Reliability estimation and optimisation of multistate flow networks using a conditional Monte Carlo method
•A conditional MC method is proposed to evaluate the reliability of MSFNs.•A recursive conditional sampling method is developed using matrix operations.•d-MPs and d-MCs are selected recursively for narrow gaps between reliability bounds.•GA embedding the conditional MC method is developed for reliab...
Saved in:
Published in | Reliability engineering & system safety Vol. 221; p. 108382 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.05.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A conditional MC method is proposed to evaluate the reliability of MSFNs.•A recursive conditional sampling method is developed using matrix operations.•d-MPs and d-MCs are selected recursively for narrow gaps between reliability bounds.•GA embedding the conditional MC method is developed for reliability optimisation.
The Monte Carlo (MC) method is a practical approach to estimating the reliability of large multistate flow networks (MSFNs) in reality, e.g. transportation systems and computer networks. However, deriving an accurate reliability estimate using the crude MC method is computational expensive. This research proposes a conditional MC method to estimate the reliability of a MSFN using the minimal path vectors to level d (d-MPs) and minimal cut vectors to level d (d-MCs). A recursive method is developed to select d-MPs and d-MCs that incur a narrow gap between upper and lower reliability bounds. Then, state vectors are conditionally sampled in a recursive manner using matrix operations. The conditional MC method is embedded in the genetic algorithm (GA) to optimise system reliability. A ranking and selection procedure is used in GA to allocate simulation efforts to different solutions. Numerical studies validate that the proposed conditional MC method can obtain a more accurate reliability estimate than the crude MC method within the same computation time. The improved GA that includes the conditional MC method also outperforms the original GA in reliability optimisation. |
---|---|
AbstractList | •A conditional MC method is proposed to evaluate the reliability of MSFNs.•A recursive conditional sampling method is developed using matrix operations.•d-MPs and d-MCs are selected recursively for narrow gaps between reliability bounds.•GA embedding the conditional MC method is developed for reliability optimisation.
The Monte Carlo (MC) method is a practical approach to estimating the reliability of large multistate flow networks (MSFNs) in reality, e.g. transportation systems and computer networks. However, deriving an accurate reliability estimate using the crude MC method is computational expensive. This research proposes a conditional MC method to estimate the reliability of a MSFN using the minimal path vectors to level d (d-MPs) and minimal cut vectors to level d (d-MCs). A recursive method is developed to select d-MPs and d-MCs that incur a narrow gap between upper and lower reliability bounds. Then, state vectors are conditionally sampled in a recursive manner using matrix operations. The conditional MC method is embedded in the genetic algorithm (GA) to optimise system reliability. A ranking and selection procedure is used in GA to allocate simulation efforts to different solutions. Numerical studies validate that the proposed conditional MC method can obtain a more accurate reliability estimate than the crude MC method within the same computation time. The improved GA that includes the conditional MC method also outperforms the original GA in reliability optimisation. The Monte Carlo (MC) method is a practical approach to estimating the reliability of large multistate flow networks (MSFNs) in reality, e.g. transportation systems and computer networks. However, deriving an accurate reliability estimate using the crude MC method is computational expensive. This research proposes a conditional MC method to estimate the reliability of a MSFN using the minimal path vectors to level d (d-MPs) and minimal cut vectors to level d (d-MCs). A recursive method is developed to select d-MPs and d-MCs that incur a narrow gap between upper and lower reliability bounds. Then, state vectors are conditionally sampled in a recursive manner using matrix operations. The conditional MC method is embedded in the genetic algorithm (GA) to optimise system reliability. A ranking and selection procedure is used in GA to allocate simulation efforts to different solutions. Numerical studies validate that the proposed conditional MC method can obtain a more accurate reliability estimate than the crude MC method within the same computation time. The improved GA that includes the conditional MC method also outperforms the original GA in reliability optimisation. |
ArticleNumber | 108382 |
Author | Zhou, Yifan Liu, Libo Li, Hao |
Author_xml | – sequence: 1 givenname: Yifan orcidid: 0000-0002-2898-0632 surname: Zhou fullname: Zhou, Yifan email: yifan.zhou@seu.edu.cn – sequence: 2 givenname: Libo surname: Liu fullname: Liu, Libo – sequence: 3 givenname: Hao surname: Li fullname: Li, Hao |
BookMark | eNp9kMtKAzEUhoNUsK2-gKuA66lJZjoXcCPFGyiCdB9yOaMZp0lNMpa-vanjykVX4Rz-75D_m6GJdRYQuqRkQQktr7uFhxAWjDCWFnVesxM0pXXVZGkoJ2hKmiXN6pyRMzQLoSOEFM2ymqLuDXojpOlN3GMI0WxENM5iYTV22zSaMC5cizdDH02IIgJue7fDFuLO-c-Ah2DsOxZYOavNIS16_OJsyq2E7x3eQPxw-hydtqIPcPH3ztH6_m69esyeXx-eVrfPmcpZHTOpBGnzspEkZ5pKpRRdlo1WRJMqZ4WsCwagmrJStWxbXTDJJFApS0aTCpbP0dV4duvd15Aq8c4NPn0pcFYWDUlSqmVK1WNKeReCh5YrE3-bRi9MzynhB7G84wex_CCWj2ITyv6hW5-0-f1x6GaEIDX_NuB5UAasAm08qMi1M8fwH6UUlqE |
CitedBy_id | crossref_primary_10_1016_j_ress_2025_110990 crossref_primary_10_1007_s00170_022_10060_2 crossref_primary_10_1016_j_ress_2024_110321 crossref_primary_10_1016_j_engfailanal_2024_107957 crossref_primary_10_1016_j_ast_2022_107803 crossref_primary_10_1007_s10479_024_06141_y crossref_primary_10_1016_j_adhoc_2023_103183 crossref_primary_10_1016_j_ress_2022_108607 crossref_primary_10_1016_j_ress_2023_109417 crossref_primary_10_1007_s13399_024_05618_x crossref_primary_10_1007_s10479_024_06354_1 crossref_primary_10_1016_j_ress_2024_110774 crossref_primary_10_1016_j_ress_2024_110106 crossref_primary_10_1016_j_ress_2024_110337 crossref_primary_10_1007_s10479_024_05840_w crossref_primary_10_1007_s00170_022_10258_4 crossref_primary_10_1016_j_ress_2024_110209 |
Cites_doi | 10.1016/j.ress.2005.11.006 10.1007/s10878-006-9632-1 10.1016/j.ress.2016.08.026 10.1016/j.epsr.2005.02.008 10.1016/j.ijpe.2006.11.009 10.1061/(ASCE)PS.1949-1204.0000442 10.1016/j.ress.2018.04.006 10.1016/j.ress.2014.11.009 10.1016/j.comcom.2012.08.010 10.1016/j.jmsy.2019.05.004 10.1109/TR.1985.5222235 10.1016/j.ress.2017.05.032 10.1016/j.cor.2010.10.024 10.1016/j.ress.2021.107500 10.1016/j.ress.2020.107191 10.1016/j.ins.2019.02.004 10.1287/opre.34.4.581 10.1016/j.apm.2015.10.004 10.1016/j.ress.2004.05.002 10.1016/j.ress.2021.107757 10.1061/(ASCE)0733-9496(2004)130:1(63) 10.3934/jimo.2015.11.1375 10.1016/j.jocs.2016.05.011 10.1016/j.cie.2021.107322 10.1016/j.ejor.2010.01.033 10.1016/j.ejor.2011.11.028 10.1016/j.asoc.2015.07.037 10.1002/net.3230250306 10.4153/CJM-1956-045-5 10.1080/07408170601013653 |
ContentType | Journal Article |
Copyright | 2022 Copyright Elsevier BV May 2022 |
Copyright_xml | – notice: 2022 – notice: Copyright Elsevier BV May 2022 |
DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 SOI |
DOI | 10.1016/j.ress.2022.108382 |
DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Environment Abstracts |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0836 |
ExternalDocumentID | 10_1016_j_ress_2022_108382 S095183202200059X |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST 7TB 8FD C1K EFKBS FR3 SOI |
ID | FETCH-LOGICAL-c328t-bca0f369b032d1bccc1569dc0d07324b842eec967c8bffd42b2be1bb62110123 |
IEDL.DBID | .~1 |
ISSN | 0951-8320 |
IngestDate | Wed Aug 13 08:46:06 EDT 2025 Tue Jul 01 00:45:07 EDT 2025 Thu Apr 24 23:07:39 EDT 2025 Fri Feb 23 02:40:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Reliability estimation Multistate flow networks Conditional Monte Carlo method Reliability optimisation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-bca0f369b032d1bccc1569dc0d07324b842eec967c8bffd42b2be1bb62110123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2898-0632 |
PQID | 2649087975 |
PQPubID | 2045406 |
ParticipantIDs | proquest_journals_2649087975 crossref_citationtrail_10_1016_j_ress_2022_108382 crossref_primary_10_1016_j_ress_2022_108382 elsevier_sciencedirect_doi_10_1016_j_ress_2022_108382 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 20220501 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Reliability engineering & system safety |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Li, Hao, Wang (bib0004) 2017; 29 Azadeh, Shoja, Ghanei, Sheikhalishahi (bib0026) 2015; 136 Ramirez-Marquez, Coit (bib0015) 2005; 87 Yan, Qian (bib0019) 2007; 92 Yeh (bib0010) 2020; 204 Ushakov (bib0022) 1986; 24 Hao, Yeh, Wang, Wang, Sun (bib0031) 2019; 486 Liu, Bai, Tao, Zhang, Fang (bib0005) 2021; 210 Tolson, Maier, Simpson, Lence (bib0011) 2004; 130 Cancela, Robledo, Rubino, Sartor (bib0034) 2013; 36 Lin, Yeh (bib0008) 2015; 36 Yeh, Chu (bib0025) 2018; 176 Ford, Fulkerson (bib0035) 1954; 8 Lin, Yeh (bib0001) 2011; 7 Jane, Laih (bib0024) 2010; 205 Lin (bib0003) 2007; 107 Zhou, Miao, Yan, Zhang (bib0029) 2021; 157 Aven (bib0030) 1985; R-34 Zuo, Tian, Huang (bib0021) 2007; 39 Alsharqawi, Zayed, Parvizsedghy, Senouci, Al-Derham (bib0014) 2020; 11 Forghani-elahabad, Kagan, Mahdavi-Amiri (bib0023) 2019 Niu, Gao, Lam (bib0032) 2017; 166 Meziane, Massim, Zeblah, Ghoraf, Rahli (bib0012) 2005; 76 Lin, Chang, Yeng, Huang (bib0028) 2019; 52 Niu, Wan, Xu, Ding (bib0018) 2020 Lin, Yeh (bib0027) 2012; 218 Forghani-elahabad, Mahdavi-Amiri (bib0020) 2016; 40 Lin, Yeh (bib0007) 2011; 38 Lin, Jane, Yuan (bib0016) 1995; 25 Yeh, Lin, Yeng, Huang (bib0006) 2021; 214 Yeh, Fiondella (bib0009) 2017; 166 Gupta, Agarwal (bib0013) 2006; 12 Fishman (bib0033) 1986; 34 Chen, Lin (bib0017) 2016; 17 Lin, Yeh (bib0036) 2015; 36 Chen (bib0002) 2015; 11 Lin (10.1016/j.ress.2022.108382_bib0008) 2015; 36 Forghani-elahabad (10.1016/j.ress.2022.108382_bib0023) 2019 Fishman (10.1016/j.ress.2022.108382_bib0033) 1986; 34 Meziane (10.1016/j.ress.2022.108382_bib0012) 2005; 76 Chen (10.1016/j.ress.2022.108382_bib0002) 2015; 11 Li (10.1016/j.ress.2022.108382_bib0004) 2017; 29 Gupta (10.1016/j.ress.2022.108382_bib0013) 2006; 12 Chen (10.1016/j.ress.2022.108382_bib0017) 2016; 17 Niu (10.1016/j.ress.2022.108382_bib0032) 2017; 166 Lin (10.1016/j.ress.2022.108382_bib0001) 2011; 7 Lin (10.1016/j.ress.2022.108382_bib0003) 2007; 107 Azadeh (10.1016/j.ress.2022.108382_bib0026) 2015; 136 Aven (10.1016/j.ress.2022.108382_bib0030) 1985; R-34 Yeh (10.1016/j.ress.2022.108382_bib0009) 2017; 166 Niu (10.1016/j.ress.2022.108382_bib0018) 2020 Yeh (10.1016/j.ress.2022.108382_bib0025) 2018; 176 Lin (10.1016/j.ress.2022.108382_bib0028) 2019; 52 Hao (10.1016/j.ress.2022.108382_bib0031) 2019; 486 Zhou (10.1016/j.ress.2022.108382_bib0029) 2021; 157 Lin (10.1016/j.ress.2022.108382_bib0016) 1995; 25 Lin (10.1016/j.ress.2022.108382_bib0007) 2011; 38 Cancela (10.1016/j.ress.2022.108382_bib0034) 2013; 36 Ford (10.1016/j.ress.2022.108382_bib0035) 1954; 8 Lin (10.1016/j.ress.2022.108382_bib0027) 2012; 218 Lin (10.1016/j.ress.2022.108382_bib0036) 2015; 36 Yeh (10.1016/j.ress.2022.108382_bib0006) 2021; 214 Liu (10.1016/j.ress.2022.108382_bib0005) 2021; 210 Tolson (10.1016/j.ress.2022.108382_bib0011) 2004; 130 Alsharqawi (10.1016/j.ress.2022.108382_bib0014) 2020; 11 Forghani-elahabad (10.1016/j.ress.2022.108382_bib0020) 2016; 40 Yeh (10.1016/j.ress.2022.108382_bib0010) 2020; 204 Ramirez-Marquez (10.1016/j.ress.2022.108382_bib0015) 2005; 87 Zuo (10.1016/j.ress.2022.108382_bib0021) 2007; 39 Yan (10.1016/j.ress.2022.108382_bib0019) 2007; 92 Ushakov (10.1016/j.ress.2022.108382_bib0022) 1986; 24 Jane (10.1016/j.ress.2022.108382_bib0024) 2010; 205 |
References_xml | – volume: 36 start-page: 578 year: 2015 end-page: 588 ident: bib0008 article-title: System reliability maximization for a computer network by finding the optimal two-class allocation subject to budget publication-title: Appl Soft Comput – volume: 136 start-page: 62 year: 2015 end-page: 74 ident: bib0026 article-title: A multi-objective optimization problem for multi-state series-parallel systems: a two-stage flow-shop manufacturing system publication-title: Reliab Eng Syst Saf – volume: 107 start-page: 572 year: 2007 end-page: 580 ident: bib0003 article-title: Performance evaluation for the logistics system in case that capacity weight varies from arcs and types of commodity publication-title: Int J Prod Econ – volume: 166 start-page: 138 year: 2017 end-page: 150 ident: bib0009 article-title: Optimal redundancy allocation to maximize multi-state computer network reliability subject to correlated failures publication-title: Reliab Eng Syst Saf – volume: 36 start-page: 611 year: 2013 end-page: 620 ident: bib0034 article-title: Monte Carlo estimation of diameter-constrained network reliability conditioned by pathsets and cutsets publication-title: Comput Commun – volume: 7 start-page: 7033 year: 2011 end-page: 7050 ident: bib0001 article-title: Maximizing network reliability for stochastic transportation networks under a budget constraint by using a genetic algorithm publication-title: Int J Innov Comput. Inf. Control – volume: 76 start-page: 1 year: 2005 end-page: 8 ident: bib0012 article-title: Reliability optimization using ant colony algorithm under performance and cost constraints publication-title: Electr Power Syst Res – volume: 34 start-page: 581 year: 1986 end-page: 594 ident: bib0033 article-title: A Monte-Carlo sampling plan for estimating network reliability publication-title: Oper Res – volume: 130 start-page: 63 year: 2004 end-page: 72 ident: bib0011 article-title: Genetic algorithms for reliability-based optimization of water distribution systems publication-title: J Water Resour Plan Manag – volume: 204 year: 2020 ident: bib0010 article-title: A hybrid approach to solve a bi-objective optimization problem of a capacitated-flow network with a time factor publication-title: Reliab Eng Syst Saf – volume: 11 start-page: 10 year: 2020 ident: bib0014 article-title: Reliability assessment model for water distribution networks publication-title: J Pipeline Syst Eng Pract – volume: 52 start-page: 43 year: 2019 end-page: 54 ident: bib0028 article-title: Bi-objective optimization for a multistate job-shop production network using NSGA-II and TOPSIS publication-title: J Manuf Syst – volume: 157 year: 2021 ident: bib0029 article-title: Stochastic resource-constrained project scheduling problem with time varying weather conditions and an improved estimation of distribution algorithm publication-title: Comput Ind Eng – volume: 24 start-page: 118 year: 1986 end-page: 129 ident: bib0022 article-title: A universal generating function publication-title: Sov J Comput Syst Sci – volume: R-34 start-page: 473 year: 1985 end-page: 479 ident: bib0030 article-title: Reliability evaluation of multistate systems with multistate components publication-title: IEEE Trans Reliab – volume: 29 start-page: 565 year: 2017 end-page: 571 ident: bib0004 article-title: Research on city agglomeration compound traffic reliability publication-title: J Syst Simul – volume: 40 start-page: 3221 year: 2016 end-page: 3229 ident: bib0020 article-title: An improved algorithm for finding all upper boundary points in a stochastic-flow network publication-title: Appl Math Model – volume: 36 start-page: 578 year: 2015 end-page: 588 ident: bib0036 article-title: System reliability maximization for a computer network by finding the optimal two-class allocation subject to budget publication-title: Appl Soft Comput – volume: 25 start-page: 131 year: 1995 end-page: 138 ident: bib0016 article-title: On reliability evaluation of a capacitated-flow network in terms of minimal pathsets publication-title: Networks – volume: 205 start-page: 625 year: 2010 end-page: 637 ident: bib0024 article-title: A dynamic bounding algorithm for approximating multi-state two-terminal reliability publication-title: Eur J Oper Res – volume: 92 start-page: 30 year: 2007 end-page: 39 ident: bib0019 article-title: Improving efficiency of solving d-MC problem in stochastic-flow network publication-title: Reliab Eng Syst Saf – volume: 39 start-page: 811 year: 2007 end-page: 817 ident: bib0021 article-title: An efficient method for reliability evaluation of multistate networks given all minimal path vectors publication-title: IIE Trans. – volume: 214 year: 2021 ident: bib0006 article-title: Reliability evaluation of a multistate railway transportation network from the perspective of a travel agent publication-title: Reliab Eng Syst Saf – volume: 17 start-page: 139 year: 2016 end-page: 147 ident: bib0017 article-title: Searching for d-MPs with fast enumeration publication-title: J Comput Sci – volume: 166 start-page: 151 year: 2017 end-page: 163 ident: bib0032 article-title: A new efficient algorithm for finding all publication-title: Reliab Eng Syst Saf – volume: 12 start-page: 257 year: 2006 end-page: 277 ident: bib0013 article-title: Penalty guided genetic search for redundancy optimization in multi-state series-parallel power system publication-title: J Comb Optim – start-page: 191 year: 2019 ident: bib0023 article-title: An MP-based approximation algorithm on reliability evaluation of multistate flow networks publication-title: Reliab Eng Syst Saf – volume: 11 start-page: 1375 year: 2015 end-page: 1391 ident: bib0002 article-title: Optimal double-resource assignment for a distributed multistate network publication-title: J Ind Manag Optim – volume: 38 start-page: 1175 year: 2011 end-page: 1187 ident: bib0007 article-title: Using minimal cuts to optimize network reliability for a stochastic computer network subject to assignment budget publication-title: Comput Oper Res – volume: 176 start-page: 209 year: 2018 end-page: 217 ident: bib0025 article-title: A novel multi-distribution multi-state flow network and its reliability optimization problem publication-title: Reliab Eng Syst Saf – volume: 218 start-page: 735 year: 2012 end-page: 746 ident: bib0027 article-title: Multi-objective optimization for stochastic computer networks using NSGA-II and TOPSIS publication-title: Eur J Oper Res – volume: 87 start-page: 253 year: 2005 end-page: 264 ident: bib0015 article-title: A Monte-Carlo simulation approach for approximating multi-state two-terminal reliability publication-title: Reliab Eng Syst Saf – start-page: 204 year: 2020 ident: bib0018 article-title: Finding all multi-state minimal paths of a multi-state flow network via feasible circulations publication-title: Reliab Eng Syst Saf – volume: 486 start-page: 20 year: 2019 end-page: 30 ident: bib0031 article-title: A quick inclusion-exclusion technique publication-title: Inf Sci – volume: 210 year: 2021 ident: bib0005 article-title: An improved bounding algorithm for approximating multistate network reliability based on state-space decomposition method publication-title: Reliab Eng Syst Saf – volume: 8 start-page: 399 year: 1954 end-page: 404 ident: bib0035 article-title: Maximal flow through a network publication-title: Can J Math – volume: 92 start-page: 30 year: 2007 ident: 10.1016/j.ress.2022.108382_bib0019 article-title: Improving efficiency of solving d-MC problem in stochastic-flow network publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2005.11.006 – volume: 12 start-page: 257 year: 2006 ident: 10.1016/j.ress.2022.108382_bib0013 article-title: Penalty guided genetic search for redundancy optimization in multi-state series-parallel power system publication-title: J Comb Optim doi: 10.1007/s10878-006-9632-1 – volume: 166 start-page: 138 year: 2017 ident: 10.1016/j.ress.2022.108382_bib0009 article-title: Optimal redundancy allocation to maximize multi-state computer network reliability subject to correlated failures publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2016.08.026 – volume: 76 start-page: 1 year: 2005 ident: 10.1016/j.ress.2022.108382_bib0012 article-title: Reliability optimization using ant colony algorithm under performance and cost constraints publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2005.02.008 – volume: 107 start-page: 572 year: 2007 ident: 10.1016/j.ress.2022.108382_bib0003 article-title: Performance evaluation for the logistics system in case that capacity weight varies from arcs and types of commodity publication-title: Int J Prod Econ doi: 10.1016/j.ijpe.2006.11.009 – start-page: 204 year: 2020 ident: 10.1016/j.ress.2022.108382_bib0018 article-title: Finding all multi-state minimal paths of a multi-state flow network via feasible circulations publication-title: Reliab Eng Syst Saf – volume: 11 start-page: 10 year: 2020 ident: 10.1016/j.ress.2022.108382_bib0014 article-title: Reliability assessment model for water distribution networks publication-title: J Pipeline Syst Eng Pract doi: 10.1061/(ASCE)PS.1949-1204.0000442 – volume: 176 start-page: 209 year: 2018 ident: 10.1016/j.ress.2022.108382_bib0025 article-title: A novel multi-distribution multi-state flow network and its reliability optimization problem publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.04.006 – volume: 136 start-page: 62 year: 2015 ident: 10.1016/j.ress.2022.108382_bib0026 article-title: A multi-objective optimization problem for multi-state series-parallel systems: a two-stage flow-shop manufacturing system publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2014.11.009 – volume: 36 start-page: 611 year: 2013 ident: 10.1016/j.ress.2022.108382_bib0034 article-title: Monte Carlo estimation of diameter-constrained network reliability conditioned by pathsets and cutsets publication-title: Comput Commun doi: 10.1016/j.comcom.2012.08.010 – volume: 52 start-page: 43 year: 2019 ident: 10.1016/j.ress.2022.108382_bib0028 article-title: Bi-objective optimization for a multistate job-shop production network using NSGA-II and TOPSIS publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2019.05.004 – volume: R-34 start-page: 473 year: 1985 ident: 10.1016/j.ress.2022.108382_bib0030 article-title: Reliability evaluation of multistate systems with multistate components publication-title: IEEE Trans Reliab doi: 10.1109/TR.1985.5222235 – volume: 166 start-page: 151 year: 2017 ident: 10.1016/j.ress.2022.108382_bib0032 article-title: A new efficient algorithm for finding all d-minimal cuts in multi-state networks publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.05.032 – volume: 38 start-page: 1175 year: 2011 ident: 10.1016/j.ress.2022.108382_bib0007 article-title: Using minimal cuts to optimize network reliability for a stochastic computer network subject to assignment budget publication-title: Comput Oper Res doi: 10.1016/j.cor.2010.10.024 – volume: 29 start-page: 565 year: 2017 ident: 10.1016/j.ress.2022.108382_bib0004 article-title: Research on city agglomeration compound traffic reliability publication-title: J Syst Simul – volume: 210 year: 2021 ident: 10.1016/j.ress.2022.108382_bib0005 article-title: An improved bounding algorithm for approximating multistate network reliability based on state-space decomposition method publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107500 – volume: 204 year: 2020 ident: 10.1016/j.ress.2022.108382_bib0010 article-title: A hybrid approach to solve a bi-objective optimization problem of a capacitated-flow network with a time factor publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.107191 – volume: 486 start-page: 20 year: 2019 ident: 10.1016/j.ress.2022.108382_bib0031 article-title: A quick inclusion-exclusion technique publication-title: Inf Sci doi: 10.1016/j.ins.2019.02.004 – volume: 34 start-page: 581 year: 1986 ident: 10.1016/j.ress.2022.108382_bib0033 article-title: A Monte-Carlo sampling plan for estimating network reliability publication-title: Oper Res doi: 10.1287/opre.34.4.581 – volume: 40 start-page: 3221 year: 2016 ident: 10.1016/j.ress.2022.108382_bib0020 article-title: An improved algorithm for finding all upper boundary points in a stochastic-flow network publication-title: Appl Math Model doi: 10.1016/j.apm.2015.10.004 – volume: 87 start-page: 253 year: 2005 ident: 10.1016/j.ress.2022.108382_bib0015 article-title: A Monte-Carlo simulation approach for approximating multi-state two-terminal reliability publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2004.05.002 – volume: 7 start-page: 7033 year: 2011 ident: 10.1016/j.ress.2022.108382_bib0001 article-title: Maximizing network reliability for stochastic transportation networks under a budget constraint by using a genetic algorithm publication-title: Int J Innov Comput. Inf. Control – volume: 214 year: 2021 ident: 10.1016/j.ress.2022.108382_bib0006 article-title: Reliability evaluation of a multistate railway transportation network from the perspective of a travel agent publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107757 – volume: 130 start-page: 63 year: 2004 ident: 10.1016/j.ress.2022.108382_bib0011 article-title: Genetic algorithms for reliability-based optimization of water distribution systems publication-title: J Water Resour Plan Manag doi: 10.1061/(ASCE)0733-9496(2004)130:1(63) – volume: 24 start-page: 118 year: 1986 ident: 10.1016/j.ress.2022.108382_bib0022 article-title: A universal generating function publication-title: Sov J Comput Syst Sci – volume: 11 start-page: 1375 year: 2015 ident: 10.1016/j.ress.2022.108382_bib0002 article-title: Optimal double-resource assignment for a distributed multistate network publication-title: J Ind Manag Optim doi: 10.3934/jimo.2015.11.1375 – volume: 17 start-page: 139 year: 2016 ident: 10.1016/j.ress.2022.108382_bib0017 article-title: Searching for d-MPs with fast enumeration publication-title: J Comput Sci doi: 10.1016/j.jocs.2016.05.011 – volume: 157 year: 2021 ident: 10.1016/j.ress.2022.108382_bib0029 article-title: Stochastic resource-constrained project scheduling problem with time varying weather conditions and an improved estimation of distribution algorithm publication-title: Comput Ind Eng doi: 10.1016/j.cie.2021.107322 – volume: 205 start-page: 625 year: 2010 ident: 10.1016/j.ress.2022.108382_bib0024 article-title: A dynamic bounding algorithm for approximating multi-state two-terminal reliability publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2010.01.033 – volume: 218 start-page: 735 year: 2012 ident: 10.1016/j.ress.2022.108382_bib0027 article-title: Multi-objective optimization for stochastic computer networks using NSGA-II and TOPSIS publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2011.11.028 – start-page: 191 year: 2019 ident: 10.1016/j.ress.2022.108382_bib0023 article-title: An MP-based approximation algorithm on reliability evaluation of multistate flow networks publication-title: Reliab Eng Syst Saf – volume: 36 start-page: 578 year: 2015 ident: 10.1016/j.ress.2022.108382_bib0036 article-title: System reliability maximization for a computer network by finding the optimal two-class allocation subject to budget publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.07.037 – volume: 25 start-page: 131 year: 1995 ident: 10.1016/j.ress.2022.108382_bib0016 article-title: On reliability evaluation of a capacitated-flow network in terms of minimal pathsets publication-title: Networks doi: 10.1002/net.3230250306 – volume: 8 start-page: 399 year: 1954 ident: 10.1016/j.ress.2022.108382_bib0035 article-title: Maximal flow through a network publication-title: Can J Math doi: 10.4153/CJM-1956-045-5 – volume: 36 start-page: 578 year: 2015 ident: 10.1016/j.ress.2022.108382_bib0008 article-title: System reliability maximization for a computer network by finding the optimal two-class allocation subject to budget publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.07.037 – volume: 39 start-page: 811 year: 2007 ident: 10.1016/j.ress.2022.108382_bib0021 article-title: An efficient method for reliability evaluation of multistate networks given all minimal path vectors publication-title: IIE Trans. doi: 10.1080/07408170601013653 |
SSID | ssj0004957 |
Score | 2.482986 |
Snippet | •A conditional MC method is proposed to evaluate the reliability of MSFNs.•A recursive conditional sampling method is developed using matrix operations.•d-MPs... The Monte Carlo (MC) method is a practical approach to estimating the reliability of large multistate flow networks (MSFNs) in reality, e.g. transportation... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108382 |
SubjectTerms | Computer applications Computer networks Conditional Monte Carlo method Estimation Genetic algorithms Monte Carlo simulation Multistate flow networks Network reliability Optimization Recursive methods Reliability aspects Reliability engineering Reliability estimation Reliability optimisation State vectors System reliability Transportation networks Transportation systems |
Title | Reliability estimation and optimisation of multistate flow networks using a conditional Monte Carlo method |
URI | https://dx.doi.org/10.1016/j.ress.2022.108382 https://www.proquest.com/docview/2649087975 |
Volume | 221 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEWhVB7YUNrEeTgeq4qqgNqFInWL_IhRq5JUpQix8NvxxQ4voQ5siWNb0dk--0u--w6hS0YVkwYnezzmxItUbK6oyj0dMxFrU8g1xA6PxsnwIbqdxtMG6texMECrdL7f-vTKW7uSrrNmdzmbde_hcJBC-m9SqYxMIYI9ojDLO-9fNA8DAGidTh5qu8AZy_ECRNuBHoBqV4nx_b05_XLT1d4z2Ed77tCIe_a9DlAjLw7R7jcpwSM0B26x1dx-w6CcYUMSMS8ULo1beHK0HVxqXJEIq0girBflKy4sFfwZAwn-EXNsMLKa2Y-EeATyVbjPV4sS23TTx2gyuJ70h57Lo-DJkKRrT0ju6zBhwg-JCoSU0oA2pqSvzPomkUgjkueSJVSmQmsVEUFEHgiRADg0O9sJ2irKIj9FOKQAOKTPaSCiQBisREHQhelE5ZwI3URBbb9MOo1xSHWxyGoy2TwDm2dg88zavImuPtssrcLGxtpxPSzZj3mSmS1gY7tWPYaZW6XmeQK_PSmj8dk_uz1HO3BnGZAttLVeveQX5pSyFu1qGrbRdu_mbjj-ABHK6Pc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2VcgAOiFXs-MANhTZulvqIKqpClwtF6s3yEqNWJUFQhPh7PLHDJsSBW-TEVjS2Z_ySN28AzliqmbI4ORCxoEGkY3uV6iwwMZOxsY3CYO7wcJT07qKbSTypQafKhUFapff9zqeX3tq3NLw1G4_TaeMWDwdtLP9NS5WRyRIsozpVXIfly-t-b_SZHsmc4CdWlMcOPnfG0bwQ1F7gIMi2K_X4fo9PPzx1GX66G7Duz43k0r3aJtSyfAvWvqgJbsMM6cVOdvuNoHiGy0okIteksJ7hwTN3SGFIySMsk4mImRevJHds8GeCPPh7IoiFyXrqvhOSISpYkY54mhfEVZzegXH3atzpBb6UQqBatL0IpBJN00qYbLaoDqVSyuI2plVT2y1OI9mOaJYplqSqLY3REZVUZqGUCeJDG9x2oZ4XebYHpJUi5lBNkYYyCqWFSylqujCT6ExQafYhrOzHlZcZx2oXc17xyWYcbc7R5tzZfB_OP_o8OpGNP5-Oq2nh35YKt1Hgz35H1Rxyv1Ht_QT_fKYsjQ_-OewprPTGwwEfXI_6h7CKdxwh8gjqi6eX7NgeWhbyxC_KdxCr66g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliability+estimation+and+optimisation+of+multistate+flow+networks+using+a+conditional+Monte+Carlo+method&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Zhou%2C+Yifan&rft.au=Liu%2C+Libo&rft.au=Li%2C+Hao&rft.date=2022-05-01&rft.pub=Elsevier+BV&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=221&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ress.2022.108382&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |