GCP: Graph Encoder With Content-Planning for Sentence Generation From Knowledge Bases
A knowledge base is a large repository of facts usually represented as triples, each consisting of a subject, a predicate, and an object. The triples together form a graph, i.e., a knowledge graph . The triple representation in a knowledge graph offers a simple interface for applications to access t...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 44; no. 11; pp. 7521 - 7533 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A knowledge base is a large repository of facts usually represented as triples, each consisting of a subject, a predicate, and an object. The triples together form a graph, i.e., a knowledge graph . The triple representation in a knowledge graph offers a simple interface for applications to access the facts. However, this representation is not in a natural language form, which is difficult for humans to understand. We address this problem by proposing a system to translate a set of triples (i.e., a graph) into natural sentences. We take an encoder-decoder based approach. Specifically, we propose a G raph encoder with C ontent- P lanning capability ( GCP ) to encode an input graph. GCP not only works as an encoder but also serves as a content-planner by using an entity-order aware topological traversal to encode a graph. This way, GCP can capture the relationships between entities in a knowledge graph as well as providing information regarding the proper entity order for the decoder. Hence, the decoder can generate sentences with a proper entity mention ordering. Experimental results show that GCP achieves improvements over state-of-the-art models by up to <inline-formula><tex-math notation="LaTeX">3.6\%</tex-math> <mml:math><mml:mrow><mml:mn>3</mml:mn><mml:mo>.</mml:mo><mml:mn>6</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zhang-ieq1-3118703.gif"/> </inline-formula>, <inline-formula><tex-math notation="LaTeX">4.1\%</tex-math> <mml:math><mml:mrow><mml:mn>4</mml:mn><mml:mo>.</mml:mo><mml:mn>1</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zhang-ieq2-3118703.gif"/> </inline-formula>, and <inline-formula><tex-math notation="LaTeX">3.8\%</tex-math> <mml:math><mml:mrow><mml:mn>3</mml:mn><mml:mo>.</mml:mo><mml:mn>8</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zhang-ieq3-3118703.gif"/> </inline-formula> in three common metrics BLEU, METEOR, and TER, respectively. The code is available at ( https://github.com/ruizhang-ai/GCP/ ) |
---|---|
AbstractList | A knowledge base is a large repository of facts usually represented as triples, each consisting of a subject, a predicate, and an object. The triples together form a graph, i.e., a knowledge graph. The triple representation in a knowledge graph offers a simple interface for applications to access the facts. However, this representation is not in a natural language form, which is difficult for humans to understand. We address this problem by proposing a system to translate a set of triples (i.e., a graph) into natural sentences. We take an encoder-decoder based approach. Specifically, we propose a Graph encoder with Content-Planning capability (GCP) to encode an input graph. GCP not only works as an encoder but also serves as a content-planner by using an entity-order aware topological traversal to encode a graph. This way, GCP can capture the relationships between entities in a knowledge graph as well as providing information regarding the proper entity order for the decoder. Hence, the decoder can generate sentences with a proper entity mention ordering. Experimental results show that GCP achieves improvements over state-of-the-art models by up to 3.6%, 4.1%, and 3.8% in three common metrics BLEU, METEOR, and TER, respectively. The code is available at (https://github.com/ruizhang-ai/GCP/).A knowledge base is a large repository of facts usually represented as triples, each consisting of a subject, a predicate, and an object. The triples together form a graph, i.e., a knowledge graph. The triple representation in a knowledge graph offers a simple interface for applications to access the facts. However, this representation is not in a natural language form, which is difficult for humans to understand. We address this problem by proposing a system to translate a set of triples (i.e., a graph) into natural sentences. We take an encoder-decoder based approach. Specifically, we propose a Graph encoder with Content-Planning capability (GCP) to encode an input graph. GCP not only works as an encoder but also serves as a content-planner by using an entity-order aware topological traversal to encode a graph. This way, GCP can capture the relationships between entities in a knowledge graph as well as providing information regarding the proper entity order for the decoder. Hence, the decoder can generate sentences with a proper entity mention ordering. Experimental results show that GCP achieves improvements over state-of-the-art models by up to 3.6%, 4.1%, and 3.8% in three common metrics BLEU, METEOR, and TER, respectively. The code is available at (https://github.com/ruizhang-ai/GCP/). A knowledge base is a large repository of facts usually represented as triples, each consisting of a subject, a predicate, and an object. The triples together form a graph, i.e., a knowledge graph . The triple representation in a knowledge graph offers a simple interface for applications to access the facts. However, this representation is not in a natural language form, which is difficult for humans to understand. We address this problem by proposing a system to translate a set of triples (i.e., a graph) into natural sentences. We take an encoder-decoder based approach. Specifically, we propose a G raph encoder with C ontent- P lanning capability ( GCP ) to encode an input graph. GCP not only works as an encoder but also serves as a content-planner by using an entity-order aware topological traversal to encode a graph. This way, GCP can capture the relationships between entities in a knowledge graph as well as providing information regarding the proper entity order for the decoder. Hence, the decoder can generate sentences with a proper entity mention ordering. Experimental results show that GCP achieves improvements over state-of-the-art models by up to <inline-formula><tex-math notation="LaTeX">3.6\%</tex-math> <mml:math><mml:mrow><mml:mn>3</mml:mn><mml:mo>.</mml:mo><mml:mn>6</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zhang-ieq1-3118703.gif"/> </inline-formula>, <inline-formula><tex-math notation="LaTeX">4.1\%</tex-math> <mml:math><mml:mrow><mml:mn>4</mml:mn><mml:mo>.</mml:mo><mml:mn>1</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zhang-ieq2-3118703.gif"/> </inline-formula>, and <inline-formula><tex-math notation="LaTeX">3.8\%</tex-math> <mml:math><mml:mrow><mml:mn>3</mml:mn><mml:mo>.</mml:mo><mml:mn>8</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zhang-ieq3-3118703.gif"/> </inline-formula> in three common metrics BLEU, METEOR, and TER, respectively. The code is available at ( https://github.com/ruizhang-ai/GCP/ ) A knowledge base is a large repository of facts usually represented as triples, each consisting of a subject, a predicate, and an object. The triples together form a graph, i.e., a knowledge graph . The triple representation in a knowledge graph offers a simple interface for applications to access the facts. However, this representation is not in a natural language form, which is difficult for humans to understand. We address this problem by proposing a system to translate a set of triples (i.e., a graph) into natural sentences. We take an encoder-decoder based approach. Specifically, we propose a G raph encoder with C ontent- P lanning capability ( GCP ) to encode an input graph. GCP not only works as an encoder but also serves as a content-planner by using an entity-order aware topological traversal to encode a graph. This way, GCP can capture the relationships between entities in a knowledge graph as well as providing information regarding the proper entity order for the decoder. Hence, the decoder can generate sentences with a proper entity mention ordering. Experimental results show that GCP achieves improvements over state-of-the-art models by up to [Formula Omitted], [Formula Omitted], and [Formula Omitted] in three common metrics BLEU, METEOR, and TER, respectively. The code is available at ( https://github.com/ruizhang-ai/GCP/ ) |
Author | Trisedya, Bayu Distiawan Qi, Jianzhong Zhang, Rui Wang, Wei |
Author_xml | – sequence: 1 givenname: Bayu Distiawan orcidid: 0000-0002-1672-9483 surname: Trisedya fullname: Trisedya, Bayu Distiawan email: bayu.trisedya@unimelb.edu.au organization: Universitas Indonesia, Kota Depok, JB, Indonesia – sequence: 2 givenname: Jianzhong orcidid: 0000-0001-6501-9050 surname: Qi fullname: Qi, Jianzhong email: jianzhong.qi@unimelb.edu.au organization: University of Melbourne, Parkville, VIC, Australia – sequence: 3 givenname: Wei orcidid: 0000-0002-1568-2396 surname: Wang fullname: Wang, Wei email: weiwcs@ust.hk organization: Hong Kong University of Science and Technology, Hong Kong – sequence: 4 givenname: Rui orcidid: 0000-0002-8132-6250 surname: Zhang fullname: Zhang, Rui email: rayteam@yeah.net organization: Department of Computer Science, Graduate School at Shengzhen, Tsinghua University, Shenzhen, China |
BookMark | eNp9kMFOGzEQhq2KqgTaF2gvlnrpZVN77PXavUEUAoKqkQrq0XK8Y1i0sYO9UcXbsyGIAwdOI43-b_TPd0QOYopIyFfOppwz8_N6efL7YgoM-FRwrhsmPpAJcMUqAwYOyIRxBZXWoA_JUSn3jHFZM_GJHAqpQIDiE3KzmC1_0UV2mzs6jz61mOm_brijsxQHjEO17F2MXbylIWX6F3dLj3SBEbMbuhTpWU5rehnT_x7bW6SnrmD5TD4G1xf88jKPyc3Z_Hp2Xl39WVzMTq4qL0APlWeI0nHVGg08qNDURra6lqqtg3QoDVPe-VAzF9qm8X7FV8a1K2fCWB8lE8fkx_7uJqeHLZbBrrvisR87Y9oWC7VmyggBzRj9_iZ6n7Y5ju0sNMAlGMPEmNL7lM-plIzB-m54_nPIrustZ3an3j6rtzv19kX9iMIbdJO7tcuP70Pf9lCHiK-AqVUttBBPYxiOuQ |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1109_TKDE_2023_3271971 crossref_primary_10_1109_TPAMI_2023_3287837 crossref_primary_10_1109_TKDE_2023_3325484 crossref_primary_10_1016_j_knosys_2023_111297 |
Cites_doi | 10.3115/v1/P15-1150 10.18653/v1/P19-1023 10.3115/1699510.1699563 10.18653/v1/P18-1151 10.18653/v1/W18-6501 10.1609/aaai.v28i1.8870 10.1609/aaai.v33i01.33016908 10.1109/TKDE.2017.2754499 10.3233/SW-140134 10.18653/v1/K16-1028 10.3115/v1/d14-1179 10.18653/v1/P17-1149 10.3115/v1/D14-1167 10.18653/v1/P17-1017 10.1007/978-3-319-46448-0_8 10.1016/j.websem.2018.07.002 10.3115/1073012.1073035 10.1017/CBO9780511519857 10.1007/978-3-540-27779-8_28 10.1142/9789812776303_0042 10.18653/v1/D17-1239 10.1609/aaai.v33i01.3301297 10.1109/TPAMI.2017.2754246 10.1109/TPAMI.2017.2708709 10.1609/aaai.v29i1.9491 10.1609/aaai.v32i1.11925 10.1609/aaai.v32i1.11947 10.1609/aaai.v34i05.6439 10.3115/1073083.1073135 10.18653/v1/W17-3518 10.1037/h0031619 10.18653/v1/K16-1025 10.7551/mitpress/7287.001.0001 10.1609/aaai.v30i1.10089 10.18653/v1/D15-1166 10.18653/v1/D16-1128 10.18653/v1/D15-1031 10.1162/neco.1997.9.8.1735 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TPAMI.2021.3118703 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 2160-9292 1939-3539 |
EndPage | 7533 |
ExternalDocumentID | 10_1109_TPAMI_2021_3118703 9565383 |
Genre | orig-research |
GrantInformation_xml | – fundername: Indonesian Endowment Fund – fundername: Australian Research Council grantid: DP180102050 funderid: 10.13039/501100000923 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c328t-c0ee4a16d9821f6f7594d8546d5f4ae4906cacf50afd77ccb1b9adba9f623e403 |
IEDL.DBID | RIE |
ISSN | 0162-8828 1939-3539 |
IngestDate | Fri Jul 11 00:18:21 EDT 2025 Mon Jun 30 07:14:45 EDT 2025 Tue Jul 01 01:43:02 EDT 2025 Thu Apr 24 23:05:24 EDT 2025 Wed Aug 27 02:15:32 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-c0ee4a16d9821f6f7594d8546d5f4ae4906cacf50afd77ccb1b9adba9f623e403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1672-9483 0000-0002-1568-2396 0000-0002-8132-6250 0000-0001-6501-9050 |
PMID | 34623261 |
PQID | 2721429903 |
PQPubID | 85458 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2721429903 ieee_primary_9565383 proquest_miscellaneous_2580693327 crossref_citationtrail_10_1109_TPAMI_2021_3118703 crossref_primary_10_1109_TPAMI_2021_3118703 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref15 Kingma (ref51) ref53 ref52 ref10 Veličković (ref13) 2017 ref17 ref16 ref18 Koncel-Kedziorski (ref12) ref46 ref45 ref47 ref42 ref41 ref44 ref43 Cimiano (ref26) Clark (ref50) ref7 ref9 Vinyals (ref30) ref4 ref3 ref6 Kipf (ref11) ref5 ref40 Lu (ref23) ref35 ref34 ref37 ref36 ref31 ref33 Bahdanau (ref8) ref32 ref1 ref39 ref38 Duma (ref27) Vaswani (ref14) Snover (ref49) Zhang (ref2) 2021 ref24 ref25 ref20 ref22 ref21 Denkowski (ref48) ref28 Bordes (ref19) ref29 |
References_xml | – ident: ref42 doi: 10.3115/v1/P15-1150 – ident: ref21 doi: 10.18653/v1/P19-1023 – ident: ref24 doi: 10.3115/1699510.1699563 – ident: ref18 doi: 10.18653/v1/P18-1151 – ident: ref10 doi: 10.18653/v1/W18-6501 – volume-title: Proc. 3rd Int. Conf. Learn. Representations ident: ref8 article-title: Neural machine translation by jointly learning to align and translate – ident: ref39 doi: 10.1609/aaai.v28i1.8870 – ident: ref16 doi: 10.1609/aaai.v33i01.33016908 – ident: ref11 article-title: Semi-supervised classification with graph convolutional networks – start-page: 83 volume-title: Proc. 10th Int. Conf. Comput. Semantics ident: ref27 article-title: Generating natural language from linked-data: Unsupervised template extraction – ident: ref1 doi: 10.1109/TKDE.2017.2754499 – ident: ref36 doi: 10.3233/SW-140134 – ident: ref45 doi: 10.18653/v1/K16-1028 – start-page: 1611 volume-title: Proc. Conf. Empir. Methods Natural Lang. Process. ident: ref23 article-title: A probabilistic forest-to-string model for language generation from typed lambda calculus expressions – start-page: 5998 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. ident: ref14 article-title: Attention is all you need – ident: ref7 doi: 10.3115/v1/d14-1179 – ident: ref35 doi: 10.18653/v1/P17-1149 – ident: ref32 doi: 10.3115/v1/D14-1167 – ident: ref46 doi: 10.18653/v1/P17-1017 – ident: ref43 doi: 10.1007/978-3-319-46448-0_8 – ident: ref9 doi: 10.1016/j.websem.2018.07.002 – ident: ref22 doi: 10.3115/1073012.1073035 – start-page: 223 volume-title: Proc. 7th Conf. Assoc. Mach. Transl. Amer., Tech. Papers ident: ref49 article-title: A study of translation edit rate with targeted human annotation – start-page: 2692 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref30 article-title: Pointer networks – ident: ref3 doi: 10.1017/CBO9780511519857 – ident: ref25 doi: 10.1007/978-3-540-27779-8_28 – start-page: 176 volume-title: Proc. 49th Annu. Meeting Assoc. Comput. Linguistics: Hum. Lang. Technol., Short Papers ident: ref50 article-title: Better hypothesis testing for statistical machine translation: Controlling for optimizer instability – ident: ref38 doi: 10.1142/9789812776303_0042 – ident: ref15 doi: 10.18653/v1/D17-1239 – volume-title: Proc. Int. Conf. Learn. Representations ident: ref51 article-title: Adam: A method for stochastic optimization – ident: ref20 doi: 10.1609/aaai.v33i01.3301297 – start-page: 2284 volume-title: Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics: Hum. Lang. Technol. ident: ref12 article-title: Text generation from knowledge graphs with graph transformers – ident: ref6 doi: 10.1109/TPAMI.2017.2754246 – start-page: 10 volume-title: Proc. 14th Eur. Workshop Natural Lang. Gener. ident: ref26 article-title: Exploiting ontology Lexica for generating natural language texts from RDF data – ident: ref5 doi: 10.1109/TPAMI.2017.2708709 – ident: ref40 doi: 10.1609/aaai.v29i1.9491 – year: 2021 ident: ref2 article-title: A comprehensive survey on knowledge graph entity alignment via representation learning publication-title: CoRR – ident: ref28 doi: 10.1609/aaai.v32i1.11925 – ident: ref29 doi: 10.1609/aaai.v32i1.11947 – ident: ref31 doi: 10.1609/aaai.v34i05.6439 – ident: ref47 doi: 10.3115/1073083.1073135 – ident: ref52 doi: 10.18653/v1/W17-3518 – ident: ref53 doi: 10.1037/h0031619 – ident: ref33 doi: 10.18653/v1/K16-1025 – ident: ref37 doi: 10.7551/mitpress/7287.001.0001 – start-page: 2787 volume-title: Proc. 26th Int. Conf. Neural Inf. Process. Syst. ident: ref19 article-title: Translating embeddings for modeling multi-relational data – ident: ref41 doi: 10.1609/aaai.v30i1.10089 – ident: ref44 doi: 10.18653/v1/D15-1166 – start-page: 85 volume-title: Proc. 6th Workshop Statist. Mach. Transl. ident: ref48 article-title: Meteor 1.3: Automatic metric for reliable optimization and evaluation of machine translation systems – ident: ref4 doi: 10.18653/v1/D16-1128 – year: 2017 ident: ref13 article-title: Graph attention networks – ident: ref34 doi: 10.18653/v1/D15-1031 – ident: ref17 doi: 10.1162/neco.1997.9.8.1735 |
SSID | ssj0014503 |
Score | 2.4325974 |
Snippet | A knowledge base is a large repository of facts usually represented as triples, each consisting of a subject, a predicate, and an object. The triples together... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7521 |
SubjectTerms | Aggregates Coders Data models Decoding Encoders-Decoders Graphical representations Internet knowledge base Knowledge based systems Knowledge bases (artificial intelligence) Knowledge representation Natural language processing Neural networks Sentences Transformers triple-to-text generation |
Title | GCP: Graph Encoder With Content-Planning for Sentence Generation From Knowledge Bases |
URI | https://ieeexplore.ieee.org/document/9565383 https://www.proquest.com/docview/2721429903 https://www.proquest.com/docview/2580693327 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTuQwEC0BJ-bAOiOaTUbixqRJ4iU2N0A0y6gR0tAabpHjOAIBadSkL3w9ZWcRAwhxi2THSvJcqXq26xXALga9yDuoDjRyhYBJpYMsQrLCqTAxzZkx1u3oDi_F2Yhd3PCbGfjd5cJYa_3hM9t3l34vPx-bqVsq28dYHu2TzsIsErc6V6vbMWDcV0HGCAYtHGlEmyATqv3rq8PhOVLBOEKGGuEEdcVzKEPHH4voP3_kC6x8-Ct7VzNYhGH7kPUJk_v-tMr65uWdfuN332IJFpqYkxzWk2QZZmy5AottPQfSmPcK_HgjTrgKo9PjqwNy6gStyUnpUt8n5N9ddUu8oFVZBW29I4JxL_nrtD1xFFLrWDu4yWAyfiR_2kU7coQO8_knjAYn18dnQVOEITA0llVgQmuZjkSuZBwVoki4YrnkTOS8YNoyFQqjTcFDXeRJYkwWZUrnmVYFfl_LQvoL5spxadeAKGVDJRNmEqmZVUImJpNWcyFZhnFa0YOohSI1jUK5K5TxkHqmEqrUI5k6JNMGyR7sdfc81focX_ZedXh0PRsoerDZIp42JvycxolTo0Nnjc07XTMan9tR0aUdT7EPl6FQlMbJ-ucjb8B87PIlfPLiJsxVk6ndwiimyrb99H0FuPbqbA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8gPKAPgqDhBHFNeNMe7X511zckHIdwhMS7yFuz3W4jUXvm6L341zO7_YgKMbw12e2m7W-mM7Oz8xuAA3R6Me5gJjIYK0RcaRPlCQYrgklLWcGtdT6jO7mU4xn_fC2uV-BDXwvjnAuHz9zQX4ZcfjG3S79Vdoi-POonewJraPcFbaq1-pwBF6EPMvowqOMYSHQlMrE-nF4dTc4wGKQJxqgJiqhvn8M4mn4qk78sUmixcu-_HIzNaAMm3WM2Z0y-D5d1PrS__2FwfOx7bMLz1uskR42YvIAVV23BRtfRgbQKvgXP_qAn3IbZ6fHVR3LqKa3JSeWL3xfk6039jQRKq6qOuo5HBD1f8sWze-IqpGGy9oCT0WL-k5x323bkE5rM25cwG51Mj8dR24YhsoyqOrKxc9wkstCKJqUsU6F5oQSXhSi5cVzH0hpbitiURZpamye5NkVudInf1_GYvYLVal65HSBau1irlNtUGe60VKnNlTNCKp6jp1YOIOmgyGzLUe5bZfzIQqwS6ywgmXkksxbJAbzv7_nVMHT8d_a2x6Of2UIxgL0O8axV4tuMpp6PDs01Dr_rh1H9fE7FVG6-xDlCxVIzRtPXD6_8FtbH08lFdnF2eb4LT6mvngiljHuwWi-W7g36NHW-H0T5Dh8K7bY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GCP%3A+Graph+Encoder+With+Content-Planning+for+Sentence+Generation+From+Knowledge+Bases&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Trisedya%2C+Bayu+Distiawan&rft.au=Qi%2C+Jianzhong&rft.au=Wang%2C+Wei&rft.au=Zhang%2C+Rui&rft.date=2022-11-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=44&rft.issue=11&rft.spage=7521&rft.epage=7533&rft_id=info:doi/10.1109%2FTPAMI.2021.3118703&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2021_3118703 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |