014 ident: 10.1016/j.eswa.2021.114983_b0040 article-title: Analytically pricing European-style options under the modified Black-Scholes equation with a spatial-fractional derivative publication-title: Quarterly of Applied Mathematics doi: 10.1090/S0033-569X-2014-01373-2 – volume: 42 start-page: 281 issue: 2 year: 1987 ident: 10.1016/j.eswa.2021.114983_b0080 article-title: The pricing of options on assets with stochastic volatilities publication-title: The Journal of Finance doi: 10.1111/j.1540-6261.1987.tb02568.x |
SSID | ssj0017007 |
Score | 2.51012 |
Snippet | •European option pricing is studied under a FMLS model with stochastic volatility.•We have successfully solved a fractional partial differential equation... In this paper, we introduce the stochastic volatility into the FMLS (finite moment log-stable) model to capture the effect of both jumps and stochastic... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114983 |
SubjectTerms | Cosine series Exact solutions Explicit and analytical FMLS model Fourier series Fractional partial differential equation Partial differential equations Pricing Securities prices Stochastic models Stochastic volatility Volatility |
Title | A fractional Black-Scholes model with stochastic volatility and European option pricing |
URI | https://dx.doi.org/10.1016/j.eswa.2021.114983 https://www.proquest.com/docview/2551249835 |
Volume | 178 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRhRK5YENhTZ-xMlYVVQFpC5Q0c2KHQeKqrRqi9j47dwlDhJIdGCMc46iO_v8nX3-jpArxl0accOCxCZRILIoDIy0GcQ8lvFIOoQYmG0xjkYTcT-V0wYZ1HdhMK3S-_7Kp5fe2rd0vTa7y9ms-wjgAJZDCO3C8vwOGT-FUDjKbz6_0zyQfk5VfHsqQGl_cabK8XLrD-QeYiFS5iYx_2tx-uWmy7VneED2PGik_eq_DknDFUdkvy7IQP38PCbPfZqvqpsKIF7uzQVIszl3a1qWvKG47UoB79nXFAmaKTgnMA1CcZoWGa335umi9CR0ucKD95cTMhnePg1Gga-cEFjO4k2QhVEmMxGyHAnzVIxRTaaYVVlqetzlssdzpYyNHJLXpMyw2MUCxJxKRcxSfkqaxaJwZ4TyBF6AMSwziUiETNIwiQ0AtTgHnQnTImGtMm09rThWt5jrOn_sTaOaNapZV2pukevvPsuKVGOrtKwtoX8MDQ1ef2u_dm027SfmWkMEheW2AXee__OzF2QXnzBnJJRt0tys3t0lAJON6ZQjr0N2-ncPo_EXmCngrA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QD3rxbURRe_BmVuxjX0dCJKjIRYjcmm23qxgCBDDe_O3O7HZJNJGD1-202cy002_a6TeEXHFhk0Bo7sUmDjyZBszTvkkh5jFcBL5FiIHZFr2gM5APQ39YIa3yLQymVTrfX_j03Fu7Lw2nzcZsNGo8AziA7RBCO5bf34kNsilh-WIZg5uvVZ4H8s-FBeFe6KG4ezlTJHnZxSeSD3GGnLlxJP7anX756Xzzae-RHYcaabP4sX1SsZMDsltWZKBugR6SlybN5sVTBRDPD-c85Nkc2wXNa95QPHelAPjMW4IMzRS8E9gGsThNJiktD-fpNHcldDbHm_fXIzJo3_VbHc-VTvCM4NHSS1mQ-qlkPEPGvDDCsCYNuQnTRN8Km_m3IgtDbQKL7DUJ1zyykQQxGyYy4ok4JtXJdGJPCBUxNIA1DNexjKUfJyyONCC1KAOdSV0jrFSZMo5XHMtbjFWZQPauUM0K1awKNdfI9arPrGDVWCvtl5ZQP-aGAre_tl-9NJtyK3OhIITCetsAPE__Oewl2er0n7qqe997PCPb2IIJJMyvk-py_mHPAaUs9UU-C78B017iOg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fractional+Black-Scholes+model+with+stochastic+volatility+and+European+option+pricing&rft.jtitle=Expert+systems+with+applications&rft.au=He%2C+Xin-Jiang&rft.au=Lin%2C+Sha&rft.date=2021-09-15&rft.issn=0957-4174&rft.volume=178&rft.spage=114983&rft_id=info:doi/10.1016%2Fj.eswa.2021.114983&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2021_114983 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |