Pitting corrosion modelling of X80 steel utilized in offshore petroleum pipelines
•In-situ experimental analysis of pitting corrosion growth as a function of time.•Development of a Bayesian methodology for probabilistic modelling of pitting corrosion growth in steels.•Prediction of time to reach a critical pit size, based on actual damage observations of corrosion.•Presenting a B...
Saved in:
Published in | Process safety and environmental protection Vol. 141; pp. 135 - 139 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Rugby
Elsevier B.V
01.09.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0957-5820 1744-3598 |
DOI | 10.1016/j.psep.2020.05.024 |
Cover
Loading…
Abstract | •In-situ experimental analysis of pitting corrosion growth as a function of time.•Development of a Bayesian methodology for probabilistic modelling of pitting corrosion growth in steels.•Prediction of time to reach a critical pit size, based on actual damage observations of corrosion.•Presenting a Bayesian approach to estimating the uncertainty associated with corrosion growth in offshore environment.
High strength steels such as X80 steels have recently been used more frequently in production of offshore structures. However, they may still be subject to degradation processes such as corrosion considering the conditions in marine environment. Pitting corrosion is a destructive form of corrosion which reduces the material resistance and may result in failure accidents with severe financial, human life and environmental consequences. The process of pitting corrosion is inconsistent and largely stochastic being influenced by a number of parameters with a high level of uncertainty. This makes it very difficult to predict corrosion in terms of its initiation time and spatial behavior. Therefore, it is vital to investigate pitting corrosion phenomena in offshore structures using a probabilistic approach for the assessment of structural reliability and operational safety. In this study, an in-situ experiment has been conducted on X80 steel in an NaCl solution in a laboratory environment to observe the generation and growth of corrosion pits. A probabilistic model based on Hierarchical Bayesian Approach (HBA) is developed for predicting the pitting corrosion growth rate using experimental results. In order to model the process more realistically, the proposed methodology considers the degradation process to be consisting of the time needed for pit initiation and propagation. The results indicate that the proposed methodology is capable of predicting the time required to reach a specific pit size. The methodology developed in this study can be applied to estimate the remaining useful life of subsea structures. |
---|---|
AbstractList | •In-situ experimental analysis of pitting corrosion growth as a function of time.•Development of a Bayesian methodology for probabilistic modelling of pitting corrosion growth in steels.•Prediction of time to reach a critical pit size, based on actual damage observations of corrosion.•Presenting a Bayesian approach to estimating the uncertainty associated with corrosion growth in offshore environment.
High strength steels such as X80 steels have recently been used more frequently in production of offshore structures. However, they may still be subject to degradation processes such as corrosion considering the conditions in marine environment. Pitting corrosion is a destructive form of corrosion which reduces the material resistance and may result in failure accidents with severe financial, human life and environmental consequences. The process of pitting corrosion is inconsistent and largely stochastic being influenced by a number of parameters with a high level of uncertainty. This makes it very difficult to predict corrosion in terms of its initiation time and spatial behavior. Therefore, it is vital to investigate pitting corrosion phenomena in offshore structures using a probabilistic approach for the assessment of structural reliability and operational safety. In this study, an in-situ experiment has been conducted on X80 steel in an NaCl solution in a laboratory environment to observe the generation and growth of corrosion pits. A probabilistic model based on Hierarchical Bayesian Approach (HBA) is developed for predicting the pitting corrosion growth rate using experimental results. In order to model the process more realistically, the proposed methodology considers the degradation process to be consisting of the time needed for pit initiation and propagation. The results indicate that the proposed methodology is capable of predicting the time required to reach a specific pit size. The methodology developed in this study can be applied to estimate the remaining useful life of subsea structures. High strength steels such as X80 steels have recently been used more frequently in production of offshore structures. However, they may still be subject to degradation processes such as corrosion considering the conditions in marine environment. Pitting corrosion is a destructive form of corrosion which reduces the material resistance and may result in failure accidents with severe financial, human life and environmental consequences. The process of pitting corrosion is inconsistent and largely stochastic being influenced by a number of parameters with a high level of uncertainty. This makes it very difficult to predict corrosion in terms of its initiation time and spatial behavior. Therefore, it is vital to investigate pitting corrosion phenomena in offshore structures using a probabilistic approach for the assessment of structural reliability and operational safety. In this study, an in-situ experiment has been conducted on X80 steel in an NaCl solution in a laboratory environment to observe the generation and growth of corrosion pits. A probabilistic model based on Hierarchical Bayesian Approach (HBA) is developed for predicting the pitting corrosion growth rate using experimental results. In order to model the process more realistically, the proposed methodology considers the degradation process to be consisting of the time needed for pit initiation and propagation. The results indicate that the proposed methodology is capable of predicting the time required to reach a specific pit size. The methodology developed in this study can be applied to estimate the remaining useful life of subsea structures. |
Author | Arzaghi, Ehsan Chia, Bing H. Garaniya, Vikram Abaei, Mohammad M. Abbassi, Rouzbeh |
Author_xml | – sequence: 1 givenname: Ehsan surname: Arzaghi fullname: Arzaghi, Ehsan organization: Science and Engineering Faculty, Queensland University of Technology, Brisbane Australia – sequence: 2 givenname: Bing H. surname: Chia fullname: Chia, Bing H. organization: National Centre for Maritime Engineering and Hydrodynamics, Australian Maritime College (AMC), University of Tasmania, Launceston 7248, Australia – sequence: 3 givenname: Mohammad M. surname: Abaei fullname: Abaei, Mohammad M. organization: Department of Maritime, Transport and Technology, Delft University of Technology, Delft, Netherlands – sequence: 4 givenname: Rouzbeh surname: Abbassi fullname: Abbassi, Rouzbeh email: rouzbeh.Abbassi@mq.edu.au organization: School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, Australia – sequence: 5 givenname: Vikram surname: Garaniya fullname: Garaniya, Vikram organization: National Centre for Maritime Engineering and Hydrodynamics, Australian Maritime College (AMC), University of Tasmania, Launceston 7248, Australia |
BookMark | eNp9kE1LxDAQhoOs4O7qH_BU8Nw6SZM2BS-y-AULKih4C910qindpiZZQX-9KevJw8LADDPzzPC-CzIb7ICEnFPIKNDisstGj2PGgEEGIgPGj8iclpynuajkjMyhEmUqJIMTsvC-AwDKSjonz08mBDO8J9o6Z72xQ7K1Dfb91LNt8iYh8QGxT3bB9OYHm8QMcdD6D-swGTE42-Num4xmxAihPyXHbd17PPvLS_J6e_Oyuk_Xj3cPq-t1qnMmQ7opAXQtS8nbjYwxFbSUtOGoOQAyWbSiKmjBkWuxaXJRYFuUrawkx6IQ-ZJc7O-Ozn7u0AfV2Z0b4kvFuGCUcahk3JL7LR3VeYet0ibUIeoMrja9oqAmA1WnJgPVZKACoaKBEWX_0NGZbe2-D0NXewij9C-DTnltcNDYGIc6qMaaQ_gvqQWMPA |
CitedBy_id | crossref_primary_10_1088_2053_1591_ac61c1 crossref_primary_10_1016_j_corsci_2024_112334 crossref_primary_10_1007_s11665_024_09766_z crossref_primary_10_1016_j_jlp_2024_105449 crossref_primary_10_1108_ILT_02_2024_0044 crossref_primary_10_1016_j_oceaneng_2024_116796 crossref_primary_10_1016_j_oceaneng_2023_116112 crossref_primary_10_1016_j_ijpvp_2023_105003 crossref_primary_10_1016_j_psep_2021_09_047 crossref_primary_10_1016_j_psep_2021_11_024 crossref_primary_10_1016_j_psep_2021_01_008 crossref_primary_10_1007_s11663_024_03162_7 crossref_primary_10_1002_adem_202401663 crossref_primary_10_1016_j_jmst_2022_02_033 crossref_primary_10_1016_j_heliyon_2024_e34882 crossref_primary_10_1002_cjce_25355 crossref_primary_10_1016_j_bioelechem_2022_108279 crossref_primary_10_1016_j_psep_2020_11_026 crossref_primary_10_1016_j_jlp_2023_105132 crossref_primary_10_1016_j_matchemphys_2022_125725 crossref_primary_10_1016_j_psep_2021_03_030 crossref_primary_10_1016_j_psep_2022_07_023 crossref_primary_10_1016_j_psep_2021_12_006 crossref_primary_10_1080_1478422X_2023_2247883 crossref_primary_10_4028_p_brqaI1 crossref_primary_10_1016_j_surfin_2024_104060 crossref_primary_10_1016_j_psep_2021_08_003 crossref_primary_10_1016_j_conbuildmat_2020_121605 crossref_primary_10_1016_j_corsci_2023_111737 crossref_primary_10_1016_j_psep_2024_08_021 crossref_primary_10_1016_j_jelechem_2021_115026 crossref_primary_10_1016_j_psep_2022_02_037 crossref_primary_10_1016_j_psep_2025_107060 crossref_primary_10_1016_j_corsci_2024_112590 crossref_primary_10_1007_s11665_024_10068_7 crossref_primary_10_1515_corrrev_2021_0096 crossref_primary_10_1016_j_psep_2023_04_010 crossref_primary_10_1007_s11665_025_10933_z crossref_primary_10_1016_j_psep_2022_12_054 crossref_primary_10_1016_j_psep_2024_01_001 crossref_primary_10_4028_p_kyn9aT crossref_primary_10_1016_j_eti_2021_101603 crossref_primary_10_1088_2053_1591_acb1f4 crossref_primary_10_1007_s11665_022_06966_3 crossref_primary_10_1016_j_corcom_2021_09_006 crossref_primary_10_1016_j_electacta_2024_144867 crossref_primary_10_1080_08927014_2023_2209020 crossref_primary_10_1016_j_psep_2022_09_034 crossref_primary_10_2139_ssrn_4177026 crossref_primary_10_1016_j_ijpvp_2022_104841 crossref_primary_10_1016_j_psep_2022_05_058 crossref_primary_10_1016_j_psep_2024_05_014 crossref_primary_10_1061__ASCE_CF_1943_5509_0001750 crossref_primary_10_3390_ma17051142 crossref_primary_10_5006_3810 crossref_primary_10_1016_j_psep_2024_02_072 crossref_primary_10_1016_j_psep_2020_10_016 |
Cites_doi | 10.1016/j.psep.2019.01.005 10.1784/insi.2007.49.1.26 10.5006/1184 10.1016/j.oceaneng.2018.03.039 10.20964/2017.10.42 10.1016/j.jlp.2015.06.008 10.1016/j.psep.2012.07.006 10.1016/j.cscm.2018.e00193 10.1016/j.corsci.2016.05.037 10.1016/j.psep.2018.06.023 10.1016/j.ress.2008.07.002 10.1115/1.4026579 10.3390/ma6104345 10.1115/1.4036832 10.1007/s10800-009-9867-5 10.1111/risa.12736 10.1016/j.psep.2016.12.004 10.1016/j.oceaneng.2017.12.014 |
ContentType | Journal Article |
Copyright | 2020 Institution of Chemical Engineers Copyright Elsevier Science Ltd. Sep 2020 |
Copyright_xml | – notice: 2020 Institution of Chemical Engineers – notice: Copyright Elsevier Science Ltd. Sep 2020 |
DBID | AAYXX CITATION 7ST 7TB 7U7 8FD C1K FR3 KR7 SOI |
DOI | 10.1016/j.psep.2020.05.024 |
DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Toxicology Abstracts Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1744-3598 |
EndPage | 139 |
ExternalDocumentID | 10_1016_j_psep_2020_05_024 S0957582019315800 |
GroupedDBID | --K --M -QF .~1 0R~ 123 1B1 1~. 1~5 3EH 4.4 457 4G. 4P2 53G 5VS 7-5 71M 8P~ 8WZ A6W AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHIDL AHPOS AIAGR AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CAG COF CS3 DU5 EBS EDH EFJIC EFLBG EJD ENUVR EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA HVGLF HZ~ I-F IHE J1W JARJE KCYFY KOM M41 ML. MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SJN SPC SPCBC SSG SSJ SSR SSZ T5K UNMZH XFK ZE2 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADMLS ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST 7TB 7U7 8FD C1K EFKBS FR3 KR7 SOI |
ID | FETCH-LOGICAL-c328t-b700ca8784fb8fb8784f1781d4ec400e286f596164e4c5bd356ef67f8984e6653 |
IEDL.DBID | .~1 |
ISSN | 0957-5820 |
IngestDate | Wed Aug 13 06:32:25 EDT 2025 Tue Jul 01 01:44:18 EDT 2025 Thu Apr 24 23:04:00 EDT 2025 Fri Feb 23 02:47:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bayesian Inference Offshore Structures Deterioration Markov Chain Monte-Carlo Pitting Corrosion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-b700ca8784fb8fb8784f1781d4ec400e286f596164e4c5bd356ef67f8984e6653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2452124098 |
PQPubID | 2047550 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2452124098 crossref_citationtrail_10_1016_j_psep_2020_05_024 crossref_primary_10_1016_j_psep_2020_05_024 elsevier_sciencedirect_doi_10_1016_j_psep_2020_05_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | Rugby |
PublicationPlace_xml | – name: Rugby |
PublicationTitle | Process safety and environmental protection |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Abdel-Ghany, Saad-Eldeen, Leheta (bib0015) 2020; Vol. 2 Abbassi, Bhandari, Khan, Garaniya, Chai (bib0010) 2016; 48 Dai, Shi, Guo, Chen (bib0050) 2020; 166 Barber (bib0035) 2012 McCallum, Zhao, Workman, Iannuzzi, Kappes, Payer, Clemons, Chawla, Kreider, Mimoto (bib0090) 2014; 70 Nie, Wharton, Cranny, Harris, Wood, Stokes (bib0100) 2013; 6 Bhandari, Khan, Abbassi, Garaniya, Ojeda (bib0040) 2015; 37 HSR (bib0065) 2003 Zhao, Fu (bib0130) 2018; 9 Zhang, Qian, Wang (bib0125) 2012; 38 Al-Amin, Zhou, Zhang, Kariyawasam, Wang (bib0020) 2014; 136 Khakzad, Reniers (bib0080) 2016; 48 Wang, Cheng, Li (bib0105) 2016; 111 Abaei, Arzaghi, Abbassi, Garaniya, Javanmardi, Chai (bib0005) 2018; 159 Kelly, Smith (bib0075) 2009; 94 El-Gheriani, Khan, Chen, Abbassi (bib0055) 2017; 106 Wang, Ayako, Castaneda (bib0110) 2019; 123 Khan, Howard (bib0085) 2007; 49 Bhandari, Khan, Abbassi, Garaniya, Ojeda (bib0045) 2017; 139 Yu, Khan, Veitch (bib0120) 2017; 37 Xie, Dan, Chengxiang, Yue, Ming (bib0060) 2017; 12 Yang, Khan, Lye (bib0115) 2013; 91 Arzaghi, Abbassi, Garaniya, Binns, Chin, Khakzad, Reniers (bib0030) 2018; 150 Melchers (bib0095) 2009 Arzaghi, Abaei, Abbassi, Garaniya, Binns, Chin, Khan (bib0025) 2018; 118 Jafarzadeh, Shahrabi, A.Oskouei (bib0070) 2009; 39 El-Gheriani (10.1016/j.psep.2020.05.024_bib0055) 2017; 106 Xie (10.1016/j.psep.2020.05.024_bib0060) 2017; 12 McCallum (10.1016/j.psep.2020.05.024_bib0090) 2014; 70 Wang (10.1016/j.psep.2020.05.024_bib0110) 2019; 123 Bhandari (10.1016/j.psep.2020.05.024_bib0045) 2017; 139 Abdel-Ghany (10.1016/j.psep.2020.05.024_bib0015) 2020; Vol. 2 Yang (10.1016/j.psep.2020.05.024_bib0115) 2013; 91 Bhandari (10.1016/j.psep.2020.05.024_bib0040) 2015; 37 Abbassi (10.1016/j.psep.2020.05.024_bib0010) 2016; 48 Barber (10.1016/j.psep.2020.05.024_bib0035) 2012 Zhao (10.1016/j.psep.2020.05.024_bib0130) 2018; 9 Dai (10.1016/j.psep.2020.05.024_bib0050) 2020; 166 Zhang (10.1016/j.psep.2020.05.024_bib0125) 2012; 38 Kelly (10.1016/j.psep.2020.05.024_bib0075) 2009; 94 Al-Amin (10.1016/j.psep.2020.05.024_bib0020) 2014; 136 Arzaghi (10.1016/j.psep.2020.05.024_bib0030) 2018; 150 Nie (10.1016/j.psep.2020.05.024_bib0100) 2013; 6 Arzaghi (10.1016/j.psep.2020.05.024_bib0025) 2018; 118 Wang (10.1016/j.psep.2020.05.024_bib0105) 2016; 111 Yu (10.1016/j.psep.2020.05.024_bib0120) 2017; 37 Abaei (10.1016/j.psep.2020.05.024_bib0005) 2018; 159 Khakzad (10.1016/j.psep.2020.05.024_bib0080) 2016; 48 HSR (10.1016/j.psep.2020.05.024_bib0065) 2003 Melchers (10.1016/j.psep.2020.05.024_bib0095) 2009 Jafarzadeh (10.1016/j.psep.2020.05.024_bib0070) 2009; 39 Khan (10.1016/j.psep.2020.05.024_bib0085) 2007; 49 |
References_xml | – volume: 166 year: 2020 ident: bib0050 article-title: Pits Formation and Stress Corrosion Cracking Behavior of Q345R in Hydrofluoric Acid publication-title: Corrosion Science – start-page: 2002 year: 2003 ident: bib0065 publication-title: Offshore hydrocarbon release statistics and analysis – volume: 39 start-page: 1725 year: 2009 end-page: 1731 ident: bib0070 article-title: Novel approach using EIS to study flow accelerated pitting corrosion of AA5083-H321 aluminum–magnesium alloy in NaCl solution publication-title: Journal of Applied Electrochemistry – volume: 159 start-page: 47 year: 2018 end-page: 55 ident: bib0005 article-title: Dynamic reliability assessment of ship grounding using Bayesian Inference publication-title: Ocean Engineering – volume: 118 start-page: 307 year: 2018 end-page: 315 ident: bib0025 article-title: A hierarchical Bayesian approach to modelling fate and transport of oil released from subsea pipelines publication-title: Process Safety and Environmental Protection – volume: 91 start-page: 333 year: 2013 end-page: 342 ident: bib0115 article-title: Precursor-based hierarchical Bayesian approach for rare event frequency estimation: a case of oil spill accidents publication-title: Process Safety and Environmental Protection – volume: 9 year: 2018 ident: bib0130 article-title: The probability distribution of pitting for accelerated corrosion reinforcement publication-title: Case Studies in Construction Materials – volume: 111 start-page: 508 year: 2016 end-page: 517 ident: bib0105 article-title: Observation of the pitting corrosion and uniform corrosion for X80 steel in 3.5 wt.% NaCl solutions using in-situ, and 3-D measuring microscope publication-title: Corrosion Science – volume: 136 year: 2014 ident: bib0020 article-title: Hierarchical Bayesian Corrosion Growth Model Based on In-Line Inspection Data publication-title: ASME. J. Pressure Vessel Technol. – volume: 38 start-page: 1 year: 2012 end-page: 4 ident: bib0125 article-title: Development and application of high-grade pipeline steel at home and abroad publication-title: Petroleum Engineering and Construction – volume: 139 start-page: 051402 year: 2017 ident: bib0045 article-title: Pitting degradation modeling of ocean steel structures using Bayesian network publication-title: Journal of Offshore Mechanics and Arctic Engineering – volume: 70 start-page: 1114 year: 2014 end-page: 1127 ident: bib0090 article-title: Localized corrosion risk assessment using Markov analysis publication-title: Corrosion – year: 2009 ident: bib0095 article-title: Experiments, Science and Intuition in the Development of Models for the Corrosion of Steel Infrastructure – volume: 94 start-page: 628 year: 2009 end-page: 643 ident: bib0075 article-title: Bayesian inference in probabilistic risk assessment—The current state of the art publication-title: Reliability Engineering & System Safety – volume: 48 start-page: 235 year: 2016 end-page: 240 ident: bib0010 article-title: Developing a quantitative risk-based methodology for maintenance scheduling using Bayesian network publication-title: Chemical Engineering Transactions. – volume: 48 start-page: 223 year: 2016 end-page: 228 ident: bib0080 article-title: Application of Bayesian Network and Multi-criteria Decision Analysis to Risk-based Design of Chemical Plants publication-title: Chemical Engineering Transactions – volume: 6 start-page: 4345 year: 2013 end-page: 4360 ident: bib0100 article-title: Characterisation of Crevice and Pit Solution Chemistries Using Capillary Electrophoresis with Contactless Conductivity Detector publication-title: Materials (Basel) – volume: 150 start-page: 391 year: 2018 end-page: 396 ident: bib0030 article-title: Developing a dynamic model for pitting and corrosion-fatigue damage of subsea pipelines publication-title: Ocean Engineering – volume: 37 start-page: 39 year: 2015 end-page: 62 ident: bib0040 article-title: Modelling of pitting corrosion in marine and offshore steel structures – A technical review publication-title: Journal of Loss Prevention in the Process Industries – volume: 37 start-page: 1668 year: 2017 end-page: 1682 ident: bib0120 article-title: A flexible hierarchical Bayesian modelling technique for risk analysis of major accidents publication-title: Risk Analysis – volume: 12 start-page: 9565 year: 2017 end-page: 9574 ident: bib0060 article-title: Effect of HCO3− Concentration on the Corrosion Behaviour of X80 Pipeline Steel in Simulated Soil Solution publication-title: International Journal of Electrochemical Science – volume: 106 start-page: 52 year: 2017 end-page: 59 ident: bib0055 article-title: Major accident modelling using spare data publication-title: Process Safety and Environmental Protection – volume: Vol. 2 start-page: 801 year: 2020 end-page: 805 ident: bib0015 article-title: The Effect of Pitting Corrosion on the Strength Capacity of Steel Offshore Structures publication-title: ASME. International Conference on Offshore Mechanics and Arctic Engineering – volume: 123 start-page: 179 year: 2019 end-page: 189 ident: bib0110 article-title: A stochastic defect growth model for reliability assessment of corroded underground pipelines publication-title: Process Safety and Environmental Protection – volume: 49 start-page: 26 year: 2007 end-page: 36 ident: bib0085 article-title: Statistical approach to inspection planning and integrity assessment publication-title: Insight Non-Destr. Test. Cond. Monit. – year: 2012 ident: bib0035 article-title: Bayesian Reasoning and Machine Learning – volume: 123 start-page: 179 year: 2019 ident: 10.1016/j.psep.2020.05.024_bib0110 article-title: A stochastic defect growth model for reliability assessment of corroded underground pipelines publication-title: Process Safety and Environmental Protection doi: 10.1016/j.psep.2019.01.005 – volume: 49 start-page: 26 year: 2007 ident: 10.1016/j.psep.2020.05.024_bib0085 article-title: Statistical approach to inspection planning and integrity assessment publication-title: Insight Non-Destr. Test. Cond. Monit. doi: 10.1784/insi.2007.49.1.26 – volume: 70 start-page: 1114 issue: 11 year: 2014 ident: 10.1016/j.psep.2020.05.024_bib0090 article-title: Localized corrosion risk assessment using Markov analysis publication-title: Corrosion doi: 10.5006/1184 – volume: 159 start-page: 47 year: 2018 ident: 10.1016/j.psep.2020.05.024_bib0005 article-title: Dynamic reliability assessment of ship grounding using Bayesian Inference publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2018.03.039 – year: 2012 ident: 10.1016/j.psep.2020.05.024_bib0035 – volume: 48 start-page: 223 year: 2016 ident: 10.1016/j.psep.2020.05.024_bib0080 article-title: Application of Bayesian Network and Multi-criteria Decision Analysis to Risk-based Design of Chemical Plants publication-title: Chemical Engineering Transactions – volume: Vol. 2 start-page: 801 year: 2020 ident: 10.1016/j.psep.2020.05.024_bib0015 article-title: The Effect of Pitting Corrosion on the Strength Capacity of Steel Offshore Structures – volume: 12 start-page: 9565 year: 2017 ident: 10.1016/j.psep.2020.05.024_bib0060 article-title: Effect of HCO3− Concentration on the Corrosion Behaviour of X80 Pipeline Steel in Simulated Soil Solution publication-title: International Journal of Electrochemical Science doi: 10.20964/2017.10.42 – volume: 48 start-page: 235 year: 2016 ident: 10.1016/j.psep.2020.05.024_bib0010 article-title: Developing a quantitative risk-based methodology for maintenance scheduling using Bayesian network publication-title: Chemical Engineering Transactions. – volume: 37 start-page: 39 year: 2015 ident: 10.1016/j.psep.2020.05.024_bib0040 article-title: Modelling of pitting corrosion in marine and offshore steel structures – A technical review publication-title: Journal of Loss Prevention in the Process Industries doi: 10.1016/j.jlp.2015.06.008 – year: 2009 ident: 10.1016/j.psep.2020.05.024_bib0095 – volume: 91 start-page: 333 issue: 5 year: 2013 ident: 10.1016/j.psep.2020.05.024_bib0115 article-title: Precursor-based hierarchical Bayesian approach for rare event frequency estimation: a case of oil spill accidents publication-title: Process Safety and Environmental Protection doi: 10.1016/j.psep.2012.07.006 – volume: 9 year: 2018 ident: 10.1016/j.psep.2020.05.024_bib0130 article-title: The probability distribution of pitting for accelerated corrosion reinforcement publication-title: Case Studies in Construction Materials doi: 10.1016/j.cscm.2018.e00193 – start-page: 2002 year: 2003 ident: 10.1016/j.psep.2020.05.024_bib0065 – volume: 111 start-page: 508 year: 2016 ident: 10.1016/j.psep.2020.05.024_bib0105 article-title: Observation of the pitting corrosion and uniform corrosion for X80 steel in 3.5 wt.% NaCl solutions using in-situ, and 3-D measuring microscope publication-title: Corrosion Science doi: 10.1016/j.corsci.2016.05.037 – volume: 118 start-page: 307 year: 2018 ident: 10.1016/j.psep.2020.05.024_bib0025 article-title: A hierarchical Bayesian approach to modelling fate and transport of oil released from subsea pipelines publication-title: Process Safety and Environmental Protection doi: 10.1016/j.psep.2018.06.023 – volume: 94 start-page: 628 year: 2009 ident: 10.1016/j.psep.2020.05.024_bib0075 article-title: Bayesian inference in probabilistic risk assessment—The current state of the art publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2008.07.002 – volume: 166 issue: 2020 year: 2020 ident: 10.1016/j.psep.2020.05.024_bib0050 article-title: Pits Formation and Stress Corrosion Cracking Behavior of Q345R in Hydrofluoric Acid publication-title: Corrosion Science – volume: 38 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.psep.2020.05.024_bib0125 article-title: Development and application of high-grade pipeline steel at home and abroad publication-title: Petroleum Engineering and Construction – volume: 136 issue: 4 year: 2014 ident: 10.1016/j.psep.2020.05.024_bib0020 article-title: Hierarchical Bayesian Corrosion Growth Model Based on In-Line Inspection Data publication-title: ASME. J. Pressure Vessel Technol. doi: 10.1115/1.4026579 – volume: 6 start-page: 4345 year: 2013 ident: 10.1016/j.psep.2020.05.024_bib0100 article-title: Characterisation of Crevice and Pit Solution Chemistries Using Capillary Electrophoresis with Contactless Conductivity Detector publication-title: Materials (Basel) doi: 10.3390/ma6104345 – volume: 139 start-page: 051402 issue: 5 year: 2017 ident: 10.1016/j.psep.2020.05.024_bib0045 article-title: Pitting degradation modeling of ocean steel structures using Bayesian network publication-title: Journal of Offshore Mechanics and Arctic Engineering doi: 10.1115/1.4036832 – volume: 39 start-page: 1725 year: 2009 ident: 10.1016/j.psep.2020.05.024_bib0070 article-title: Novel approach using EIS to study flow accelerated pitting corrosion of AA5083-H321 aluminum–magnesium alloy in NaCl solution publication-title: Journal of Applied Electrochemistry doi: 10.1007/s10800-009-9867-5 – volume: 37 start-page: 1668 year: 2017 ident: 10.1016/j.psep.2020.05.024_bib0120 article-title: A flexible hierarchical Bayesian modelling technique for risk analysis of major accidents publication-title: Risk Analysis doi: 10.1111/risa.12736 – volume: 106 start-page: 52 year: 2017 ident: 10.1016/j.psep.2020.05.024_bib0055 article-title: Major accident modelling using spare data publication-title: Process Safety and Environmental Protection doi: 10.1016/j.psep.2016.12.004 – volume: 150 start-page: 391 year: 2018 ident: 10.1016/j.psep.2020.05.024_bib0030 article-title: Developing a dynamic model for pitting and corrosion-fatigue damage of subsea pipelines publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2017.12.014 |
SSID | ssj0001271 |
Score | 2.4657464 |
Snippet | •In-situ experimental analysis of pitting corrosion growth as a function of time.•Development of a Bayesian methodology for probabilistic modelling of pitting... High strength steels such as X80 steels have recently been used more frequently in production of offshore structures. However, they may still be subject to... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 135 |
SubjectTerms | Bayesian analysis Bayesian Inference Corrosion Corrosion environments Corrosion rate Corrosion resistance Degradation Deterioration Growth rate High strength low alloy steels Marine environment Markov Chain Monte-Carlo Methodology Offshore Offshore engineering Offshore Structures Parameter uncertainty Petroleum pipelines Pipelines Pitting Corrosion Probabilistic models Probability theory Reliability analysis Reliability engineering Sodium chloride Steel Structural reliability |
Title | Pitting corrosion modelling of X80 steel utilized in offshore petroleum pipelines |
URI | https://dx.doi.org/10.1016/j.psep.2020.05.024 https://www.proquest.com/docview/2452124098 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JSuRAtBC96EEcF3TGkTp4k9jZajs2TUvPuOAKfSsqSRVG2u7QaS8e_HbfSyrqDOhBCGR7lYS3P_IWQg6Ny4zLTQRhiUuClOUqUEokQWEyJY3hmcqxUPj8go_u0r9jNl4ig64WBtMqve5vdXqjrf2VnsdmryrL3g04B-DsggFTScTA78EK9lRgWt_xy3uaRxQ3QRcCBwjtC2faHK-qttizMg6b7p1x-plx-k9NN7bnZIOse6eR9tvv-kGW7HSTrH1oJbhJdobvFWsA6kW23iJXl2WT2kwhzISXAhloM_0Gy9DpzNGxDClQ2k4osOCkfLYFLadww9X3s7ml4FRjAuLTI63KCmvXbb1N7k6Gt4NR4OcoBHkSy0WQiTDMjRQydZmEDQ8iAY5qanMQYRtL7pjiEDjZNGdZkTBuHRdOKplazlmyQ5ans6ndJVSyQnEjIKhshnQYaa1IIuBGkRQZyPMeiToE6tw3GcdZFxPdZZM9aES6RqTrkGlA-h45eltTtS02voRmHV30P4yiwQZ8uW6_I6L2Ylpr_O0MDk6o5M9vPvYXWcWzNutsnywv5k_2N7gpi-yg4cMDstIfXJ9d4v7P6ejiFU_S6VE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH7oeFAP4oq7OXiTMt2SJkcZRsZtUFSYW0jbBCvjTLHjxV_vS5u6gR6EHkqbtOWt36NvAThWJlUmUwGGJSbyYpoJT4gk8nKVCq4US0VmC4Wvh2zwEF-M6GgOem0tjE2rdLa_sem1tXZXuo6a3bIouncIDhDsogMTUUAR98zDgu1OFXdg4fT8cjD8MMhBWMdddr1nN7jamSbNq6y0bVsZ-nUDzzD-zT_9sNS1-zlbhRWHG8lp82lrMKcn67D8pZvgOmz1P4vWcKnT2moDbm-KOruZYKSJL0VOkHoAjq1EJ1NDRtwnyGw9JiiF4-JN56SY4A1TPU5fNEFcbXMQX59JWZS2fF1Xm_Bw1r_vDTw3SsHLopDPvDTx_UzxhMcm5XjYkyBBrBrrDLVYh5wZKhjGTjrOaJpHlGnDEsMFjzVjNNqCzmQ60dtAOM0FUwnGlfWcDsW1TqIABTKJ8hRVegeCloAyc33G7biLsWwTyp6kJbq0RJc-lUj0HTj52FM2XTb-XE1bvshvsiLRDfy5b79lonSaWkn75xkxji_47j8fewSLg_vrK3l1PrzcgyV7p0lC24fO7OVVHyBqmaWHTirfAQSt6m0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pitting+corrosion+modelling+of+X80+steel+utilized+in+offshore+petroleum+pipelines&rft.jtitle=Process+safety+and+environmental+protection&rft.au=Arzaghi%2C+Ehsan&rft.au=Chia%2C+Bing+H.&rft.au=Abaei%2C+Mohammad+M.&rft.au=Abbassi%2C+Rouzbeh&rft.date=2020-09-01&rft.issn=0957-5820&rft.volume=141&rft.spage=135&rft.epage=139&rft_id=info:doi/10.1016%2Fj.psep.2020.05.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_psep_2020_05_024 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-5820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-5820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-5820&client=summon |