Assembly Transformation Jointly Driven by the LAP Enzyme and GSH Boosting Theranostic Capability for Effective Tumor Therapy
Developing intelligent and morphology-transformable nanomaterials that can spatiotemporally undergo stimulus-responsive size transformation holds great promise for improving the tumor delivery efficiency of drugs . Here, we report a smart size-transformable theranostic probe Ce6-Leu consisting of a...
Saved in:
Published in | ACS applied materials & interfaces Vol. 13; no. 50; pp. 59787 - 59802 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
22.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing intelligent and morphology-transformable nanomaterials that can spatiotemporally undergo stimulus-responsive size transformation holds great promise for improving the tumor delivery efficiency of drugs
. Here, we report a smart size-transformable theranostic probe Ce6-Leu consisting of a leucine amino peptidase (LAP) and glutathione (GSH) dual-responsive moiety, an 1,2-aminothiol group, and a clinically used photosensitizer Ce6. This probe tends to self-assemble into uniform nanoparticles with an initial size of ∼80 nm in aqueous solution owing to the amphiphilic feature. Surprisingly, taking advantage of the biocompatible CBT-Cys condensation reaction, the large nanoprobes can be transformed into tiny nanoparticles (∼23 nm) under the joint action of LAP and GSH in a tumor microenvironment, endowing them with great tumor accumulation and deep tissue penetration. Concomitantly, this LAP/GSH-driven disassembly and size shrinkage of Ce6-Leu can also activate the fluorescence/magnetic resonance signals and the photodynamic effect for enhanced multimodal imaging-guided photodynamic therapy of human liver HepG2 tumors
. More excitingly, the Mn
-chelating probe (Ce6-Leu@Mn
) was demonstrated to have the capability to catalyze endogenous H
O
to persistently release O
at the hypoxic tumor site, as a consequence improving the oxygen supply to boost the radiotherapy effect. We thus believe that this LAP/GSH-driven size-transformable nanosystem would offer a novel advanced technology to improve the drug delivery efficiency for achieving precise tumor diagnosis and treatment. |
---|---|
AbstractList | Developing intelligent and morphology-transformable nanomaterials that can spatiotemporally undergo stimulus-responsive size transformation holds great promise for improving the tumor delivery efficiency of drugs
. Here, we report a smart size-transformable theranostic probe Ce6-Leu consisting of a leucine amino peptidase (LAP) and glutathione (GSH) dual-responsive moiety, an 1,2-aminothiol group, and a clinically used photosensitizer Ce6. This probe tends to self-assemble into uniform nanoparticles with an initial size of ∼80 nm in aqueous solution owing to the amphiphilic feature. Surprisingly, taking advantage of the biocompatible CBT-Cys condensation reaction, the large nanoprobes can be transformed into tiny nanoparticles (∼23 nm) under the joint action of LAP and GSH in a tumor microenvironment, endowing them with great tumor accumulation and deep tissue penetration. Concomitantly, this LAP/GSH-driven disassembly and size shrinkage of Ce6-Leu can also activate the fluorescence/magnetic resonance signals and the photodynamic effect for enhanced multimodal imaging-guided photodynamic therapy of human liver HepG2 tumors
. More excitingly, the Mn
-chelating probe (Ce6-Leu@Mn
) was demonstrated to have the capability to catalyze endogenous H
O
to persistently release O
at the hypoxic tumor site, as a consequence improving the oxygen supply to boost the radiotherapy effect. We thus believe that this LAP/GSH-driven size-transformable nanosystem would offer a novel advanced technology to improve the drug delivery efficiency for achieving precise tumor diagnosis and treatment. Developing intelligent and morphology-transformable nanomaterials that can spatiotemporally undergo stimulus-responsive size transformation holds great promise for improving the tumor delivery efficiency of drugs in vivo. Here, we report a smart size-transformable theranostic probe Ce6-Leu consisting of a leucine amino peptidase (LAP) and glutathione (GSH) dual-responsive moiety, an 1,2-aminothiol group, and a clinically used photosensitizer Ce6. This probe tends to self-assemble into uniform nanoparticles with an initial size of ∼80 nm in aqueous solution owing to the amphiphilic feature. Surprisingly, taking advantage of the biocompatible CBT-Cys condensation reaction, the large nanoprobes can be transformed into tiny nanoparticles (∼23 nm) under the joint action of LAP and GSH in a tumor microenvironment, endowing them with great tumor accumulation and deep tissue penetration. Concomitantly, this LAP/GSH-driven disassembly and size shrinkage of Ce6-Leu can also activate the fluorescence/magnetic resonance signals and the photodynamic effect for enhanced multimodal imaging-guided photodynamic therapy of human liver HepG2 tumors in vivo. More excitingly, the Mn²⁺-chelating probe (Ce6-Leu@Mn²⁺) was demonstrated to have the capability to catalyze endogenous H₂O₂ to persistently release O₂ at the hypoxic tumor site, as a consequence improving the oxygen supply to boost the radiotherapy effect. We thus believe that this LAP/GSH-driven size-transformable nanosystem would offer a novel advanced technology to improve the drug delivery efficiency for achieving precise tumor diagnosis and treatment. Developing intelligent and morphology-transformable nanomaterials that can spatiotemporally undergo stimulus-responsive size transformation holds great promise for improving the tumor delivery efficiency of drugs in vivo. Here, we report a smart size-transformable theranostic probe Ce6-Leu consisting of a leucine amino peptidase (LAP) and glutathione (GSH) dual-responsive moiety, an 1,2-aminothiol group, and a clinically used photosensitizer Ce6. This probe tends to self-assemble into uniform nanoparticles with an initial size of ∼80 nm in aqueous solution owing to the amphiphilic feature. Surprisingly, taking advantage of the biocompatible CBT-Cys condensation reaction, the large nanoprobes can be transformed into tiny nanoparticles (∼23 nm) under the joint action of LAP and GSH in a tumor microenvironment, endowing them with great tumor accumulation and deep tissue penetration. Concomitantly, this LAP/GSH-driven disassembly and size shrinkage of Ce6-Leu can also activate the fluorescence/magnetic resonance signals and the photodynamic effect for enhanced multimodal imaging-guided photodynamic therapy of human liver HepG2 tumors in vivo. More excitingly, the Mn2+-chelating probe (Ce6-Leu@Mn2+) was demonstrated to have the capability to catalyze endogenous H2O2 to persistently release O2 at the hypoxic tumor site, as a consequence improving the oxygen supply to boost the radiotherapy effect. We thus believe that this LAP/GSH-driven size-transformable nanosystem would offer a novel advanced technology to improve the drug delivery efficiency for achieving precise tumor diagnosis and treatment.Developing intelligent and morphology-transformable nanomaterials that can spatiotemporally undergo stimulus-responsive size transformation holds great promise for improving the tumor delivery efficiency of drugs in vivo. Here, we report a smart size-transformable theranostic probe Ce6-Leu consisting of a leucine amino peptidase (LAP) and glutathione (GSH) dual-responsive moiety, an 1,2-aminothiol group, and a clinically used photosensitizer Ce6. This probe tends to self-assemble into uniform nanoparticles with an initial size of ∼80 nm in aqueous solution owing to the amphiphilic feature. Surprisingly, taking advantage of the biocompatible CBT-Cys condensation reaction, the large nanoprobes can be transformed into tiny nanoparticles (∼23 nm) under the joint action of LAP and GSH in a tumor microenvironment, endowing them with great tumor accumulation and deep tissue penetration. Concomitantly, this LAP/GSH-driven disassembly and size shrinkage of Ce6-Leu can also activate the fluorescence/magnetic resonance signals and the photodynamic effect for enhanced multimodal imaging-guided photodynamic therapy of human liver HepG2 tumors in vivo. More excitingly, the Mn2+-chelating probe (Ce6-Leu@Mn2+) was demonstrated to have the capability to catalyze endogenous H2O2 to persistently release O2 at the hypoxic tumor site, as a consequence improving the oxygen supply to boost the radiotherapy effect. We thus believe that this LAP/GSH-driven size-transformable nanosystem would offer a novel advanced technology to improve the drug delivery efficiency for achieving precise tumor diagnosis and treatment. |
Author | Qiu, Ling Fang, Jing Shi, Haibin Li, Jiachen Zhang, Yuqi Cui, Chaoxiang Mao, Qiulian Feng, Yali Wang, Anna He, Lei Zhao, Yan Ye, Shuyue |
Author_xml | – sequence: 1 givenname: Anna surname: Wang fullname: Wang, Anna organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China – sequence: 2 givenname: Jing surname: Fang fullname: Fang, Jing organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China – sequence: 3 givenname: Shuyue surname: Ye fullname: Ye, Shuyue organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China – sequence: 4 givenname: Qiulian surname: Mao fullname: Mao, Qiulian organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China – sequence: 5 givenname: Yan surname: Zhao fullname: Zhao, Yan organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China – sequence: 6 givenname: Chaoxiang surname: Cui fullname: Cui, Chaoxiang organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China – sequence: 7 givenname: Yuqi surname: Zhang fullname: Zhang, Yuqi organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China – sequence: 8 givenname: Yali surname: Feng fullname: Feng, Yali organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China – sequence: 9 givenname: Jiachen surname: Li fullname: Li, Jiachen organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China – sequence: 10 givenname: Lei surname: He fullname: He, Lei organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China – sequence: 11 givenname: Ling surname: Qiu fullname: Qiu, Ling organization: Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China – sequence: 12 givenname: Haibin orcidid: 0000-0003-2234-9126 surname: Shi fullname: Shi, Haibin organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34894664$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtrGzEURkVJaeK02y6Llt3Y0WsUeek6zgtDC3XXQqO5SlRmJFeSC1Py46PEThaFQlfSFecewfdN0FGIARD6SMmMEkbPjM1m8DNqGSWSvUEndC7EVLGGHb3ehThGk5x_EiI5I807dMyFmgspxQl6WOQMQ9uPeJNMyC6mwRQfA76NPpT6fJH8bwi4HXG5B7xefMOr8GccAJvQ4avv1_hLjLn4cIc391AVT4PFS7M1re99GXFV4pVzYEsV4c1uqPMzuh3fo7fO9Bk-HM5T9ONytVleT9dfr26Wi_XUcqbKtD1XDqS1gnbQNW6uKDDJqXBcNda1DWstGAGyqZ8YEMx2xDTCcqu46bik_BR93nu3Kf7aQS568NlC35sAcZd1tUmuzhX_H5TU5FRD5hX9dEB37QCd3iY_mDTql3ArIPaATTHnBE5bX57TLcn4XlOinzrU-w71ocO6Nvtr7cX8j4VHsLyhcA |
CitedBy_id | crossref_primary_10_1016_j_actbio_2024_06_019 crossref_primary_10_1016_j_ccr_2024_215863 crossref_primary_10_1016_j_ccr_2024_215842 crossref_primary_10_1039_D4CC02565B crossref_primary_10_1021_jacs_2c10409 crossref_primary_10_1021_acsami_3c07479 crossref_primary_10_1002_VIW_20220065 crossref_primary_10_1021_acsbiomaterials_2c00094 crossref_primary_10_1002_smtd_202301131 crossref_primary_10_1002_anie_202218969 crossref_primary_10_1039_D1CS01145F crossref_primary_10_3389_fonc_2022_1085432 crossref_primary_10_1002_cjoc_202300176 crossref_primary_10_1016_j_talanta_2023_124473 crossref_primary_10_1039_D2SC06413H crossref_primary_10_1002_ange_202218969 crossref_primary_10_1016_j_colsurfb_2024_113921 |
Cites_doi | 10.1002/adma.201604894 10.1016/S1470-2045(04)01529-3 10.1002/smll.202004723 10.1039/C8NR05061A 10.1021/acs.chemrev.8b00363 10.1038/nchem.1920 10.1126/sciadv.aba3190 10.1016/1011-1344(93)06974-8 10.1182/blood.V97.2.393 10.1002/anie.202001107 10.1038/s41551-018-0262-6 10.1002/anie.202009141 10.1002/anie.202015126 10.1007/s10103-010-0781-1 10.1002/adfm.201900084 10.1158/0008-5472.CAN-07-6611 10.1021/jacs.8b04169 10.1016/j.canlet.2017.01.040 10.1002/adma.201801350 10.1002/anie.201812878 10.1002/adfm.201900773 10.1038/nrc2397 10.1002/anie.201912574 10.1038/ncomms5712 10.1021/acsnano.6b03412 10.1016/j.semcancer.2008.03.011 10.1021/acs.nanolett.1c01029 10.1039/D1SC01073E 10.1038/s41467-019-12848-5 10.1038/463977a 10.3322/caac.21654 10.1021/acsnano.5b00640 10.1038/nature12625 10.1007/s11426-018-9397-5 10.1002/ange.202102601 10.1016/j.canlet.2014.03.013 10.1021/jacs.7b08900 10.1038/nnano.2016.72 10.1021/acsnano.9b08209 10.1038/nrgastro.2016.193 10.1002/adma.201501803 10.1021/acs.accounts.9b00126 10.1021/ja039832y 10.1038/nbt.2838 10.1039/C9SC00747D 10.1016/j.biomaterials.2015.09.018 10.1038/srep31339 10.1038/natrevmats.2016.14 10.1158/0008-5472.CAN-07-6871 10.1002/anie.201612020 10.1021/acs.chemrev.7b00258 10.1038/nm1100 10.1021/acs.chemrev.8b00626 10.1038/nrd1984 10.1002/adhm.201800359 10.1021/jacs.0c10245 10.1038/nature12624 10.1016/j.tibtech.2009.12.007 10.1021/acsnano.0c01388 10.1002/ange.201612142 10.1136/thx.2006.061143 10.1038/nmat2986 10.1038/s41467-018-06093-5 10.1021/jacs.0c07594 10.1021/cr900236h 10.1002/anie.202000983 10.1021/acsami.9b15083 10.1038/nrd4003 10.1002/ijc.29210 10.1146/annurev-bioeng-071811-150124 10.1093/nsr/nwx062 10.1002/anie.201303387 10.1016/j.jconrel.2018.07.027 10.1038/nrc.2017.93 10.1016/j.nantod.2020.101030 10.1038/nrc3064 10.1016/j.addr.2012.01.002 10.1039/C9CC06839B 10.1021/acs.chemrev.5b00148 10.1038/s41467-018-07490-6 10.1126/sciadv.aax0937 10.1021/acs.accounts.8b00398 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.1c21062 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 59802 |
ExternalDocumentID | 34894664 10_1021_acsami_1c21062 |
Genre | Journal Article |
GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI AAHBH AAYXX ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CITATION CUPRZ EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c328t-b78fe6cc41ded5f981e26314f385cfb52bcea4e65fecae42cd0a54c3c83ad3613 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Fri Jul 11 04:41:35 EDT 2025 Thu Jul 10 22:04:23 EDT 2025 Thu Jan 02 22:55:48 EST 2025 Tue Jul 01 01:14:20 EDT 2025 Thu Apr 24 22:58:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Keywords | radiotherapy smart probe assembly transformation stimulus-responsive photodynamic therapy bioimaging |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-b78fe6cc41ded5f981e26314f385cfb52bcea4e65fecae42cd0a54c3c83ad3613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2234-9126 |
PMID | 34894664 |
PQID | 2609468509 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2636387831 proquest_miscellaneous_2609468509 pubmed_primary_34894664 crossref_citationtrail_10_1021_acsami_1c21062 crossref_primary_10_1021_acsami_1c21062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-22 |
PublicationDateYYYYMMDD | 2021-12-22 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl Mater Interfaces |
PublicationYear | 2021 |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 Campbell R. B. (ref38/cit38) 2002; 62 ref59/cit59 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref82/cit82 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref83/cit83 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 Feng L. (ref49/cit49) 2017; 5 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref58/cit58 doi: 10.1002/adma.201604894 – ident: ref7/cit7 doi: 10.1016/S1470-2045(04)01529-3 – ident: ref22/cit22 doi: 10.1002/smll.202004723 – ident: ref73/cit73 doi: 10.1039/C8NR05061A – ident: ref77/cit77 doi: 10.1021/acs.chemrev.8b00363 – ident: ref32/cit32 doi: 10.1038/nchem.1920 – ident: ref34/cit34 doi: 10.1126/sciadv.aba3190 – ident: ref59/cit59 doi: 10.1016/1011-1344(93)06974-8 – ident: ref52/cit52 doi: 10.1182/blood.V97.2.393 – ident: ref45/cit45 doi: 10.1002/anie.202001107 – ident: ref9/cit9 doi: 10.1038/s41551-018-0262-6 – ident: ref44/cit44 doi: 10.1002/anie.202009141 – ident: ref37/cit37 doi: 10.1002/anie.202015126 – ident: ref60/cit60 doi: 10.1007/s10103-010-0781-1 – ident: ref68/cit68 doi: 10.1002/adfm.201900084 – ident: ref6/cit6 doi: 10.1158/0008-5472.CAN-07-6611 – ident: ref76/cit76 doi: 10.1021/jacs.8b04169 – ident: ref10/cit10 doi: 10.1016/j.canlet.2017.01.040 – ident: ref61/cit61 doi: 10.1002/adma.201801350 – ident: ref56/cit56 doi: 10.1002/anie.201812878 – ident: ref69/cit69 doi: 10.1002/adfm.201900773 – ident: ref82/cit82 doi: 10.1038/nrc2397 – ident: ref71/cit71 doi: 10.1002/anie.201912574 – ident: ref70/cit70 doi: 10.1038/ncomms5712 – ident: ref33/cit33 doi: 10.1021/acsnano.6b03412 – ident: ref51/cit51 doi: 10.1016/j.semcancer.2008.03.011 – ident: ref28/cit28 doi: 10.1021/acs.nanolett.1c01029 – ident: ref24/cit24 doi: 10.1039/D1SC01073E – ident: ref36/cit36 doi: 10.1038/s41467-019-12848-5 – ident: ref75/cit75 doi: 10.1038/463977a – ident: ref2/cit2 doi: 10.3322/caac.21654 – ident: ref78/cit78 doi: 10.1021/acsnano.5b00640 – ident: ref12/cit12 doi: 10.1038/nature12625 – ident: ref19/cit19 doi: 10.1007/s11426-018-9397-5 – ident: ref30/cit30 doi: 10.1002/ange.202102601 – ident: ref17/cit17 doi: 10.1016/j.canlet.2014.03.013 – ident: ref48/cit48 doi: 10.1021/jacs.7b08900 – ident: ref50/cit50 doi: 10.1038/nnano.2016.72 – ident: ref35/cit35 doi: 10.1021/acsnano.9b08209 – ident: ref3/cit3 doi: 10.1038/nrgastro.2016.193 – ident: ref46/cit46 doi: 10.1002/adma.201501803 – ident: ref41/cit41 doi: 10.1021/acs.accounts.9b00126 – ident: ref74/cit74 doi: 10.1021/ja039832y – ident: ref54/cit54 doi: 10.1038/nbt.2838 – ident: ref80/cit80 doi: 10.1039/C9SC00747D – ident: ref39/cit39 doi: 10.1016/j.biomaterials.2015.09.018 – ident: ref65/cit65 doi: 10.1038/srep31339 – ident: ref15/cit15 doi: 10.1038/natrevmats.2016.14 – ident: ref4/cit4 doi: 10.1158/0008-5472.CAN-07-6871 – ident: ref53/cit53 doi: 10.1002/anie.201612020 – ident: ref20/cit20 doi: 10.1021/acs.chemrev.7b00258 – ident: ref11/cit11 doi: 10.1038/nm1100 – ident: ref55/cit55 doi: 10.1021/acs.chemrev.8b00626 – ident: ref16/cit16 doi: 10.1038/nrd1984 – ident: ref43/cit43 doi: 10.1002/adhm.201800359 – ident: ref23/cit23 doi: 10.1021/jacs.0c10245 – volume: 62 start-page: 6831 year: 2002 ident: ref38/cit38 publication-title: Cancer Res. – ident: ref13/cit13 doi: 10.1038/nature12624 – ident: ref14/cit14 doi: 10.1016/j.tibtech.2009.12.007 – ident: ref29/cit29 doi: 10.1021/acsnano.0c01388 – ident: ref57/cit57 doi: 10.1002/ange.201612142 – ident: ref8/cit8 doi: 10.1136/thx.2006.061143 – ident: ref62/cit62 doi: 10.1038/nmat2986 – ident: ref79/cit79 doi: 10.1038/s41467-018-06093-5 – ident: ref31/cit31 doi: 10.1021/jacs.0c07594 – ident: ref63/cit63 doi: 10.1021/cr900236h – ident: ref27/cit27 doi: 10.1002/anie.202000983 – ident: ref81/cit81 doi: 10.1021/acsami.9b15083 – ident: ref5/cit5 doi: 10.1038/nrd4003 – ident: ref1/cit1 doi: 10.1002/ijc.29210 – ident: ref42/cit42 doi: 10.1146/annurev-bioeng-071811-150124 – volume: 5 start-page: 269 year: 2017 ident: ref49/cit49 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwx062 – ident: ref64/cit64 doi: 10.1002/anie.201303387 – ident: ref67/cit67 doi: 10.1016/j.jconrel.2018.07.027 – ident: ref40/cit40 doi: 10.1038/nrc.2017.93 – ident: ref66/cit66 doi: 10.1016/j.nantod.2020.101030 – ident: ref83/cit83 doi: 10.1038/nrc3064 – ident: ref47/cit47 doi: 10.1016/j.addr.2012.01.002 – ident: ref72/cit72 doi: 10.1039/C9CC06839B – ident: ref18/cit18 doi: 10.1021/acs.chemrev.5b00148 – ident: ref26/cit26 doi: 10.1038/s41467-018-07490-6 – ident: ref25/cit25 doi: 10.1126/sciadv.aax0937 – ident: ref21/cit21 doi: 10.1021/acs.accounts.8b00398 |
SSID | ssj0063205 |
Score | 2.452203 |
Snippet | Developing intelligent and morphology-transformable nanomaterials that can spatiotemporally undergo stimulus-responsive size transformation holds great promise... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 59787 |
SubjectTerms | Animals Antineoplastic Agents - chemical synthesis Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology aqueous solutions Biocompatible Materials - chemical synthesis Biocompatible Materials - chemistry Biocompatible Materials - pharmacology Cell Proliferation - drug effects Cell Survival - drug effects Chlorophyllides - chemistry Chlorophyllides - pharmacology condensation reactions Drug Screening Assays, Antitumor enzymes fluorescence glutathione Glutathione - metabolism Hep G2 Cells Humans leucine Leucyl Aminopeptidase - metabolism liver Liver Neoplasms, Experimental - drug therapy Liver Neoplasms, Experimental - metabolism Liver Neoplasms, Experimental - pathology magnetism Materials Testing moieties Molecular Structure neoplasms Optical Imaging oxygen Particle Size Photochemotherapy photosensitizing agents Photosensitizing Agents - chemistry Photosensitizing Agents - pharmacology radiotherapy shrinkage Theranostic Nanomedicine |
Title | Assembly Transformation Jointly Driven by the LAP Enzyme and GSH Boosting Theranostic Capability for Effective Tumor Therapy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34894664 https://www.proquest.com/docview/2609468509 https://www.proquest.com/docview/2636387831 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQT3Dg_VgoyEhInFzi53qPy9KyqhBCair1FtljW0J0naqbPWzFj-842S2FqsDR0WRi2ZOZz5nJN4S8M9El7b1n3iXHlA8T5qpYMRUw_iQZK_B9tcVXMz9Whyf65Nf3jj8z-IJ_cLAsrXA44OFkcLZjVUjyp7Ojrcs1UvS1inggV8xiwNqyM964_ffocwuk7EPLwYOB52jZMxKWipIfe6vO78HFTb7Gf876Ibm_wZd0OhjEI3In5sfk3jXWwSfkZ0n0LvzpmtbXUGub6WH7PXd4-dN5cYHUrymiQ_pl-o3u54v1IlKXA_18NKcf23ZZyqVpXf7eymUAdIZht6-0XVNUSQdaZFRE69UCx_VAX_CUHB_s17M52zRhYCCF7Zgf2xQNgOIhBp0mlkdhJFdJWg3Ja-EhOhWNRqUuKgGhclqBBCtdkAgWnpGd3Ob4glAOwLUbT8Cb0ug6uCoFl7gI2ibBnRkRtt2cBjYM5aVRxmnTZ8oFb4ZVbTarOiLvr-TPBm6OWyXfbve6wden5ERcju1q2eBxbqKMRdj0NxmJXmpsJR-R54OhXD1PKtsz9L_877m8IndFqYvhggmxS3a681V8jcCm8296o74ESK_39g |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assembly+Transformation+Jointly+Driven+by+the+LAP+Enzyme+and+GSH+Boosting+Theranostic+Capability+for+Effective+Tumor+Therapy&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Wang%2C+Anna&rft.au=Fang%2C+Jing&rft.au=Ye%2C+Shuyue&rft.au=Mao%2C+Qiulian&rft.date=2021-12-22&rft.eissn=1944-8252&rft.volume=13&rft.issue=50&rft.spage=59787&rft_id=info:doi/10.1021%2Facsami.1c21062&rft_id=info%3Apmid%2F34894664&rft.externalDocID=34894664 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |