Ball milled glyco-graphene oxide conjugates markedly disrupted Pseudomonas aeruginosa biofilms

The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial su...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 14; no. 28; pp. 10190 - 10199
Main Authors Tricomi, Jacopo, Cacaci, Margherita, Biagiotti, Giacomo, Caselli, Lucrezia, Niccoli, Lorenzo, Torelli, Riccardo, Gabbani, Alessio, Di Vito, Maura, Pineider, Francesco, Severi, Mirko, Sanguinetti, Maurizio, Menna, Enzo, Lelli, Moreno, Berti, Debora, Cicchi, Stefano, Bugli, Francesca, Richichi, Barbara
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 21.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial surface is grafted, has a significant impact on their development and innovation. In this regard, we report herein the grafting of sugar headgroups on a graphene oxide (GO) surface by exploiting a green manufacturing process that relies on the use of vibrational ball mills, a grinding apparatus in which the energy is transferred to the reacting species through collision with agate spheres inside a closed and vibrating vessel. The chemical composition and the morphology of the resulting glyco-graphene oxide conjugates (glyco-GO) are assessed by the combination of a series of complementary advanced techniques ( i.e. UV-vis and Raman spectroscopy, transmission electron microscopy, and Magic Angle Spinning (MAS) solid-state NMR (ssNMR) providing in-depth insights into the chemical reactivity of GO in a mechanochemical route. The conjugation of monosaccharide residues on the GO surface significantly improves the antimicrobial activity of pristine GO against P. aeruginosa . Indeed, glyco-GO conjugates, according to the monosaccharide derivatives installed into the GO surface, affect the ability of sessile cells to adhere to a polystyrene surface in a colony forming assay. Scanning electron microscopy images clearly show that glyco-GO conjugates significantly disrupt an already established P. aeruginosa biofilm.
AbstractList The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial surface is grafted, has a significant impact on their development and innovation. In this regard, we report herein the grafting of sugar headgroups on a graphene oxide (GO) surface by exploiting a green manufacturing process that relies on the use of vibrational ball mills, a grinding apparatus in which the energy is transferred to the reacting species through collision with agate spheres inside a closed and vibrating vessel. The chemical composition and the morphology of the resulting glyco-graphene oxide conjugates (glyco-GO) are assessed by the combination of a series of complementary advanced techniques (i.e. UV-vis and Raman spectroscopy, transmission electron microscopy, and Magic Angle Spinning (MAS) solid-state NMR (ssNMR) providing in-depth insights into the chemical reactivity of GO in a mechanochemical route. The conjugation of monosaccharide residues on the GO surface significantly improves the antimicrobial activity of pristine GO against P. aeruginosa. Indeed, glyco-GO conjugates, according to the monosaccharide derivatives installed into the GO surface, affect the ability of sessile cells to adhere to a polystyrene surface in a colony forming assay. Scanning electron microscopy images clearly show that glyco-GO conjugates significantly disrupt an already established P. aeruginosa biofilm.The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial surface is grafted, has a significant impact on their development and innovation. In this regard, we report herein the grafting of sugar headgroups on a graphene oxide (GO) surface by exploiting a green manufacturing process that relies on the use of vibrational ball mills, a grinding apparatus in which the energy is transferred to the reacting species through collision with agate spheres inside a closed and vibrating vessel. The chemical composition and the morphology of the resulting glyco-graphene oxide conjugates (glyco-GO) are assessed by the combination of a series of complementary advanced techniques (i.e. UV-vis and Raman spectroscopy, transmission electron microscopy, and Magic Angle Spinning (MAS) solid-state NMR (ssNMR) providing in-depth insights into the chemical reactivity of GO in a mechanochemical route. The conjugation of monosaccharide residues on the GO surface significantly improves the antimicrobial activity of pristine GO against P. aeruginosa. Indeed, glyco-GO conjugates, according to the monosaccharide derivatives installed into the GO surface, affect the ability of sessile cells to adhere to a polystyrene surface in a colony forming assay. Scanning electron microscopy images clearly show that glyco-GO conjugates significantly disrupt an already established P. aeruginosa biofilm.
The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial surface is grafted, has a significant impact on their development and innovation. In this regard, we report herein the grafting of sugar headgroups on a graphene oxide (GO) surface by exploiting a green manufacturing process that relies on the use of vibrational ball mills, a grinding apparatus in which the energy is transferred to the reacting species through collision with agate spheres inside a closed and vibrating vessel. The chemical composition and the morphology of the resulting glyco-graphene oxide conjugates (glyco-GO) are assessed by the combination of a series of complementary advanced techniques (i.e. UV-vis and Raman spectroscopy, transmission electron microscopy, and Magic Angle Spinning (MAS) solid-state NMR (ssNMR) providing in-depth insights into the chemical reactivity of GO in a mechanochemical route. The conjugation of monosaccharide residues on the GO surface significantly improves the antimicrobial activity of pristine GO against P. aeruginosa. Indeed, glyco-GO conjugates, according to the monosaccharide derivatives installed into the GO surface, affect the ability of sessile cells to adhere to a polystyrene surface in a colony forming assay. Scanning electron microscopy images clearly show that glyco-GO conjugates significantly disrupt an already established P. aeruginosa biofilm.
The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial surface is grafted, has a significant impact on their development and innovation. In this regard, we report herein the grafting of sugar headgroups on a graphene oxide (GO) surface by exploiting a green manufacturing process that relies on the use of vibrational ball mills, a grinding apparatus in which the energy is transferred to the reacting species through collision with agate spheres inside a closed and vibrating vessel. The chemical composition and the morphology of the resulting glyco-graphene oxide conjugates (glyco-GO) are assessed by the combination of a series of complementary advanced techniques ( i.e. UV-vis and Raman spectroscopy, transmission electron microscopy, and Magic Angle Spinning (MAS) solid-state NMR (ssNMR) providing in-depth insights into the chemical reactivity of GO in a mechanochemical route. The conjugation of monosaccharide residues on the GO surface significantly improves the antimicrobial activity of pristine GO against P. aeruginosa . Indeed, glyco-GO conjugates, according to the monosaccharide derivatives installed into the GO surface, affect the ability of sessile cells to adhere to a polystyrene surface in a colony forming assay. Scanning electron microscopy images clearly show that glyco-GO conjugates significantly disrupt an already established P. aeruginosa biofilm.
Author Cacaci, Margherita
Pineider, Francesco
Gabbani, Alessio
Caselli, Lucrezia
Berti, Debora
Torelli, Riccardo
Severi, Mirko
Niccoli, Lorenzo
Lelli, Moreno
Sanguinetti, Maurizio
Cicchi, Stefano
Biagiotti, Giacomo
Tricomi, Jacopo
Menna, Enzo
Bugli, Francesca
Richichi, Barbara
Di Vito, Maura
Author_xml – sequence: 1
  givenname: Jacopo
  surname: Tricomi
  fullname: Tricomi, Jacopo
  organization: Department of Chemistry ‘Ugo Schiff’, University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
– sequence: 2
  givenname: Margherita
  surname: Cacaci
  fullname: Cacaci, Margherita
  organization: Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy, Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
– sequence: 3
  givenname: Giacomo
  surname: Biagiotti
  fullname: Biagiotti, Giacomo
  organization: Department of Chemistry ‘Ugo Schiff’, University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
– sequence: 4
  givenname: Lucrezia
  surname: Caselli
  fullname: Caselli, Lucrezia
  organization: Department of Chemistry ‘Ugo Schiff’, University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy, Italian Center for Colloid and Surface Science (CSGI), Via della Lastruccia 3, Sesto Fiorentino, 50019, FI, Italy
– sequence: 5
  givenname: Lorenzo
  surname: Niccoli
  fullname: Niccoli, Lorenzo
  organization: Magnetic Resonance Centre (CERM), Department of Chemistry ‘Ugo Schiff’, University of Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy, Consorzio Interuniversitario Risonanze Magnetiche Metalloproteine Paramagnetiche (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
– sequence: 6
  givenname: Riccardo
  surname: Torelli
  fullname: Torelli, Riccardo
  organization: Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
– sequence: 7
  givenname: Alessio
  orcidid: 0000-0002-4078-0254
  surname: Gabbani
  fullname: Gabbani, Alessio
  organization: Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56132 Pisa, Italy
– sequence: 8
  givenname: Maura
  surname: Di Vito
  fullname: Di Vito, Maura
  organization: Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
– sequence: 9
  givenname: Francesco
  orcidid: 0000-0003-4066-4031
  surname: Pineider
  fullname: Pineider, Francesco
  organization: Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56132 Pisa, Italy
– sequence: 10
  givenname: Mirko
  orcidid: 0000-0003-1511-6762
  surname: Severi
  fullname: Severi, Mirko
  organization: Department of Chemistry ‘Ugo Schiff’, University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
– sequence: 11
  givenname: Maurizio
  orcidid: 0000-0002-9780-7059
  surname: Sanguinetti
  fullname: Sanguinetti, Maurizio
  organization: Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy, Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
– sequence: 12
  givenname: Enzo
  orcidid: 0000-0002-9448-4776
  surname: Menna
  fullname: Menna, Enzo
  organization: Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy, Centre for Mechanics of Biological Materials – CMBM, Via Marzolo 9, 35131 Padova, Italy
– sequence: 13
  givenname: Moreno
  orcidid: 0000-0002-7042-2335
  surname: Lelli
  fullname: Lelli, Moreno
  organization: Magnetic Resonance Centre (CERM), Department of Chemistry ‘Ugo Schiff’, University of Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy, Consorzio Interuniversitario Risonanze Magnetiche Metalloproteine Paramagnetiche (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
– sequence: 14
  givenname: Debora
  orcidid: 0000-0001-8967-560X
  surname: Berti
  fullname: Berti, Debora
  organization: Department of Chemistry ‘Ugo Schiff’, University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy, Italian Center for Colloid and Surface Science (CSGI), Via della Lastruccia 3, Sesto Fiorentino, 50019, FI, Italy
– sequence: 15
  givenname: Stefano
  orcidid: 0000-0002-4913-6414
  surname: Cicchi
  fullname: Cicchi, Stefano
  organization: Department of Chemistry ‘Ugo Schiff’, University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
– sequence: 16
  givenname: Francesca
  surname: Bugli
  fullname: Bugli, Francesca
  organization: Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy, Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
– sequence: 17
  givenname: Barbara
  orcidid: 0000-0001-7093-9513
  surname: Richichi
  fullname: Richichi, Barbara
  organization: Department of Chemistry ‘Ugo Schiff’, University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
BookMark eNptkEtLxDAUhYOM4HPjLyi4EaF6m3SadKnjEwcV0a0lTW7HjGlSkxacf29FURBX9yy-73A5W2TivENC9jI4yoCVx2f09gEoUH6zRjYp5JAyxunkJxf5BtmKcQlQlKxgm-T5VFqbtMZa1MnCrpRPF0F2L-gw8e9GY6K8Ww4L2WNMWhleUdtVok0MQ9ePyn3EQfvWOxkTiWFYGOejTGrjG2PbuEPWG2kj7n7fbfJ0cf44u0rnd5fXs5N5qhgVfapqwRmXQqBUBUIJeoxU5DBVTNJSiKlGzXLgmeYaGUfRFEXNUfMpa2pWs21y8NXbBf82YOyr1kSF1kqHfogVLUQB05LnbET3_6BLPwQ3fjdSJc0gozmMFHxRKvgYAzaVMr3sjXd9kMZWGVSfg1e_g4_K4R-lC2acbPUf_AG9eYN7
CitedBy_id crossref_primary_10_1039_D3NH00063J
crossref_primary_10_3390_ph16020275
crossref_primary_10_1002_cjoc_202200757
crossref_primary_10_1002_smsc_202300086
crossref_primary_10_3390_pharmaceutics16091218
Cites_doi 10.3390/polym11010133
10.1016/j.carres.2014.09.006
10.1038/nrmicro.2016.94
10.1002/open.201500162
10.1038/srep02293
10.1038/nchem.281
10.1016/j.carbon.2015.11.037
10.1039/D2RA01752K
10.1002/smll.201002009
10.1002/adfm.201502214
10.1126/science.1244705
10.1039/C5SC03635F
10.1088/1361-6528/aadfa5
10.1515/9783110608335
10.1021/acsami.1c02330
10.1016/S0022-2836(03)00754-X
10.1128/JB.01651-09
10.1002/cmdc.201800575
10.1021/acsbiomaterials.6b00812
10.3762/bjoc.16.188
10.1021/ie201391e
10.1097/01.blo.0000175714.68624.74
10.1039/C8OB01817K
10.1002/9781118860212.ch5
10.1021/acsami.1c01157
10.1128/IAI.00631-20
10.1016/j.bios.2011.05.009
10.1016/j.jtice.2018.11.003
10.2147/IJN.S146195
10.1088/2053-1583/aa8f0a
10.1371/journal.pgen.1008848
10.3389/fbioe.2020.00465
10.1111/j.1462-2920.2006.001001.x
10.1126/science.1162369
10.3390/ma14040769
10.1128/AAC.02292-16
10.1021/ma201620w
10.2217/nnm-2018-0183
10.3390/antibiotics9100692
10.1016/j.drup.2019.07.002
10.1016/j.cbpa.2019.07.005
10.1038/s41467-019-10201-4
10.1039/C2CS35396B
10.1021/acsomega.9b04332
10.1002/cbic.202100563
10.1021/acs.nanolett.5b02256
10.1128/mBio.00909-21
10.1021/jp9731821
10.1021/acs.jmedchem.5b01698
10.1021/nn2042384
10.1099/mic.0.27701-0
10.1021/acs.jpcc.7b06236
10.1021/acsinfecdis.1c00154
10.2217/fmb.15.69
10.1007/s00376-021-1304-7
10.1039/C6NR03846H
10.1186/s12915-017-0465-4
10.1016/j.carbpol.2018.07.066
10.1016/0076-6879(82)83034-6
10.1002/adfm.201604620
10.1039/C7CS00813A
10.3389/fmicb.2019.00913
10.1039/C2CS35408J
10.3762/bjoc.14.239
10.1038/s41579-022-00682-4
10.1021/jacs.5b11411
10.1016/j.matchemphys.2020.124127
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/D2NR02027K
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 10199
ExternalDocumentID 10_1039_D2NR02027K
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CITATION
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c328t-cb8737a88eac6e090d88e28405c3a29885ded34071d7de37e8f66b7ed753fb3b3
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 08:36:44 EDT 2025
Sun Jun 29 16:26:01 EDT 2025
Tue Jul 01 01:14:22 EDT 2025
Thu Apr 24 23:05:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-cb8737a88eac6e090d88e28405c3a29885ded34071d7de37e8f66b7ed753fb3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1511-6762
0000-0002-4913-6414
0000-0002-4078-0254
0000-0002-7042-2335
0000-0001-8967-560X
0000-0001-7093-9513
0000-0002-9448-4776
0000-0003-4066-4031
0000-0002-9780-7059
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2022/nr/d2nr02027k
PQID 2692101240
PQPubID 2047485
PageCount 10
ParticipantIDs proquest_miscellaneous_2686059743
proquest_journals_2692101240
crossref_citationtrail_10_1039_D2NR02027K
crossref_primary_10_1039_D2NR02027K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-21
PublicationDateYYYYMMDD 2022-07-21
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-21
  day: 21
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Nanoscale
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Venkatesan (D2NR02027K/cit9/1) 2015; 10
Kurapati (D2NR02027K/cit43/1) 2017; 5
Helaine (D2NR02027K/cit4/1) 2014; 343
Patel (D2NR02027K/cit1/1) 2005; 437
López-Díaz (D2NR02027K/cit57/1) 2017; 121
Zou (D2NR02027K/cit44/1) 2016; 138
Andreozzi (D2NR02027K/cit50/1) 2020; 16
Chen (D2NR02027K/cit27/1) 2013; 42
Martini (D2NR02027K/cit47/1) 2020; 9
Gao (D2NR02027K/cit61/1) 2009; 1
Rawal (D2NR02027K/cit65/1) 2021; 13
Vieira (D2NR02027K/cit59/1) 2016; 98
Michaud (D2NR02027K/cit22/1) 2016; 7
Bernardi (D2NR02027K/cit23/1) 2013; 42
Huang (D2NR02027K/cit28/1) 2011; 7
Caputo (D2NR02027K/cit62/1) 2022; 12
Calvert (D2NR02027K/cit20/1) 2018; 14
Biagiotti (D2NR02027K/cit52/1) 2021; 13
Wagner (D2NR02027K/cit21/1) 2016; 59
Yang (D2NR02027K/cit31/1) 2012; 51
Arosio (D2NR02027K/cit25/1) 2018; 16
Lima-Sousa (D2NR02027K/cit42/1) 2018; 200
Lerf (D2NR02027K/cit64/1) 1998; 102
Tan (D2NR02027K/cit49/1) 2019; 48
Goode (D2NR02027K/cit8/1) 2021; 12
Rybtke (D2NR02027K/cit12/1) 2020; 89
Chen (D2NR02027K/cit34/1) 2011; 26
Botelho (D2NR02027K/cit10/1) 2019; 44
Ciofu (D2NR02027K/cit13/1) 2019; 10
Gilboa-Garber (D2NR02027K/cit15/1) 1982; 83
Siebs (D2NR02027K/cit24/1) 2022; 23
Sommer (D2NR02027K/cit67/1) 2015; 4
Tielker (D2NR02027K/cit16/1) 2005; 151
Meiers (D2NR02027K/cit19/1) 2019; 53
Kong (D2NR02027K/cit53/1) 2015; 405
Zaborskyte (D2NR02027K/cit14/1) 2017; 61
Palmieri (D2NR02027K/cit46/1) 2017; 3
Mohammed (D2NR02027K/cit45/1) 2020; 8
Liu (D2NR02027K/cit29/1) 2011; 44
Flemming (D2NR02027K/cit2/1) 2016; 14
Muzyka (D2NR02027K/cit58/1) 2021; 14
Colacino (D2NR02027K/cit51/1) 2020
Bamford (D2NR02027K/cit5/1) 2017; 15
Michael (D2NR02027K/cit33/1) 2015
Li (D2NR02027K/cit36/1) 2013; 3
Sanki (D2NR02027K/cit54/1) 2006
Chegeni (D2NR02027K/cit30/1) 2019; 96
Jeon (D2NR02027K/cit56/1) 2015; 25
Qi (D2NR02027K/cit37/1) 2015; 15
Palmieri (D2NR02027K/cit48/1) 2018; 13
Velásquez-Rojas (D2NR02027K/cit55/1) 2021; 260
Harrison (D2NR02027K/cit11/1) 2020; 16
Zhang (D2NR02027K/cit7/1) 2022
Losada-Garcia (D2NR02027K/cit32/1) 2020; 5
Chen (D2NR02027K/cit35/1) 2012; 6
Loris (D2NR02027K/cit68/1) 2003; 331
Gupta (D2NR02027K/cit38/1) 2018; 13
Diggle (D2NR02027K/cit17/1) 2006; 8
Goode (D2NR02027K/cit66/1) 2021; 7
Kang (D2NR02027K/cit40/1) 2018; 29
Yin (D2NR02027K/cit41/1) 2017; 27
Mulcahy (D2NR02027K/cit6/1) 2010; 192
Dos Santos Ramos (D2NR02027K/cit26/1) 2018; 13
Cai (D2NR02027K/cit60/1) 2008; 321
Ciofu (D2NR02027K/cit3/1) 2022
Vacchi (D2NR02027K/cit63/1) 2016; 8
Passos da Silva (D2NR02027K/cit18/1) 2019; 10
Liang (D2NR02027K/cit39/1) 2019; 11
References_xml – volume: 11
  start-page: 133
  year: 2019
  ident: D2NR02027K/cit39/1
  publication-title: Polymers
  doi: 10.3390/polym11010133
– volume: 405
  start-page: 33
  year: 2015
  ident: D2NR02027K/cit53/1
  publication-title: Carbohydr. Res.
  doi: 10.1016/j.carres.2014.09.006
– volume: 14
  start-page: 563
  year: 2016
  ident: D2NR02027K/cit2/1
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2016.94
– volume: 4
  start-page: 756
  year: 2015
  ident: D2NR02027K/cit67/1
  publication-title: ChemistryOpen
  doi: 10.1002/open.201500162
– volume: 3
  start-page: 2293
  year: 2013
  ident: D2NR02027K/cit36/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep02293
– volume: 1
  start-page: 403
  year: 2009
  ident: D2NR02027K/cit61/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.281
– volume: 98
  start-page: 496
  year: 2016
  ident: D2NR02027K/cit59/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2015.11.037
– volume: 12
  start-page: 15834
  year: 2022
  ident: D2NR02027K/cit62/1
  publication-title: RSC Adv.
  doi: 10.1039/D2RA01752K
– volume: 7
  start-page: 1876
  year: 2011
  ident: D2NR02027K/cit28/1
  publication-title: Small
  doi: 10.1002/smll.201002009
– volume: 25
  start-page: 6961
  year: 2015
  ident: D2NR02027K/cit56/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502214
– volume: 343
  start-page: 204
  year: 2014
  ident: D2NR02027K/cit4/1
  publication-title: Science
  doi: 10.1126/science.1244705
– volume: 7
  start-page: 166
  year: 2016
  ident: D2NR02027K/cit22/1
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC03635F
– volume: 29
  start-page: 475604
  year: 2018
  ident: D2NR02027K/cit40/1
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aadfa5
– volume-title: Mechanochemistry
  year: 2020
  ident: D2NR02027K/cit51/1
  doi: 10.1515/9783110608335
– volume: 13
  start-page: 26288
  year: 2021
  ident: D2NR02027K/cit52/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c02330
– volume: 331
  start-page: 861
  year: 2003
  ident: D2NR02027K/cit68/1
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(03)00754-X
– volume: 192
  start-page: 6191
  year: 2010
  ident: D2NR02027K/cit6/1
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01651-09
– volume: 13
  start-page: 2644
  year: 2018
  ident: D2NR02027K/cit38/1
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.201800575
– volume: 3
  start-page: 619
  year: 2017
  ident: D2NR02027K/cit46/1
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.6b00812
– volume: 16
  start-page: 2272
  year: 2020
  ident: D2NR02027K/cit50/1
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.16.188
– volume: 51
  start-page: 310
  year: 2012
  ident: D2NR02027K/cit31/1
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie201391e
– volume: 437
  start-page: 41
  year: 2005
  ident: D2NR02027K/cit1/1
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1097/01.blo.0000175714.68624.74
– volume: 16
  start-page: 6086
  year: 2018
  ident: D2NR02027K/cit25/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C8OB01817K
– start-page: 123
  volume-title: Carbohydrate Nanotechnology
  year: 2015
  ident: D2NR02027K/cit33/1
  doi: 10.1002/9781118860212.ch5
– volume: 13
  start-page: 18255
  year: 2021
  ident: D2NR02027K/cit65/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c01157
– volume: 89
  start-page: e00631
  year: 2020
  ident: D2NR02027K/cit12/1
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00631-20
– volume: 26
  start-page: 4497
  year: 2011
  ident: D2NR02027K/cit34/1
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2011.05.009
– volume: 96
  start-page: 176
  year: 2019
  ident: D2NR02027K/cit30/1
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2018.11.003
– volume: 13
  start-page: 1179
  year: 2018
  ident: D2NR02027K/cit26/1
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S146195
– volume: 5
  start-page: 015020
  year: 2017
  ident: D2NR02027K/cit43/1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aa8f0a
– volume: 16
  start-page: e1008848
  year: 2020
  ident: D2NR02027K/cit11/1
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1008848
– start-page: 455
  year: 2006
  ident: D2NR02027K/cit54/1
  publication-title: Synlett
– volume: 8
  start-page: 465
  year: 2020
  ident: D2NR02027K/cit45/1
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00465
– volume: 8
  start-page: 1095
  year: 2006
  ident: D2NR02027K/cit17/1
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2006.001001.x
– volume: 321
  start-page: 1815
  year: 2008
  ident: D2NR02027K/cit60/1
  publication-title: Science
  doi: 10.1126/science.1162369
– volume: 14
  start-page: 769
  year: 2021
  ident: D2NR02027K/cit58/1
  publication-title: Materials
  doi: 10.3390/ma14040769
– volume: 61
  start-page: e02292
  year: 2017
  ident: D2NR02027K/cit14/1
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.02292-16
– volume: 44
  start-page: 7682
  year: 2011
  ident: D2NR02027K/cit29/1
  publication-title: Macromolecules
  doi: 10.1021/ma201620w
– volume: 13
  start-page: 2867
  year: 2018
  ident: D2NR02027K/cit48/1
  publication-title: Nanomedicine
  doi: 10.2217/nnm-2018-0183
– volume: 9
  start-page: 692
  year: 2020
  ident: D2NR02027K/cit47/1
  publication-title: Antibiotics
  doi: 10.3390/antibiotics9100692
– volume: 44
  start-page: 100640
  year: 2019
  ident: D2NR02027K/cit10/1
  publication-title: Drug Resistance Updates
  doi: 10.1016/j.drup.2019.07.002
– volume: 53
  start-page: 51
  year: 2019
  ident: D2NR02027K/cit19/1
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2019.07.005
– volume: 10
  start-page: 2183
  year: 2019
  ident: D2NR02027K/cit18/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10201-4
– volume: 42
  start-page: 4532
  year: 2013
  ident: D2NR02027K/cit27/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35396B
– volume: 5
  start-page: 4362
  year: 2020
  ident: D2NR02027K/cit32/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b04332
– volume: 23
  start-page: e2021005
  year: 2022
  ident: D2NR02027K/cit24/1
  publication-title: ChemBioChem
  doi: 10.1002/cbic.202100563
– volume: 15
  start-page: 6051
  year: 2015
  ident: D2NR02027K/cit37/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02256
– volume: 12
  start-page: e00909
  year: 2021
  ident: D2NR02027K/cit8/1
  publication-title: mBio
  doi: 10.1128/mBio.00909-21
– volume: 102
  start-page: 4477
  year: 1998
  ident: D2NR02027K/cit64/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9731821
– volume: 59
  start-page: 5929
  year: 2016
  ident: D2NR02027K/cit21/1
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.5b01698
– volume: 6
  start-page: 760
  year: 2012
  ident: D2NR02027K/cit35/1
  publication-title: ACS Nano
  doi: 10.1021/nn2042384
– volume: 151
  start-page: 1313
  year: 2005
  ident: D2NR02027K/cit16/1
  publication-title: Microbiology
  doi: 10.1099/mic.0.27701-0
– volume: 121
  start-page: 20489
  year: 2017
  ident: D2NR02027K/cit57/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b06236
– volume: 7
  start-page: 1848
  year: 2021
  ident: D2NR02027K/cit66/1
  publication-title: ACS Infect. Dis.
  doi: 10.1021/acsinfecdis.1c00154
– volume: 10
  start-page: 1743
  year: 2015
  ident: D2NR02027K/cit9/1
  publication-title: Future Microbiol.
  doi: 10.2217/fmb.15.69
– start-page: 1
  year: 2022
  ident: D2NR02027K/cit7/1
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-021-1304-7
– volume: 8
  start-page: 13714
  year: 2016
  ident: D2NR02027K/cit63/1
  publication-title: Nanoscale
  doi: 10.1039/C6NR03846H
– volume: 15
  start-page: 121
  year: 2017
  ident: D2NR02027K/cit5/1
  publication-title: BMC Biol.
  doi: 10.1186/s12915-017-0465-4
– volume: 200
  start-page: 93
  year: 2018
  ident: D2NR02027K/cit42/1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.07.066
– volume: 83
  start-page: 378
  year: 1982
  ident: D2NR02027K/cit15/1
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(82)83034-6
– volume: 27
  start-page: 1604620
  year: 2017
  ident: D2NR02027K/cit41/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604620
– volume: 48
  start-page: 2274
  year: 2019
  ident: D2NR02027K/cit49/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00813A
– volume: 10
  start-page: 913
  year: 2019
  ident: D2NR02027K/cit13/1
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.00913
– volume: 42
  start-page: 4709
  year: 2013
  ident: D2NR02027K/cit23/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35408J
– volume: 14
  start-page: 2607
  year: 2018
  ident: D2NR02027K/cit20/1
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.14.239
– year: 2022
  ident: D2NR02027K/cit3/1
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-022-00682-4
– volume: 138
  start-page: 2064
  year: 2016
  ident: D2NR02027K/cit44/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11411
– volume: 260
  start-page: 124127
  year: 2021
  ident: D2NR02027K/cit55/1
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2020.124127
SSID ssj0069363
Score 2.418974
Snippet The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 10190
SubjectTerms Antiinfectives and antibacterials
Ball milling
Biofilms
Chemical composition
Conjugates
Conjugation
Electron microscopy
Functional materials
Graphene
Grinding mills
Manufacturing
Microscopy
Monosaccharides
Nanomaterials
NMR
Nuclear magnetic resonance
Polystyrene resins
Pseudomonas aeruginosa
Raman spectroscopy
Spinning (materials)
Title Ball milled glyco-graphene oxide conjugates markedly disrupted Pseudomonas aeruginosa biofilms
URI https://www.proquest.com/docview/2692101240
https://www.proquest.com/docview/2686059743
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4ED4ikKCzKCC6qypHaaOMdd2IfYpSDUip6IHNupAm1SNY3E7q9nxnm1Ug8LlyhynMjyfBnP2DPfEPLOuLFQrh45Uo6QVBv-9Dg0wkk0mAfClyKxmzlfxv7F1Ps8G806egKbXbKJj9TN3ryS_5EqtIFcMUv2HyTbfhQa4B7kC1eQMFxvJeMTPFfGukFgNc4X1yp3LP80qK9B_ifVNhD9V4kbZcVgiXE4enGNRzLrcoWG5rfClDqH0cpiIM26nKdZXshBnGIZ75rFvLZbQQnnBYizhcEE9Ge-TKtAW5Wv8u4wQ0mV1mlAGEOSbjqfP5VzjBCxj89TeG-59V6B3KB2n6AEU_Ymlds7EsxGr1ZpzpXiYhilyHlVkufI7GlrNK-3hbA6R7zSo0NMcd-r4V2OBKmaZWsX921-d-tYc3Y__hqdTa-uosnpbHKXHDDwH1iPHBxfnpz_aBZpP-S2yF47rIa5locfum_v2iq7S7W1PyYPyYPacaDHFQoekTsme0zub9FJPiE_EQ-0wgPdxQO1eKAdHmiDB9rigW7hgXZ4oA0enpLp2enk44VT189wFGdi46hYBDyQQsDi6hs3dDXcgjnijhSXLBRipI3m6NHrQBseGJH4fhwYDS5sEvOYPyO9LM_Mc0KVlySJqxn4u0NvyIyQEow7FTLJ48DzvD5538xUpGpyeaxxsohskAMPo09s_N3O6mWfvG37ripKlb29DpsJj-pfroiYHzIkpPPcPnnTPgaFiKdcMjN5iX0EuOjgJvMXt-jzktzrIHxIept1aV6BmbmJX9eQ-QuKtYPp
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ball+milled+glyco-graphene+oxide+conjugates+markedly+disrupted+Pseudomonas+aeruginosa+biofilms&rft.jtitle=Nanoscale&rft.au=Tricomi%2C+Jacopo&rft.au=Cacaci%2C+Margherita&rft.au=Biagiotti%2C+Giacomo&rft.au=Caselli%2C+Lucrezia&rft.date=2022-07-21&rft.issn=2040-3372&rft.eissn=2040-3372&rft.volume=14&rft.issue=28&rft.spage=10190&rft_id=info:doi/10.1039%2Fd2nr02027k&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon