GCP: Graph Encoder With Content-Planning for Sentence Generation From Knowledge Bases

A knowledge base is a large repository of facts usually represented as triples, each consisting of a subject, a predicate, and an object. The triples together form a graph, i.e., a knowledge graph . The triple representation in a knowledge graph offers a simple interface for applications to access t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 44; no. 11; pp. 7521 - 7533
Main Authors Trisedya, Bayu Distiawan, Qi, Jianzhong, Wang, Wei, Zhang, Rui
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A knowledge base is a large repository of facts usually represented as triples, each consisting of a subject, a predicate, and an object. The triples together form a graph, i.e., a knowledge graph . The triple representation in a knowledge graph offers a simple interface for applications to access the facts. However, this representation is not in a natural language form, which is difficult for humans to understand. We address this problem by proposing a system to translate a set of triples (i.e., a graph) into natural sentences. We take an encoder-decoder based approach. Specifically, we propose a G raph encoder with C ontent- P lanning capability ( GCP ) to encode an input graph. GCP not only works as an encoder but also serves as a content-planner by using an entity-order aware topological traversal to encode a graph. This way, GCP can capture the relationships between entities in a knowledge graph as well as providing information regarding the proper entity order for the decoder. Hence, the decoder can generate sentences with a proper entity mention ordering. Experimental results show that GCP achieves improvements over state-of-the-art models by up to <inline-formula><tex-math notation="LaTeX">3.6\%</tex-math> <mml:math><mml:mrow><mml:mn>3</mml:mn><mml:mo>.</mml:mo><mml:mn>6</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zhang-ieq1-3118703.gif"/> </inline-formula>, <inline-formula><tex-math notation="LaTeX">4.1\%</tex-math> <mml:math><mml:mrow><mml:mn>4</mml:mn><mml:mo>.</mml:mo><mml:mn>1</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zhang-ieq2-3118703.gif"/> </inline-formula>, and <inline-formula><tex-math notation="LaTeX">3.8\%</tex-math> <mml:math><mml:mrow><mml:mn>3</mml:mn><mml:mo>.</mml:mo><mml:mn>8</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zhang-ieq3-3118703.gif"/> </inline-formula> in three common metrics BLEU, METEOR, and TER, respectively. The code is available at ( https://github.com/ruizhang-ai/GCP/ )
AbstractList A knowledge base is a large repository of facts usually represented as triples, each consisting of a subject, a predicate, and an object. The triples together form a graph, i.e., a knowledge graph. The triple representation in a knowledge graph offers a simple interface for applications to access the facts. However, this representation is not in a natural language form, which is difficult for humans to understand. We address this problem by proposing a system to translate a set of triples (i.e., a graph) into natural sentences. We take an encoder-decoder based approach. Specifically, we propose a Graph encoder with Content-Planning capability (GCP) to encode an input graph. GCP not only works as an encoder but also serves as a content-planner by using an entity-order aware topological traversal to encode a graph. This way, GCP can capture the relationships between entities in a knowledge graph as well as providing information regarding the proper entity order for the decoder. Hence, the decoder can generate sentences with a proper entity mention ordering. Experimental results show that GCP achieves improvements over state-of-the-art models by up to 3.6%, 4.1%, and 3.8% in three common metrics BLEU, METEOR, and TER, respectively. The code is available at (https://github.com/ruizhang-ai/GCP/).A knowledge base is a large repository of facts usually represented as triples, each consisting of a subject, a predicate, and an object. The triples together form a graph, i.e., a knowledge graph. The triple representation in a knowledge graph offers a simple interface for applications to access the facts. However, this representation is not in a natural language form, which is difficult for humans to understand. We address this problem by proposing a system to translate a set of triples (i.e., a graph) into natural sentences. We take an encoder-decoder based approach. Specifically, we propose a Graph encoder with Content-Planning capability (GCP) to encode an input graph. GCP not only works as an encoder but also serves as a content-planner by using an entity-order aware topological traversal to encode a graph. This way, GCP can capture the relationships between entities in a knowledge graph as well as providing information regarding the proper entity order for the decoder. Hence, the decoder can generate sentences with a proper entity mention ordering. Experimental results show that GCP achieves improvements over state-of-the-art models by up to 3.6%, 4.1%, and 3.8% in three common metrics BLEU, METEOR, and TER, respectively. The code is available at (https://github.com/ruizhang-ai/GCP/).
A knowledge base is a large repository of facts usually represented as triples, each consisting of a subject, a predicate, and an object. The triples together form a graph, i.e., a knowledge graph . The triple representation in a knowledge graph offers a simple interface for applications to access the facts. However, this representation is not in a natural language form, which is difficult for humans to understand. We address this problem by proposing a system to translate a set of triples (i.e., a graph) into natural sentences. We take an encoder-decoder based approach. Specifically, we propose a G raph encoder with C ontent- P lanning capability ( GCP ) to encode an input graph. GCP not only works as an encoder but also serves as a content-planner by using an entity-order aware topological traversal to encode a graph. This way, GCP can capture the relationships between entities in a knowledge graph as well as providing information regarding the proper entity order for the decoder. Hence, the decoder can generate sentences with a proper entity mention ordering. Experimental results show that GCP achieves improvements over state-of-the-art models by up to <inline-formula><tex-math notation="LaTeX">3.6\%</tex-math> <mml:math><mml:mrow><mml:mn>3</mml:mn><mml:mo>.</mml:mo><mml:mn>6</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zhang-ieq1-3118703.gif"/> </inline-formula>, <inline-formula><tex-math notation="LaTeX">4.1\%</tex-math> <mml:math><mml:mrow><mml:mn>4</mml:mn><mml:mo>.</mml:mo><mml:mn>1</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zhang-ieq2-3118703.gif"/> </inline-formula>, and <inline-formula><tex-math notation="LaTeX">3.8\%</tex-math> <mml:math><mml:mrow><mml:mn>3</mml:mn><mml:mo>.</mml:mo><mml:mn>8</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zhang-ieq3-3118703.gif"/> </inline-formula> in three common metrics BLEU, METEOR, and TER, respectively. The code is available at ( https://github.com/ruizhang-ai/GCP/ )
A knowledge base is a large repository of facts usually represented as triples, each consisting of a subject, a predicate, and an object. The triples together form a graph, i.e., a knowledge graph . The triple representation in a knowledge graph offers a simple interface for applications to access the facts. However, this representation is not in a natural language form, which is difficult for humans to understand. We address this problem by proposing a system to translate a set of triples (i.e., a graph) into natural sentences. We take an encoder-decoder based approach. Specifically, we propose a G raph encoder with C ontent- P lanning capability ( GCP ) to encode an input graph. GCP not only works as an encoder but also serves as a content-planner by using an entity-order aware topological traversal to encode a graph. This way, GCP can capture the relationships between entities in a knowledge graph as well as providing information regarding the proper entity order for the decoder. Hence, the decoder can generate sentences with a proper entity mention ordering. Experimental results show that GCP achieves improvements over state-of-the-art models by up to [Formula Omitted], [Formula Omitted], and [Formula Omitted] in three common metrics BLEU, METEOR, and TER, respectively. The code is available at ( https://github.com/ruizhang-ai/GCP/ )
Author Trisedya, Bayu Distiawan
Qi, Jianzhong
Zhang, Rui
Wang, Wei
Author_xml – sequence: 1
  givenname: Bayu Distiawan
  orcidid: 0000-0002-1672-9483
  surname: Trisedya
  fullname: Trisedya, Bayu Distiawan
  email: bayu.trisedya@unimelb.edu.au
  organization: Universitas Indonesia, Kota Depok, JB, Indonesia
– sequence: 2
  givenname: Jianzhong
  orcidid: 0000-0001-6501-9050
  surname: Qi
  fullname: Qi, Jianzhong
  email: jianzhong.qi@unimelb.edu.au
  organization: University of Melbourne, Parkville, VIC, Australia
– sequence: 3
  givenname: Wei
  orcidid: 0000-0002-1568-2396
  surname: Wang
  fullname: Wang, Wei
  email: weiwcs@ust.hk
  organization: Hong Kong University of Science and Technology, Hong Kong
– sequence: 4
  givenname: Rui
  orcidid: 0000-0002-8132-6250
  surname: Zhang
  fullname: Zhang, Rui
  email: rayteam@yeah.net
  organization: Department of Computer Science, Graduate School at Shengzhen, Tsinghua University, Shenzhen, China
BookMark eNp9kMFOGzEQhq2KqgTaF2gvlnrpZVN77PXavUEUAoKqkQrq0XK8Y1i0sYO9UcXbsyGIAwdOI43-b_TPd0QOYopIyFfOppwz8_N6efL7YgoM-FRwrhsmPpAJcMUqAwYOyIRxBZXWoA_JUSn3jHFZM_GJHAqpQIDiE3KzmC1_0UV2mzs6jz61mOm_brijsxQHjEO17F2MXbylIWX6F3dLj3SBEbMbuhTpWU5rehnT_x7bW6SnrmD5TD4G1xf88jKPyc3Z_Hp2Xl39WVzMTq4qL0APlWeI0nHVGg08qNDURra6lqqtg3QoDVPe-VAzF9qm8X7FV8a1K2fCWB8lE8fkx_7uJqeHLZbBrrvisR87Y9oWC7VmyggBzRj9_iZ6n7Y5ju0sNMAlGMPEmNL7lM-plIzB-m54_nPIrustZ3an3j6rtzv19kX9iMIbdJO7tcuP70Pf9lCHiK-AqVUttBBPYxiOuQ
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TKDE_2023_3271971
crossref_primary_10_1109_TPAMI_2023_3287837
crossref_primary_10_1109_TKDE_2023_3325484
crossref_primary_10_1016_j_knosys_2023_111297
Cites_doi 10.3115/v1/P15-1150
10.18653/v1/P19-1023
10.3115/1699510.1699563
10.18653/v1/P18-1151
10.18653/v1/W18-6501
10.1609/aaai.v28i1.8870
10.1609/aaai.v33i01.33016908
10.1109/TKDE.2017.2754499
10.3233/SW-140134
10.18653/v1/K16-1028
10.3115/v1/d14-1179
10.18653/v1/P17-1149
10.3115/v1/D14-1167
10.18653/v1/P17-1017
10.1007/978-3-319-46448-0_8
10.1016/j.websem.2018.07.002
10.3115/1073012.1073035
10.1017/CBO9780511519857
10.1007/978-3-540-27779-8_28
10.1142/9789812776303_0042
10.18653/v1/D17-1239
10.1609/aaai.v33i01.3301297
10.1109/TPAMI.2017.2754246
10.1109/TPAMI.2017.2708709
10.1609/aaai.v29i1.9491
10.1609/aaai.v32i1.11925
10.1609/aaai.v32i1.11947
10.1609/aaai.v34i05.6439
10.3115/1073083.1073135
10.18653/v1/W17-3518
10.1037/h0031619
10.18653/v1/K16-1025
10.7551/mitpress/7287.001.0001
10.1609/aaai.v30i1.10089
10.18653/v1/D15-1166
10.18653/v1/D16-1128
10.18653/v1/D15-1031
10.1162/neco.1997.9.8.1735
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2021.3118703
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 7533
ExternalDocumentID 10_1109_TPAMI_2021_3118703
9565383
Genre orig-research
GrantInformation_xml – fundername: Indonesian Endowment Fund
– fundername: Australian Research Council
  grantid: DP180102050
  funderid: 10.13039/501100000923
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c328t-c0ee4a16d9821f6f7594d8546d5f4ae4906cacf50afd77ccb1b9adba9f623e403
IEDL.DBID RIE
ISSN 0162-8828
1939-3539
IngestDate Fri Jul 11 00:18:21 EDT 2025
Mon Jun 30 07:14:45 EDT 2025
Tue Jul 01 01:43:02 EDT 2025
Thu Apr 24 23:05:24 EDT 2025
Wed Aug 27 02:15:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-c0ee4a16d9821f6f7594d8546d5f4ae4906cacf50afd77ccb1b9adba9f623e403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1672-9483
0000-0002-1568-2396
0000-0002-8132-6250
0000-0001-6501-9050
PMID 34623261
PQID 2721429903
PQPubID 85458
PageCount 13
ParticipantIDs proquest_journals_2721429903
ieee_primary_9565383
proquest_miscellaneous_2580693327
crossref_citationtrail_10_1109_TPAMI_2021_3118703
crossref_primary_10_1109_TPAMI_2021_3118703
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
Kingma (ref51)
ref53
ref52
ref10
Veličković (ref13) 2017
ref17
ref16
ref18
Koncel-Kedziorski (ref12)
ref46
ref45
ref47
ref42
ref41
ref44
ref43
Cimiano (ref26)
Clark (ref50)
ref7
ref9
Vinyals (ref30)
ref4
ref3
ref6
Kipf (ref11)
ref5
ref40
Lu (ref23)
ref35
ref34
ref37
ref36
ref31
ref33
Bahdanau (ref8)
ref32
ref1
ref39
ref38
Duma (ref27)
Vaswani (ref14)
Snover (ref49)
Zhang (ref2) 2021
ref24
ref25
ref20
ref22
ref21
Denkowski (ref48)
ref28
Bordes (ref19)
ref29
References_xml – ident: ref42
  doi: 10.3115/v1/P15-1150
– ident: ref21
  doi: 10.18653/v1/P19-1023
– ident: ref24
  doi: 10.3115/1699510.1699563
– ident: ref18
  doi: 10.18653/v1/P18-1151
– ident: ref10
  doi: 10.18653/v1/W18-6501
– volume-title: Proc. 3rd Int. Conf. Learn. Representations
  ident: ref8
  article-title: Neural machine translation by jointly learning to align and translate
– ident: ref39
  doi: 10.1609/aaai.v28i1.8870
– ident: ref16
  doi: 10.1609/aaai.v33i01.33016908
– ident: ref11
  article-title: Semi-supervised classification with graph convolutional networks
– start-page: 83
  volume-title: Proc. 10th Int. Conf. Comput. Semantics
  ident: ref27
  article-title: Generating natural language from linked-data: Unsupervised template extraction
– ident: ref1
  doi: 10.1109/TKDE.2017.2754499
– ident: ref36
  doi: 10.3233/SW-140134
– ident: ref45
  doi: 10.18653/v1/K16-1028
– start-page: 1611
  volume-title: Proc. Conf. Empir. Methods Natural Lang. Process.
  ident: ref23
  article-title: A probabilistic forest-to-string model for language generation from typed lambda calculus expressions
– start-page: 5998
  volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst.
  ident: ref14
  article-title: Attention is all you need
– ident: ref7
  doi: 10.3115/v1/d14-1179
– ident: ref35
  doi: 10.18653/v1/P17-1149
– ident: ref32
  doi: 10.3115/v1/D14-1167
– ident: ref46
  doi: 10.18653/v1/P17-1017
– ident: ref43
  doi: 10.1007/978-3-319-46448-0_8
– ident: ref9
  doi: 10.1016/j.websem.2018.07.002
– ident: ref22
  doi: 10.3115/1073012.1073035
– start-page: 223
  volume-title: Proc. 7th Conf. Assoc. Mach. Transl. Amer., Tech. Papers
  ident: ref49
  article-title: A study of translation edit rate with targeted human annotation
– start-page: 2692
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref30
  article-title: Pointer networks
– ident: ref3
  doi: 10.1017/CBO9780511519857
– ident: ref25
  doi: 10.1007/978-3-540-27779-8_28
– start-page: 176
  volume-title: Proc. 49th Annu. Meeting Assoc. Comput. Linguistics: Hum. Lang. Technol., Short Papers
  ident: ref50
  article-title: Better hypothesis testing for statistical machine translation: Controlling for optimizer instability
– ident: ref38
  doi: 10.1142/9789812776303_0042
– ident: ref15
  doi: 10.18653/v1/D17-1239
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref51
  article-title: Adam: A method for stochastic optimization
– ident: ref20
  doi: 10.1609/aaai.v33i01.3301297
– start-page: 2284
  volume-title: Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics: Hum. Lang. Technol.
  ident: ref12
  article-title: Text generation from knowledge graphs with graph transformers
– ident: ref6
  doi: 10.1109/TPAMI.2017.2754246
– start-page: 10
  volume-title: Proc. 14th Eur. Workshop Natural Lang. Gener.
  ident: ref26
  article-title: Exploiting ontology Lexica for generating natural language texts from RDF data
– ident: ref5
  doi: 10.1109/TPAMI.2017.2708709
– ident: ref40
  doi: 10.1609/aaai.v29i1.9491
– year: 2021
  ident: ref2
  article-title: A comprehensive survey on knowledge graph entity alignment via representation learning
  publication-title: CoRR
– ident: ref28
  doi: 10.1609/aaai.v32i1.11925
– ident: ref29
  doi: 10.1609/aaai.v32i1.11947
– ident: ref31
  doi: 10.1609/aaai.v34i05.6439
– ident: ref47
  doi: 10.3115/1073083.1073135
– ident: ref52
  doi: 10.18653/v1/W17-3518
– ident: ref53
  doi: 10.1037/h0031619
– ident: ref33
  doi: 10.18653/v1/K16-1025
– ident: ref37
  doi: 10.7551/mitpress/7287.001.0001
– start-page: 2787
  volume-title: Proc. 26th Int. Conf. Neural Inf. Process. Syst.
  ident: ref19
  article-title: Translating embeddings for modeling multi-relational data
– ident: ref41
  doi: 10.1609/aaai.v30i1.10089
– ident: ref44
  doi: 10.18653/v1/D15-1166
– start-page: 85
  volume-title: Proc. 6th Workshop Statist. Mach. Transl.
  ident: ref48
  article-title: Meteor 1.3: Automatic metric for reliable optimization and evaluation of machine translation systems
– ident: ref4
  doi: 10.18653/v1/D16-1128
– year: 2017
  ident: ref13
  article-title: Graph attention networks
– ident: ref34
  doi: 10.18653/v1/D15-1031
– ident: ref17
  doi: 10.1162/neco.1997.9.8.1735
SSID ssj0014503
Score 2.4325974
Snippet A knowledge base is a large repository of facts usually represented as triples, each consisting of a subject, a predicate, and an object. The triples together...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7521
SubjectTerms Aggregates
Coders
Data models
Decoding
Encoders-Decoders
Graphical representations
Internet
knowledge base
Knowledge based systems
Knowledge bases (artificial intelligence)
Knowledge representation
Natural language processing
Neural networks
Sentences
Transformers
triple-to-text generation
Title GCP: Graph Encoder With Content-Planning for Sentence Generation From Knowledge Bases
URI https://ieeexplore.ieee.org/document/9565383
https://www.proquest.com/docview/2721429903
https://www.proquest.com/docview/2580693327
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTuQwEC0BJ-bAOiOaTUbixqRJ4iU2N0A0y6gR0tAabpHjOAIBadSkL3w9ZWcRAwhxi2THSvJcqXq26xXALga9yDuoDjRyhYBJpYMsQrLCqTAxzZkx1u3oDi_F2Yhd3PCbGfjd5cJYa_3hM9t3l34vPx-bqVsq28dYHu2TzsIsErc6V6vbMWDcV0HGCAYtHGlEmyATqv3rq8PhOVLBOEKGGuEEdcVzKEPHH4voP3_kC6x8-Ct7VzNYhGH7kPUJk_v-tMr65uWdfuN332IJFpqYkxzWk2QZZmy5AottPQfSmPcK_HgjTrgKo9PjqwNy6gStyUnpUt8n5N9ddUu8oFVZBW29I4JxL_nrtD1xFFLrWDu4yWAyfiR_2kU7coQO8_knjAYn18dnQVOEITA0llVgQmuZjkSuZBwVoki4YrnkTOS8YNoyFQqjTcFDXeRJYkwWZUrnmVYFfl_LQvoL5spxadeAKGVDJRNmEqmZVUImJpNWcyFZhnFa0YOohSI1jUK5K5TxkHqmEqrUI5k6JNMGyR7sdfc81focX_ZedXh0PRsoerDZIp42JvycxolTo0Nnjc07XTMan9tR0aUdT7EPl6FQlMbJ-ucjb8B87PIlfPLiJsxVk6ndwiimyrb99H0FuPbqbA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8gPKAPgqDhBHFNeNMe7X511zckHIdwhMS7yFuz3W4jUXvm6L341zO7_YgKMbw12e2m7W-mM7Oz8xuAA3R6Me5gJjIYK0RcaRPlCQYrgklLWcGtdT6jO7mU4xn_fC2uV-BDXwvjnAuHz9zQX4ZcfjG3S79Vdoi-POonewJraPcFbaq1-pwBF6EPMvowqOMYSHQlMrE-nF4dTc4wGKQJxqgJiqhvn8M4mn4qk78sUmixcu-_HIzNaAMm3WM2Z0y-D5d1PrS__2FwfOx7bMLz1uskR42YvIAVV23BRtfRgbQKvgXP_qAn3IbZ6fHVR3LqKa3JSeWL3xfk6039jQRKq6qOuo5HBD1f8sWze-IqpGGy9oCT0WL-k5x323bkE5rM25cwG51Mj8dR24YhsoyqOrKxc9wkstCKJqUsU6F5oQSXhSi5cVzH0hpbitiURZpamye5NkVudInf1_GYvYLVal65HSBau1irlNtUGe60VKnNlTNCKp6jp1YOIOmgyGzLUe5bZfzIQqwS6ywgmXkksxbJAbzv7_nVMHT8d_a2x6Of2UIxgL0O8axV4tuMpp6PDs01Dr_rh1H9fE7FVG6-xDlCxVIzRtPXD6_8FtbH08lFdnF2eb4LT6mvngiljHuwWi-W7g36NHW-H0T5Dh8K7bY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GCP%3A+Graph+Encoder+With+Content-Planning+for+Sentence+Generation+From+Knowledge+Bases&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Trisedya%2C+Bayu+Distiawan&rft.au=Qi%2C+Jianzhong&rft.au=Wang%2C+Wei&rft.au=Zhang%2C+Rui&rft.date=2022-11-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=44&rft.issue=11&rft.spage=7521&rft.epage=7533&rft_id=info:doi/10.1109%2FTPAMI.2021.3118703&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2021_3118703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon