Assembly Transformation Jointly Driven by the LAP Enzyme and GSH Boosting Theranostic Capability for Effective Tumor Therapy

Developing intelligent and morphology-transformable nanomaterials that can spatiotemporally undergo stimulus-responsive size transformation holds great promise for improving the tumor delivery efficiency of drugs . Here, we report a smart size-transformable theranostic probe Ce6-Leu consisting of a...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 13; no. 50; pp. 59787 - 59802
Main Authors Wang, Anna, Fang, Jing, Ye, Shuyue, Mao, Qiulian, Zhao, Yan, Cui, Chaoxiang, Zhang, Yuqi, Feng, Yali, Li, Jiachen, He, Lei, Qiu, Ling, Shi, Haibin
Format Journal Article
LanguageEnglish
Published United States 22.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing intelligent and morphology-transformable nanomaterials that can spatiotemporally undergo stimulus-responsive size transformation holds great promise for improving the tumor delivery efficiency of drugs . Here, we report a smart size-transformable theranostic probe Ce6-Leu consisting of a leucine amino peptidase (LAP) and glutathione (GSH) dual-responsive moiety, an 1,2-aminothiol group, and a clinically used photosensitizer Ce6. This probe tends to self-assemble into uniform nanoparticles with an initial size of ∼80 nm in aqueous solution owing to the amphiphilic feature. Surprisingly, taking advantage of the biocompatible CBT-Cys condensation reaction, the large nanoprobes can be transformed into tiny nanoparticles (∼23 nm) under the joint action of LAP and GSH in a tumor microenvironment, endowing them with great tumor accumulation and deep tissue penetration. Concomitantly, this LAP/GSH-driven disassembly and size shrinkage of Ce6-Leu can also activate the fluorescence/magnetic resonance signals and the photodynamic effect for enhanced multimodal imaging-guided photodynamic therapy of human liver HepG2 tumors . More excitingly, the Mn -chelating probe (Ce6-Leu@Mn ) was demonstrated to have the capability to catalyze endogenous H O to persistently release O at the hypoxic tumor site, as a consequence improving the oxygen supply to boost the radiotherapy effect. We thus believe that this LAP/GSH-driven size-transformable nanosystem would offer a novel advanced technology to improve the drug delivery efficiency for achieving precise tumor diagnosis and treatment.
AbstractList Developing intelligent and morphology-transformable nanomaterials that can spatiotemporally undergo stimulus-responsive size transformation holds great promise for improving the tumor delivery efficiency of drugs . Here, we report a smart size-transformable theranostic probe Ce6-Leu consisting of a leucine amino peptidase (LAP) and glutathione (GSH) dual-responsive moiety, an 1,2-aminothiol group, and a clinically used photosensitizer Ce6. This probe tends to self-assemble into uniform nanoparticles with an initial size of ∼80 nm in aqueous solution owing to the amphiphilic feature. Surprisingly, taking advantage of the biocompatible CBT-Cys condensation reaction, the large nanoprobes can be transformed into tiny nanoparticles (∼23 nm) under the joint action of LAP and GSH in a tumor microenvironment, endowing them with great tumor accumulation and deep tissue penetration. Concomitantly, this LAP/GSH-driven disassembly and size shrinkage of Ce6-Leu can also activate the fluorescence/magnetic resonance signals and the photodynamic effect for enhanced multimodal imaging-guided photodynamic therapy of human liver HepG2 tumors . More excitingly, the Mn -chelating probe (Ce6-Leu@Mn ) was demonstrated to have the capability to catalyze endogenous H O to persistently release O at the hypoxic tumor site, as a consequence improving the oxygen supply to boost the radiotherapy effect. We thus believe that this LAP/GSH-driven size-transformable nanosystem would offer a novel advanced technology to improve the drug delivery efficiency for achieving precise tumor diagnosis and treatment.
Developing intelligent and morphology-transformable nanomaterials that can spatiotemporally undergo stimulus-responsive size transformation holds great promise for improving the tumor delivery efficiency of drugs in vivo. Here, we report a smart size-transformable theranostic probe Ce6-Leu consisting of a leucine amino peptidase (LAP) and glutathione (GSH) dual-responsive moiety, an 1,2-aminothiol group, and a clinically used photosensitizer Ce6. This probe tends to self-assemble into uniform nanoparticles with an initial size of ∼80 nm in aqueous solution owing to the amphiphilic feature. Surprisingly, taking advantage of the biocompatible CBT-Cys condensation reaction, the large nanoprobes can be transformed into tiny nanoparticles (∼23 nm) under the joint action of LAP and GSH in a tumor microenvironment, endowing them with great tumor accumulation and deep tissue penetration. Concomitantly, this LAP/GSH-driven disassembly and size shrinkage of Ce6-Leu can also activate the fluorescence/magnetic resonance signals and the photodynamic effect for enhanced multimodal imaging-guided photodynamic therapy of human liver HepG2 tumors in vivo. More excitingly, the Mn²⁺-chelating probe (Ce6-Leu@Mn²⁺) was demonstrated to have the capability to catalyze endogenous H₂O₂ to persistently release O₂ at the hypoxic tumor site, as a consequence improving the oxygen supply to boost the radiotherapy effect. We thus believe that this LAP/GSH-driven size-transformable nanosystem would offer a novel advanced technology to improve the drug delivery efficiency for achieving precise tumor diagnosis and treatment.
Developing intelligent and morphology-transformable nanomaterials that can spatiotemporally undergo stimulus-responsive size transformation holds great promise for improving the tumor delivery efficiency of drugs in vivo. Here, we report a smart size-transformable theranostic probe Ce6-Leu consisting of a leucine amino peptidase (LAP) and glutathione (GSH) dual-responsive moiety, an 1,2-aminothiol group, and a clinically used photosensitizer Ce6. This probe tends to self-assemble into uniform nanoparticles with an initial size of ∼80 nm in aqueous solution owing to the amphiphilic feature. Surprisingly, taking advantage of the biocompatible CBT-Cys condensation reaction, the large nanoprobes can be transformed into tiny nanoparticles (∼23 nm) under the joint action of LAP and GSH in a tumor microenvironment, endowing them with great tumor accumulation and deep tissue penetration. Concomitantly, this LAP/GSH-driven disassembly and size shrinkage of Ce6-Leu can also activate the fluorescence/magnetic resonance signals and the photodynamic effect for enhanced multimodal imaging-guided photodynamic therapy of human liver HepG2 tumors in vivo. More excitingly, the Mn2+-chelating probe (Ce6-Leu@Mn2+) was demonstrated to have the capability to catalyze endogenous H2O2 to persistently release O2 at the hypoxic tumor site, as a consequence improving the oxygen supply to boost the radiotherapy effect. We thus believe that this LAP/GSH-driven size-transformable nanosystem would offer a novel advanced technology to improve the drug delivery efficiency for achieving precise tumor diagnosis and treatment.Developing intelligent and morphology-transformable nanomaterials that can spatiotemporally undergo stimulus-responsive size transformation holds great promise for improving the tumor delivery efficiency of drugs in vivo. Here, we report a smart size-transformable theranostic probe Ce6-Leu consisting of a leucine amino peptidase (LAP) and glutathione (GSH) dual-responsive moiety, an 1,2-aminothiol group, and a clinically used photosensitizer Ce6. This probe tends to self-assemble into uniform nanoparticles with an initial size of ∼80 nm in aqueous solution owing to the amphiphilic feature. Surprisingly, taking advantage of the biocompatible CBT-Cys condensation reaction, the large nanoprobes can be transformed into tiny nanoparticles (∼23 nm) under the joint action of LAP and GSH in a tumor microenvironment, endowing them with great tumor accumulation and deep tissue penetration. Concomitantly, this LAP/GSH-driven disassembly and size shrinkage of Ce6-Leu can also activate the fluorescence/magnetic resonance signals and the photodynamic effect for enhanced multimodal imaging-guided photodynamic therapy of human liver HepG2 tumors in vivo. More excitingly, the Mn2+-chelating probe (Ce6-Leu@Mn2+) was demonstrated to have the capability to catalyze endogenous H2O2 to persistently release O2 at the hypoxic tumor site, as a consequence improving the oxygen supply to boost the radiotherapy effect. We thus believe that this LAP/GSH-driven size-transformable nanosystem would offer a novel advanced technology to improve the drug delivery efficiency for achieving precise tumor diagnosis and treatment.
Author Qiu, Ling
Fang, Jing
Shi, Haibin
Li, Jiachen
Zhang, Yuqi
Cui, Chaoxiang
Mao, Qiulian
Feng, Yali
Wang, Anna
He, Lei
Zhao, Yan
Ye, Shuyue
Author_xml – sequence: 1
  givenname: Anna
  surname: Wang
  fullname: Wang, Anna
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
– sequence: 2
  givenname: Jing
  surname: Fang
  fullname: Fang, Jing
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
– sequence: 3
  givenname: Shuyue
  surname: Ye
  fullname: Ye, Shuyue
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
– sequence: 4
  givenname: Qiulian
  surname: Mao
  fullname: Mao, Qiulian
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
– sequence: 5
  givenname: Yan
  surname: Zhao
  fullname: Zhao, Yan
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
– sequence: 6
  givenname: Chaoxiang
  surname: Cui
  fullname: Cui, Chaoxiang
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
– sequence: 7
  givenname: Yuqi
  surname: Zhang
  fullname: Zhang, Yuqi
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
– sequence: 8
  givenname: Yali
  surname: Feng
  fullname: Feng, Yali
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
– sequence: 9
  givenname: Jiachen
  surname: Li
  fullname: Li, Jiachen
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
– sequence: 10
  givenname: Lei
  surname: He
  fullname: He, Lei
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
– sequence: 11
  givenname: Ling
  surname: Qiu
  fullname: Qiu, Ling
  organization: Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
– sequence: 12
  givenname: Haibin
  orcidid: 0000-0003-2234-9126
  surname: Shi
  fullname: Shi, Haibin
  organization: State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34894664$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtrGzEURkVJaeK02y6Llt3Y0WsUeek6zgtDC3XXQqO5SlRmJFeSC1Py46PEThaFQlfSFecewfdN0FGIARD6SMmMEkbPjM1m8DNqGSWSvUEndC7EVLGGHb3ehThGk5x_EiI5I807dMyFmgspxQl6WOQMQ9uPeJNMyC6mwRQfA76NPpT6fJH8bwi4HXG5B7xefMOr8GccAJvQ4avv1_hLjLn4cIc391AVT4PFS7M1re99GXFV4pVzYEsV4c1uqPMzuh3fo7fO9Bk-HM5T9ONytVleT9dfr26Wi_XUcqbKtD1XDqS1gnbQNW6uKDDJqXBcNda1DWstGAGyqZ8YEMx2xDTCcqu46bik_BR93nu3Kf7aQS568NlC35sAcZd1tUmuzhX_H5TU5FRD5hX9dEB37QCd3iY_mDTql3ArIPaATTHnBE5bX57TLcn4XlOinzrU-w71ocO6Nvtr7cX8j4VHsLyhcA
CitedBy_id crossref_primary_10_1016_j_actbio_2024_06_019
crossref_primary_10_1016_j_ccr_2024_215863
crossref_primary_10_1016_j_ccr_2024_215842
crossref_primary_10_1039_D4CC02565B
crossref_primary_10_1021_jacs_2c10409
crossref_primary_10_1021_acsami_3c07479
crossref_primary_10_1002_VIW_20220065
crossref_primary_10_1021_acsbiomaterials_2c00094
crossref_primary_10_1002_smtd_202301131
crossref_primary_10_1002_anie_202218969
crossref_primary_10_1039_D1CS01145F
crossref_primary_10_3389_fonc_2022_1085432
crossref_primary_10_1002_cjoc_202300176
crossref_primary_10_1016_j_talanta_2023_124473
crossref_primary_10_1039_D2SC06413H
crossref_primary_10_1002_ange_202218969
crossref_primary_10_1016_j_colsurfb_2024_113921
Cites_doi 10.1002/adma.201604894
10.1016/S1470-2045(04)01529-3
10.1002/smll.202004723
10.1039/C8NR05061A
10.1021/acs.chemrev.8b00363
10.1038/nchem.1920
10.1126/sciadv.aba3190
10.1016/1011-1344(93)06974-8
10.1182/blood.V97.2.393
10.1002/anie.202001107
10.1038/s41551-018-0262-6
10.1002/anie.202009141
10.1002/anie.202015126
10.1007/s10103-010-0781-1
10.1002/adfm.201900084
10.1158/0008-5472.CAN-07-6611
10.1021/jacs.8b04169
10.1016/j.canlet.2017.01.040
10.1002/adma.201801350
10.1002/anie.201812878
10.1002/adfm.201900773
10.1038/nrc2397
10.1002/anie.201912574
10.1038/ncomms5712
10.1021/acsnano.6b03412
10.1016/j.semcancer.2008.03.011
10.1021/acs.nanolett.1c01029
10.1039/D1SC01073E
10.1038/s41467-019-12848-5
10.1038/463977a
10.3322/caac.21654
10.1021/acsnano.5b00640
10.1038/nature12625
10.1007/s11426-018-9397-5
10.1002/ange.202102601
10.1016/j.canlet.2014.03.013
10.1021/jacs.7b08900
10.1038/nnano.2016.72
10.1021/acsnano.9b08209
10.1038/nrgastro.2016.193
10.1002/adma.201501803
10.1021/acs.accounts.9b00126
10.1021/ja039832y
10.1038/nbt.2838
10.1039/C9SC00747D
10.1016/j.biomaterials.2015.09.018
10.1038/srep31339
10.1038/natrevmats.2016.14
10.1158/0008-5472.CAN-07-6871
10.1002/anie.201612020
10.1021/acs.chemrev.7b00258
10.1038/nm1100
10.1021/acs.chemrev.8b00626
10.1038/nrd1984
10.1002/adhm.201800359
10.1021/jacs.0c10245
10.1038/nature12624
10.1016/j.tibtech.2009.12.007
10.1021/acsnano.0c01388
10.1002/ange.201612142
10.1136/thx.2006.061143
10.1038/nmat2986
10.1038/s41467-018-06093-5
10.1021/jacs.0c07594
10.1021/cr900236h
10.1002/anie.202000983
10.1021/acsami.9b15083
10.1038/nrd4003
10.1002/ijc.29210
10.1146/annurev-bioeng-071811-150124
10.1093/nsr/nwx062
10.1002/anie.201303387
10.1016/j.jconrel.2018.07.027
10.1038/nrc.2017.93
10.1016/j.nantod.2020.101030
10.1038/nrc3064
10.1016/j.addr.2012.01.002
10.1039/C9CC06839B
10.1021/acs.chemrev.5b00148
10.1038/s41467-018-07490-6
10.1126/sciadv.aax0937
10.1021/acs.accounts.8b00398
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.1c21062
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 59802
ExternalDocumentID 34894664
10_1021_acsami_1c21062
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CITATION
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c328t-b78fe6cc41ded5f981e26314f385cfb52bcea4e65fecae42cd0a54c3c83ad3613
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Fri Jul 11 04:41:35 EDT 2025
Thu Jul 10 22:04:23 EDT 2025
Thu Jan 02 22:55:48 EST 2025
Tue Jul 01 01:14:20 EDT 2025
Thu Apr 24 22:58:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 50
Keywords radiotherapy
smart probe
assembly transformation
stimulus-responsive
photodynamic therapy
bioimaging
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-b78fe6cc41ded5f981e26314f385cfb52bcea4e65fecae42cd0a54c3c83ad3613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2234-9126
PMID 34894664
PQID 2609468509
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2636387831
proquest_miscellaneous_2609468509
pubmed_primary_34894664
crossref_citationtrail_10_1021_acsami_1c21062
crossref_primary_10_1021_acsami_1c21062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-22
PublicationDateYYYYMMDD 2021-12-22
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl Mater Interfaces
PublicationYear 2021
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
Campbell R. B. (ref38/cit38) 2002; 62
ref59/cit59
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
Feng L. (ref49/cit49) 2017; 5
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref58/cit58
  doi: 10.1002/adma.201604894
– ident: ref7/cit7
  doi: 10.1016/S1470-2045(04)01529-3
– ident: ref22/cit22
  doi: 10.1002/smll.202004723
– ident: ref73/cit73
  doi: 10.1039/C8NR05061A
– ident: ref77/cit77
  doi: 10.1021/acs.chemrev.8b00363
– ident: ref32/cit32
  doi: 10.1038/nchem.1920
– ident: ref34/cit34
  doi: 10.1126/sciadv.aba3190
– ident: ref59/cit59
  doi: 10.1016/1011-1344(93)06974-8
– ident: ref52/cit52
  doi: 10.1182/blood.V97.2.393
– ident: ref45/cit45
  doi: 10.1002/anie.202001107
– ident: ref9/cit9
  doi: 10.1038/s41551-018-0262-6
– ident: ref44/cit44
  doi: 10.1002/anie.202009141
– ident: ref37/cit37
  doi: 10.1002/anie.202015126
– ident: ref60/cit60
  doi: 10.1007/s10103-010-0781-1
– ident: ref68/cit68
  doi: 10.1002/adfm.201900084
– ident: ref6/cit6
  doi: 10.1158/0008-5472.CAN-07-6611
– ident: ref76/cit76
  doi: 10.1021/jacs.8b04169
– ident: ref10/cit10
  doi: 10.1016/j.canlet.2017.01.040
– ident: ref61/cit61
  doi: 10.1002/adma.201801350
– ident: ref56/cit56
  doi: 10.1002/anie.201812878
– ident: ref69/cit69
  doi: 10.1002/adfm.201900773
– ident: ref82/cit82
  doi: 10.1038/nrc2397
– ident: ref71/cit71
  doi: 10.1002/anie.201912574
– ident: ref70/cit70
  doi: 10.1038/ncomms5712
– ident: ref33/cit33
  doi: 10.1021/acsnano.6b03412
– ident: ref51/cit51
  doi: 10.1016/j.semcancer.2008.03.011
– ident: ref28/cit28
  doi: 10.1021/acs.nanolett.1c01029
– ident: ref24/cit24
  doi: 10.1039/D1SC01073E
– ident: ref36/cit36
  doi: 10.1038/s41467-019-12848-5
– ident: ref75/cit75
  doi: 10.1038/463977a
– ident: ref2/cit2
  doi: 10.3322/caac.21654
– ident: ref78/cit78
  doi: 10.1021/acsnano.5b00640
– ident: ref12/cit12
  doi: 10.1038/nature12625
– ident: ref19/cit19
  doi: 10.1007/s11426-018-9397-5
– ident: ref30/cit30
  doi: 10.1002/ange.202102601
– ident: ref17/cit17
  doi: 10.1016/j.canlet.2014.03.013
– ident: ref48/cit48
  doi: 10.1021/jacs.7b08900
– ident: ref50/cit50
  doi: 10.1038/nnano.2016.72
– ident: ref35/cit35
  doi: 10.1021/acsnano.9b08209
– ident: ref3/cit3
  doi: 10.1038/nrgastro.2016.193
– ident: ref46/cit46
  doi: 10.1002/adma.201501803
– ident: ref41/cit41
  doi: 10.1021/acs.accounts.9b00126
– ident: ref74/cit74
  doi: 10.1021/ja039832y
– ident: ref54/cit54
  doi: 10.1038/nbt.2838
– ident: ref80/cit80
  doi: 10.1039/C9SC00747D
– ident: ref39/cit39
  doi: 10.1016/j.biomaterials.2015.09.018
– ident: ref65/cit65
  doi: 10.1038/srep31339
– ident: ref15/cit15
  doi: 10.1038/natrevmats.2016.14
– ident: ref4/cit4
  doi: 10.1158/0008-5472.CAN-07-6871
– ident: ref53/cit53
  doi: 10.1002/anie.201612020
– ident: ref20/cit20
  doi: 10.1021/acs.chemrev.7b00258
– ident: ref11/cit11
  doi: 10.1038/nm1100
– ident: ref55/cit55
  doi: 10.1021/acs.chemrev.8b00626
– ident: ref16/cit16
  doi: 10.1038/nrd1984
– ident: ref43/cit43
  doi: 10.1002/adhm.201800359
– ident: ref23/cit23
  doi: 10.1021/jacs.0c10245
– volume: 62
  start-page: 6831
  year: 2002
  ident: ref38/cit38
  publication-title: Cancer Res.
– ident: ref13/cit13
  doi: 10.1038/nature12624
– ident: ref14/cit14
  doi: 10.1016/j.tibtech.2009.12.007
– ident: ref29/cit29
  doi: 10.1021/acsnano.0c01388
– ident: ref57/cit57
  doi: 10.1002/ange.201612142
– ident: ref8/cit8
  doi: 10.1136/thx.2006.061143
– ident: ref62/cit62
  doi: 10.1038/nmat2986
– ident: ref79/cit79
  doi: 10.1038/s41467-018-06093-5
– ident: ref31/cit31
  doi: 10.1021/jacs.0c07594
– ident: ref63/cit63
  doi: 10.1021/cr900236h
– ident: ref27/cit27
  doi: 10.1002/anie.202000983
– ident: ref81/cit81
  doi: 10.1021/acsami.9b15083
– ident: ref5/cit5
  doi: 10.1038/nrd4003
– ident: ref1/cit1
  doi: 10.1002/ijc.29210
– ident: ref42/cit42
  doi: 10.1146/annurev-bioeng-071811-150124
– volume: 5
  start-page: 269
  year: 2017
  ident: ref49/cit49
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwx062
– ident: ref64/cit64
  doi: 10.1002/anie.201303387
– ident: ref67/cit67
  doi: 10.1016/j.jconrel.2018.07.027
– ident: ref40/cit40
  doi: 10.1038/nrc.2017.93
– ident: ref66/cit66
  doi: 10.1016/j.nantod.2020.101030
– ident: ref83/cit83
  doi: 10.1038/nrc3064
– ident: ref47/cit47
  doi: 10.1016/j.addr.2012.01.002
– ident: ref72/cit72
  doi: 10.1039/C9CC06839B
– ident: ref18/cit18
  doi: 10.1021/acs.chemrev.5b00148
– ident: ref26/cit26
  doi: 10.1038/s41467-018-07490-6
– ident: ref25/cit25
  doi: 10.1126/sciadv.aax0937
– ident: ref21/cit21
  doi: 10.1021/acs.accounts.8b00398
SSID ssj0063205
Score 2.452203
Snippet Developing intelligent and morphology-transformable nanomaterials that can spatiotemporally undergo stimulus-responsive size transformation holds great promise...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 59787
SubjectTerms Animals
Antineoplastic Agents - chemical synthesis
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
aqueous solutions
Biocompatible Materials - chemical synthesis
Biocompatible Materials - chemistry
Biocompatible Materials - pharmacology
Cell Proliferation - drug effects
Cell Survival - drug effects
Chlorophyllides - chemistry
Chlorophyllides - pharmacology
condensation reactions
Drug Screening Assays, Antitumor
enzymes
fluorescence
glutathione
Glutathione - metabolism
Hep G2 Cells
Humans
leucine
Leucyl Aminopeptidase - metabolism
liver
Liver Neoplasms, Experimental - drug therapy
Liver Neoplasms, Experimental - metabolism
Liver Neoplasms, Experimental - pathology
magnetism
Materials Testing
moieties
Molecular Structure
neoplasms
Optical Imaging
oxygen
Particle Size
Photochemotherapy
photosensitizing agents
Photosensitizing Agents - chemistry
Photosensitizing Agents - pharmacology
radiotherapy
shrinkage
Theranostic Nanomedicine
Title Assembly Transformation Jointly Driven by the LAP Enzyme and GSH Boosting Theranostic Capability for Effective Tumor Therapy
URI https://www.ncbi.nlm.nih.gov/pubmed/34894664
https://www.proquest.com/docview/2609468509
https://www.proquest.com/docview/2636387831
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQT3Dg_VgoyEhInFzi53qPy9KyqhBCair1FtljW0J0naqbPWzFj-842S2FqsDR0WRi2ZOZz5nJN4S8M9El7b1n3iXHlA8T5qpYMRUw_iQZK_B9tcVXMz9Whyf65Nf3jj8z-IJ_cLAsrXA44OFkcLZjVUjyp7Ojrcs1UvS1inggV8xiwNqyM964_ffocwuk7EPLwYOB52jZMxKWipIfe6vO78HFTb7Gf876Ibm_wZd0OhjEI3In5sfk3jXWwSfkZ0n0LvzpmtbXUGub6WH7PXd4-dN5cYHUrymiQ_pl-o3u54v1IlKXA_18NKcf23ZZyqVpXf7eymUAdIZht6-0XVNUSQdaZFRE69UCx_VAX_CUHB_s17M52zRhYCCF7Zgf2xQNgOIhBp0mlkdhJFdJWg3Ja-EhOhWNRqUuKgGhclqBBCtdkAgWnpGd3Ob4glAOwLUbT8Cb0ug6uCoFl7gI2ibBnRkRtt2cBjYM5aVRxmnTZ8oFb4ZVbTarOiLvr-TPBm6OWyXfbve6wden5ERcju1q2eBxbqKMRdj0NxmJXmpsJR-R54OhXD1PKtsz9L_877m8IndFqYvhggmxS3a681V8jcCm8296o74ESK_39g
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assembly+Transformation+Jointly+Driven+by+the+LAP+Enzyme+and+GSH+Boosting+Theranostic+Capability+for+Effective+Tumor+Therapy&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Wang%2C+Anna&rft.au=Fang%2C+Jing&rft.au=Ye%2C+Shuyue&rft.au=Mao%2C+Qiulian&rft.date=2021-12-22&rft.eissn=1944-8252&rft.volume=13&rft.issue=50&rft.spage=59787&rft_id=info:doi/10.1021%2Facsami.1c21062&rft_id=info%3Apmid%2F34894664&rft.externalDocID=34894664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon