Reliability estimation and optimisation of multistate flow networks using a conditional Monte Carlo method

•A conditional MC method is proposed to evaluate the reliability of MSFNs.•A recursive conditional sampling method is developed using matrix operations.•d-MPs and d-MCs are selected recursively for narrow gaps between reliability bounds.•GA embedding the conditional MC method is developed for reliab...

Full description

Saved in:
Bibliographic Details
Published inReliability engineering & system safety Vol. 221; p. 108382
Main Authors Zhou, Yifan, Liu, Libo, Li, Hao
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.05.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A conditional MC method is proposed to evaluate the reliability of MSFNs.•A recursive conditional sampling method is developed using matrix operations.•d-MPs and d-MCs are selected recursively for narrow gaps between reliability bounds.•GA embedding the conditional MC method is developed for reliability optimisation. The Monte Carlo (MC) method is a practical approach to estimating the reliability of large multistate flow networks (MSFNs) in reality, e.g. transportation systems and computer networks. However, deriving an accurate reliability estimate using the crude MC method is computational expensive. This research proposes a conditional MC method to estimate the reliability of a MSFN using the minimal path vectors to level d (d-MPs) and minimal cut vectors to level d (d-MCs). A recursive method is developed to select d-MPs and d-MCs that incur a narrow gap between upper and lower reliability bounds. Then, state vectors are conditionally sampled in a recursive manner using matrix operations. The conditional MC method is embedded in the genetic algorithm (GA) to optimise system reliability. A ranking and selection procedure is used in GA to allocate simulation efforts to different solutions. Numerical studies validate that the proposed conditional MC method can obtain a more accurate reliability estimate than the crude MC method within the same computation time. The improved GA that includes the conditional MC method also outperforms the original GA in reliability optimisation.
AbstractList •A conditional MC method is proposed to evaluate the reliability of MSFNs.•A recursive conditional sampling method is developed using matrix operations.•d-MPs and d-MCs are selected recursively for narrow gaps between reliability bounds.•GA embedding the conditional MC method is developed for reliability optimisation. The Monte Carlo (MC) method is a practical approach to estimating the reliability of large multistate flow networks (MSFNs) in reality, e.g. transportation systems and computer networks. However, deriving an accurate reliability estimate using the crude MC method is computational expensive. This research proposes a conditional MC method to estimate the reliability of a MSFN using the minimal path vectors to level d (d-MPs) and minimal cut vectors to level d (d-MCs). A recursive method is developed to select d-MPs and d-MCs that incur a narrow gap between upper and lower reliability bounds. Then, state vectors are conditionally sampled in a recursive manner using matrix operations. The conditional MC method is embedded in the genetic algorithm (GA) to optimise system reliability. A ranking and selection procedure is used in GA to allocate simulation efforts to different solutions. Numerical studies validate that the proposed conditional MC method can obtain a more accurate reliability estimate than the crude MC method within the same computation time. The improved GA that includes the conditional MC method also outperforms the original GA in reliability optimisation.
The Monte Carlo (MC) method is a practical approach to estimating the reliability of large multistate flow networks (MSFNs) in reality, e.g. transportation systems and computer networks. However, deriving an accurate reliability estimate using the crude MC method is computational expensive. This research proposes a conditional MC method to estimate the reliability of a MSFN using the minimal path vectors to level d (d-MPs) and minimal cut vectors to level d (d-MCs). A recursive method is developed to select d-MPs and d-MCs that incur a narrow gap between upper and lower reliability bounds. Then, state vectors are conditionally sampled in a recursive manner using matrix operations. The conditional MC method is embedded in the genetic algorithm (GA) to optimise system reliability. A ranking and selection procedure is used in GA to allocate simulation efforts to different solutions. Numerical studies validate that the proposed conditional MC method can obtain a more accurate reliability estimate than the crude MC method within the same computation time. The improved GA that includes the conditional MC method also outperforms the original GA in reliability optimisation.
ArticleNumber 108382
Author Zhou, Yifan
Liu, Libo
Li, Hao
Author_xml – sequence: 1
  givenname: Yifan
  orcidid: 0000-0002-2898-0632
  surname: Zhou
  fullname: Zhou, Yifan
  email: yifan.zhou@seu.edu.cn
– sequence: 2
  givenname: Libo
  surname: Liu
  fullname: Liu, Libo
– sequence: 3
  givenname: Hao
  surname: Li
  fullname: Li, Hao
BookMark eNp9kMtKAzEUhoNUsK2-gKuA66lJZjoXcCPFGyiCdB9yOaMZp0lNMpa-vanjykVX4Rz-75D_m6GJdRYQuqRkQQktr7uFhxAWjDCWFnVesxM0pXXVZGkoJ2hKmiXN6pyRMzQLoSOEFM2ymqLuDXojpOlN3GMI0WxENM5iYTV22zSaMC5cizdDH02IIgJue7fDFuLO-c-Ah2DsOxZYOavNIS16_OJsyq2E7x3eQPxw-hydtqIPcPH3ztH6_m69esyeXx-eVrfPmcpZHTOpBGnzspEkZ5pKpRRdlo1WRJMqZ4WsCwagmrJStWxbXTDJJFApS0aTCpbP0dV4duvd15Aq8c4NPn0pcFYWDUlSqmVK1WNKeReCh5YrE3-bRi9MzynhB7G84wex_CCWj2ITyv6hW5-0-f1x6GaEIDX_NuB5UAasAm08qMi1M8fwH6UUlqE
CitedBy_id crossref_primary_10_1016_j_ress_2025_110990
crossref_primary_10_1007_s00170_022_10060_2
crossref_primary_10_1016_j_ress_2024_110321
crossref_primary_10_1016_j_engfailanal_2024_107957
crossref_primary_10_1016_j_ast_2022_107803
crossref_primary_10_1007_s10479_024_06141_y
crossref_primary_10_1016_j_adhoc_2023_103183
crossref_primary_10_1016_j_ress_2022_108607
crossref_primary_10_1016_j_ress_2023_109417
crossref_primary_10_1007_s13399_024_05618_x
crossref_primary_10_1007_s10479_024_06354_1
crossref_primary_10_1016_j_ress_2024_110774
crossref_primary_10_1016_j_ress_2024_110106
crossref_primary_10_1016_j_ress_2024_110337
crossref_primary_10_1007_s10479_024_05840_w
crossref_primary_10_1007_s00170_022_10258_4
crossref_primary_10_1016_j_ress_2024_110209
Cites_doi 10.1016/j.ress.2005.11.006
10.1007/s10878-006-9632-1
10.1016/j.ress.2016.08.026
10.1016/j.epsr.2005.02.008
10.1016/j.ijpe.2006.11.009
10.1061/(ASCE)PS.1949-1204.0000442
10.1016/j.ress.2018.04.006
10.1016/j.ress.2014.11.009
10.1016/j.comcom.2012.08.010
10.1016/j.jmsy.2019.05.004
10.1109/TR.1985.5222235
10.1016/j.ress.2017.05.032
10.1016/j.cor.2010.10.024
10.1016/j.ress.2021.107500
10.1016/j.ress.2020.107191
10.1016/j.ins.2019.02.004
10.1287/opre.34.4.581
10.1016/j.apm.2015.10.004
10.1016/j.ress.2004.05.002
10.1016/j.ress.2021.107757
10.1061/(ASCE)0733-9496(2004)130:1(63)
10.3934/jimo.2015.11.1375
10.1016/j.jocs.2016.05.011
10.1016/j.cie.2021.107322
10.1016/j.ejor.2010.01.033
10.1016/j.ejor.2011.11.028
10.1016/j.asoc.2015.07.037
10.1002/net.3230250306
10.4153/CJM-1956-045-5
10.1080/07408170601013653
ContentType Journal Article
Copyright 2022
Copyright Elsevier BV May 2022
Copyright_xml – notice: 2022
– notice: Copyright Elsevier BV May 2022
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2022.108382
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2022_108382
S095183202200059X
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
7TB
8FD
C1K
EFKBS
FR3
SOI
ID FETCH-LOGICAL-c328t-bca0f369b032d1bccc1569dc0d07324b842eec967c8bffd42b2be1bb62110123
IEDL.DBID .~1
ISSN 0951-8320
IngestDate Wed Aug 13 08:46:06 EDT 2025
Tue Jul 01 00:45:07 EDT 2025
Thu Apr 24 23:07:39 EDT 2025
Fri Feb 23 02:40:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reliability estimation
Multistate flow networks
Conditional Monte Carlo method
Reliability optimisation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-bca0f369b032d1bccc1569dc0d07324b842eec967c8bffd42b2be1bb62110123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2898-0632
PQID 2649087975
PQPubID 2045406
ParticipantIDs proquest_journals_2649087975
crossref_citationtrail_10_1016_j_ress_2022_108382
crossref_primary_10_1016_j_ress_2022_108382
elsevier_sciencedirect_doi_10_1016_j_ress_2022_108382
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Li, Hao, Wang (bib0004) 2017; 29
Azadeh, Shoja, Ghanei, Sheikhalishahi (bib0026) 2015; 136
Ramirez-Marquez, Coit (bib0015) 2005; 87
Yan, Qian (bib0019) 2007; 92
Yeh (bib0010) 2020; 204
Ushakov (bib0022) 1986; 24
Hao, Yeh, Wang, Wang, Sun (bib0031) 2019; 486
Liu, Bai, Tao, Zhang, Fang (bib0005) 2021; 210
Tolson, Maier, Simpson, Lence (bib0011) 2004; 130
Cancela, Robledo, Rubino, Sartor (bib0034) 2013; 36
Lin, Yeh (bib0008) 2015; 36
Yeh, Chu (bib0025) 2018; 176
Ford, Fulkerson (bib0035) 1954; 8
Lin, Yeh (bib0001) 2011; 7
Jane, Laih (bib0024) 2010; 205
Lin (bib0003) 2007; 107
Zhou, Miao, Yan, Zhang (bib0029) 2021; 157
Aven (bib0030) 1985; R-34
Zuo, Tian, Huang (bib0021) 2007; 39
Alsharqawi, Zayed, Parvizsedghy, Senouci, Al-Derham (bib0014) 2020; 11
Forghani-elahabad, Kagan, Mahdavi-Amiri (bib0023) 2019
Niu, Gao, Lam (bib0032) 2017; 166
Meziane, Massim, Zeblah, Ghoraf, Rahli (bib0012) 2005; 76
Lin, Chang, Yeng, Huang (bib0028) 2019; 52
Niu, Wan, Xu, Ding (bib0018) 2020
Lin, Yeh (bib0027) 2012; 218
Forghani-elahabad, Mahdavi-Amiri (bib0020) 2016; 40
Lin, Yeh (bib0007) 2011; 38
Lin, Jane, Yuan (bib0016) 1995; 25
Yeh, Lin, Yeng, Huang (bib0006) 2021; 214
Yeh, Fiondella (bib0009) 2017; 166
Gupta, Agarwal (bib0013) 2006; 12
Fishman (bib0033) 1986; 34
Chen, Lin (bib0017) 2016; 17
Lin, Yeh (bib0036) 2015; 36
Chen (bib0002) 2015; 11
Lin (10.1016/j.ress.2022.108382_bib0008) 2015; 36
Forghani-elahabad (10.1016/j.ress.2022.108382_bib0023) 2019
Fishman (10.1016/j.ress.2022.108382_bib0033) 1986; 34
Meziane (10.1016/j.ress.2022.108382_bib0012) 2005; 76
Chen (10.1016/j.ress.2022.108382_bib0002) 2015; 11
Li (10.1016/j.ress.2022.108382_bib0004) 2017; 29
Gupta (10.1016/j.ress.2022.108382_bib0013) 2006; 12
Chen (10.1016/j.ress.2022.108382_bib0017) 2016; 17
Niu (10.1016/j.ress.2022.108382_bib0032) 2017; 166
Lin (10.1016/j.ress.2022.108382_bib0001) 2011; 7
Lin (10.1016/j.ress.2022.108382_bib0003) 2007; 107
Azadeh (10.1016/j.ress.2022.108382_bib0026) 2015; 136
Aven (10.1016/j.ress.2022.108382_bib0030) 1985; R-34
Yeh (10.1016/j.ress.2022.108382_bib0009) 2017; 166
Niu (10.1016/j.ress.2022.108382_bib0018) 2020
Yeh (10.1016/j.ress.2022.108382_bib0025) 2018; 176
Lin (10.1016/j.ress.2022.108382_bib0028) 2019; 52
Hao (10.1016/j.ress.2022.108382_bib0031) 2019; 486
Zhou (10.1016/j.ress.2022.108382_bib0029) 2021; 157
Lin (10.1016/j.ress.2022.108382_bib0016) 1995; 25
Lin (10.1016/j.ress.2022.108382_bib0007) 2011; 38
Cancela (10.1016/j.ress.2022.108382_bib0034) 2013; 36
Ford (10.1016/j.ress.2022.108382_bib0035) 1954; 8
Lin (10.1016/j.ress.2022.108382_bib0027) 2012; 218
Lin (10.1016/j.ress.2022.108382_bib0036) 2015; 36
Yeh (10.1016/j.ress.2022.108382_bib0006) 2021; 214
Liu (10.1016/j.ress.2022.108382_bib0005) 2021; 210
Tolson (10.1016/j.ress.2022.108382_bib0011) 2004; 130
Alsharqawi (10.1016/j.ress.2022.108382_bib0014) 2020; 11
Forghani-elahabad (10.1016/j.ress.2022.108382_bib0020) 2016; 40
Yeh (10.1016/j.ress.2022.108382_bib0010) 2020; 204
Ramirez-Marquez (10.1016/j.ress.2022.108382_bib0015) 2005; 87
Zuo (10.1016/j.ress.2022.108382_bib0021) 2007; 39
Yan (10.1016/j.ress.2022.108382_bib0019) 2007; 92
Ushakov (10.1016/j.ress.2022.108382_bib0022) 1986; 24
Jane (10.1016/j.ress.2022.108382_bib0024) 2010; 205
References_xml – volume: 36
  start-page: 578
  year: 2015
  end-page: 588
  ident: bib0008
  article-title: System reliability maximization for a computer network by finding the optimal two-class allocation subject to budget
  publication-title: Appl Soft Comput
– volume: 136
  start-page: 62
  year: 2015
  end-page: 74
  ident: bib0026
  article-title: A multi-objective optimization problem for multi-state series-parallel systems: a two-stage flow-shop manufacturing system
  publication-title: Reliab Eng Syst Saf
– volume: 107
  start-page: 572
  year: 2007
  end-page: 580
  ident: bib0003
  article-title: Performance evaluation for the logistics system in case that capacity weight varies from arcs and types of commodity
  publication-title: Int J Prod Econ
– volume: 166
  start-page: 138
  year: 2017
  end-page: 150
  ident: bib0009
  article-title: Optimal redundancy allocation to maximize multi-state computer network reliability subject to correlated failures
  publication-title: Reliab Eng Syst Saf
– volume: 36
  start-page: 611
  year: 2013
  end-page: 620
  ident: bib0034
  article-title: Monte Carlo estimation of diameter-constrained network reliability conditioned by pathsets and cutsets
  publication-title: Comput Commun
– volume: 7
  start-page: 7033
  year: 2011
  end-page: 7050
  ident: bib0001
  article-title: Maximizing network reliability for stochastic transportation networks under a budget constraint by using a genetic algorithm
  publication-title: Int J Innov Comput. Inf. Control
– volume: 76
  start-page: 1
  year: 2005
  end-page: 8
  ident: bib0012
  article-title: Reliability optimization using ant colony algorithm under performance and cost constraints
  publication-title: Electr Power Syst Res
– volume: 34
  start-page: 581
  year: 1986
  end-page: 594
  ident: bib0033
  article-title: A Monte-Carlo sampling plan for estimating network reliability
  publication-title: Oper Res
– volume: 130
  start-page: 63
  year: 2004
  end-page: 72
  ident: bib0011
  article-title: Genetic algorithms for reliability-based optimization of water distribution systems
  publication-title: J Water Resour Plan Manag
– volume: 204
  year: 2020
  ident: bib0010
  article-title: A hybrid approach to solve a bi-objective optimization problem of a capacitated-flow network with a time factor
  publication-title: Reliab Eng Syst Saf
– volume: 11
  start-page: 10
  year: 2020
  ident: bib0014
  article-title: Reliability assessment model for water distribution networks
  publication-title: J Pipeline Syst Eng Pract
– volume: 52
  start-page: 43
  year: 2019
  end-page: 54
  ident: bib0028
  article-title: Bi-objective optimization for a multistate job-shop production network using NSGA-II and TOPSIS
  publication-title: J Manuf Syst
– volume: 157
  year: 2021
  ident: bib0029
  article-title: Stochastic resource-constrained project scheduling problem with time varying weather conditions and an improved estimation of distribution algorithm
  publication-title: Comput Ind Eng
– volume: 24
  start-page: 118
  year: 1986
  end-page: 129
  ident: bib0022
  article-title: A universal generating function
  publication-title: Sov J Comput Syst Sci
– volume: R-34
  start-page: 473
  year: 1985
  end-page: 479
  ident: bib0030
  article-title: Reliability evaluation of multistate systems with multistate components
  publication-title: IEEE Trans Reliab
– volume: 29
  start-page: 565
  year: 2017
  end-page: 571
  ident: bib0004
  article-title: Research on city agglomeration compound traffic reliability
  publication-title: J Syst Simul
– volume: 40
  start-page: 3221
  year: 2016
  end-page: 3229
  ident: bib0020
  article-title: An improved algorithm for finding all upper boundary points in a stochastic-flow network
  publication-title: Appl Math Model
– volume: 36
  start-page: 578
  year: 2015
  end-page: 588
  ident: bib0036
  article-title: System reliability maximization for a computer network by finding the optimal two-class allocation subject to budget
  publication-title: Appl Soft Comput
– volume: 25
  start-page: 131
  year: 1995
  end-page: 138
  ident: bib0016
  article-title: On reliability evaluation of a capacitated-flow network in terms of minimal pathsets
  publication-title: Networks
– volume: 205
  start-page: 625
  year: 2010
  end-page: 637
  ident: bib0024
  article-title: A dynamic bounding algorithm for approximating multi-state two-terminal reliability
  publication-title: Eur J Oper Res
– volume: 92
  start-page: 30
  year: 2007
  end-page: 39
  ident: bib0019
  article-title: Improving efficiency of solving d-MC problem in stochastic-flow network
  publication-title: Reliab Eng Syst Saf
– volume: 39
  start-page: 811
  year: 2007
  end-page: 817
  ident: bib0021
  article-title: An efficient method for reliability evaluation of multistate networks given all minimal path vectors
  publication-title: IIE Trans.
– volume: 214
  year: 2021
  ident: bib0006
  article-title: Reliability evaluation of a multistate railway transportation network from the perspective of a travel agent
  publication-title: Reliab Eng Syst Saf
– volume: 17
  start-page: 139
  year: 2016
  end-page: 147
  ident: bib0017
  article-title: Searching for d-MPs with fast enumeration
  publication-title: J Comput Sci
– volume: 166
  start-page: 151
  year: 2017
  end-page: 163
  ident: bib0032
  article-title: A new efficient algorithm for finding all
  publication-title: Reliab Eng Syst Saf
– volume: 12
  start-page: 257
  year: 2006
  end-page: 277
  ident: bib0013
  article-title: Penalty guided genetic search for redundancy optimization in multi-state series-parallel power system
  publication-title: J Comb Optim
– start-page: 191
  year: 2019
  ident: bib0023
  article-title: An MP-based approximation algorithm on reliability evaluation of multistate flow networks
  publication-title: Reliab Eng Syst Saf
– volume: 11
  start-page: 1375
  year: 2015
  end-page: 1391
  ident: bib0002
  article-title: Optimal double-resource assignment for a distributed multistate network
  publication-title: J Ind Manag Optim
– volume: 38
  start-page: 1175
  year: 2011
  end-page: 1187
  ident: bib0007
  article-title: Using minimal cuts to optimize network reliability for a stochastic computer network subject to assignment budget
  publication-title: Comput Oper Res
– volume: 176
  start-page: 209
  year: 2018
  end-page: 217
  ident: bib0025
  article-title: A novel multi-distribution multi-state flow network and its reliability optimization problem
  publication-title: Reliab Eng Syst Saf
– volume: 218
  start-page: 735
  year: 2012
  end-page: 746
  ident: bib0027
  article-title: Multi-objective optimization for stochastic computer networks using NSGA-II and TOPSIS
  publication-title: Eur J Oper Res
– volume: 87
  start-page: 253
  year: 2005
  end-page: 264
  ident: bib0015
  article-title: A Monte-Carlo simulation approach for approximating multi-state two-terminal reliability
  publication-title: Reliab Eng Syst Saf
– start-page: 204
  year: 2020
  ident: bib0018
  article-title: Finding all multi-state minimal paths of a multi-state flow network via feasible circulations
  publication-title: Reliab Eng Syst Saf
– volume: 486
  start-page: 20
  year: 2019
  end-page: 30
  ident: bib0031
  article-title: A quick inclusion-exclusion technique
  publication-title: Inf Sci
– volume: 210
  year: 2021
  ident: bib0005
  article-title: An improved bounding algorithm for approximating multistate network reliability based on state-space decomposition method
  publication-title: Reliab Eng Syst Saf
– volume: 8
  start-page: 399
  year: 1954
  end-page: 404
  ident: bib0035
  article-title: Maximal flow through a network
  publication-title: Can J Math
– volume: 92
  start-page: 30
  year: 2007
  ident: 10.1016/j.ress.2022.108382_bib0019
  article-title: Improving efficiency of solving d-MC problem in stochastic-flow network
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2005.11.006
– volume: 12
  start-page: 257
  year: 2006
  ident: 10.1016/j.ress.2022.108382_bib0013
  article-title: Penalty guided genetic search for redundancy optimization in multi-state series-parallel power system
  publication-title: J Comb Optim
  doi: 10.1007/s10878-006-9632-1
– volume: 166
  start-page: 138
  year: 2017
  ident: 10.1016/j.ress.2022.108382_bib0009
  article-title: Optimal redundancy allocation to maximize multi-state computer network reliability subject to correlated failures
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2016.08.026
– volume: 76
  start-page: 1
  year: 2005
  ident: 10.1016/j.ress.2022.108382_bib0012
  article-title: Reliability optimization using ant colony algorithm under performance and cost constraints
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2005.02.008
– volume: 107
  start-page: 572
  year: 2007
  ident: 10.1016/j.ress.2022.108382_bib0003
  article-title: Performance evaluation for the logistics system in case that capacity weight varies from arcs and types of commodity
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2006.11.009
– start-page: 204
  year: 2020
  ident: 10.1016/j.ress.2022.108382_bib0018
  article-title: Finding all multi-state minimal paths of a multi-state flow network via feasible circulations
  publication-title: Reliab Eng Syst Saf
– volume: 11
  start-page: 10
  year: 2020
  ident: 10.1016/j.ress.2022.108382_bib0014
  article-title: Reliability assessment model for water distribution networks
  publication-title: J Pipeline Syst Eng Pract
  doi: 10.1061/(ASCE)PS.1949-1204.0000442
– volume: 176
  start-page: 209
  year: 2018
  ident: 10.1016/j.ress.2022.108382_bib0025
  article-title: A novel multi-distribution multi-state flow network and its reliability optimization problem
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.04.006
– volume: 136
  start-page: 62
  year: 2015
  ident: 10.1016/j.ress.2022.108382_bib0026
  article-title: A multi-objective optimization problem for multi-state series-parallel systems: a two-stage flow-shop manufacturing system
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2014.11.009
– volume: 36
  start-page: 611
  year: 2013
  ident: 10.1016/j.ress.2022.108382_bib0034
  article-title: Monte Carlo estimation of diameter-constrained network reliability conditioned by pathsets and cutsets
  publication-title: Comput Commun
  doi: 10.1016/j.comcom.2012.08.010
– volume: 52
  start-page: 43
  year: 2019
  ident: 10.1016/j.ress.2022.108382_bib0028
  article-title: Bi-objective optimization for a multistate job-shop production network using NSGA-II and TOPSIS
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2019.05.004
– volume: R-34
  start-page: 473
  year: 1985
  ident: 10.1016/j.ress.2022.108382_bib0030
  article-title: Reliability evaluation of multistate systems with multistate components
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.1985.5222235
– volume: 166
  start-page: 151
  year: 2017
  ident: 10.1016/j.ress.2022.108382_bib0032
  article-title: A new efficient algorithm for finding all d-minimal cuts in multi-state networks
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.05.032
– volume: 38
  start-page: 1175
  year: 2011
  ident: 10.1016/j.ress.2022.108382_bib0007
  article-title: Using minimal cuts to optimize network reliability for a stochastic computer network subject to assignment budget
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2010.10.024
– volume: 29
  start-page: 565
  year: 2017
  ident: 10.1016/j.ress.2022.108382_bib0004
  article-title: Research on city agglomeration compound traffic reliability
  publication-title: J Syst Simul
– volume: 210
  year: 2021
  ident: 10.1016/j.ress.2022.108382_bib0005
  article-title: An improved bounding algorithm for approximating multistate network reliability based on state-space decomposition method
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107500
– volume: 204
  year: 2020
  ident: 10.1016/j.ress.2022.108382_bib0010
  article-title: A hybrid approach to solve a bi-objective optimization problem of a capacitated-flow network with a time factor
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107191
– volume: 486
  start-page: 20
  year: 2019
  ident: 10.1016/j.ress.2022.108382_bib0031
  article-title: A quick inclusion-exclusion technique
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.02.004
– volume: 34
  start-page: 581
  year: 1986
  ident: 10.1016/j.ress.2022.108382_bib0033
  article-title: A Monte-Carlo sampling plan for estimating network reliability
  publication-title: Oper Res
  doi: 10.1287/opre.34.4.581
– volume: 40
  start-page: 3221
  year: 2016
  ident: 10.1016/j.ress.2022.108382_bib0020
  article-title: An improved algorithm for finding all upper boundary points in a stochastic-flow network
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2015.10.004
– volume: 87
  start-page: 253
  year: 2005
  ident: 10.1016/j.ress.2022.108382_bib0015
  article-title: A Monte-Carlo simulation approach for approximating multi-state two-terminal reliability
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2004.05.002
– volume: 7
  start-page: 7033
  year: 2011
  ident: 10.1016/j.ress.2022.108382_bib0001
  article-title: Maximizing network reliability for stochastic transportation networks under a budget constraint by using a genetic algorithm
  publication-title: Int J Innov Comput. Inf. Control
– volume: 214
  year: 2021
  ident: 10.1016/j.ress.2022.108382_bib0006
  article-title: Reliability evaluation of a multistate railway transportation network from the perspective of a travel agent
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107757
– volume: 130
  start-page: 63
  year: 2004
  ident: 10.1016/j.ress.2022.108382_bib0011
  article-title: Genetic algorithms for reliability-based optimization of water distribution systems
  publication-title: J Water Resour Plan Manag
  doi: 10.1061/(ASCE)0733-9496(2004)130:1(63)
– volume: 24
  start-page: 118
  year: 1986
  ident: 10.1016/j.ress.2022.108382_bib0022
  article-title: A universal generating function
  publication-title: Sov J Comput Syst Sci
– volume: 11
  start-page: 1375
  year: 2015
  ident: 10.1016/j.ress.2022.108382_bib0002
  article-title: Optimal double-resource assignment for a distributed multistate network
  publication-title: J Ind Manag Optim
  doi: 10.3934/jimo.2015.11.1375
– volume: 17
  start-page: 139
  year: 2016
  ident: 10.1016/j.ress.2022.108382_bib0017
  article-title: Searching for d-MPs with fast enumeration
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2016.05.011
– volume: 157
  year: 2021
  ident: 10.1016/j.ress.2022.108382_bib0029
  article-title: Stochastic resource-constrained project scheduling problem with time varying weather conditions and an improved estimation of distribution algorithm
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2021.107322
– volume: 205
  start-page: 625
  year: 2010
  ident: 10.1016/j.ress.2022.108382_bib0024
  article-title: A dynamic bounding algorithm for approximating multi-state two-terminal reliability
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2010.01.033
– volume: 218
  start-page: 735
  year: 2012
  ident: 10.1016/j.ress.2022.108382_bib0027
  article-title: Multi-objective optimization for stochastic computer networks using NSGA-II and TOPSIS
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2011.11.028
– start-page: 191
  year: 2019
  ident: 10.1016/j.ress.2022.108382_bib0023
  article-title: An MP-based approximation algorithm on reliability evaluation of multistate flow networks
  publication-title: Reliab Eng Syst Saf
– volume: 36
  start-page: 578
  year: 2015
  ident: 10.1016/j.ress.2022.108382_bib0036
  article-title: System reliability maximization for a computer network by finding the optimal two-class allocation subject to budget
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.07.037
– volume: 25
  start-page: 131
  year: 1995
  ident: 10.1016/j.ress.2022.108382_bib0016
  article-title: On reliability evaluation of a capacitated-flow network in terms of minimal pathsets
  publication-title: Networks
  doi: 10.1002/net.3230250306
– volume: 8
  start-page: 399
  year: 1954
  ident: 10.1016/j.ress.2022.108382_bib0035
  article-title: Maximal flow through a network
  publication-title: Can J Math
  doi: 10.4153/CJM-1956-045-5
– volume: 36
  start-page: 578
  year: 2015
  ident: 10.1016/j.ress.2022.108382_bib0008
  article-title: System reliability maximization for a computer network by finding the optimal two-class allocation subject to budget
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.07.037
– volume: 39
  start-page: 811
  year: 2007
  ident: 10.1016/j.ress.2022.108382_bib0021
  article-title: An efficient method for reliability evaluation of multistate networks given all minimal path vectors
  publication-title: IIE Trans.
  doi: 10.1080/07408170601013653
SSID ssj0004957
Score 2.482986
Snippet •A conditional MC method is proposed to evaluate the reliability of MSFNs.•A recursive conditional sampling method is developed using matrix operations.•d-MPs...
The Monte Carlo (MC) method is a practical approach to estimating the reliability of large multistate flow networks (MSFNs) in reality, e.g. transportation...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108382
SubjectTerms Computer applications
Computer networks
Conditional Monte Carlo method
Estimation
Genetic algorithms
Monte Carlo simulation
Multistate flow networks
Network reliability
Optimization
Recursive methods
Reliability aspects
Reliability engineering
Reliability estimation
Reliability optimisation
State vectors
System reliability
Transportation networks
Transportation systems
Title Reliability estimation and optimisation of multistate flow networks using a conditional Monte Carlo method
URI https://dx.doi.org/10.1016/j.ress.2022.108382
https://www.proquest.com/docview/2649087975
Volume 221
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEWhVB7YUNrEeTgeq4qqgNqFInWL_IhRq5JUpQix8NvxxQ4voQ5siWNb0dk--0u--w6hS0YVkwYnezzmxItUbK6oyj0dMxFrU8g1xA6PxsnwIbqdxtMG6texMECrdL7f-vTKW7uSrrNmdzmbde_hcJBC-m9SqYxMIYI9ojDLO-9fNA8DAGidTh5qu8AZy_ECRNuBHoBqV4nx_b05_XLT1d4z2Ed77tCIe_a9DlAjLw7R7jcpwSM0B26x1dx-w6CcYUMSMS8ULo1beHK0HVxqXJEIq0girBflKy4sFfwZAwn-EXNsMLKa2Y-EeATyVbjPV4sS23TTx2gyuJ70h57Lo-DJkKRrT0ju6zBhwg-JCoSU0oA2pqSvzPomkUgjkueSJVSmQmsVEUFEHgiRADg0O9sJ2irKIj9FOKQAOKTPaSCiQBisREHQhelE5ZwI3URBbb9MOo1xSHWxyGoy2TwDm2dg88zavImuPtssrcLGxtpxPSzZj3mSmS1gY7tWPYaZW6XmeQK_PSmj8dk_uz1HO3BnGZAttLVeveQX5pSyFu1qGrbRdu_mbjj-ABHK6Pc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2VcgAOiFXs-MANhTZulvqIKqpClwtF6s3yEqNWJUFQhPh7PLHDJsSBW-TEVjS2Z_ySN28AzliqmbI4ORCxoEGkY3uV6iwwMZOxsY3CYO7wcJT07qKbSTypQafKhUFapff9zqeX3tq3NLw1G4_TaeMWDwdtLP9NS5WRyRIsozpVXIfly-t-b_SZHsmc4CdWlMcOPnfG0bwQ1F7gIMi2K_X4fo9PPzx1GX66G7Duz43k0r3aJtSyfAvWvqgJbsMM6cVOdvuNoHiGy0okIteksJ7hwTN3SGFIySMsk4mImRevJHds8GeCPPh7IoiFyXrqvhOSISpYkY54mhfEVZzegXH3atzpBb6UQqBatL0IpBJN00qYbLaoDqVSyuI2plVT2y1OI9mOaJYplqSqLY3REZVUZqGUCeJDG9x2oZ4XebYHpJUi5lBNkYYyCqWFSylqujCT6ExQafYhrOzHlZcZx2oXc17xyWYcbc7R5tzZfB_OP_o8OpGNP5-Oq2nh35YKt1Hgz35H1Rxyv1Ht_QT_fKYsjQ_-OewprPTGwwEfXI_6h7CKdxwh8gjqi6eX7NgeWhbyxC_KdxCr66g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliability+estimation+and+optimisation+of+multistate+flow+networks+using+a+conditional+Monte+Carlo+method&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Zhou%2C+Yifan&rft.au=Liu%2C+Libo&rft.au=Li%2C+Hao&rft.date=2022-05-01&rft.pub=Elsevier+BV&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=221&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ress.2022.108382&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon