Revolutionary approach to risk assessment utilization of oxidized agricultural waste as inexpensive adsorbents in tannery effluent: a kinetic investigation
The production of leather requires extensive water usage, resulting in serious liquid waste, as leather tannery wastewater (LTW) is often discharged directly into the environment. Releasing polluted LTW straight into the environment leads to the buildup of many harmful substances, like heavy metals,...
Saved in:
Published in | Environmental monitoring and assessment Vol. 197; no. 8; p. 894 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
10.07.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The production of leather requires extensive water usage, resulting in serious liquid waste, as leather tannery wastewater (LTW) is often discharged directly into the environment. Releasing polluted LTW straight into the environment leads to the buildup of many harmful substances, like heavy metals, dyes, dirt, chemicals, and oils, which can be dangerous for the environment and human health. Among effective wastewater treatments, adsorption is a recognized method capable of treating a diverse array of contaminants in wastewater. Among the novel and new adsorption substrates employed, dialdehyde Shellac (DAS) and dialdehyde Cellulose (DAC) have consistently demonstrated exceptional performance. This study aimed to improve the efficiency of TW treatment by using new oxidized natural byproducts to create dialdehyde compounds, DAS and DAC, and to investigate these compounds. Oxidation increases the by-product’s functional active sites and groups, making it easier to absorb heavy metals and toxic chemicals from tannery effluent. DAS evaluation shows high-quality treated effluent; the residual COD, BOD, and TSS were 225, 119, and 30 mg/L which represent 95.51%, 98.11%, and 98.82% removal rates, respectively. The most unpleasant element, chromium, was eliminated at a rate of 98.92%, dropping from 280 to 3 mg/L. DAC had residual COD, BOD, and TSS values of 380, 985, and 90 mg/L (80.1%, 84.36%, and 96.42% removal), respectively. The pseudo-second order model suited the adsorption data better than the pseudo-first order model for all samples, with
R
2
values between 1.0 and 0.999. The Elovich equation better fits adsorption, with
R
2
values between 0.936 and 0.965. The Freundlich isotherm model matches adsorption data better than other isotherm models due to its higher coefficient of determination. This study suggests modifying natural wastes to improve industrial wastewater absorption while being cheap and sustainable. By comparing our work to the literature on TW, we are able to draw out areas that may be the subject of future research and highlight areas that require additional examination.
Graphical Abstract |
---|---|
AbstractList | The production of leather requires extensive water usage, resulting in serious liquid waste, as leather tannery wastewater (LTW) is often discharged directly into the environment. Releasing polluted LTW straight into the environment leads to the buildup of many harmful substances, like heavy metals, dyes, dirt, chemicals, and oils, which can be dangerous for the environment and human health. Among effective wastewater treatments, adsorption is a recognized method capable of treating a diverse array of contaminants in wastewater. Among the novel and new adsorption substrates employed, dialdehyde Shellac (DAS) and dialdehyde Cellulose (DAC) have consistently demonstrated exceptional performance. This study aimed to improve the efficiency of TW treatment by using new oxidized natural byproducts to create dialdehyde compounds, DAS and DAC, and to investigate these compounds. Oxidation increases the by-product's functional active sites and groups, making it easier to absorb heavy metals and toxic chemicals from tannery effluent. DAS evaluation shows high-quality treated effluent; the residual COD, BOD, and TSS were 225, 119, and 30 mg/L which represent 95.51%, 98.11%, and 98.82% removal rates, respectively. The most unpleasant element, chromium, was eliminated at a rate of 98.92%, dropping from 280 to 3 mg/L. DAC had residual COD, BOD, and TSS values of 380, 985, and 90 mg/L (80.1%, 84.36%, and 96.42% removal), respectively. The pseudo-second order model suited the adsorption data better than the pseudo-first order model for all samples, with R
values between 1.0 and 0.999. The Elovich equation better fits adsorption, with R
values between 0.936 and 0.965. The Freundlich isotherm model matches adsorption data better than other isotherm models due to its higher coefficient of determination. This study suggests modifying natural wastes to improve industrial wastewater absorption while being cheap and sustainable. By comparing our work to the literature on TW, we are able to draw out areas that may be the subject of future research and highlight areas that require additional examination. The production of leather requires extensive water usage, resulting in serious liquid waste, as leather tannery wastewater (LTW) is often discharged directly into the environment. Releasing polluted LTW straight into the environment leads to the buildup of many harmful substances, like heavy metals, dyes, dirt, chemicals, and oils, which can be dangerous for the environment and human health. Among effective wastewater treatments, adsorption is a recognized method capable of treating a diverse array of contaminants in wastewater. Among the novel and new adsorption substrates employed, dialdehyde Shellac (DAS) and dialdehyde Cellulose (DAC) have consistently demonstrated exceptional performance. This study aimed to improve the efficiency of TW treatment by using new oxidized natural byproducts to create dialdehyde compounds, DAS and DAC, and to investigate these compounds. Oxidation increases the by-product’s functional active sites and groups, making it easier to absorb heavy metals and toxic chemicals from tannery effluent. DAS evaluation shows high-quality treated effluent; the residual COD, BOD, and TSS were 225, 119, and 30 mg/L which represent 95.51%, 98.11%, and 98.82% removal rates, respectively. The most unpleasant element, chromium, was eliminated at a rate of 98.92%, dropping from 280 to 3 mg/L. DAC had residual COD, BOD, and TSS values of 380, 985, and 90 mg/L (80.1%, 84.36%, and 96.42% removal), respectively. The pseudo-second order model suited the adsorption data better than the pseudo-first order model for all samples, with R2 values between 1.0 and 0.999. The Elovich equation better fits adsorption, with R2 values between 0.936 and 0.965. The Freundlich isotherm model matches adsorption data better than other isotherm models due to its higher coefficient of determination. This study suggests modifying natural wastes to improve industrial wastewater absorption while being cheap and sustainable. By comparing our work to the literature on TW, we are able to draw out areas that may be the subject of future research and highlight areas that require additional examination. The production of leather requires extensive water usage, resulting in serious liquid waste, as leather tannery wastewater (LTW) is often discharged directly into the environment. Releasing polluted LTW straight into the environment leads to the buildup of many harmful substances, like heavy metals, dyes, dirt, chemicals, and oils, which can be dangerous for the environment and human health. Among effective wastewater treatments, adsorption is a recognized method capable of treating a diverse array of contaminants in wastewater. Among the novel and new adsorption substrates employed, dialdehyde Shellac (DAS) and dialdehyde Cellulose (DAC) have consistently demonstrated exceptional performance. This study aimed to improve the efficiency of TW treatment by using new oxidized natural byproducts to create dialdehyde compounds, DAS and DAC, and to investigate these compounds. Oxidation increases the by-product's functional active sites and groups, making it easier to absorb heavy metals and toxic chemicals from tannery effluent. DAS evaluation shows high-quality treated effluent; the residual COD, BOD, and TSS were 225, 119, and 30 mg/L which represent 95.51%, 98.11%, and 98.82% removal rates, respectively. The most unpleasant element, chromium, was eliminated at a rate of 98.92%, dropping from 280 to 3 mg/L. DAC had residual COD, BOD, and TSS values of 380, 985, and 90 mg/L (80.1%, 84.36%, and 96.42% removal), respectively. The pseudo-second order model suited the adsorption data better than the pseudo-first order model for all samples, with R2 values between 1.0 and 0.999. The Elovich equation better fits adsorption, with R2 values between 0.936 and 0.965. The Freundlich isotherm model matches adsorption data better than other isotherm models due to its higher coefficient of determination. This study suggests modifying natural wastes to improve industrial wastewater absorption while being cheap and sustainable. By comparing our work to the literature on TW, we are able to draw out areas that may be the subject of future research and highlight areas that require additional examination.The production of leather requires extensive water usage, resulting in serious liquid waste, as leather tannery wastewater (LTW) is often discharged directly into the environment. Releasing polluted LTW straight into the environment leads to the buildup of many harmful substances, like heavy metals, dyes, dirt, chemicals, and oils, which can be dangerous for the environment and human health. Among effective wastewater treatments, adsorption is a recognized method capable of treating a diverse array of contaminants in wastewater. Among the novel and new adsorption substrates employed, dialdehyde Shellac (DAS) and dialdehyde Cellulose (DAC) have consistently demonstrated exceptional performance. This study aimed to improve the efficiency of TW treatment by using new oxidized natural byproducts to create dialdehyde compounds, DAS and DAC, and to investigate these compounds. Oxidation increases the by-product's functional active sites and groups, making it easier to absorb heavy metals and toxic chemicals from tannery effluent. DAS evaluation shows high-quality treated effluent; the residual COD, BOD, and TSS were 225, 119, and 30 mg/L which represent 95.51%, 98.11%, and 98.82% removal rates, respectively. The most unpleasant element, chromium, was eliminated at a rate of 98.92%, dropping from 280 to 3 mg/L. DAC had residual COD, BOD, and TSS values of 380, 985, and 90 mg/L (80.1%, 84.36%, and 96.42% removal), respectively. The pseudo-second order model suited the adsorption data better than the pseudo-first order model for all samples, with R2 values between 1.0 and 0.999. The Elovich equation better fits adsorption, with R2 values between 0.936 and 0.965. The Freundlich isotherm model matches adsorption data better than other isotherm models due to its higher coefficient of determination. This study suggests modifying natural wastes to improve industrial wastewater absorption while being cheap and sustainable. By comparing our work to the literature on TW, we are able to draw out areas that may be the subject of future research and highlight areas that require additional examination. The production of leather requires extensive water usage, resulting in serious liquid waste, as leather tannery wastewater (LTW) is often discharged directly into the environment. Releasing polluted LTW straight into the environment leads to the buildup of many harmful substances, like heavy metals, dyes, dirt, chemicals, and oils, which can be dangerous for the environment and human health. Among effective wastewater treatments, adsorption is a recognized method capable of treating a diverse array of contaminants in wastewater. Among the novel and new adsorption substrates employed, dialdehyde Shellac (DAS) and dialdehyde Cellulose (DAC) have consistently demonstrated exceptional performance. This study aimed to improve the efficiency of TW treatment by using new oxidized natural byproducts to create dialdehyde compounds, DAS and DAC, and to investigate these compounds. Oxidation increases the by-product’s functional active sites and groups, making it easier to absorb heavy metals and toxic chemicals from tannery effluent. DAS evaluation shows high-quality treated effluent; the residual COD, BOD, and TSS were 225, 119, and 30 mg/L which represent 95.51%, 98.11%, and 98.82% removal rates, respectively. The most unpleasant element, chromium, was eliminated at a rate of 98.92%, dropping from 280 to 3 mg/L. DAC had residual COD, BOD, and TSS values of 380, 985, and 90 mg/L (80.1%, 84.36%, and 96.42% removal), respectively. The pseudo-second order model suited the adsorption data better than the pseudo-first order model for all samples, with R 2 values between 1.0 and 0.999. The Elovich equation better fits adsorption, with R 2 values between 0.936 and 0.965. The Freundlich isotherm model matches adsorption data better than other isotherm models due to its higher coefficient of determination. This study suggests modifying natural wastes to improve industrial wastewater absorption while being cheap and sustainable. By comparing our work to the literature on TW, we are able to draw out areas that may be the subject of future research and highlight areas that require additional examination. Graphical Abstract |
ArticleNumber | 894 |
Author | El-Khateeb, M. A. Elsayed, Hamed Nashy, El-Shahat H. A. El-Sakhawy, Mohamed Tohamy, Hebat-Allah S. |
Author_xml | – sequence: 1 givenname: Hamed orcidid: 0000-0002-6463-258X surname: Elsayed fullname: Elsayed, Hamed email: hamed_sci@yahoo.com organization: Chemistry of Tanning Materials and Leather Technology Department, Chemical Industries Research Institute, National Research Centre – sequence: 2 givenname: Hebat-Allah S. orcidid: 0000-0001-5494-841X surname: Tohamy fullname: Tohamy, Hebat-Allah S. organization: Cellulose and Paper Department, Chemical Industries Research Institute, National Research Centre – sequence: 3 givenname: Mohamed orcidid: 0000-0002-5095-3112 surname: El-Sakhawy fullname: El-Sakhawy, Mohamed organization: Cellulose and Paper Department, Chemical Industries Research Institute, National Research Centre – sequence: 4 givenname: M. A. orcidid: 0000-0001-8670-265X surname: El-Khateeb fullname: El-Khateeb, M. A. organization: Water Pollution Control Department, National Research Centre – sequence: 5 givenname: El-Shahat H. A. orcidid: 0000-0003-1721-2440 surname: Nashy fullname: Nashy, El-Shahat H. A. email: elshhat17@yahoo.com organization: Chemistry of Tanning Materials and Leather Technology Department, Chemical Industries Research Institute, National Research Centre |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40637945$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctuFDEQRS0URJKBH2CBLLFh0-Bnt80ORbykSEgI1pbbj8FJjz3Y3UPIr_Cz1MyEh1iwsl0-t65d9xyd5JIDQo8peU4JGV40SvqedoTJjgouSKfuoTMqB94xLfXJX_tTdN7aFSFED0I_QKeC9HzQQp6hHx_DrkzLnEq29Tu2220t1n3Bc8E1tWtsWwutbUKeMUBTurV7FJeIy03y6TZ4bNc1uWWal2on_M22OYAKpxxutiG3tIOjb6WO0GNfxrPNOYBXiHFaoPgSW3wN-JwcXO9Cm9P64PIQ3Y92auHR3bpCn9-8_nTxrrv88Pb9xavLznGm5s6paAcxKiEEE1KJIJX0_cB4JNZR5jmRUkcihmiJd8RH5TyJjMbRjdoJy1fo2bEv_P3rAv5mk5oL02RzKEsznDGlmOYwtBV6-g96VZaa4XUHSoteaQnUkztqGTfBm21NG5iu-TV2ANgRcLW0VkP8jVBi9tmaY7YGsjWHbI0CET-KGsB5Heof7_-ofgLJ-qq- |
Cites_doi | 10.3923/jest.2011.1.17 10.1016/j.fbio.2023.103246 10.1007/s10661-009-1156-6 10.1016/j.eti.2021.102010 10.21608/ejchem.2024.249463.8890 10.1007/s11356-011-0691-1 10.1016/j.envint.2018.04.051 10.1016/j.wse.2020.09.007 10.1186/s42825-023-00124-8 10.1016/j.cej.2007.03.006 10.1007/s12221-018-7979-4 10.1007/s12649-020-01204-0 10.1016/j.scitotenv.2013.05.004 10.1007/s13762-013-0200-9 10.1007/s11814-008-0115-1 10.5004/dwt.2017.20250 10.1021/ie501210j 10.1016/j.jclepro.2008.08.021 10.1016/j.enmm.2023.100911 10.1080/00986445.2017.1336090 10.1016/j.ijbiomac.2019.02.071 10.1038/s41598-017-14907-7 10.2166/wst.2009.864 10.5004/dwt.2020.25652 10.1515/revce-2016-0019 10.4028/www.scientific.net/AMR.747.31 10.1007/s13201-018-0774-y 10.1016/j.jclepro.2010.09.018 10.1007/s10924-020-01920-7 10.1007/s00244-017-0490-x 10.1016/j.envc.2022.100450 10.1007/s11356-022-21259-x 10.1016/j.jclepro.2018.06.257 10.1016/j.jtice.2023.105138 10.3390/polym15143114 10.1016/j.jece.2019.103188 10.1016/j.clwat.2023.100001 10.1016/j.jiec.2013.04.013 10.1007/s42250-024-01175-y 10.1016/j.carpta.2021.100067 10.1111/j.1365-2842.1993.tb01623.x 10.1016/j.surfin.2020.100868 10.3923/jas.2007.2788.2793 10.1016/j.desal.2010.06.073 10.1080/10934529.2017.1297140 10.1007/s10570-019-02747-9 10.1016/j.trac.2019.05.005 10.1016/j.seppur.2006.08.008 10.5004/dwt.2010.1991 10.1016/j.molstruc.2021.130130 10.1016/j.jhazmat.2008.11.035 10.1007/s10924-023-02798-x 10.1016/j.chemosphere.2007.05.086 10.1007/s12649-023-02227-z 10.1016/j.jfoodeng.2011.07.019 10.1016/j.jwpe.2024.105378 10.1016/j.jwpe.2021.102184 10.24264/lfj.18.4.2 10.1016/j.heliyon.2019.e02923 10.1021/ie201039z 10.1039/C9RA04296B 10.1016/S0011-9164(04)00193-6 10.1016/j.jenvman.2016.07.090 10.1016/j.reffit.2016.09.004 10.4028/www.scientific.net/AMR.506.290 10.1016/j.foodhyd.2014.01.026 10.18034/ei.v5i2.180 10.21608/ejchem.2018.4393.1387 10.1016/j.scitotenv.2019.05.295 10.1016/j.jenvman.2021.114369 10.1016/j.molliq.2018.02.033 10.21608/ejchem.2024.257729.9075 10.1021/ie102576w 10.1039/C7CP02409F 10.1016/j.psep.2016.08.004 10.1016/j.carbpol.2015.03.038 10.1002/adv.22112 10.1016/j.jhazmat.2008.11.058 10.1016/j.geoforum.2017.09.010 10.1016/j.mee.2019.111003 10.1021/acsomega.2c07839 10.2147/DDDT.S165440 10.1016/j.jece.2017.06.004 10.1016/j.jece.2016.01.010 10.1016/j.jhazmat.2005.12.014 10.21608/ejchem.2022.160832.7007 10.1016/j.procbio.2019.06.016 10.1016/j.eti.2018.05.006 10.1016/B978-0-323-95486-0.00019-3 10.1016/j.wri.2013.05.002 10.1016/j.colsurfa.2025.136869 10.21608/ejchem.2020.46016.2942 10.1016/j.seppur.2023.125220 10.21608/ejchem.2017.544.1002 10.35812/CelluloseChemTechnol.2021.55.39 10.1016/j.chemosphere.2009.12.032 10.1016/j.ijbiomac.2019.02.142 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2025. The Author(s), under exclusive licence to Springer Nature Switzerland AG. The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2025. The Author(s), under exclusive licence to Springer Nature Switzerland AG. – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QH 7QL 7SN 7ST 7T7 7TG 7TN 7U7 7UA 8FD C1K F1W FR3 H97 K9. KL. L.G M7N P64 SOI 7X8 |
DOI | 10.1007/s10661-025-14340-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aqualine Bacteriology Abstracts (Microbiology B) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Toxicology Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ProQuest Health & Medical Complete (Alumni) Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Ecology Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Ecology Environmental Sciences Agriculture |
EISSN | 1573-2959 |
ExternalDocumentID | 40637945 10_1007_s10661_025_14340_8 |
Genre | Journal Article |
GeographicLocations | Egypt |
GeographicLocations_xml | – name: Egypt |
GroupedDBID | --- -~C ..I .86 .VR 06D 0R~ 0VY 199 1N0 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 36B 4.4 406 408 409 40D 40E 5GY 5VS 67M 67Z 6NX 78A 7WY 8FL 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACSTC ACZOJ ADBBV ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BENPR BGNMA BHPHI BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EMB ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM OVD P19 P2P PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RRX RSV S16 S1Z S27 S3B SAP SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX VC2 W23 W48 WH7 WK8 YLTOR Z45 Z8Z ZCA ZMTXR ~02 ~A9 ~EX ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QH 7QL 7SN 7ST 7T7 7TG 7TN 7U7 7UA 8FD C1K F1W FR3 H97 K9. KL. L.G M7N P64 SOI 7X8 |
ID | FETCH-LOGICAL-c328t-c8fa74b844424584e585d6723f0ac12d30559f047fa0dc0df8cd0f21fbcb9c4a3 |
IEDL.DBID | U2A |
ISSN | 1573-2959 0167-6369 |
IngestDate | Sat Jul 12 02:23:52 EDT 2025 Sat Aug 23 13:13:42 EDT 2025 Wed Aug 13 02:12:34 EDT 2025 Thu Aug 14 00:09:45 EDT 2025 Tue Aug 12 01:10:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | COD Toxic substances Wastewater treatment BOD Tannery wet-finishing effluent |
Language | English |
License | 2025. The Author(s), under exclusive licence to Springer Nature Switzerland AG. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-c8fa74b844424584e585d6723f0ac12d30559f047fa0dc0df8cd0f21fbcb9c4a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5095-3112 0000-0001-8670-265X 0000-0001-5494-841X 0000-0002-6463-258X 0000-0003-1721-2440 |
PMID | 40637945 |
PQID | 3228946895 |
PQPubID | 54151 |
ParticipantIDs | proquest_miscellaneous_3228829306 proquest_journals_3228946895 pubmed_primary_40637945 crossref_primary_10_1007_s10661_025_14340_8 springer_journals_10_1007_s10661_025_14340_8 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-10 |
PublicationDateYYYYMMDD | 2025-07-10 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Netherlands – name: Dordrecht |
PublicationSubtitle | An International Journal Devoted to Progress in the Use of Monitoring Data in Assessing Environmental Risks to Humans and the Environment |
PublicationTitle | Environmental monitoring and assessment |
PublicationTitleAbbrev | Environ Monit Assess |
PublicationTitleAlternate | Environ Monit Assess |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | E Ahmed (14340_CR3) 2016; 104 MI Ahmad (14340_CR2) 2016; 50 M Nigam (14340_CR68) 2020; 8 H Yu (14340_CR106) 2024; 63 H Elsayed (14340_CR29) 2024; 67 SMAS Keshk (14340_CR42) 2015; 127 K Sivagami (14340_CR88) 2018; 6 EÜ Deveci (14340_CR16) 2019; 84 P Rajasulochana (14340_CR78) 2016; 2 D Tamburini (14340_CR97) 2017; 7 P Vijayalakshmi (14340_CR102) 2011; 50 NA Abd El-Ghany (14340_CR1) 2023; 31 MA Hashem (14340_CR34) 2024; 1 RN Bharagava (14340_CR11) 2018; 75 S Haydar (14340_CR35) 2009; 59 PW Ramteke (14340_CR79) 2010; 169 H-A Sarhan (14340_CR82) 2020; 191 J Guo (14340_CR33) 2014; 39 X Mao (14340_CR53) 2017; 86 M Sultan (14340_CR93) 2021; 42 NF Fahim (14340_CR31) 2006; 136 O Mohamed (14340_CR57) 2005; 48 A Aziz (14340_CR8) 2019; 686 M Sultan (14340_CR94) 2023; 56 SV Kanth (14340_CR40) 2009; 17 A Moges (14340_CR55) 2022; 305 S Mustapha (14340_CR60) 2019 J Hu (14340_CR37) 2011; 19 FMM Paschoal (14340_CR72) 2009; 166 T Qiang (14340_CR77) 2018; 197 M El-Sakhawy (14340_CR23) 2018; 52 MD Yahya (14340_CR105) 2020; 13 V-P Dinh (14340_CR17) 2019; 9 HN Tran (14340_CR100) 2017; 204 AS Naje (14340_CR61) 2017; 33 S Karthikeyan (14340_CR41) 2012; 19 S Verma (14340_CR101) 2011; 50 M Nur-E-Alam (14340_CR71) 2018; 8 S Kongjao (14340_CR45) 2008; 25 K Kubra (14340_CR46) 2024; 330 PK Chaudhari (14340_CR12) 2008; 136 SS Tahir (14340_CR96) 2007; 53 M El-Sakhawy (14340_CR24) 2018; 52 JF Nure (14340_CR70) 2023; 151 MA El-Khateeb (14340_CR22) 2021; 12 G El mouhri (14340_CR20) 2021; 22 P Piyawatakarn (14340_CR75) 2012; 506 S Mim (14340_CR54) 2024; 21 14340_CR19 14340_CR5 T Kalburcu (14340_CR39) 2014; 20 14340_CR7 E Nashy (14340_CR62) 2019; 62 H-AS Tohamy (14340_CR99) 2021; 29 M Chowdhury (14340_CR13) 2013; 3 CR Holkar (14340_CR36) 2016; 182 F Sarwar (14340_CR84) 2018; 117 G Lofrano (14340_CR50) 2010; 23 M Nigam (14340_CR69) 2023; 30 ELSHA Nashy (14340_CR64) 2024; 15 14340_CR30 G Lofrano (14340_CR51) 2013; 461-462 O Mohamed (14340_CR56) 2005; 89 X Dang (14340_CR15) 2019; 26 V Preethi (14340_CR76) 2009; 166 JC Almeida (14340_CR6) 2019; 118 G Saxena (14340_CR85) 2017 T Thammachat (14340_CR98) 2013; 747 J Lunagariya (14340_CR52) 2022; 6 14340_CR25 R Khosravi (14340_CR44) 2018; 256 HM Elsayed (14340_CR27) 2018; 18 E-SHA Nashy (14340_CR63) 2023; 5 JM Morera (14340_CR59) 2007; 69 14340_CR80 A Sood (14340_CR91) 2021; 2 14340_CR83 C Gadipelly (14340_CR32) 2014; 53 JC Akan (14340_CR4) 2007; 7 RCC Costa (14340_CR14) 2010; 78 F Wang (14340_CR104) 2019; 215 BC Barman (14340_CR10) 2017; 5 M El-Khateeb (14340_CR21) 2017; 65 Z Song (14340_CR89) 2004; 164 O Mohamed (14340_CR58) 2018; 37 14340_CR90 JH Naumczyk (14340_CR66) 2017; 52 B Lindman (14340_CR49) 2017; 19 Y Du (14340_CR18) 2019; 131 14340_CR95 V Vinodhini (14340_CR103) 2010; 264 M Kumari (14340_CR48) 2025; 8 JS Piccin (14340_CR74) 2016; 4 S Payel (14340_CR73) 2021; 24 M Nigam (14340_CR67) 2019; 7 X Huang (14340_CR38) 2023; 8 A Sedaghat Doost (14340_CR86) 2019; 129 TS Natarajan (14340_CR65) 2013; 10 H Elsayed (14340_CR28) 2021; 1234 S Soradech (14340_CR92) 2012; 108 O Sahu (14340_CR81) 2014; 1 M Kumari (14340_CR47) 2025; 718 14340_CR87 PS Khoo (14340_CR43) 2023; 15 A Azouka (14340_CR9) 1993; 20 H Elsayed (14340_CR26) 2018; 19 |
References_xml | – volume: 48 start-page: 613 issue: 5 year: 2005 ident: 14340_CR57 publication-title: Egyptian Journal of Chemistry – volume: 89 start-page: 204 issue: 5 year: 2005 ident: 14340_CR56 publication-title: Journal of the Society of Leather Technologists and Chemists – ident: 14340_CR19 doi: 10.3923/jest.2011.1.17 – volume: 56 year: 2023 ident: 14340_CR94 publication-title: Food Bioscience doi: 10.1016/j.fbio.2023.103246 – volume: 169 start-page: 125 issue: 1 year: 2010 ident: 14340_CR79 publication-title: Environmental Monitoring and Assessment doi: 10.1007/s10661-009-1156-6 – volume: 8 start-page: 818 year: 2020 ident: 14340_CR68 publication-title: Journal of Environmental Treatment Techniques – volume: 24 year: 2021 ident: 14340_CR73 publication-title: Environmental Technology & Innovation doi: 10.1016/j.eti.2021.102010 – ident: 14340_CR30 doi: 10.21608/ejchem.2024.249463.8890 – volume: 19 start-page: 1828 issue: 5 year: 2012 ident: 14340_CR41 publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-011-0691-1 – volume: 117 start-page: 164 year: 2018 ident: 14340_CR84 publication-title: Environment International doi: 10.1016/j.envint.2018.04.051 – volume: 13 start-page: 202 issue: 3 year: 2020 ident: 14340_CR105 publication-title: Water Science and Engineering doi: 10.1016/j.wse.2020.09.007 – volume: 5 start-page: 16 issue: 1 year: 2023 ident: 14340_CR63 publication-title: Collagen and Leather doi: 10.1186/s42825-023-00124-8 – volume: 136 start-page: 14 issue: 1 year: 2008 ident: 14340_CR12 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2007.03.006 – volume: 19 start-page: 832 issue: 4 year: 2018 ident: 14340_CR26 publication-title: Fibers and Polymers doi: 10.1007/s12221-018-7979-4 – volume: 12 start-page: 2557 issue: 5 year: 2021 ident: 14340_CR22 publication-title: Waste and Biomass Valorization doi: 10.1007/s12649-020-01204-0 – volume: 461-462 start-page: 265 year: 2013 ident: 14340_CR51 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2013.05.004 – volume: 10 start-page: 855 issue: 4 year: 2013 ident: 14340_CR65 publication-title: International Journal of Environmental Science and Technology doi: 10.1007/s13762-013-0200-9 – volume: 25 start-page: 703 issue: 4 year: 2008 ident: 14340_CR45 publication-title: Korean Journal of Chemical Engineering doi: 10.1007/s11814-008-0115-1 – volume: 65 start-page: 147 issue: 2017 year: 2017 ident: 14340_CR21 publication-title: Desalination and Water Treatment doi: 10.5004/dwt.2017.20250 – volume: 53 start-page: 11571 issue: 29 year: 2014 ident: 14340_CR32 publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie501210j – volume: 17 start-page: 507 issue: 5 year: 2009 ident: 14340_CR40 publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2008.08.021 – volume: 21 start-page: 100911 year: 2024 ident: 14340_CR54 publication-title: Environmental Nanotechnology, Monitoring & Management doi: 10.1016/j.enmm.2023.100911 – volume: 204 start-page: 1020 issue: 9 year: 2017 ident: 14340_CR100 publication-title: Chemical Engineering Communications doi: 10.1080/00986445.2017.1336090 – volume: 129 start-page: 1024 year: 2019 ident: 14340_CR86 publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2019.02.071 – volume: 7 start-page: 14784 issue: 1 year: 2017 ident: 14340_CR97 publication-title: Scientific Reports doi: 10.1038/s41598-017-14907-7 – volume: 59 start-page: 381 issue: 2 year: 2009 ident: 14340_CR35 publication-title: Water Science and Technology doi: 10.2166/wst.2009.864 – volume: 191 start-page: 250 year: 2020 ident: 14340_CR82 publication-title: Desalination and Water Treatment doi: 10.5004/dwt.2020.25652 – volume: 33 start-page: 263 issue: 3 year: 2017 ident: 14340_CR61 publication-title: Reviews in Chemical Engineering doi: 10.1515/revce-2016-0019 – volume: 747 start-page: 31 year: 2013 ident: 14340_CR98 publication-title: Advanced Materials Research doi: 10.4028/www.scientific.net/AMR.747.31 – volume: 8 issue: 5 year: 2018 ident: 14340_CR71 publication-title: Applied Water Science doi: 10.1007/s13201-018-0774-y – volume: 19 start-page: 221 issue: 2 year: 2011 ident: 14340_CR37 publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2010.09.018 – volume: 29 start-page: 859 issue: 3 year: 2021 ident: 14340_CR99 publication-title: Journal of Polymers and the Environment doi: 10.1007/s10924-020-01920-7 – volume: 75 start-page: 259 issue: 2 year: 2018 ident: 14340_CR11 publication-title: Archives of Environmental Contamination and Toxicology doi: 10.1007/s00244-017-0490-x – volume: 6 start-page: 100450 year: 2022 ident: 14340_CR52 publication-title: Environmental Challenges doi: 10.1016/j.envc.2022.100450 – volume: 30 start-page: 124686 issue: 60 year: 2023 ident: 14340_CR69 publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-022-21259-x – volume: 197 start-page: 1117 year: 2018 ident: 14340_CR77 publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2018.06.257 – volume: 151 start-page: 105138 year: 2023 ident: 14340_CR70 publication-title: Journal of the Taiwan Institute of Chemical Engineers doi: 10.1016/j.jtice.2023.105138 – volume: 15 issue: 14 year: 2023 ident: 14340_CR43 publication-title: Polymers doi: 10.3390/polym15143114 – volume: 7 start-page: 103188 issue: 3 year: 2019 ident: 14340_CR67 publication-title: Journal of Environmental Chemical Engineering doi: 10.1016/j.jece.2019.103188 – volume: 1 start-page: 100001 year: 2024 ident: 14340_CR34 publication-title: Cleaner Water doi: 10.1016/j.clwat.2023.100001 – volume: 20 start-page: 153 issue: 1 year: 2014 ident: 14340_CR39 publication-title: Journal of Industrial and Engineering Chemistry doi: 10.1016/j.jiec.2013.04.013 – volume: 8 start-page: 1127 issue: 3 year: 2025 ident: 14340_CR48 publication-title: Chemistry Africa doi: 10.1007/s42250-024-01175-y – volume: 2 start-page: 100067 year: 2021 ident: 14340_CR91 publication-title: Carbohydrate Polymer Technologies and Applications doi: 10.1016/j.carpta.2021.100067 – volume: 20 start-page: 393 issue: 4 year: 1993 ident: 14340_CR9 publication-title: Journal of Oral Rehabilitation doi: 10.1111/j.1365-2842.1993.tb01623.x – volume: 22 year: 2021 ident: 14340_CR20 publication-title: Surfaces and Interfaces doi: 10.1016/j.surfin.2020.100868 – volume: 7 start-page: 2788 issue: 19 year: 2007 ident: 14340_CR4 publication-title: Journal of Applied Sciences doi: 10.3923/jas.2007.2788.2793 – volume: 264 start-page: 9 issue: 1 year: 2010 ident: 14340_CR103 publication-title: Desalination doi: 10.1016/j.desal.2010.06.073 – volume: 52 start-page: 649 issue: 7 year: 2017 ident: 14340_CR66 publication-title: Journal of Environmental Science and Health, Part A doi: 10.1080/10934529.2017.1297140 – volume: 26 start-page: 9503 issue: 18 year: 2019 ident: 14340_CR15 publication-title: Cellulose doi: 10.1007/s10570-019-02747-9 – volume: 52 start-page: 749 year: 2018 ident: 14340_CR24 publication-title: Cellulose Chemistry and Technology – volume: 118 start-page: 277 year: 2019 ident: 14340_CR6 publication-title: TrAC - Trends in Analytical Chemistry doi: 10.1016/j.trac.2019.05.005 – volume: 53 start-page: 312 issue: 3 year: 2007 ident: 14340_CR96 publication-title: Separation and Purification Technology doi: 10.1016/j.seppur.2006.08.008 – volume: 23 start-page: 173 issue: 1 year: 2010 ident: 14340_CR50 publication-title: Desalination and Water Treatment doi: 10.5004/dwt.2010.1991 – volume: 1234 year: 2021 ident: 14340_CR28 publication-title: Journal of Molecular Structure doi: 10.1016/j.molstruc.2021.130130 – volume: 166 start-page: 150 issue: 1 year: 2009 ident: 14340_CR76 publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2008.11.035 – volume: 31 start-page: 2792 issue: 7 year: 2023 ident: 14340_CR1 publication-title: Journal of Polymers and the Environment doi: 10.1007/s10924-023-02798-x – volume: 69 start-page: 1728 issue: 11 year: 2007 ident: 14340_CR59 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.05.086 – volume: 15 start-page: 637 issue: 2 year: 2024 ident: 14340_CR64 publication-title: Waste and Biomass Valorization doi: 10.1007/s12649-023-02227-z – volume: 108 start-page: 94 issue: 1 year: 2012 ident: 14340_CR92 publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2011.07.019 – volume: 63 start-page: 105378 year: 2024 ident: 14340_CR106 publication-title: Journal of Water Process Engineering doi: 10.1016/j.jwpe.2024.105378 – volume: 42 year: 2021 ident: 14340_CR93 publication-title: Journal of Water Process Engineering doi: 10.1016/j.jwpe.2021.102184 – volume: 18 start-page: 259 issue: 4 year: 2018 ident: 14340_CR27 publication-title: Leather and Footwear Journal doi: 10.24264/lfj.18.4.2 – ident: 14340_CR7 – year: 2019 ident: 14340_CR60 publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e02923 – volume: 50 start-page: 10194 issue: 17 year: 2011 ident: 14340_CR102 publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie201039z – volume: 9 start-page: 25847 issue: 44 year: 2019 ident: 14340_CR17 publication-title: RSC Advances doi: 10.1039/C9RA04296B – volume: 164 start-page: 249 issue: 3 year: 2004 ident: 14340_CR89 publication-title: Desalination doi: 10.1016/S0011-9164(04)00193-6 – volume: 182 start-page: 351 year: 2016 ident: 14340_CR36 publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2016.07.090 – volume: 52 start-page: 193 issue: 3–4 year: 2018 ident: 14340_CR23 publication-title: Cellulose Chemistry and Technology – volume: 2 start-page: 175 issue: 4 year: 2016 ident: 14340_CR78 publication-title: Resource-Efficient Technologies doi: 10.1016/j.reffit.2016.09.004 – volume: 506 start-page: 290 year: 2012 ident: 14340_CR75 publication-title: Advanced Materials Research doi: 10.4028/www.scientific.net/AMR.506.290 – volume: 1 start-page: 353 issue: 6 year: 2014 ident: 14340_CR81 publication-title: Journal of Chemical Engineering & Chemical Research – volume: 39 start-page: 243 year: 2014 ident: 14340_CR33 publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2014.01.026 – volume: 5 start-page: 75 issue: 2 year: 2017 ident: 14340_CR10 publication-title: Engineering International doi: 10.18034/ei.v5i2.180 – volume: 62 start-page: 415 issue: 3 year: 2019 ident: 14340_CR62 publication-title: Egyptian Journal of Chemistry doi: 10.21608/ejchem.2018.4393.1387 – start-page: 31 volume-title: Reviews of Environmental Contamination and Toxicology year: 2017 ident: 14340_CR85 – volume: 686 start-page: 681 year: 2019 ident: 14340_CR8 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2019.05.295 – volume: 305 year: 2022 ident: 14340_CR55 publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2021.114369 – volume: 256 start-page: 163 year: 2018 ident: 14340_CR44 publication-title: Journal of Molecular Liquids doi: 10.1016/j.molliq.2018.02.033 – volume: 67 start-page: 537 issue: 13 year: 2024 ident: 14340_CR29 publication-title: Egyptian Journal of Chemistry doi: 10.21608/ejchem.2024.257729.9075 – volume: 50 start-page: 5352 issue: 9 year: 2011 ident: 14340_CR101 publication-title: Industrial & Engineering Chemistry Research doi: 10.1021/ie102576w – volume: 19 start-page: 23704 issue: 35 year: 2017 ident: 14340_CR49 publication-title: Physical Chemistry Chemical Physics doi: 10.1039/C7CP02409F – volume: 104 start-page: 1 year: 2016 ident: 14340_CR3 publication-title: Process Safety and Environmental Protection doi: 10.1016/j.psep.2016.08.004 – volume: 127 start-page: 246 year: 2015 ident: 14340_CR42 publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2015.03.038 – volume: 37 start-page: 3276 issue: 8 year: 2018 ident: 14340_CR58 publication-title: Advances in Polymer Technology doi: 10.1002/adv.22112 – volume: 166 start-page: 531 issue: 1 year: 2009 ident: 14340_CR72 publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2008.11.058 – volume: 86 start-page: 150 year: 2017 ident: 14340_CR53 publication-title: Geoforum doi: 10.1016/j.geoforum.2017.09.010 – volume: 215 year: 2019 ident: 14340_CR104 publication-title: Microelectronic Engineering doi: 10.1016/j.mee.2019.111003 – volume: 8 start-page: 8634 issue: 9 year: 2023 ident: 14340_CR38 publication-title: ACS Omega doi: 10.1021/acsomega.2c07839 – ident: 14340_CR90 doi: 10.2147/DDDT.S165440 – volume: 6 start-page: 3656 issue: 3 year: 2018 ident: 14340_CR88 publication-title: Journal of Environmental Chemical Engineering doi: 10.1016/j.jece.2017.06.004 – volume: 50 start-page: 13 year: 2016 ident: 14340_CR2 publication-title: Proceedings of the Pakistan Academy of Sciences – volume: 4 start-page: 1061 issue: 1 year: 2016 ident: 14340_CR74 publication-title: Journal of Environmental Chemical Engineering doi: 10.1016/j.jece.2016.01.010 – volume: 136 start-page: 303 issue: 2 year: 2006 ident: 14340_CR31 publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2005.12.014 – ident: 14340_CR80 doi: 10.21608/ejchem.2022.160832.7007 – volume: 84 start-page: 124 year: 2019 ident: 14340_CR16 publication-title: Process Biochemistry doi: 10.1016/j.procbio.2019.06.016 – ident: 14340_CR87 doi: 10.1016/j.eti.2018.05.006 – ident: 14340_CR95 doi: 10.1016/B978-0-323-95486-0.00019-3 – volume: 3 start-page: 11 year: 2013 ident: 14340_CR13 publication-title: Water Resources and Industry doi: 10.1016/j.wri.2013.05.002 – volume: 718 year: 2025 ident: 14340_CR47 publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects doi: 10.1016/j.colsurfa.2025.136869 – ident: 14340_CR5 doi: 10.21608/ejchem.2020.46016.2942 – volume: 330 year: 2024 ident: 14340_CR46 publication-title: Separation and Purification Technology doi: 10.1016/j.seppur.2023.125220 – ident: 14340_CR25 doi: 10.21608/ejchem.2017.544.1002 – ident: 14340_CR83 doi: 10.35812/CelluloseChemTechnol.2021.55.39 – volume: 78 start-page: 1116 issue: 9 year: 2010 ident: 14340_CR14 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.12.032 – volume: 131 start-page: 36 year: 2019 ident: 14340_CR18 publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2019.02.142 |
SSID | ssj0009749 |
Score | 2.4298406 |
Snippet | The production of leather requires extensive water usage, resulting in serious liquid waste, as leather tannery wastewater (LTW) is often discharged directly... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 894 |
SubjectTerms | Adsorbents Adsorption Agricultural wastes Agriculture Atmospheric Protection/Air Quality Control/Air Pollution Biodegradation Byproducts Carbohydrates Cellulose Chemical oxygen demand Chromium Contaminants Dyes Earth and Environmental Science Ecology Ecotoxicology Effluent treatment Effluents Environment Environmental conditions Environmental Management Heavy metals Industrial Waste - analysis Industrial wastes Industrial wastewater Isotherms Kinetics Leather Leather & leather products Liquid wastes Monitoring/Environmental Analysis Oxidation Oxidation-Reduction Pollutants Risk Assessment Shellac Surface water Tannery wastes Tanning Textile industry wastewaters Waste Disposal, Fluid - methods Wastewater Wastewater - chemistry Wastewater treatment Water consumption Water Pollutants, Chemical - analysis Water Pollutants, Chemical - chemistry Water use |
Title | Revolutionary approach to risk assessment utilization of oxidized agricultural waste as inexpensive adsorbents in tannery effluent: a kinetic investigation |
URI | https://link.springer.com/article/10.1007/s10661-025-14340-8 https://www.ncbi.nlm.nih.gov/pubmed/40637945 https://www.proquest.com/docview/3228946895 https://www.proquest.com/docview/3228829306 |
Volume | 197 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgCAkOCMZrMFCQuEGk0KVtym1CAwSCA2ISnKq0SdAEatFWnn-FP4vT14YGB65NXKeyE9u1_QVgX8eeUY7nUh_tEeURk1S4zFARqYAz4fNA2f-QV9feeZ9f3Ll3ZVPYqKp2r1KS-Uk90eyGtoTa61fRxnNGxSzMuRi720KuvtMdQ-0ig7I95ne6nyZoyq-cyonmpuZ0GZZKH5F0C6GuwIxOmjDfy_GlP5qwOIEh2IT13rhVDYnKvTpaha8b_VrqlRx-kAo8nGQpsfXkRNaYnAQnPZX9mCQ1JH0fqMGnVkQ-DGtoDvImUSGQiiDv9-ei7p1INUqHkS3GwMcEHc1EIy9t8ptPsmMiySNOx-_A4RrQI03WoH_auz05p-VVDDTuOCKjsTDS55Hg3GZKBdcYZSjPdzqGyfjIURY3LDCM-0YyFTNlRKyYcY5MFEdBzGVnHRpJmuhNwIVFXCnp-MIzHP0LDKE0ehFSugEGo5q14KCSTvhcIG6EY2xlK8sQZRnmsgxFC9qVAMNy941CPKREwD0RuC3Yq4dx39hkiEx0-lLMEejrMK8FG4Xga3bo5HTwnELqw0oTxi__ey1b_5u-DQuO1UqL0sna0MiGL3oHPZws2oW57tn9ZW83V-xv4tX5Pw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgCAEHBOM1nkHiBpFCl7YpN4SGxvOAmMStSpsETaAWbQUGf4U_i9PXQMCBa-PUqezEX-r4C8Cejj2jHM-lPsYjyiMmqXCZoSJSAWfC54Gy_yGvrr1uj5_fuXdlUdiwOu1epSTzlfpLsRvGEmqvX8UYzxkVkzCFYEBYX-45x2OqXVRQlsf83u97CPqBK3_kRPNQc7oA8yVGJMeFURdhQidNmO7k_NJvTZj7wiHYhJXOuFQNO5VzdbgEHzf6pfQrOXgjFXk4yVJiz5MTWXNyEhR6LOsxSWpIOuqr_rtWRN4PamoO8irRIbAXQd2jp-LcO5FqmA4iexgDHxMEmolGXdrkN59kR0SSBxTH78DmmtAjTZahd9q5PenS8ioGGrcdkdFYGOnzSHBuM6WCa9xlKM932obJ-NBRljcsMIz7RjIVM2VErJhxDk0UR0HMZXsFGkma6DXAgUVcKen4wjMc8QVuoTSiCCndADejmrVgv7JO-FQwboRjbmVryxBtGea2DEULNisDhuXsG4a4SImAeyJwW7BbN-O8sckQmej0uZARiHWY14LVwvC1OgQ5bVynsPdB5Qnjl_89lvX_ie_ATPf26jK8PLu-2IBZx3qoZexkm9DIBs96C9FOFm3nzv0J9fr6ng |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xEBN7mKCMUVbASLyBhUmdxOGtglZ8VghRibfIiW2EmJKqDRvsX-Gf5ZyvFpU98Brf5Rzd2XfO3f0MsKtjzyjHc6mP_ojyiEkqXGaoiFTAmfB5oOx_yKu-dzrg53fu3VQXf17tXqUki54Gi9KUZAdDZQ6mGt_Qr1B7FSv6e86o-AIL3HYDo0UPnM4EdheFla0yH_O9d0czMeZMfjR3O71l-F7Gi6RTKHgF5nTSgMVujjX90oBvU3iCDVjrTtrWkKlct-NVeL3Rf0obk6MXUgGJkywltracyBqfkyDR77I3k6SGpM8P6uGfVkTej2qYDvJXonEgF0HZz8OiBp5INU5HkS3MwMcEg85Eoyxt8ltQsiMiySOS43fgcA3ukSY_YNDr3h6f0vJaBhq3HZHRWBjp80hwbrOmgms8cSjPd9qGyfjQURZDLDCM-0YyFTNlRKyYcQ5NFEdBzGV7DeaTNNHrgBOLuFLS8YVnOMYaeJzSGFFI6QZ4MNWsCXuVdsJhgb4RTnCWrS5D1GWY6zIUTWhVCgzLlTgOccMSAfdE4DZhpx7GNWQTIzLR6VNBIzDuYV4TfhaKr8VhwNPGPQu59ytLmLz8_3PZ-Bz5Nny9PumFl2f9i1-w5FgDteCdrAXz2ehJb2Lgk0VbuW2_AeGg_tE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revolutionary+approach+to+risk+assessment+utilization+of+oxidized+agricultural+waste+as+inexpensive+adsorbents+in+tannery+effluent%3A+a+kinetic+investigation&rft.jtitle=Environmental+monitoring+and+assessment&rft.au=Elsayed%2C+Hamed&rft.au=Tohamy%2C+Hebat-Allah+S&rft.au=El-Sakhawy%2C+Mohamed&rft.au=El-Khateeb%2C+M.+A&rft.date=2025-07-10&rft.pub=Springer+Nature+B.V&rft.issn=0167-6369&rft.eissn=1573-2959&rft.volume=197&rft.issue=8&rft.spage=894&rft_id=info:doi/10.1007%2Fs10661-025-14340-8&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-2959&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-2959&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-2959&client=summon |