Pitting corrosion modelling of X80 steel utilized in offshore petroleum pipelines

•In-situ experimental analysis of pitting corrosion growth as a function of time.•Development of a Bayesian methodology for probabilistic modelling of pitting corrosion growth in steels.•Prediction of time to reach a critical pit size, based on actual damage observations of corrosion.•Presenting a B...

Full description

Saved in:
Bibliographic Details
Published inProcess safety and environmental protection Vol. 141; pp. 135 - 139
Main Authors Arzaghi, Ehsan, Chia, Bing H., Abaei, Mohammad M., Abbassi, Rouzbeh, Garaniya, Vikram
Format Journal Article
LanguageEnglish
Published Rugby Elsevier B.V 01.09.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0957-5820
1744-3598
DOI10.1016/j.psep.2020.05.024

Cover

Loading…
Abstract •In-situ experimental analysis of pitting corrosion growth as a function of time.•Development of a Bayesian methodology for probabilistic modelling of pitting corrosion growth in steels.•Prediction of time to reach a critical pit size, based on actual damage observations of corrosion.•Presenting a Bayesian approach to estimating the uncertainty associated with corrosion growth in offshore environment. High strength steels such as X80 steels have recently been used more frequently in production of offshore structures. However, they may still be subject to degradation processes such as corrosion considering the conditions in marine environment. Pitting corrosion is a destructive form of corrosion which reduces the material resistance and may result in failure accidents with severe financial, human life and environmental consequences. The process of pitting corrosion is inconsistent and largely stochastic being influenced by a number of parameters with a high level of uncertainty. This makes it very difficult to predict corrosion in terms of its initiation time and spatial behavior. Therefore, it is vital to investigate pitting corrosion phenomena in offshore structures using a probabilistic approach for the assessment of structural reliability and operational safety. In this study, an in-situ experiment has been conducted on X80 steel in an NaCl solution in a laboratory environment to observe the generation and growth of corrosion pits. A probabilistic model based on Hierarchical Bayesian Approach (HBA) is developed for predicting the pitting corrosion growth rate using experimental results. In order to model the process more realistically, the proposed methodology considers the degradation process to be consisting of the time needed for pit initiation and propagation. The results indicate that the proposed methodology is capable of predicting the time required to reach a specific pit size. The methodology developed in this study can be applied to estimate the remaining useful life of subsea structures.
AbstractList •In-situ experimental analysis of pitting corrosion growth as a function of time.•Development of a Bayesian methodology for probabilistic modelling of pitting corrosion growth in steels.•Prediction of time to reach a critical pit size, based on actual damage observations of corrosion.•Presenting a Bayesian approach to estimating the uncertainty associated with corrosion growth in offshore environment. High strength steels such as X80 steels have recently been used more frequently in production of offshore structures. However, they may still be subject to degradation processes such as corrosion considering the conditions in marine environment. Pitting corrosion is a destructive form of corrosion which reduces the material resistance and may result in failure accidents with severe financial, human life and environmental consequences. The process of pitting corrosion is inconsistent and largely stochastic being influenced by a number of parameters with a high level of uncertainty. This makes it very difficult to predict corrosion in terms of its initiation time and spatial behavior. Therefore, it is vital to investigate pitting corrosion phenomena in offshore structures using a probabilistic approach for the assessment of structural reliability and operational safety. In this study, an in-situ experiment has been conducted on X80 steel in an NaCl solution in a laboratory environment to observe the generation and growth of corrosion pits. A probabilistic model based on Hierarchical Bayesian Approach (HBA) is developed for predicting the pitting corrosion growth rate using experimental results. In order to model the process more realistically, the proposed methodology considers the degradation process to be consisting of the time needed for pit initiation and propagation. The results indicate that the proposed methodology is capable of predicting the time required to reach a specific pit size. The methodology developed in this study can be applied to estimate the remaining useful life of subsea structures.
High strength steels such as X80 steels have recently been used more frequently in production of offshore structures. However, they may still be subject to degradation processes such as corrosion considering the conditions in marine environment. Pitting corrosion is a destructive form of corrosion which reduces the material resistance and may result in failure accidents with severe financial, human life and environmental consequences. The process of pitting corrosion is inconsistent and largely stochastic being influenced by a number of parameters with a high level of uncertainty. This makes it very difficult to predict corrosion in terms of its initiation time and spatial behavior. Therefore, it is vital to investigate pitting corrosion phenomena in offshore structures using a probabilistic approach for the assessment of structural reliability and operational safety. In this study, an in-situ experiment has been conducted on X80 steel in an NaCl solution in a laboratory environment to observe the generation and growth of corrosion pits. A probabilistic model based on Hierarchical Bayesian Approach (HBA) is developed for predicting the pitting corrosion growth rate using experimental results. In order to model the process more realistically, the proposed methodology considers the degradation process to be consisting of the time needed for pit initiation and propagation. The results indicate that the proposed methodology is capable of predicting the time required to reach a specific pit size. The methodology developed in this study can be applied to estimate the remaining useful life of subsea structures.
Author Arzaghi, Ehsan
Chia, Bing H.
Garaniya, Vikram
Abaei, Mohammad M.
Abbassi, Rouzbeh
Author_xml – sequence: 1
  givenname: Ehsan
  surname: Arzaghi
  fullname: Arzaghi, Ehsan
  organization: Science and Engineering Faculty, Queensland University of Technology, Brisbane Australia
– sequence: 2
  givenname: Bing H.
  surname: Chia
  fullname: Chia, Bing H.
  organization: National Centre for Maritime Engineering and Hydrodynamics, Australian Maritime College (AMC), University of Tasmania, Launceston 7248, Australia
– sequence: 3
  givenname: Mohammad M.
  surname: Abaei
  fullname: Abaei, Mohammad M.
  organization: Department of Maritime, Transport and Technology, Delft University of Technology, Delft, Netherlands
– sequence: 4
  givenname: Rouzbeh
  surname: Abbassi
  fullname: Abbassi, Rouzbeh
  email: rouzbeh.Abbassi@mq.edu.au
  organization: School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
– sequence: 5
  givenname: Vikram
  surname: Garaniya
  fullname: Garaniya, Vikram
  organization: National Centre for Maritime Engineering and Hydrodynamics, Australian Maritime College (AMC), University of Tasmania, Launceston 7248, Australia
BookMark eNp9kE1LxDAQhoOs4O7qH_BU8Nw6SZM2BS-y-AULKih4C910qindpiZZQX-9KevJw8LADDPzzPC-CzIb7ICEnFPIKNDisstGj2PGgEEGIgPGj8iclpynuajkjMyhEmUqJIMTsvC-AwDKSjonz08mBDO8J9o6Z72xQ7K1Dfb91LNt8iYh8QGxT3bB9OYHm8QMcdD6D-swGTE42-Num4xmxAihPyXHbd17PPvLS_J6e_Oyuk_Xj3cPq-t1qnMmQ7opAXQtS8nbjYwxFbSUtOGoOQAyWbSiKmjBkWuxaXJRYFuUrawkx6IQ-ZJc7O-Ozn7u0AfV2Z0b4kvFuGCUcahk3JL7LR3VeYet0ibUIeoMrja9oqAmA1WnJgPVZKACoaKBEWX_0NGZbe2-D0NXewij9C-DTnltcNDYGIc6qMaaQ_gvqQWMPA
CitedBy_id crossref_primary_10_1088_2053_1591_ac61c1
crossref_primary_10_1016_j_corsci_2024_112334
crossref_primary_10_1007_s11665_024_09766_z
crossref_primary_10_1016_j_jlp_2024_105449
crossref_primary_10_1108_ILT_02_2024_0044
crossref_primary_10_1016_j_oceaneng_2024_116796
crossref_primary_10_1016_j_oceaneng_2023_116112
crossref_primary_10_1016_j_ijpvp_2023_105003
crossref_primary_10_1016_j_psep_2021_09_047
crossref_primary_10_1016_j_psep_2021_11_024
crossref_primary_10_1016_j_psep_2021_01_008
crossref_primary_10_1007_s11663_024_03162_7
crossref_primary_10_1002_adem_202401663
crossref_primary_10_1016_j_jmst_2022_02_033
crossref_primary_10_1016_j_heliyon_2024_e34882
crossref_primary_10_1002_cjce_25355
crossref_primary_10_1016_j_bioelechem_2022_108279
crossref_primary_10_1016_j_psep_2020_11_026
crossref_primary_10_1016_j_jlp_2023_105132
crossref_primary_10_1016_j_matchemphys_2022_125725
crossref_primary_10_1016_j_psep_2021_03_030
crossref_primary_10_1016_j_psep_2022_07_023
crossref_primary_10_1016_j_psep_2021_12_006
crossref_primary_10_1080_1478422X_2023_2247883
crossref_primary_10_4028_p_brqaI1
crossref_primary_10_1016_j_surfin_2024_104060
crossref_primary_10_1016_j_psep_2021_08_003
crossref_primary_10_1016_j_conbuildmat_2020_121605
crossref_primary_10_1016_j_corsci_2023_111737
crossref_primary_10_1016_j_psep_2024_08_021
crossref_primary_10_1016_j_jelechem_2021_115026
crossref_primary_10_1016_j_psep_2022_02_037
crossref_primary_10_1016_j_psep_2025_107060
crossref_primary_10_1016_j_corsci_2024_112590
crossref_primary_10_1007_s11665_024_10068_7
crossref_primary_10_1515_corrrev_2021_0096
crossref_primary_10_1016_j_psep_2023_04_010
crossref_primary_10_1007_s11665_025_10933_z
crossref_primary_10_1016_j_psep_2022_12_054
crossref_primary_10_1016_j_psep_2024_01_001
crossref_primary_10_4028_p_kyn9aT
crossref_primary_10_1016_j_eti_2021_101603
crossref_primary_10_1088_2053_1591_acb1f4
crossref_primary_10_1007_s11665_022_06966_3
crossref_primary_10_1016_j_corcom_2021_09_006
crossref_primary_10_1016_j_electacta_2024_144867
crossref_primary_10_1080_08927014_2023_2209020
crossref_primary_10_1016_j_psep_2022_09_034
crossref_primary_10_2139_ssrn_4177026
crossref_primary_10_1016_j_ijpvp_2022_104841
crossref_primary_10_1016_j_psep_2022_05_058
crossref_primary_10_1016_j_psep_2024_05_014
crossref_primary_10_1061__ASCE_CF_1943_5509_0001750
crossref_primary_10_3390_ma17051142
crossref_primary_10_5006_3810
crossref_primary_10_1016_j_psep_2024_02_072
crossref_primary_10_1016_j_psep_2020_10_016
Cites_doi 10.1016/j.psep.2019.01.005
10.1784/insi.2007.49.1.26
10.5006/1184
10.1016/j.oceaneng.2018.03.039
10.20964/2017.10.42
10.1016/j.jlp.2015.06.008
10.1016/j.psep.2012.07.006
10.1016/j.cscm.2018.e00193
10.1016/j.corsci.2016.05.037
10.1016/j.psep.2018.06.023
10.1016/j.ress.2008.07.002
10.1115/1.4026579
10.3390/ma6104345
10.1115/1.4036832
10.1007/s10800-009-9867-5
10.1111/risa.12736
10.1016/j.psep.2016.12.004
10.1016/j.oceaneng.2017.12.014
ContentType Journal Article
Copyright 2020 Institution of Chemical Engineers
Copyright Elsevier Science Ltd. Sep 2020
Copyright_xml – notice: 2020 Institution of Chemical Engineers
– notice: Copyright Elsevier Science Ltd. Sep 2020
DBID AAYXX
CITATION
7ST
7TB
7U7
8FD
C1K
FR3
KR7
SOI
DOI 10.1016/j.psep.2020.05.024
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Toxicology Abstracts
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1744-3598
EndPage 139
ExternalDocumentID 10_1016_j_psep_2020_05_024
S0957582019315800
GroupedDBID --K
--M
-QF
.~1
0R~
123
1B1
1~.
1~5
3EH
4.4
457
4G.
4P2
53G
5VS
7-5
71M
8P~
8WZ
A6W
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHIDL
AHPOS
AIAGR
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CAG
COF
CS3
DU5
EBS
EDH
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
I-F
IHE
J1W
JARJE
KCYFY
KOM
M41
ML.
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SJN
SPC
SPCBC
SSG
SSJ
SSR
SSZ
T5K
UNMZH
XFK
ZE2
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADMLS
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
7TB
7U7
8FD
C1K
EFKBS
FR3
KR7
SOI
ID FETCH-LOGICAL-c328t-b700ca8784fb8fb8784f1781d4ec400e286f596164e4c5bd356ef67f8984e6653
IEDL.DBID .~1
ISSN 0957-5820
IngestDate Wed Aug 13 06:32:25 EDT 2025
Tue Jul 01 01:44:18 EDT 2025
Thu Apr 24 23:04:00 EDT 2025
Fri Feb 23 02:47:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bayesian Inference
Offshore Structures
Deterioration
Markov Chain Monte-Carlo
Pitting Corrosion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-b700ca8784fb8fb8784f1781d4ec400e286f596164e4c5bd356ef67f8984e6653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2452124098
PQPubID 2047550
PageCount 5
ParticipantIDs proquest_journals_2452124098
crossref_citationtrail_10_1016_j_psep_2020_05_024
crossref_primary_10_1016_j_psep_2020_05_024
elsevier_sciencedirect_doi_10_1016_j_psep_2020_05_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace Rugby
PublicationPlace_xml – name: Rugby
PublicationTitle Process safety and environmental protection
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Abdel-Ghany, Saad-Eldeen, Leheta (bib0015) 2020; Vol. 2
Abbassi, Bhandari, Khan, Garaniya, Chai (bib0010) 2016; 48
Dai, Shi, Guo, Chen (bib0050) 2020; 166
Barber (bib0035) 2012
McCallum, Zhao, Workman, Iannuzzi, Kappes, Payer, Clemons, Chawla, Kreider, Mimoto (bib0090) 2014; 70
Nie, Wharton, Cranny, Harris, Wood, Stokes (bib0100) 2013; 6
Bhandari, Khan, Abbassi, Garaniya, Ojeda (bib0040) 2015; 37
HSR (bib0065) 2003
Zhao, Fu (bib0130) 2018; 9
Zhang, Qian, Wang (bib0125) 2012; 38
Al-Amin, Zhou, Zhang, Kariyawasam, Wang (bib0020) 2014; 136
Khakzad, Reniers (bib0080) 2016; 48
Wang, Cheng, Li (bib0105) 2016; 111
Abaei, Arzaghi, Abbassi, Garaniya, Javanmardi, Chai (bib0005) 2018; 159
Kelly, Smith (bib0075) 2009; 94
El-Gheriani, Khan, Chen, Abbassi (bib0055) 2017; 106
Wang, Ayako, Castaneda (bib0110) 2019; 123
Khan, Howard (bib0085) 2007; 49
Bhandari, Khan, Abbassi, Garaniya, Ojeda (bib0045) 2017; 139
Yu, Khan, Veitch (bib0120) 2017; 37
Xie, Dan, Chengxiang, Yue, Ming (bib0060) 2017; 12
Yang, Khan, Lye (bib0115) 2013; 91
Arzaghi, Abbassi, Garaniya, Binns, Chin, Khakzad, Reniers (bib0030) 2018; 150
Melchers (bib0095) 2009
Arzaghi, Abaei, Abbassi, Garaniya, Binns, Chin, Khan (bib0025) 2018; 118
Jafarzadeh, Shahrabi, A.Oskouei (bib0070) 2009; 39
El-Gheriani (10.1016/j.psep.2020.05.024_bib0055) 2017; 106
Xie (10.1016/j.psep.2020.05.024_bib0060) 2017; 12
McCallum (10.1016/j.psep.2020.05.024_bib0090) 2014; 70
Wang (10.1016/j.psep.2020.05.024_bib0110) 2019; 123
Bhandari (10.1016/j.psep.2020.05.024_bib0045) 2017; 139
Abdel-Ghany (10.1016/j.psep.2020.05.024_bib0015) 2020; Vol. 2
Yang (10.1016/j.psep.2020.05.024_bib0115) 2013; 91
Bhandari (10.1016/j.psep.2020.05.024_bib0040) 2015; 37
Abbassi (10.1016/j.psep.2020.05.024_bib0010) 2016; 48
Barber (10.1016/j.psep.2020.05.024_bib0035) 2012
Zhao (10.1016/j.psep.2020.05.024_bib0130) 2018; 9
Dai (10.1016/j.psep.2020.05.024_bib0050) 2020; 166
Zhang (10.1016/j.psep.2020.05.024_bib0125) 2012; 38
Kelly (10.1016/j.psep.2020.05.024_bib0075) 2009; 94
Al-Amin (10.1016/j.psep.2020.05.024_bib0020) 2014; 136
Arzaghi (10.1016/j.psep.2020.05.024_bib0030) 2018; 150
Nie (10.1016/j.psep.2020.05.024_bib0100) 2013; 6
Arzaghi (10.1016/j.psep.2020.05.024_bib0025) 2018; 118
Wang (10.1016/j.psep.2020.05.024_bib0105) 2016; 111
Yu (10.1016/j.psep.2020.05.024_bib0120) 2017; 37
Abaei (10.1016/j.psep.2020.05.024_bib0005) 2018; 159
Khakzad (10.1016/j.psep.2020.05.024_bib0080) 2016; 48
HSR (10.1016/j.psep.2020.05.024_bib0065) 2003
Melchers (10.1016/j.psep.2020.05.024_bib0095) 2009
Jafarzadeh (10.1016/j.psep.2020.05.024_bib0070) 2009; 39
Khan (10.1016/j.psep.2020.05.024_bib0085) 2007; 49
References_xml – volume: 166
  year: 2020
  ident: bib0050
  article-title: Pits Formation and Stress Corrosion Cracking Behavior of Q345R in Hydrofluoric Acid
  publication-title: Corrosion Science
– start-page: 2002
  year: 2003
  ident: bib0065
  publication-title: Offshore hydrocarbon release statistics and analysis
– volume: 39
  start-page: 1725
  year: 2009
  end-page: 1731
  ident: bib0070
  article-title: Novel approach using EIS to study flow accelerated pitting corrosion of AA5083-H321 aluminum–magnesium alloy in NaCl solution
  publication-title: Journal of Applied Electrochemistry
– volume: 159
  start-page: 47
  year: 2018
  end-page: 55
  ident: bib0005
  article-title: Dynamic reliability assessment of ship grounding using Bayesian Inference
  publication-title: Ocean Engineering
– volume: 118
  start-page: 307
  year: 2018
  end-page: 315
  ident: bib0025
  article-title: A hierarchical Bayesian approach to modelling fate and transport of oil released from subsea pipelines
  publication-title: Process Safety and Environmental Protection
– volume: 91
  start-page: 333
  year: 2013
  end-page: 342
  ident: bib0115
  article-title: Precursor-based hierarchical Bayesian approach for rare event frequency estimation: a case of oil spill accidents
  publication-title: Process Safety and Environmental Protection
– volume: 9
  year: 2018
  ident: bib0130
  article-title: The probability distribution of pitting for accelerated corrosion reinforcement
  publication-title: Case Studies in Construction Materials
– volume: 111
  start-page: 508
  year: 2016
  end-page: 517
  ident: bib0105
  article-title: Observation of the pitting corrosion and uniform corrosion for X80 steel in 3.5 wt.% NaCl solutions using in-situ, and 3-D measuring microscope
  publication-title: Corrosion Science
– volume: 136
  year: 2014
  ident: bib0020
  article-title: Hierarchical Bayesian Corrosion Growth Model Based on In-Line Inspection Data
  publication-title: ASME. J. Pressure Vessel Technol.
– volume: 38
  start-page: 1
  year: 2012
  end-page: 4
  ident: bib0125
  article-title: Development and application of high-grade pipeline steel at home and abroad
  publication-title: Petroleum Engineering and Construction
– volume: 139
  start-page: 051402
  year: 2017
  ident: bib0045
  article-title: Pitting degradation modeling of ocean steel structures using Bayesian network
  publication-title: Journal of Offshore Mechanics and Arctic Engineering
– volume: 70
  start-page: 1114
  year: 2014
  end-page: 1127
  ident: bib0090
  article-title: Localized corrosion risk assessment using Markov analysis
  publication-title: Corrosion
– year: 2009
  ident: bib0095
  article-title: Experiments, Science and Intuition in the Development of Models for the Corrosion of Steel Infrastructure
– volume: 94
  start-page: 628
  year: 2009
  end-page: 643
  ident: bib0075
  article-title: Bayesian inference in probabilistic risk assessment—The current state of the art
  publication-title: Reliability Engineering & System Safety
– volume: 48
  start-page: 235
  year: 2016
  end-page: 240
  ident: bib0010
  article-title: Developing a quantitative risk-based methodology for maintenance scheduling using Bayesian network
  publication-title: Chemical Engineering Transactions.
– volume: 48
  start-page: 223
  year: 2016
  end-page: 228
  ident: bib0080
  article-title: Application of Bayesian Network and Multi-criteria Decision Analysis to Risk-based Design of Chemical Plants
  publication-title: Chemical Engineering Transactions
– volume: 6
  start-page: 4345
  year: 2013
  end-page: 4360
  ident: bib0100
  article-title: Characterisation of Crevice and Pit Solution Chemistries Using Capillary Electrophoresis with Contactless Conductivity Detector
  publication-title: Materials (Basel)
– volume: 150
  start-page: 391
  year: 2018
  end-page: 396
  ident: bib0030
  article-title: Developing a dynamic model for pitting and corrosion-fatigue damage of subsea pipelines
  publication-title: Ocean Engineering
– volume: 37
  start-page: 39
  year: 2015
  end-page: 62
  ident: bib0040
  article-title: Modelling of pitting corrosion in marine and offshore steel structures – A technical review
  publication-title: Journal of Loss Prevention in the Process Industries
– volume: 37
  start-page: 1668
  year: 2017
  end-page: 1682
  ident: bib0120
  article-title: A flexible hierarchical Bayesian modelling technique for risk analysis of major accidents
  publication-title: Risk Analysis
– volume: 12
  start-page: 9565
  year: 2017
  end-page: 9574
  ident: bib0060
  article-title: Effect of HCO3− Concentration on the Corrosion Behaviour of X80 Pipeline Steel in Simulated Soil Solution
  publication-title: International Journal of Electrochemical Science
– volume: 106
  start-page: 52
  year: 2017
  end-page: 59
  ident: bib0055
  article-title: Major accident modelling using spare data
  publication-title: Process Safety and Environmental Protection
– volume: Vol. 2
  start-page: 801
  year: 2020
  end-page: 805
  ident: bib0015
  article-title: The Effect of Pitting Corrosion on the Strength Capacity of Steel Offshore Structures
  publication-title: ASME. International Conference on Offshore Mechanics and Arctic Engineering
– volume: 123
  start-page: 179
  year: 2019
  end-page: 189
  ident: bib0110
  article-title: A stochastic defect growth model for reliability assessment of corroded underground pipelines
  publication-title: Process Safety and Environmental Protection
– volume: 49
  start-page: 26
  year: 2007
  end-page: 36
  ident: bib0085
  article-title: Statistical approach to inspection planning and integrity assessment
  publication-title: Insight Non-Destr. Test. Cond. Monit.
– year: 2012
  ident: bib0035
  article-title: Bayesian Reasoning and Machine Learning
– volume: 123
  start-page: 179
  year: 2019
  ident: 10.1016/j.psep.2020.05.024_bib0110
  article-title: A stochastic defect growth model for reliability assessment of corroded underground pipelines
  publication-title: Process Safety and Environmental Protection
  doi: 10.1016/j.psep.2019.01.005
– volume: 49
  start-page: 26
  year: 2007
  ident: 10.1016/j.psep.2020.05.024_bib0085
  article-title: Statistical approach to inspection planning and integrity assessment
  publication-title: Insight Non-Destr. Test. Cond. Monit.
  doi: 10.1784/insi.2007.49.1.26
– volume: 70
  start-page: 1114
  issue: 11
  year: 2014
  ident: 10.1016/j.psep.2020.05.024_bib0090
  article-title: Localized corrosion risk assessment using Markov analysis
  publication-title: Corrosion
  doi: 10.5006/1184
– volume: 159
  start-page: 47
  year: 2018
  ident: 10.1016/j.psep.2020.05.024_bib0005
  article-title: Dynamic reliability assessment of ship grounding using Bayesian Inference
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2018.03.039
– year: 2012
  ident: 10.1016/j.psep.2020.05.024_bib0035
– volume: 48
  start-page: 223
  year: 2016
  ident: 10.1016/j.psep.2020.05.024_bib0080
  article-title: Application of Bayesian Network and Multi-criteria Decision Analysis to Risk-based Design of Chemical Plants
  publication-title: Chemical Engineering Transactions
– volume: Vol. 2
  start-page: 801
  year: 2020
  ident: 10.1016/j.psep.2020.05.024_bib0015
  article-title: The Effect of Pitting Corrosion on the Strength Capacity of Steel Offshore Structures
– volume: 12
  start-page: 9565
  year: 2017
  ident: 10.1016/j.psep.2020.05.024_bib0060
  article-title: Effect of HCO3− Concentration on the Corrosion Behaviour of X80 Pipeline Steel in Simulated Soil Solution
  publication-title: International Journal of Electrochemical Science
  doi: 10.20964/2017.10.42
– volume: 48
  start-page: 235
  year: 2016
  ident: 10.1016/j.psep.2020.05.024_bib0010
  article-title: Developing a quantitative risk-based methodology for maintenance scheduling using Bayesian network
  publication-title: Chemical Engineering Transactions.
– volume: 37
  start-page: 39
  year: 2015
  ident: 10.1016/j.psep.2020.05.024_bib0040
  article-title: Modelling of pitting corrosion in marine and offshore steel structures – A technical review
  publication-title: Journal of Loss Prevention in the Process Industries
  doi: 10.1016/j.jlp.2015.06.008
– year: 2009
  ident: 10.1016/j.psep.2020.05.024_bib0095
– volume: 91
  start-page: 333
  issue: 5
  year: 2013
  ident: 10.1016/j.psep.2020.05.024_bib0115
  article-title: Precursor-based hierarchical Bayesian approach for rare event frequency estimation: a case of oil spill accidents
  publication-title: Process Safety and Environmental Protection
  doi: 10.1016/j.psep.2012.07.006
– volume: 9
  year: 2018
  ident: 10.1016/j.psep.2020.05.024_bib0130
  article-title: The probability distribution of pitting for accelerated corrosion reinforcement
  publication-title: Case Studies in Construction Materials
  doi: 10.1016/j.cscm.2018.e00193
– start-page: 2002
  year: 2003
  ident: 10.1016/j.psep.2020.05.024_bib0065
– volume: 111
  start-page: 508
  year: 2016
  ident: 10.1016/j.psep.2020.05.024_bib0105
  article-title: Observation of the pitting corrosion and uniform corrosion for X80 steel in 3.5 wt.% NaCl solutions using in-situ, and 3-D measuring microscope
  publication-title: Corrosion Science
  doi: 10.1016/j.corsci.2016.05.037
– volume: 118
  start-page: 307
  year: 2018
  ident: 10.1016/j.psep.2020.05.024_bib0025
  article-title: A hierarchical Bayesian approach to modelling fate and transport of oil released from subsea pipelines
  publication-title: Process Safety and Environmental Protection
  doi: 10.1016/j.psep.2018.06.023
– volume: 94
  start-page: 628
  year: 2009
  ident: 10.1016/j.psep.2020.05.024_bib0075
  article-title: Bayesian inference in probabilistic risk assessment—The current state of the art
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2008.07.002
– volume: 166
  issue: 2020
  year: 2020
  ident: 10.1016/j.psep.2020.05.024_bib0050
  article-title: Pits Formation and Stress Corrosion Cracking Behavior of Q345R in Hydrofluoric Acid
  publication-title: Corrosion Science
– volume: 38
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.psep.2020.05.024_bib0125
  article-title: Development and application of high-grade pipeline steel at home and abroad
  publication-title: Petroleum Engineering and Construction
– volume: 136
  issue: 4
  year: 2014
  ident: 10.1016/j.psep.2020.05.024_bib0020
  article-title: Hierarchical Bayesian Corrosion Growth Model Based on In-Line Inspection Data
  publication-title: ASME. J. Pressure Vessel Technol.
  doi: 10.1115/1.4026579
– volume: 6
  start-page: 4345
  year: 2013
  ident: 10.1016/j.psep.2020.05.024_bib0100
  article-title: Characterisation of Crevice and Pit Solution Chemistries Using Capillary Electrophoresis with Contactless Conductivity Detector
  publication-title: Materials (Basel)
  doi: 10.3390/ma6104345
– volume: 139
  start-page: 051402
  issue: 5
  year: 2017
  ident: 10.1016/j.psep.2020.05.024_bib0045
  article-title: Pitting degradation modeling of ocean steel structures using Bayesian network
  publication-title: Journal of Offshore Mechanics and Arctic Engineering
  doi: 10.1115/1.4036832
– volume: 39
  start-page: 1725
  year: 2009
  ident: 10.1016/j.psep.2020.05.024_bib0070
  article-title: Novel approach using EIS to study flow accelerated pitting corrosion of AA5083-H321 aluminum–magnesium alloy in NaCl solution
  publication-title: Journal of Applied Electrochemistry
  doi: 10.1007/s10800-009-9867-5
– volume: 37
  start-page: 1668
  year: 2017
  ident: 10.1016/j.psep.2020.05.024_bib0120
  article-title: A flexible hierarchical Bayesian modelling technique for risk analysis of major accidents
  publication-title: Risk Analysis
  doi: 10.1111/risa.12736
– volume: 106
  start-page: 52
  year: 2017
  ident: 10.1016/j.psep.2020.05.024_bib0055
  article-title: Major accident modelling using spare data
  publication-title: Process Safety and Environmental Protection
  doi: 10.1016/j.psep.2016.12.004
– volume: 150
  start-page: 391
  year: 2018
  ident: 10.1016/j.psep.2020.05.024_bib0030
  article-title: Developing a dynamic model for pitting and corrosion-fatigue damage of subsea pipelines
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2017.12.014
SSID ssj0001271
Score 2.4657464
Snippet •In-situ experimental analysis of pitting corrosion growth as a function of time.•Development of a Bayesian methodology for probabilistic modelling of pitting...
High strength steels such as X80 steels have recently been used more frequently in production of offshore structures. However, they may still be subject to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 135
SubjectTerms Bayesian analysis
Bayesian Inference
Corrosion
Corrosion environments
Corrosion rate
Corrosion resistance
Degradation
Deterioration
Growth rate
High strength low alloy steels
Marine environment
Markov Chain Monte-Carlo
Methodology
Offshore
Offshore engineering
Offshore Structures
Parameter uncertainty
Petroleum pipelines
Pipelines
Pitting Corrosion
Probabilistic models
Probability theory
Reliability analysis
Reliability engineering
Sodium chloride
Steel
Structural reliability
Title Pitting corrosion modelling of X80 steel utilized in offshore petroleum pipelines
URI https://dx.doi.org/10.1016/j.psep.2020.05.024
https://www.proquest.com/docview/2452124098
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JSuRAtBC96EEcF3TGkTp4k9jZajs2TUvPuOAKfSsqSRVG2u7QaS8e_HbfSyrqDOhBCGR7lYS3P_IWQg6Ny4zLTQRhiUuClOUqUEokQWEyJY3hmcqxUPj8go_u0r9jNl4ig64WBtMqve5vdXqjrf2VnsdmryrL3g04B-DsggFTScTA78EK9lRgWt_xy3uaRxQ3QRcCBwjtC2faHK-qttizMg6b7p1x-plx-k9NN7bnZIOse6eR9tvv-kGW7HSTrH1oJbhJdobvFWsA6kW23iJXl2WT2kwhzISXAhloM_0Gy9DpzNGxDClQ2k4osOCkfLYFLadww9X3s7ml4FRjAuLTI63KCmvXbb1N7k6Gt4NR4OcoBHkSy0WQiTDMjRQydZmEDQ8iAY5qanMQYRtL7pjiEDjZNGdZkTBuHRdOKplazlmyQ5ans6ndJVSyQnEjIKhshnQYaa1IIuBGkRQZyPMeiToE6tw3GcdZFxPdZZM9aES6RqTrkGlA-h45eltTtS02voRmHV30P4yiwQZ8uW6_I6L2Ylpr_O0MDk6o5M9vPvYXWcWzNutsnywv5k_2N7gpi-yg4cMDstIfXJ9d4v7P6ejiFU_S6VE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH7oeFAP4oq7OXiTMt2SJkcZRsZtUFSYW0jbBCvjTLHjxV_vS5u6gR6EHkqbtOWt36NvAThWJlUmUwGGJSbyYpoJT4gk8nKVCq4US0VmC4Wvh2zwEF-M6GgOem0tjE2rdLa_sem1tXZXuo6a3bIouncIDhDsogMTUUAR98zDgu1OFXdg4fT8cjD8MMhBWMdddr1nN7jamSbNq6y0bVsZ-nUDzzD-zT_9sNS1-zlbhRWHG8lp82lrMKcn67D8pZvgOmz1P4vWcKnT2moDbm-KOruZYKSJL0VOkHoAjq1EJ1NDRtwnyGw9JiiF4-JN56SY4A1TPU5fNEFcbXMQX59JWZS2fF1Xm_Bw1r_vDTw3SsHLopDPvDTx_UzxhMcm5XjYkyBBrBrrDLVYh5wZKhjGTjrOaJpHlGnDEsMFjzVjNNqCzmQ60dtAOM0FUwnGlfWcDsW1TqIABTKJ8hRVegeCloAyc33G7biLsWwTyp6kJbq0RJc-lUj0HTj52FM2XTb-XE1bvshvsiLRDfy5b79lonSaWkn75xkxji_47j8fewSLg_vrK3l1PrzcgyV7p0lC24fO7OVVHyBqmaWHTirfAQSt6m0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pitting+corrosion+modelling+of+X80+steel+utilized+in+offshore+petroleum+pipelines&rft.jtitle=Process+safety+and+environmental+protection&rft.au=Arzaghi%2C+Ehsan&rft.au=Chia%2C+Bing+H.&rft.au=Abaei%2C+Mohammad+M.&rft.au=Abbassi%2C+Rouzbeh&rft.date=2020-09-01&rft.issn=0957-5820&rft.volume=141&rft.spage=135&rft.epage=139&rft_id=info:doi/10.1016%2Fj.psep.2020.05.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_psep_2020_05_024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-5820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-5820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-5820&client=summon