Ball milled glyco-graphene oxide conjugates markedly disrupted Pseudomonas aeruginosa biofilms
The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial su...
Saved in:
Published in | Nanoscale Vol. 14; no. 28; pp. 10190 - 10199 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
21.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial surface is grafted, has a significant impact on their development and innovation. In this regard, we report herein the grafting of sugar headgroups on a graphene oxide (GO) surface by exploiting a green manufacturing process that relies on the use of vibrational ball mills, a grinding apparatus in which the energy is transferred to the reacting species through collision with agate spheres inside a closed and vibrating vessel. The chemical composition and the morphology of the resulting glyco-graphene oxide conjugates (glyco-GO) are assessed by the combination of a series of complementary advanced techniques (
i.e.
UV-vis and Raman spectroscopy, transmission electron microscopy, and Magic Angle Spinning (MAS) solid-state NMR (ssNMR) providing in-depth insights into the chemical reactivity of GO in a mechanochemical route. The conjugation of monosaccharide residues on the GO surface significantly improves the antimicrobial activity of pristine GO against
P. aeruginosa
. Indeed, glyco-GO conjugates, according to the monosaccharide derivatives installed into the GO surface, affect the ability of sessile cells to adhere to a polystyrene surface in a colony forming assay. Scanning electron microscopy images clearly show that glyco-GO conjugates significantly disrupt an already established
P. aeruginosa
biofilm. |
---|---|
AbstractList | The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial surface is grafted, has a significant impact on their development and innovation. In this regard, we report herein the grafting of sugar headgroups on a graphene oxide (GO) surface by exploiting a green manufacturing process that relies on the use of vibrational ball mills, a grinding apparatus in which the energy is transferred to the reacting species through collision with agate spheres inside a closed and vibrating vessel. The chemical composition and the morphology of the resulting glyco-graphene oxide conjugates (glyco-GO) are assessed by the combination of a series of complementary advanced techniques (i.e. UV-vis and Raman spectroscopy, transmission electron microscopy, and Magic Angle Spinning (MAS) solid-state NMR (ssNMR) providing in-depth insights into the chemical reactivity of GO in a mechanochemical route. The conjugation of monosaccharide residues on the GO surface significantly improves the antimicrobial activity of pristine GO against P. aeruginosa. Indeed, glyco-GO conjugates, according to the monosaccharide derivatives installed into the GO surface, affect the ability of sessile cells to adhere to a polystyrene surface in a colony forming assay. Scanning electron microscopy images clearly show that glyco-GO conjugates significantly disrupt an already established P. aeruginosa biofilm.The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial surface is grafted, has a significant impact on their development and innovation. In this regard, we report herein the grafting of sugar headgroups on a graphene oxide (GO) surface by exploiting a green manufacturing process that relies on the use of vibrational ball mills, a grinding apparatus in which the energy is transferred to the reacting species through collision with agate spheres inside a closed and vibrating vessel. The chemical composition and the morphology of the resulting glyco-graphene oxide conjugates (glyco-GO) are assessed by the combination of a series of complementary advanced techniques (i.e. UV-vis and Raman spectroscopy, transmission electron microscopy, and Magic Angle Spinning (MAS) solid-state NMR (ssNMR) providing in-depth insights into the chemical reactivity of GO in a mechanochemical route. The conjugation of monosaccharide residues on the GO surface significantly improves the antimicrobial activity of pristine GO against P. aeruginosa. Indeed, glyco-GO conjugates, according to the monosaccharide derivatives installed into the GO surface, affect the ability of sessile cells to adhere to a polystyrene surface in a colony forming assay. Scanning electron microscopy images clearly show that glyco-GO conjugates significantly disrupt an already established P. aeruginosa biofilm. The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial surface is grafted, has a significant impact on their development and innovation. In this regard, we report herein the grafting of sugar headgroups on a graphene oxide (GO) surface by exploiting a green manufacturing process that relies on the use of vibrational ball mills, a grinding apparatus in which the energy is transferred to the reacting species through collision with agate spheres inside a closed and vibrating vessel. The chemical composition and the morphology of the resulting glyco-graphene oxide conjugates (glyco-GO) are assessed by the combination of a series of complementary advanced techniques (i.e. UV-vis and Raman spectroscopy, transmission electron microscopy, and Magic Angle Spinning (MAS) solid-state NMR (ssNMR) providing in-depth insights into the chemical reactivity of GO in a mechanochemical route. The conjugation of monosaccharide residues on the GO surface significantly improves the antimicrobial activity of pristine GO against P. aeruginosa. Indeed, glyco-GO conjugates, according to the monosaccharide derivatives installed into the GO surface, affect the ability of sessile cells to adhere to a polystyrene surface in a colony forming assay. Scanning electron microscopy images clearly show that glyco-GO conjugates significantly disrupt an already established P. aeruginosa biofilm. The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial surface is grafted, has a significant impact on their development and innovation. In this regard, we report herein the grafting of sugar headgroups on a graphene oxide (GO) surface by exploiting a green manufacturing process that relies on the use of vibrational ball mills, a grinding apparatus in which the energy is transferred to the reacting species through collision with agate spheres inside a closed and vibrating vessel. The chemical composition and the morphology of the resulting glyco-graphene oxide conjugates (glyco-GO) are assessed by the combination of a series of complementary advanced techniques ( i.e. UV-vis and Raman spectroscopy, transmission electron microscopy, and Magic Angle Spinning (MAS) solid-state NMR (ssNMR) providing in-depth insights into the chemical reactivity of GO in a mechanochemical route. The conjugation of monosaccharide residues on the GO surface significantly improves the antimicrobial activity of pristine GO against P. aeruginosa . Indeed, glyco-GO conjugates, according to the monosaccharide derivatives installed into the GO surface, affect the ability of sessile cells to adhere to a polystyrene surface in a colony forming assay. Scanning electron microscopy images clearly show that glyco-GO conjugates significantly disrupt an already established P. aeruginosa biofilm. |
Author | Cacaci, Margherita Pineider, Francesco Gabbani, Alessio Caselli, Lucrezia Berti, Debora Torelli, Riccardo Severi, Mirko Niccoli, Lorenzo Lelli, Moreno Sanguinetti, Maurizio Cicchi, Stefano Biagiotti, Giacomo Tricomi, Jacopo Menna, Enzo Bugli, Francesca Richichi, Barbara Di Vito, Maura |
Author_xml | – sequence: 1 givenname: Jacopo surname: Tricomi fullname: Tricomi, Jacopo organization: Department of Chemistry ‘Ugo Schiff’, University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy – sequence: 2 givenname: Margherita surname: Cacaci fullname: Cacaci, Margherita organization: Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy, Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy – sequence: 3 givenname: Giacomo surname: Biagiotti fullname: Biagiotti, Giacomo organization: Department of Chemistry ‘Ugo Schiff’, University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy – sequence: 4 givenname: Lucrezia surname: Caselli fullname: Caselli, Lucrezia organization: Department of Chemistry ‘Ugo Schiff’, University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy, Italian Center for Colloid and Surface Science (CSGI), Via della Lastruccia 3, Sesto Fiorentino, 50019, FI, Italy – sequence: 5 givenname: Lorenzo surname: Niccoli fullname: Niccoli, Lorenzo organization: Magnetic Resonance Centre (CERM), Department of Chemistry ‘Ugo Schiff’, University of Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy, Consorzio Interuniversitario Risonanze Magnetiche Metalloproteine Paramagnetiche (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy – sequence: 6 givenname: Riccardo surname: Torelli fullname: Torelli, Riccardo organization: Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy – sequence: 7 givenname: Alessio orcidid: 0000-0002-4078-0254 surname: Gabbani fullname: Gabbani, Alessio organization: Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56132 Pisa, Italy – sequence: 8 givenname: Maura surname: Di Vito fullname: Di Vito, Maura organization: Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy – sequence: 9 givenname: Francesco orcidid: 0000-0003-4066-4031 surname: Pineider fullname: Pineider, Francesco organization: Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56132 Pisa, Italy – sequence: 10 givenname: Mirko orcidid: 0000-0003-1511-6762 surname: Severi fullname: Severi, Mirko organization: Department of Chemistry ‘Ugo Schiff’, University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy – sequence: 11 givenname: Maurizio orcidid: 0000-0002-9780-7059 surname: Sanguinetti fullname: Sanguinetti, Maurizio organization: Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy, Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy – sequence: 12 givenname: Enzo orcidid: 0000-0002-9448-4776 surname: Menna fullname: Menna, Enzo organization: Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy, Centre for Mechanics of Biological Materials – CMBM, Via Marzolo 9, 35131 Padova, Italy – sequence: 13 givenname: Moreno orcidid: 0000-0002-7042-2335 surname: Lelli fullname: Lelli, Moreno organization: Magnetic Resonance Centre (CERM), Department of Chemistry ‘Ugo Schiff’, University of Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy, Consorzio Interuniversitario Risonanze Magnetiche Metalloproteine Paramagnetiche (CIRMMP), Via Luigi Sacconi 6, 50019 Sesto Fiorentino, FI, Italy – sequence: 14 givenname: Debora orcidid: 0000-0001-8967-560X surname: Berti fullname: Berti, Debora organization: Department of Chemistry ‘Ugo Schiff’, University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy, Italian Center for Colloid and Surface Science (CSGI), Via della Lastruccia 3, Sesto Fiorentino, 50019, FI, Italy – sequence: 15 givenname: Stefano orcidid: 0000-0002-4913-6414 surname: Cicchi fullname: Cicchi, Stefano organization: Department of Chemistry ‘Ugo Schiff’, University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy – sequence: 16 givenname: Francesca surname: Bugli fullname: Bugli, Francesca organization: Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy, Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy – sequence: 17 givenname: Barbara orcidid: 0000-0001-7093-9513 surname: Richichi fullname: Richichi, Barbara organization: Department of Chemistry ‘Ugo Schiff’, University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy |
BookMark | eNptkEtLxDAUhYOM4HPjLyi4EaF6m3SadKnjEwcV0a0lTW7HjGlSkxacf29FURBX9yy-73A5W2TivENC9jI4yoCVx2f09gEoUH6zRjYp5JAyxunkJxf5BtmKcQlQlKxgm-T5VFqbtMZa1MnCrpRPF0F2L-gw8e9GY6K8Ww4L2WNMWhleUdtVok0MQ9ePyn3EQfvWOxkTiWFYGOejTGrjG2PbuEPWG2kj7n7fbfJ0cf44u0rnd5fXs5N5qhgVfapqwRmXQqBUBUIJeoxU5DBVTNJSiKlGzXLgmeYaGUfRFEXNUfMpa2pWs21y8NXbBf82YOyr1kSF1kqHfogVLUQB05LnbET3_6BLPwQ3fjdSJc0gozmMFHxRKvgYAzaVMr3sjXd9kMZWGVSfg1e_g4_K4R-lC2acbPUf_AG9eYN7 |
CitedBy_id | crossref_primary_10_1039_D3NH00063J crossref_primary_10_3390_ph16020275 crossref_primary_10_1002_cjoc_202200757 crossref_primary_10_1002_smsc_202300086 crossref_primary_10_3390_pharmaceutics16091218 |
Cites_doi | 10.3390/polym11010133 10.1016/j.carres.2014.09.006 10.1038/nrmicro.2016.94 10.1002/open.201500162 10.1038/srep02293 10.1038/nchem.281 10.1016/j.carbon.2015.11.037 10.1039/D2RA01752K 10.1002/smll.201002009 10.1002/adfm.201502214 10.1126/science.1244705 10.1039/C5SC03635F 10.1088/1361-6528/aadfa5 10.1515/9783110608335 10.1021/acsami.1c02330 10.1016/S0022-2836(03)00754-X 10.1128/JB.01651-09 10.1002/cmdc.201800575 10.1021/acsbiomaterials.6b00812 10.3762/bjoc.16.188 10.1021/ie201391e 10.1097/01.blo.0000175714.68624.74 10.1039/C8OB01817K 10.1002/9781118860212.ch5 10.1021/acsami.1c01157 10.1128/IAI.00631-20 10.1016/j.bios.2011.05.009 10.1016/j.jtice.2018.11.003 10.2147/IJN.S146195 10.1088/2053-1583/aa8f0a 10.1371/journal.pgen.1008848 10.3389/fbioe.2020.00465 10.1111/j.1462-2920.2006.001001.x 10.1126/science.1162369 10.3390/ma14040769 10.1128/AAC.02292-16 10.1021/ma201620w 10.2217/nnm-2018-0183 10.3390/antibiotics9100692 10.1016/j.drup.2019.07.002 10.1016/j.cbpa.2019.07.005 10.1038/s41467-019-10201-4 10.1039/C2CS35396B 10.1021/acsomega.9b04332 10.1002/cbic.202100563 10.1021/acs.nanolett.5b02256 10.1128/mBio.00909-21 10.1021/jp9731821 10.1021/acs.jmedchem.5b01698 10.1021/nn2042384 10.1099/mic.0.27701-0 10.1021/acs.jpcc.7b06236 10.1021/acsinfecdis.1c00154 10.2217/fmb.15.69 10.1007/s00376-021-1304-7 10.1039/C6NR03846H 10.1186/s12915-017-0465-4 10.1016/j.carbpol.2018.07.066 10.1016/0076-6879(82)83034-6 10.1002/adfm.201604620 10.1039/C7CS00813A 10.3389/fmicb.2019.00913 10.1039/C2CS35408J 10.3762/bjoc.14.239 10.1038/s41579-022-00682-4 10.1021/jacs.5b11411 10.1016/j.matchemphys.2020.124127 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/D2NR02027K |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 10199 |
ExternalDocumentID | 10_1039_D2NR02027K |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION DU5 EBS ECGLT EE0 EF- F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RSCEA RVUXY 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c328t-cb8737a88eac6e090d88e28405c3a29885ded34071d7de37e8f66b7ed753fb3b3 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 08:36:44 EDT 2025 Sun Jun 29 16:26:01 EDT 2025 Tue Jul 01 01:14:22 EDT 2025 Thu Apr 24 23:05:16 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c328t-cb8737a88eac6e090d88e28405c3a29885ded34071d7de37e8f66b7ed753fb3b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1511-6762 0000-0002-4913-6414 0000-0002-4078-0254 0000-0002-7042-2335 0000-0001-8967-560X 0000-0001-7093-9513 0000-0002-9448-4776 0000-0003-4066-4031 0000-0002-9780-7059 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2022/nr/d2nr02027k |
PQID | 2692101240 |
PQPubID | 2047485 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2686059743 proquest_journals_2692101240 crossref_citationtrail_10_1039_D2NR02027K crossref_primary_10_1039_D2NR02027K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-21 |
PublicationDateYYYYMMDD | 2022-07-21 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Venkatesan (D2NR02027K/cit9/1) 2015; 10 Kurapati (D2NR02027K/cit43/1) 2017; 5 Helaine (D2NR02027K/cit4/1) 2014; 343 Patel (D2NR02027K/cit1/1) 2005; 437 López-Díaz (D2NR02027K/cit57/1) 2017; 121 Zou (D2NR02027K/cit44/1) 2016; 138 Andreozzi (D2NR02027K/cit50/1) 2020; 16 Chen (D2NR02027K/cit27/1) 2013; 42 Martini (D2NR02027K/cit47/1) 2020; 9 Gao (D2NR02027K/cit61/1) 2009; 1 Rawal (D2NR02027K/cit65/1) 2021; 13 Vieira (D2NR02027K/cit59/1) 2016; 98 Michaud (D2NR02027K/cit22/1) 2016; 7 Bernardi (D2NR02027K/cit23/1) 2013; 42 Huang (D2NR02027K/cit28/1) 2011; 7 Caputo (D2NR02027K/cit62/1) 2022; 12 Calvert (D2NR02027K/cit20/1) 2018; 14 Biagiotti (D2NR02027K/cit52/1) 2021; 13 Wagner (D2NR02027K/cit21/1) 2016; 59 Yang (D2NR02027K/cit31/1) 2012; 51 Arosio (D2NR02027K/cit25/1) 2018; 16 Lima-Sousa (D2NR02027K/cit42/1) 2018; 200 Lerf (D2NR02027K/cit64/1) 1998; 102 Tan (D2NR02027K/cit49/1) 2019; 48 Goode (D2NR02027K/cit8/1) 2021; 12 Rybtke (D2NR02027K/cit12/1) 2020; 89 Chen (D2NR02027K/cit34/1) 2011; 26 Botelho (D2NR02027K/cit10/1) 2019; 44 Ciofu (D2NR02027K/cit13/1) 2019; 10 Gilboa-Garber (D2NR02027K/cit15/1) 1982; 83 Siebs (D2NR02027K/cit24/1) 2022; 23 Sommer (D2NR02027K/cit67/1) 2015; 4 Tielker (D2NR02027K/cit16/1) 2005; 151 Meiers (D2NR02027K/cit19/1) 2019; 53 Kong (D2NR02027K/cit53/1) 2015; 405 Zaborskyte (D2NR02027K/cit14/1) 2017; 61 Palmieri (D2NR02027K/cit46/1) 2017; 3 Mohammed (D2NR02027K/cit45/1) 2020; 8 Liu (D2NR02027K/cit29/1) 2011; 44 Flemming (D2NR02027K/cit2/1) 2016; 14 Muzyka (D2NR02027K/cit58/1) 2021; 14 Colacino (D2NR02027K/cit51/1) 2020 Bamford (D2NR02027K/cit5/1) 2017; 15 Michael (D2NR02027K/cit33/1) 2015 Li (D2NR02027K/cit36/1) 2013; 3 Sanki (D2NR02027K/cit54/1) 2006 Chegeni (D2NR02027K/cit30/1) 2019; 96 Jeon (D2NR02027K/cit56/1) 2015; 25 Qi (D2NR02027K/cit37/1) 2015; 15 Palmieri (D2NR02027K/cit48/1) 2018; 13 Velásquez-Rojas (D2NR02027K/cit55/1) 2021; 260 Harrison (D2NR02027K/cit11/1) 2020; 16 Zhang (D2NR02027K/cit7/1) 2022 Losada-Garcia (D2NR02027K/cit32/1) 2020; 5 Chen (D2NR02027K/cit35/1) 2012; 6 Loris (D2NR02027K/cit68/1) 2003; 331 Gupta (D2NR02027K/cit38/1) 2018; 13 Diggle (D2NR02027K/cit17/1) 2006; 8 Goode (D2NR02027K/cit66/1) 2021; 7 Kang (D2NR02027K/cit40/1) 2018; 29 Yin (D2NR02027K/cit41/1) 2017; 27 Mulcahy (D2NR02027K/cit6/1) 2010; 192 Dos Santos Ramos (D2NR02027K/cit26/1) 2018; 13 Cai (D2NR02027K/cit60/1) 2008; 321 Ciofu (D2NR02027K/cit3/1) 2022 Vacchi (D2NR02027K/cit63/1) 2016; 8 Passos da Silva (D2NR02027K/cit18/1) 2019; 10 Liang (D2NR02027K/cit39/1) 2019; 11 |
References_xml | – volume: 11 start-page: 133 year: 2019 ident: D2NR02027K/cit39/1 publication-title: Polymers doi: 10.3390/polym11010133 – volume: 405 start-page: 33 year: 2015 ident: D2NR02027K/cit53/1 publication-title: Carbohydr. Res. doi: 10.1016/j.carres.2014.09.006 – volume: 14 start-page: 563 year: 2016 ident: D2NR02027K/cit2/1 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2016.94 – volume: 4 start-page: 756 year: 2015 ident: D2NR02027K/cit67/1 publication-title: ChemistryOpen doi: 10.1002/open.201500162 – volume: 3 start-page: 2293 year: 2013 ident: D2NR02027K/cit36/1 publication-title: Sci. Rep. doi: 10.1038/srep02293 – volume: 1 start-page: 403 year: 2009 ident: D2NR02027K/cit61/1 publication-title: Nat. Chem. doi: 10.1038/nchem.281 – volume: 98 start-page: 496 year: 2016 ident: D2NR02027K/cit59/1 publication-title: Carbon doi: 10.1016/j.carbon.2015.11.037 – volume: 12 start-page: 15834 year: 2022 ident: D2NR02027K/cit62/1 publication-title: RSC Adv. doi: 10.1039/D2RA01752K – volume: 7 start-page: 1876 year: 2011 ident: D2NR02027K/cit28/1 publication-title: Small doi: 10.1002/smll.201002009 – volume: 25 start-page: 6961 year: 2015 ident: D2NR02027K/cit56/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502214 – volume: 343 start-page: 204 year: 2014 ident: D2NR02027K/cit4/1 publication-title: Science doi: 10.1126/science.1244705 – volume: 7 start-page: 166 year: 2016 ident: D2NR02027K/cit22/1 publication-title: Chem. Sci. doi: 10.1039/C5SC03635F – volume: 29 start-page: 475604 year: 2018 ident: D2NR02027K/cit40/1 publication-title: Nanotechnology doi: 10.1088/1361-6528/aadfa5 – volume-title: Mechanochemistry year: 2020 ident: D2NR02027K/cit51/1 doi: 10.1515/9783110608335 – volume: 13 start-page: 26288 year: 2021 ident: D2NR02027K/cit52/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c02330 – volume: 331 start-page: 861 year: 2003 ident: D2NR02027K/cit68/1 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(03)00754-X – volume: 192 start-page: 6191 year: 2010 ident: D2NR02027K/cit6/1 publication-title: J. Bacteriol. doi: 10.1128/JB.01651-09 – volume: 13 start-page: 2644 year: 2018 ident: D2NR02027K/cit38/1 publication-title: ChemMedChem doi: 10.1002/cmdc.201800575 – volume: 3 start-page: 619 year: 2017 ident: D2NR02027K/cit46/1 publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.6b00812 – volume: 16 start-page: 2272 year: 2020 ident: D2NR02027K/cit50/1 publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.16.188 – volume: 51 start-page: 310 year: 2012 ident: D2NR02027K/cit31/1 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie201391e – volume: 437 start-page: 41 year: 2005 ident: D2NR02027K/cit1/1 publication-title: Clin. Orthop. Relat. Res. doi: 10.1097/01.blo.0000175714.68624.74 – volume: 16 start-page: 6086 year: 2018 ident: D2NR02027K/cit25/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C8OB01817K – start-page: 123 volume-title: Carbohydrate Nanotechnology year: 2015 ident: D2NR02027K/cit33/1 doi: 10.1002/9781118860212.ch5 – volume: 13 start-page: 18255 year: 2021 ident: D2NR02027K/cit65/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c01157 – volume: 89 start-page: e00631 year: 2020 ident: D2NR02027K/cit12/1 publication-title: Infect. Immun. doi: 10.1128/IAI.00631-20 – volume: 26 start-page: 4497 year: 2011 ident: D2NR02027K/cit34/1 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2011.05.009 – volume: 96 start-page: 176 year: 2019 ident: D2NR02027K/cit30/1 publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2018.11.003 – volume: 13 start-page: 1179 year: 2018 ident: D2NR02027K/cit26/1 publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S146195 – volume: 5 start-page: 015020 year: 2017 ident: D2NR02027K/cit43/1 publication-title: 2D Mater. doi: 10.1088/2053-1583/aa8f0a – volume: 16 start-page: e1008848 year: 2020 ident: D2NR02027K/cit11/1 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1008848 – start-page: 455 year: 2006 ident: D2NR02027K/cit54/1 publication-title: Synlett – volume: 8 start-page: 465 year: 2020 ident: D2NR02027K/cit45/1 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00465 – volume: 8 start-page: 1095 year: 2006 ident: D2NR02027K/cit17/1 publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2006.001001.x – volume: 321 start-page: 1815 year: 2008 ident: D2NR02027K/cit60/1 publication-title: Science doi: 10.1126/science.1162369 – volume: 14 start-page: 769 year: 2021 ident: D2NR02027K/cit58/1 publication-title: Materials doi: 10.3390/ma14040769 – volume: 61 start-page: e02292 year: 2017 ident: D2NR02027K/cit14/1 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.02292-16 – volume: 44 start-page: 7682 year: 2011 ident: D2NR02027K/cit29/1 publication-title: Macromolecules doi: 10.1021/ma201620w – volume: 13 start-page: 2867 year: 2018 ident: D2NR02027K/cit48/1 publication-title: Nanomedicine doi: 10.2217/nnm-2018-0183 – volume: 9 start-page: 692 year: 2020 ident: D2NR02027K/cit47/1 publication-title: Antibiotics doi: 10.3390/antibiotics9100692 – volume: 44 start-page: 100640 year: 2019 ident: D2NR02027K/cit10/1 publication-title: Drug Resistance Updates doi: 10.1016/j.drup.2019.07.002 – volume: 53 start-page: 51 year: 2019 ident: D2NR02027K/cit19/1 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2019.07.005 – volume: 10 start-page: 2183 year: 2019 ident: D2NR02027K/cit18/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10201-4 – volume: 42 start-page: 4532 year: 2013 ident: D2NR02027K/cit27/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35396B – volume: 5 start-page: 4362 year: 2020 ident: D2NR02027K/cit32/1 publication-title: ACS Omega doi: 10.1021/acsomega.9b04332 – volume: 23 start-page: e2021005 year: 2022 ident: D2NR02027K/cit24/1 publication-title: ChemBioChem doi: 10.1002/cbic.202100563 – volume: 15 start-page: 6051 year: 2015 ident: D2NR02027K/cit37/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02256 – volume: 12 start-page: e00909 year: 2021 ident: D2NR02027K/cit8/1 publication-title: mBio doi: 10.1128/mBio.00909-21 – volume: 102 start-page: 4477 year: 1998 ident: D2NR02027K/cit64/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp9731821 – volume: 59 start-page: 5929 year: 2016 ident: D2NR02027K/cit21/1 publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.5b01698 – volume: 6 start-page: 760 year: 2012 ident: D2NR02027K/cit35/1 publication-title: ACS Nano doi: 10.1021/nn2042384 – volume: 151 start-page: 1313 year: 2005 ident: D2NR02027K/cit16/1 publication-title: Microbiology doi: 10.1099/mic.0.27701-0 – volume: 121 start-page: 20489 year: 2017 ident: D2NR02027K/cit57/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b06236 – volume: 7 start-page: 1848 year: 2021 ident: D2NR02027K/cit66/1 publication-title: ACS Infect. Dis. doi: 10.1021/acsinfecdis.1c00154 – volume: 10 start-page: 1743 year: 2015 ident: D2NR02027K/cit9/1 publication-title: Future Microbiol. doi: 10.2217/fmb.15.69 – start-page: 1 year: 2022 ident: D2NR02027K/cit7/1 publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-021-1304-7 – volume: 8 start-page: 13714 year: 2016 ident: D2NR02027K/cit63/1 publication-title: Nanoscale doi: 10.1039/C6NR03846H – volume: 15 start-page: 121 year: 2017 ident: D2NR02027K/cit5/1 publication-title: BMC Biol. doi: 10.1186/s12915-017-0465-4 – volume: 200 start-page: 93 year: 2018 ident: D2NR02027K/cit42/1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.07.066 – volume: 83 start-page: 378 year: 1982 ident: D2NR02027K/cit15/1 publication-title: Methods Enzymol. doi: 10.1016/0076-6879(82)83034-6 – volume: 27 start-page: 1604620 year: 2017 ident: D2NR02027K/cit41/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604620 – volume: 48 start-page: 2274 year: 2019 ident: D2NR02027K/cit49/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00813A – volume: 10 start-page: 913 year: 2019 ident: D2NR02027K/cit13/1 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.00913 – volume: 42 start-page: 4709 year: 2013 ident: D2NR02027K/cit23/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35408J – volume: 14 start-page: 2607 year: 2018 ident: D2NR02027K/cit20/1 publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.14.239 – year: 2022 ident: D2NR02027K/cit3/1 publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-022-00682-4 – volume: 138 start-page: 2064 year: 2016 ident: D2NR02027K/cit44/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11411 – volume: 260 start-page: 124127 year: 2021 ident: D2NR02027K/cit55/1 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2020.124127 |
SSID | ssj0069363 |
Score | 2.418974 |
Snippet | The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 10190 |
SubjectTerms | Antiinfectives and antibacterials Ball milling Biofilms Chemical composition Conjugates Conjugation Electron microscopy Functional materials Graphene Grinding mills Manufacturing Microscopy Monosaccharides Nanomaterials NMR Nuclear magnetic resonance Polystyrene resins Pseudomonas aeruginosa Raman spectroscopy Spinning (materials) |
Title | Ball milled glyco-graphene oxide conjugates markedly disrupted Pseudomonas aeruginosa biofilms |
URI | https://www.proquest.com/docview/2692101240 https://www.proquest.com/docview/2686059743 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4ED4ikKCzKCC6qypHaaOMdd2IfYpSDUip6IHNupAm1SNY3E7q9nxnm1Ug8LlyhynMjyfBnP2DPfEPLOuLFQrh45Uo6QVBv-9Dg0wkk0mAfClyKxmzlfxv7F1Ps8G806egKbXbKJj9TN3ryS_5EqtIFcMUv2HyTbfhQa4B7kC1eQMFxvJeMTPFfGukFgNc4X1yp3LP80qK9B_ifVNhD9V4kbZcVgiXE4enGNRzLrcoWG5rfClDqH0cpiIM26nKdZXshBnGIZ75rFvLZbQQnnBYizhcEE9Ge-TKtAW5Wv8u4wQ0mV1mlAGEOSbjqfP5VzjBCxj89TeG-59V6B3KB2n6AEU_Ymlds7EsxGr1ZpzpXiYhilyHlVkufI7GlrNK-3hbA6R7zSo0NMcd-r4V2OBKmaZWsX921-d-tYc3Y__hqdTa-uosnpbHKXHDDwH1iPHBxfnpz_aBZpP-S2yF47rIa5locfum_v2iq7S7W1PyYPyYPacaDHFQoekTsme0zub9FJPiE_EQ-0wgPdxQO1eKAdHmiDB9rigW7hgXZ4oA0enpLp2enk44VT189wFGdi46hYBDyQQsDi6hs3dDXcgjnijhSXLBRipI3m6NHrQBseGJH4fhwYDS5sEvOYPyO9LM_Mc0KVlySJqxn4u0NvyIyQEow7FTLJ48DzvD5538xUpGpyeaxxsohskAMPo09s_N3O6mWfvG37ripKlb29DpsJj-pfroiYHzIkpPPcPnnTPgaFiKdcMjN5iX0EuOjgJvMXt-jzktzrIHxIept1aV6BmbmJX9eQ-QuKtYPp |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ball+milled+glyco-graphene+oxide+conjugates+markedly+disrupted+Pseudomonas+aeruginosa+biofilms&rft.jtitle=Nanoscale&rft.au=Tricomi%2C+Jacopo&rft.au=Cacaci%2C+Margherita&rft.au=Biagiotti%2C+Giacomo&rft.au=Caselli%2C+Lucrezia&rft.date=2022-07-21&rft.issn=2040-3372&rft.eissn=2040-3372&rft.volume=14&rft.issue=28&rft.spage=10190&rft_id=info:doi/10.1039%2Fd2nr02027k&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |