Cross-subject EEG emotion classification based on few-label adversarial domain adaption

Emotion classification signal based on the electroencephalogram (EEG) is an important part of big data associated with health. One of the main challenges in this regard is the varying patterns of EEG indifferent subjects. Domain adaptation is an effective method to reduce the data difference between...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 185; p. 115581
Main Authors Wang, Yingdong, Liu, Jiatong, Ruan, Qunsheng, Wang, Shuocheng, Wang, Chen
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.12.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emotion classification signal based on the electroencephalogram (EEG) is an important part of big data associated with health. One of the main challenges in this regard is the varying patterns of EEG indifferent subjects. Domain adaptation is an effective method to reduce the data difference between the source domain and the target domain. However, it is an enormous challenge to make a discriminator-based domain adaptation with a small target data and transform the target domain to the source domain. In the present study, a novel method called “few-label adversarial domain adaption” (FLADA) is proposed for cross-subject emotion classification tasks with small EEG data. The proposed method involves three steps: (a) Selecting subjects of the close source domain forming an adapted list. Few labeled target data are tested based on each emotion model of the source subject to get the subject list of the source domain. (b)Training three models based on each selected subject and the target subject. Three loss functions and six groups’ dataset are designed to get a domain adaption model for each selected source subject. (c) Distilling all classifiers for classifying the target emotion. In general, the main purpose of the proposed method, which originates from the Meta-learning, is to find a feature representation that is broadly suitable for the target subject and source subject with limited labels. The proposed method can be applied to all deep learning oriented models. In order to evaluate the performance of the proposed method, extensive experiments are carried out on SEED and DEAP datasets, which are public datasets. It is found that with a small amount of target data, the proposed FLADA model outperforms the state-of-art methods in terms of accuracy and AUC-ROC. All codes generated in this article are available at github: https://github.com/heibaipei/FLADA. [Display omitted] •Groups forming between source and target data tackles the small data adaption.•A shared feature extractor is proposed between the target model and the source model.•Multi-source domain adaption obtains the best results with a proper number of source.•Six groups with six labels maintains the high accuracy.
AbstractList Emotion classification signal based on the electroencephalogram (EEG) is an important part of big data associated with health. One of the main challenges in this regard is the varying patterns of EEG indifferent subjects. Domain adaptation is an effective method to reduce the data difference between the source domain and the target domain. However, it is an enormous challenge to make a discriminator-based domain adaptation with a small target data and transform the target domain to the source domain. In the present study, a novel method called “few-label adversarial domain adaption” (FLADA) is proposed for cross-subject emotion classification tasks with small EEG data. The proposed method involves three steps: (a) Selecting subjects of the close source domain forming an adapted list. Few labeled target data are tested based on each emotion model of the source subject to get the subject list of the source domain. (b)Training three models based on each selected subject and the target subject. Three loss functions and six groups’ dataset are designed to get a domain adaption model for each selected source subject. (c) Distilling all classifiers for classifying the target emotion. In general, the main purpose of the proposed method, which originates from the Meta-learning, is to find a feature representation that is broadly suitable for the target subject and source subject with limited labels. The proposed method can be applied to all deep learning oriented models. In order to evaluate the performance of the proposed method, extensive experiments are carried out on SEED and DEAP datasets, which are public datasets. It is found that with a small amount of target data, the proposed FLADA model outperforms the state-of-art methods in terms of accuracy and AUC-ROC. All codes generated in this article are available at github: https://github.com/heibaipei/FLADA. [Display omitted] •Groups forming between source and target data tackles the small data adaption.•A shared feature extractor is proposed between the target model and the source model.•Multi-source domain adaption obtains the best results with a proper number of source.•Six groups with six labels maintains the high accuracy.
Emotion classification signal based on the electroencephalogram (EEG) is an important part of big data associated with health. One of the main challenges in this regard is the varying patterns of EEG indifferent subjects. Domain adaptation is an effective method to reduce the data difference between the source domain and the target domain. However, it is an enormous challenge to make a discriminator-based domain adaptation with a small target data and transform the target domain to the source domain. In the present study, a novel method called "few-label adversarial domain adaption" (FLADA) is proposed for cross-subject emotion classification tasks with small EEG data. The proposed method involves three steps: (a) Selecting subjects of the close source domain forming an adapted list. Few labeled target data are tested based on each emotion model of the source subject to get the subject list of the source domain. (b)Training three models based on each selected subject and the target subject. Three loss functions and six groups' dataset are designed to get a domain adaption model for each selected source subject. (c) Distilling all classifiers for classifying the target emotion. In general, the main purpose of the proposed method, which originates from the Meta-learning, is to find a feature representation that is broadly suitable for the target subject and source subject with limited labels. The proposed method can be applied to all deep learning oriented models. In order to evaluate the performance of the proposed method, extensive experiments are carried out on SEED and DEAP datasets, which are public datasets. It is found that with a small amount of target data, the proposed FLADA model outperforms the state-of-art methods in terms of accuracy and AUC-ROC. All codes generated in this article are available at github: https://github.com/heibaipei/FLADA.
ArticleNumber 115581
Author Liu, Jiatong
Ruan, Qunsheng
Wang, Chen
Wang, Yingdong
Wang, Shuocheng
Author_xml – sequence: 1
  givenname: Yingdong
  orcidid: 0000-0001-5510-3160
  surname: Wang
  fullname: Wang, Yingdong
  email: wangyingdong@stu.xmu.edu.cn
  organization: School of Informatics, Xiamen University, No. 422, Siming South Road, Xiamen, Fujian, China
– sequence: 2
  givenname: Jiatong
  surname: Liu
  fullname: Liu, Jiatong
  email: liujiatong@stu.xmu.edu.cn
  organization: School of Informatics, Xiamen University, No. 422, Siming South Road, Xiamen, Fujian, China
– sequence: 3
  givenname: Qunsheng
  surname: Ruan
  fullname: Ruan, Qunsheng
  email: 24320170155333@stu.xmu.edu.cn
  organization: School of Informatics, Xiamen University, No. 422, Siming South Road, Xiamen, Fujian, China
– sequence: 4
  givenname: Shuocheng
  surname: Wang
  fullname: Wang, Shuocheng
  email: scwang@stu.xmu.edu.cn
  organization: School of Informatics, Xiamen University, No. 422, Siming South Road, Xiamen, Fujian, China
– sequence: 5
  givenname: Chen
  orcidid: 0000-0002-1922-1378
  surname: Wang
  fullname: Wang, Chen
  email: 24320182203277@stu.xmu.edu.cn
  organization: School of Informatics, Xiamen University, No. 422, Siming South Road, Xiamen, Fujian, China
BookMark eNp9kEFLwzAUx4NMcJt-AU8Fz61J2qQJeJExpzDwongMafoCKV07k27Db2-6evKwU14e_997vN8Czbq-A4TuCc4IJvyxySCcdEYxJRkhjAlyheZElHnKS5nP0BxLVqYFKYsbtAihwZiUGJdz9LXyfQhpOFQNmCFZrzcJ7PrB9V1iWh2Cs87o87fSAeokFhZOaasraBNdH8EH7Z1uk7rfadfFlt6P8Vt0bXUb4O7vXaLPl_XH6jXdvm_eVs_b1ORUDGmVY14xzrU0lWAMFxxzTUprCbVQ69pyy40orKmkiU2wXFJpMDNAjKkLmi_RwzR37_vvA4RBNf3Bd3GlokwUrJRSyJiiU8qM13qwau_dTvsfRbAaBapGjQLVKFBNAiMk_kHGDWcXg9euvYw-TSjE048OvArGQWegdj5qVnXvLuG_POiPQQ
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3540436
crossref_primary_10_1016_j_eswa_2024_126028
crossref_primary_10_1155_2024_6091523
crossref_primary_10_1016_j_ipm_2022_103097
crossref_primary_10_3390_brainsci14040364
crossref_primary_10_1016_j_bspc_2021_103361
crossref_primary_10_1145_3524499
crossref_primary_10_1109_ACCESS_2023_3276244
crossref_primary_10_1109_JPROC_2023_3277471
crossref_primary_10_1109_TCSS_2024_3406988
crossref_primary_10_1016_j_jneumeth_2024_110276
crossref_primary_10_1016_j_knosys_2025_113238
crossref_primary_10_3389_fnhum_2023_1280241
crossref_primary_10_3390_app14020702
crossref_primary_10_1007_s10489_022_04414_2
crossref_primary_10_1016_j_eswa_2023_122127
crossref_primary_10_7717_peerj_cs_2065
crossref_primary_10_1016_j_eswa_2024_123550
crossref_primary_10_1016_j_eswa_2024_123770
crossref_primary_10_1016_j_bspc_2024_106044
crossref_primary_10_1063_5_0133092
crossref_primary_10_1016_j_knosys_2024_112669
crossref_primary_10_3389_fphys_2023_1196919
crossref_primary_10_1109_JPROC_2023_3309299
crossref_primary_10_1016_j_eswa_2023_122777
crossref_primary_10_1016_j_procs_2023_10_113
crossref_primary_10_1145_3666002
crossref_primary_10_1016_j_heliyon_2024_e31485
crossref_primary_10_3389_fnhum_2024_1471634
crossref_primary_10_3389_fpsyg_2021_809459
Cites_doi 10.1049/iet-cta.2020.0557
10.1109/79.911197
10.1023/A:1007979827043
10.1109/TCDS.2019.2949306
10.1109/TBME.2018.2889705
10.1214/13-AOS1140
10.1007/s11858-015-0754-8
10.1109/FG.2011.5771357
10.1007/s10803-009-0700-0
10.1109/TBME.2017.2742541
10.1007/s11071-021-06208-6
10.1007/s12193-013-0123-2
10.1109/TCDS.2018.2826840
10.1016/j.eswa.2020.113768
10.1109/T-AFFC.2011.15
10.1109/TCYB.2021.3108884
10.1109/TAFFC.2017.2712143
10.1002/rnc.5131
10.1214/aoms/1177729694
10.1016/j.neucom.2020.08.063
10.1609/aaai.v34i03.5656
10.3390/app7121239
10.1109/TAFFC.2017.2714671
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Dec 15, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 15, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.115581
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_115581
S0957417421009830
GrantInformation_xml – fundername: Natural Science Foundation of Fujian Province of China
  grantid: 2019J01846; 2018J01555; 2017J01773
  funderid: http://dx.doi.org/10.13039/501100003392
– fundername: Key Project of National Key RD Project
  grantid: 2017YFC1703303
  funderid: http://dx.doi.org/10.13039/501100012166
– fundername: Science and Technology Guiding Project of Fujian Province, China
  grantid: 2019Y0046
– fundername: External Cooperation Project of Fujian Province, China
  grantid: 2019I0001
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-b306b566a9cb85504606a17ff12fedadf6f6c84fcb9cff1ef6929c05ce1ccd423
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Jul 25 02:49:21 EDT 2025
Thu Apr 24 22:49:22 EDT 2025
Tue Jul 01 04:05:54 EDT 2025
Fri Feb 23 02:44:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electroencephalogram (EEG)
Cross-subject
Emotion classification
Few label adversarial domain adaption
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-b306b566a9cb85504606a17ff12fedadf6f6c84fcb9cff1ef6929c05ce1ccd423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1922-1378
0000-0001-5510-3160
PQID 2584579989
PQPubID 2045477
ParticipantIDs proquest_journals_2584579989
crossref_primary_10_1016_j_eswa_2021_115581
crossref_citationtrail_10_1016_j_eswa_2021_115581
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115581
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Koch, Zemel, Salakhutdinov (b19) 2015
Fazli, Grozea, Danoczy, Blankertz, Popescu, Muller (b11) 2009
Tan, Sun, Zhang (b42) 2018
Finn, Abbeel, Levine (b12) 2017
Spuler, Walter, Rosenstiel, Moller, Klein (b40) 2016; 48
Joshi, Goecke, Alghowinem, Dhall, Wagner, Epps, Parker, Breakspear (b18) 2013; 7
Tripathi, Acharya, Sharma, Mittal, Bhattacharya (b44) 2017
Cowie, Douglascowie, Tsapatsoulis, Votsis, Kollias, Fellenz, Taylor (b8) 2001; 18
Duan, Chauhan, Shaikh, Srihari (b9) 2020
Tao, Li, Chen, Stojanovic, Yang (b43) 2020; 14
Stojanovic, He, Zhang (b41) 2020; 30
Zheng, Lu (b50) 2016
Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (b20) 2012; 3
Cheng, He, Stojanovic, Luan, Liu (b7) 2021
Chen, Zhang, Stojanovic, Zhang, Zhang (b5) 2020; 417
Rodrigues, Jutten, Congedo (b34) 2019; 66
Gretton, Borgwardt, Rasch, Schölkopf, Smola (b15) 2006
Gunes, H., Schuller, B., Pantic, M., & Cowie, R. (2011). Emotion representation, analysis and synthesis in continuous space: A survey. In
Radford, Metz, Chintala (b33) 2015
Zanini, Congedo, Jutten, Said, Berthoumieu (b48) 2018; 65
Kuusikko, Haapsamo, Janssonverkasalo, Hurtig, Mattila, Ebeling, Jussila, Bolte, Moilanen (b22) 2009; 39
Li, Zheng, Wang, Zong, Cui (b27) 2019
Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (b13) 2016; 17
Alnafjan, Hosny, Alohali, Alwabil (b2) 2017; 7
Sejdinovic, Sriperumbudur, Gretton, Fukumizu (b36) 2013; 41
Yin, Liu, Chen, Zhao, Wang (b47) 2020; 162
Caselles, Kimmel, Sapiro (b4) 1995; 22
Li, Qiu, Shen, Liu, He (b26) 2019
Song, Zheng, Liu, Zong, Cui (b38) 2020
Motiian, Jones, Iranmanesh, Doretto (b32) 2017
Zheng, Zhu, Lu (b51) 2019; 10
Ang, Chin, Zhang, Guan (b3) 2008
Alarcao, Fonseca (b1) 2019; 10
Zhao, Wang, Zhang, Gu, Li, Song, Xu, Hu, Chai, Keutzer (b49) 2020
Wei, Xiaodi, Stojanovic (b45) 2021; 103
Duan, Zhu, Lu (b10) 2013
Yao, Doretto (b46) 2010
Haeusser, Frerix, Mordvintsev, Cremers (b17) 2017
Kullback, Leibler (b21) 1951; 22
Li, Zheng, Wang, Zong, Cui (b28) 2019
(pp. 827–834).
Li, Qiu, Du, Wang, He (b25) 2020; 12
Cheng, Chen, Li (b6) 2020
Laureanti, Bilucaglia, Zito, Circi, Fici, Rivetti, Valesi, Oldrini, Mainardi, Russo (b24) 2013
Song, Zheng, Song, Cui (b39) 2018; 1
Lin (b30) 2019
Shi, Lu (b37) 2010; 2010
Ma, Li, Luo, Lu (b31) 2019
Lan, Sourina, Wang, Scherer, Mullerputz (b23) 2019; 11
Goodfellow, Pougetabadie, Mirza, Xu, Wardefarley, Ozair, Courville, Bengio (b14) 2014
Li, Zheng, Zong, Cui, Zhang, Zhou (b29) 2018
Rozgic, Vitaladevuni, Prasad (b35) 2013
Lin (10.1016/j.eswa.2021.115581_b30) 2019
Zanini (10.1016/j.eswa.2021.115581_b48) 2018; 65
Laureanti (10.1016/j.eswa.2021.115581_b24) 2013
Kullback (10.1016/j.eswa.2021.115581_b21) 1951; 22
10.1016/j.eswa.2021.115581_b16
Wei (10.1016/j.eswa.2021.115581_b45) 2021; 103
Rodrigues (10.1016/j.eswa.2021.115581_b34) 2019; 66
Li (10.1016/j.eswa.2021.115581_b25) 2020; 12
Tripathi (10.1016/j.eswa.2021.115581_b44) 2017
Ang (10.1016/j.eswa.2021.115581_b3) 2008
Joshi (10.1016/j.eswa.2021.115581_b18) 2013; 7
Gretton (10.1016/j.eswa.2021.115581_b15) 2006
Li (10.1016/j.eswa.2021.115581_b27) 2019
Yin (10.1016/j.eswa.2021.115581_b47) 2020; 162
Chen (10.1016/j.eswa.2021.115581_b5) 2020; 417
Duan (10.1016/j.eswa.2021.115581_b9) 2020
Koelstra (10.1016/j.eswa.2021.115581_b20) 2012; 3
Kuusikko (10.1016/j.eswa.2021.115581_b22) 2009; 39
Alnafjan (10.1016/j.eswa.2021.115581_b2) 2017; 7
Song (10.1016/j.eswa.2021.115581_b38) 2020
Fazli (10.1016/j.eswa.2021.115581_b11) 2009
Cowie (10.1016/j.eswa.2021.115581_b8) 2001; 18
Zheng (10.1016/j.eswa.2021.115581_b50) 2016
Alarcao (10.1016/j.eswa.2021.115581_b1) 2019; 10
Goodfellow (10.1016/j.eswa.2021.115581_b14) 2014
Caselles (10.1016/j.eswa.2021.115581_b4) 1995; 22
Haeusser (10.1016/j.eswa.2021.115581_b17) 2017
Finn (10.1016/j.eswa.2021.115581_b12) 2017
Li (10.1016/j.eswa.2021.115581_b26) 2019
Motiian (10.1016/j.eswa.2021.115581_b32) 2017
Rozgic (10.1016/j.eswa.2021.115581_b35) 2013
Duan (10.1016/j.eswa.2021.115581_b10) 2013
Radford (10.1016/j.eswa.2021.115581_b33) 2015
Shi (10.1016/j.eswa.2021.115581_b37) 2010; 2010
Li (10.1016/j.eswa.2021.115581_b29) 2018
Cheng (10.1016/j.eswa.2021.115581_b7) 2021
Sejdinovic (10.1016/j.eswa.2021.115581_b36) 2013; 41
Ma (10.1016/j.eswa.2021.115581_b31) 2019
Ganin (10.1016/j.eswa.2021.115581_b13) 2016; 17
Stojanovic (10.1016/j.eswa.2021.115581_b41) 2020; 30
Zheng (10.1016/j.eswa.2021.115581_b51) 2019; 10
Song (10.1016/j.eswa.2021.115581_b39) 2018; 1
Tan (10.1016/j.eswa.2021.115581_b42) 2018
Tao (10.1016/j.eswa.2021.115581_b43) 2020; 14
Cheng (10.1016/j.eswa.2021.115581_b6) 2020
Spuler (10.1016/j.eswa.2021.115581_b40) 2016; 48
Yao (10.1016/j.eswa.2021.115581_b46) 2010
Koch (10.1016/j.eswa.2021.115581_b19) 2015
Li (10.1016/j.eswa.2021.115581_b28) 2019
Lan (10.1016/j.eswa.2021.115581_b23) 2019; 11
Zhao (10.1016/j.eswa.2021.115581_b49) 2020
References_xml – start-page: 2672
  year: 2014
  end-page: 2680
  ident: b14
  article-title: Generative adversarial nets
  publication-title: Neural Information Processing Systems
– start-page: 6670
  year: 2017
  end-page: 6680
  ident: b32
  article-title: Few-shot adversarial domain adaptation
  publication-title: NIPS
– volume: 48
  start-page: 267
  year: 2016
  end-page: 278
  ident: b40
  article-title: Eeg-based prediction of cognitive workload induced by arithmetic: a step towards online adaptation in numerical learning
  publication-title: Zdm
– start-page: 513
  year: 2009
  end-page: 521
  ident: b11
  article-title: Subject independent EEG-based BCI decoding
  publication-title: Neural Information Processing Systems
– start-page: 1
  year: 2019
  ident: b28
  article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition
  publication-title: IEEE Transactions on Affective Computing
– volume: 7
  start-page: 1239
  year: 2017
  ident: b2
  article-title: Review and classification of emotion recognition based on eeg brain-computer interface system research: A systematic review
  publication-title: Applied Sciences
– year: 2020
  ident: b38
  article-title: Instance-adaptive graph for EEG emotion recognition
  publication-title: AAAI
– volume: 2010
  start-page: 6587
  year: 2010
  end-page: 6590
  ident: b37
  article-title: Off-line and on-line vigilance estimation based on linear dynamical system and manifold learning
  publication-title: IEEE Engineering in Medicine and Biology Society
– year: 2020
  ident: b6
  article-title: Emotion recognition from multi-channel EEG via deep forest
  publication-title: IEEE Journal Biomed Health Inform
– volume: 11
  start-page: 85
  year: 2019
  end-page: 94
  ident: b23
  article-title: Domain adaptation techniques for EEG-based emotion recognition: A comparative study on two public datasets
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– volume: 66
  start-page: 2390
  year: 2019
  end-page: 2401
  ident: b34
  article-title: Riemannian procrustes analysis: Transfer learning for brain-computer interfaces
  publication-title: IEEE Transactions on Biomedical Engineering
– start-page: 1
  year: 2019
  end-page: 13
  ident: b26
  article-title: Multisource transfer learning for cross-subject EEG emotion recognition
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– start-page: 916
  year: 2018
  end-page: 920
  ident: b42
  article-title: Deep transfer learning for EEG-based brain computer interface
  publication-title: 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP)
– volume: 65
  start-page: 1107
  year: 2018
  end-page: 1116
  ident: b48
  article-title: Transfer learning: A Riemannian geometry framework with applications to brain-computer interfaces
  publication-title: IEEE Transactions on Biomedical Engineering
– start-page: 513
  year: 2006
  end-page: 520
  ident: b15
  article-title: A kernel method for the two-sample-problem
  publication-title: Advances in neural information processing systems 19, Proceedings of the twentieth annual conference on neural information processing systems, Vancouver, British Columbia, Canada, December 4-7, 2006
– volume: 30
  start-page: 6683
  year: 2020
  end-page: 6700
  ident: b41
  article-title: State and parameter joint estimation of linear stochastic systems in presence of faults and non-Gaussian noises
  publication-title: International Journal of Robust and Nonlinear Control
– start-page: 1855
  year: 2010
  end-page: 1862
  ident: b46
  article-title: Boosting for transfer learning with multiple sources
  publication-title: Computer Vision and Pattern Recognition
– start-page: 1
  year: 2018
  ident: b29
  article-title: A bi-hemisphere domain adversarial neural network model for EEG emotion recognition
  publication-title: IEEE Transactions on Affective Computing
– volume: 162
  year: 2020
  ident: b47
  article-title: Locally robust EEG feature selection for individual-independent emotion recognition
  publication-title: Expert Systems with Applications
– volume: 10
  start-page: 417
  year: 2019
  end-page: 429
  ident: b51
  article-title: Identifying stable patterns over time for emotion recognition from EEG
  publication-title: IEEE Transactions on Affective Computing
– volume: 39
  start-page: 938
  year: 2009
  end-page: 945
  ident: b22
  article-title: Emotion recognition in children and adolescents with autism spectrum disorders
  publication-title: Journal of Autism and Developmental Disorders
– start-page: 1
  year: 2019
  ident: b30
  article-title: Constructing a personalized cross-day EEG-based emotion-classification model using transfer learning
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 1
  start-page: 1
  year: 2018
  ident: b39
  article-title: Eeg emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Transactions on Affective Computing
– volume: 22
  start-page: 79
  year: 1951
  end-page: 86
  ident: b21
  article-title: On information and sufficiency
  publication-title: The Annals of Mathematical Statistics
– volume: 12
  start-page: 344
  year: 2020
  end-page: 353
  ident: b25
  article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– start-page: 1
  year: 2019
  ident: b27
  article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition
  publication-title: IEEE Transactions on Affective Computing
– volume: 417
  start-page: 322
  year: 2020
  end-page: 332
  ident: b5
  article-title: Event-based fuzzy control for T-S fuzzy networked systems with various data missing
  publication-title: Neurocomputing
– year: 2020
  ident: b49
  article-title: Multi-source distilling domain adaptation
  publication-title: AAAI
– volume: 7
  start-page: 217
  year: 2013
  end-page: 228
  ident: b18
  article-title: Multimodal assistive technologies for depression diagnosis and monitoring
  publication-title: Journal on Multimodal User Interfaces
– volume: 3
  start-page: 18
  year: 2012
  end-page: 31
  ident: b20
  article-title: Deap: A database for emotion analysis ;using physiological signals
  publication-title: IEEE Transactions on Affective Computing
– start-page: 1
  year: 2019
  end-page: 8
  ident: b31
  article-title: Depersonalized cross-subject vigilance estimation with adversarial domain generalization
  publication-title: International Joint Conference on Neural Network
– reference: Gunes, H., Schuller, B., Pantic, M., & Cowie, R. (2011). Emotion representation, analysis and synthesis in continuous space: A survey. In
– start-page: 1286
  year: 2013
  end-page: 1290
  ident: b35
  article-title: Robust EEG emotion classification using segment level decision fusion
  publication-title: 2013 IEEE international conference on acoustics, speech and signal processing
– reference: (pp. 827–834).
– start-page: 2732
  year: 2016
  end-page: 2738
  ident: b50
  article-title: Personalizing EEG-based affective models with transfer learning
  publication-title: International Joint Conference on Artificial Intelligence
– start-page: 2390
  year: 2008
  end-page: 2397
  ident: b3
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
  publication-title: International Joint Conference on Neural Network
– year: 2020
  ident: b9
  article-title: Ultra efficient transfer learning with meta update for cross subject EEG classification
– year: 2017
  ident: b12
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
– start-page: 2784
  year: 2017
  end-page: 2792
  ident: b17
  article-title: Associative domain adaptation
  publication-title: ICCV
– volume: 14
  start-page: 3344
  year: 2020
  end-page: 3350
  ident: b43
  article-title: Robust point-to-point iterative learning control with trial-varying initial conditions
  publication-title: IET Control Theory & Applications
– start-page: 1
  year: 2021
  end-page: 10
  ident: b7
  article-title: Fuzzy fault detection for Markov jump systems with partly accessible hidden information: An event-triggered approach
  publication-title: IEEE Transactions on Cybernetics
– start-page: 81
  year: 2013
  end-page: 84
  ident: b10
  article-title: Differential entropy feature for EEG-based emotion classification
  publication-title: 6th international IEEE/EMBS conference on neural engineering (NER)
– start-page: 255
  year: 2015
  end-page: 256
  ident: b19
  article-title: Siamese neural networks for one-shot image recognition
  publication-title: Neural-networks one-shot-learning
– volume: 18
  start-page: 32
  year: 2001
  end-page: 80
  ident: b8
  article-title: Emotion recognition in human-computer interaction
  publication-title: IEEE Signal Processing Magazine
– volume: 17
  start-page: 189
  year: 2016
  end-page: 209
  ident: b13
  article-title: Domain-adversarial training of neural networks
  publication-title: Journal of Machine Learning Research
– volume: 22
  start-page: 61
  year: 1995
  end-page: 79
  ident: b4
  article-title: Geodesic active contours
  publication-title: International Journal of Computer Vision
– volume: 41
  start-page: 2263
  year: 2013
  end-page: 2291
  ident: b36
  article-title: Equivalence of distance-based and rkhs-based statistics in hypothesis testing
  publication-title: The Annals of Statistics
– year: 2015
  ident: b33
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
– start-page: 81
  year: 2013
  end-page: 84
  ident: b24
  article-title: Emotion assessment using machine learning and low-cost wearable devices
  publication-title: 6th international IEEE/EMBS conference on neural engineering (NER)
– volume: 10
  start-page: 374
  year: 2019
  end-page: 393
  ident: b1
  article-title: Emotions recognition using EEG signals: A survey
  publication-title: IEEE Transactions on Affective Computing
– year: 2017
  ident: b44
  article-title: Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset
  publication-title: AAAI
– volume: 103
  start-page: 1733
  year: 2021
  end-page: 1755
  ident: b45
  article-title: Input-to-state stability of impulsive reaction–diffusion neural networks with infinite distributed delays
  publication-title: Nonlinear Dynamics
– year: 2020
  ident: 10.1016/j.eswa.2021.115581_b9
– volume: 14
  start-page: 3344
  issue: 19
  year: 2020
  ident: 10.1016/j.eswa.2021.115581_b43
  article-title: Robust point-to-point iterative learning control with trial-varying initial conditions
  publication-title: IET Control Theory & Applications
  doi: 10.1049/iet-cta.2020.0557
– year: 2020
  ident: 10.1016/j.eswa.2021.115581_b6
  article-title: Emotion recognition from multi-channel EEG via deep forest
  publication-title: IEEE Journal Biomed Health Inform
– start-page: 513
  year: 2006
  ident: 10.1016/j.eswa.2021.115581_b15
  article-title: A kernel method for the two-sample-problem
– year: 2015
  ident: 10.1016/j.eswa.2021.115581_b33
– volume: 18
  start-page: 32
  issue: 1
  year: 2001
  ident: 10.1016/j.eswa.2021.115581_b8
  article-title: Emotion recognition in human-computer interaction
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/79.911197
– volume: 22
  start-page: 61
  issue: 1
  year: 1995
  ident: 10.1016/j.eswa.2021.115581_b4
  article-title: Geodesic active contours
  publication-title: International Journal of Computer Vision
  doi: 10.1023/A:1007979827043
– volume: 12
  start-page: 344
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2021.115581_b25
  article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2019.2949306
– volume: 2010
  start-page: 6587
  year: 2010
  ident: 10.1016/j.eswa.2021.115581_b37
  article-title: Off-line and on-line vigilance estimation based on linear dynamical system and manifold learning
  publication-title: IEEE Engineering in Medicine and Biology Society
– volume: 66
  start-page: 2390
  issue: 8
  year: 2019
  ident: 10.1016/j.eswa.2021.115581_b34
  article-title: Riemannian procrustes analysis: Transfer learning for brain-computer interfaces
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2018.2889705
– volume: 41
  start-page: 2263
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2021.115581_b36
  article-title: Equivalence of distance-based and rkhs-based statistics in hypothesis testing
  publication-title: The Annals of Statistics
  doi: 10.1214/13-AOS1140
– start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.115581_b27
  article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition
  publication-title: IEEE Transactions on Affective Computing
– start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.115581_b30
  article-title: Constructing a personalized cross-day EEG-based emotion-classification model using transfer learning
  publication-title: IEEE Journal of Biomedical and Health Informatics
– start-page: 6670
  year: 2017
  ident: 10.1016/j.eswa.2021.115581_b32
  article-title: Few-shot adversarial domain adaptation
  publication-title: NIPS
– volume: 48
  start-page: 267
  issue: 3
  year: 2016
  ident: 10.1016/j.eswa.2021.115581_b40
  article-title: Eeg-based prediction of cognitive workload induced by arithmetic: a step towards online adaptation in numerical learning
  publication-title: Zdm
  doi: 10.1007/s11858-015-0754-8
– ident: 10.1016/j.eswa.2021.115581_b16
  doi: 10.1109/FG.2011.5771357
– start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.115581_b26
  article-title: Multisource transfer learning for cross-subject EEG emotion recognition
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– start-page: 2672
  year: 2014
  ident: 10.1016/j.eswa.2021.115581_b14
  article-title: Generative adversarial nets
  publication-title: Neural Information Processing Systems
– volume: 39
  start-page: 938
  issue: 6
  year: 2009
  ident: 10.1016/j.eswa.2021.115581_b22
  article-title: Emotion recognition in children and adolescents with autism spectrum disorders
  publication-title: Journal of Autism and Developmental Disorders
  doi: 10.1007/s10803-009-0700-0
– volume: 65
  start-page: 1107
  issue: 5
  year: 2018
  ident: 10.1016/j.eswa.2021.115581_b48
  article-title: Transfer learning: A Riemannian geometry framework with applications to brain-computer interfaces
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2017.2742541
– volume: 103
  start-page: 1733
  year: 2021
  ident: 10.1016/j.eswa.2021.115581_b45
  article-title: Input-to-state stability of impulsive reaction–diffusion neural networks with infinite distributed delays
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-021-06208-6
– start-page: 513
  year: 2009
  ident: 10.1016/j.eswa.2021.115581_b11
  article-title: Subject independent EEG-based BCI decoding
  publication-title: Neural Information Processing Systems
– volume: 7
  start-page: 217
  issue: 3
  year: 2013
  ident: 10.1016/j.eswa.2021.115581_b18
  article-title: Multimodal assistive technologies for depression diagnosis and monitoring
  publication-title: Journal on Multimodal User Interfaces
  doi: 10.1007/s12193-013-0123-2
– volume: 17
  start-page: 189
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2021.115581_b13
  article-title: Domain-adversarial training of neural networks
  publication-title: Journal of Machine Learning Research
– volume: 11
  start-page: 85
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.115581_b23
  article-title: Domain adaptation techniques for EEG-based emotion recognition: A comparative study on two public datasets
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2018.2826840
– start-page: 255
  year: 2015
  ident: 10.1016/j.eswa.2021.115581_b19
  article-title: Siamese neural networks for one-shot image recognition
– start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2021.115581_b29
  article-title: A bi-hemisphere domain adversarial neural network model for EEG emotion recognition
  publication-title: IEEE Transactions on Affective Computing
– start-page: 2732
  year: 2016
  ident: 10.1016/j.eswa.2021.115581_b50
  article-title: Personalizing EEG-based affective models with transfer learning
  publication-title: International Joint Conference on Artificial Intelligence
– start-page: 916
  year: 2018
  ident: 10.1016/j.eswa.2021.115581_b42
  article-title: Deep transfer learning for EEG-based brain computer interface
– start-page: 2390
  year: 2008
  ident: 10.1016/j.eswa.2021.115581_b3
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
  publication-title: International Joint Conference on Neural Network
– volume: 162
  year: 2020
  ident: 10.1016/j.eswa.2021.115581_b47
  article-title: Locally robust EEG feature selection for individual-independent emotion recognition
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113768
– year: 2017
  ident: 10.1016/j.eswa.2021.115581_b44
  article-title: Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset
– start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.115581_b28
  article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition
  publication-title: IEEE Transactions on Affective Computing
– start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.115581_b31
  article-title: Depersonalized cross-subject vigilance estimation with adversarial domain generalization
  publication-title: International Joint Conference on Neural Network
– start-page: 2784
  year: 2017
  ident: 10.1016/j.eswa.2021.115581_b17
  article-title: Associative domain adaptation
– start-page: 81
  year: 2013
  ident: 10.1016/j.eswa.2021.115581_b10
  article-title: Differential entropy feature for EEG-based emotion classification
– volume: 3
  start-page: 18
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2021.115581_b20
  article-title: Deap: A database for emotion analysis ;using physiological signals
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/T-AFFC.2011.15
– start-page: 1855
  year: 2010
  ident: 10.1016/j.eswa.2021.115581_b46
  article-title: Boosting for transfer learning with multiple sources
  publication-title: Computer Vision and Pattern Recognition
– start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2021.115581_b7
  article-title: Fuzzy fault detection for Markov jump systems with partly accessible hidden information: An event-triggered approach
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2021.3108884
– volume: 10
  start-page: 417
  issue: 3
  year: 2019
  ident: 10.1016/j.eswa.2021.115581_b51
  article-title: Identifying stable patterns over time for emotion recognition from EEG
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2017.2712143
– start-page: 81
  year: 2013
  ident: 10.1016/j.eswa.2021.115581_b24
  article-title: Emotion assessment using machine learning and low-cost wearable devices
– volume: 30
  start-page: 6683
  issue: 16
  year: 2020
  ident: 10.1016/j.eswa.2021.115581_b41
  article-title: State and parameter joint estimation of linear stochastic systems in presence of faults and non-Gaussian noises
  publication-title: International Journal of Robust and Nonlinear Control
  doi: 10.1002/rnc.5131
– year: 2017
  ident: 10.1016/j.eswa.2021.115581_b12
– year: 2020
  ident: 10.1016/j.eswa.2021.115581_b49
  article-title: Multi-source distilling domain adaptation
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  ident: 10.1016/j.eswa.2021.115581_b21
  article-title: On information and sufficiency
  publication-title: The Annals of Mathematical Statistics
  doi: 10.1214/aoms/1177729694
– volume: 1
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2021.115581_b39
  article-title: Eeg emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Transactions on Affective Computing
– start-page: 1286
  year: 2013
  ident: 10.1016/j.eswa.2021.115581_b35
  article-title: Robust EEG emotion classification using segment level decision fusion
– volume: 417
  start-page: 322
  year: 2020
  ident: 10.1016/j.eswa.2021.115581_b5
  article-title: Event-based fuzzy control for T-S fuzzy networked systems with various data missing
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.08.063
– year: 2020
  ident: 10.1016/j.eswa.2021.115581_b38
  article-title: Instance-adaptive graph for EEG emotion recognition
  publication-title: AAAI
  doi: 10.1609/aaai.v34i03.5656
– volume: 7
  start-page: 1239
  issue: 12
  year: 2017
  ident: 10.1016/j.eswa.2021.115581_b2
  article-title: Review and classification of emotion recognition based on eeg brain-computer interface system research: A systematic review
  publication-title: Applied Sciences
  doi: 10.3390/app7121239
– volume: 10
  start-page: 374
  issue: 3
  year: 2019
  ident: 10.1016/j.eswa.2021.115581_b1
  article-title: Emotions recognition using EEG signals: A survey
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2017.2714671
SSID ssj0017007
Score 2.526348
Snippet Emotion classification signal based on the electroencephalogram (EEG) is an important part of big data associated with health. One of the main challenges in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115581
SubjectTerms Adaptation
Big Data
Cross-subject
Datasets
Deep learning
Distillation
Domains
Electroencephalogram (EEG)
Electroencephalography
Emotion classification
Emotions
Few label adversarial domain adaption
Indexing
Machine learning
Signal classification
Title Cross-subject EEG emotion classification based on few-label adversarial domain adaption
URI https://dx.doi.org/10.1016/j.eswa.2021.115581
https://www.proquest.com/docview/2584579989
Volume 185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA1FL178Fqu15OBNYps22eweS2mtil5U9Bay-YCKbsVWevO3O7ObLSjowdtuSMIymby8WSZvCDntWpkl3HcZF8ox4RXgYNoNTFhuUq-48WVW5c1tMnkQV0_yqUGG9V0YTKuM2F9heonWsaUTrdl5m047d0AO4DiE0I6jKGYf43YhFHr5-ecqzQPl51Slt6cY9o4XZ6ocLz9fovZQjwNySJny3w6nHzBdnj3jbbIZSSMdVN-1Qxq-2CVbdUEGGvfnHnkc4rRs_pHj3xU6Gl1QX5XpoRZZMqYFlStB8fByFB6CXzJwBP9CDZZmnht0SOpmr2ZaQJMpEWWfPIxH98MJi5UTmO330gXLIRDIgaiZzOaoWCYgTDFchcB7wTvjQhISm4pg88xCow8JsCTbldZzax0wrAOyVswKf0ioCCiZGPomAaKI3VQ_50niZeacg0mbhNcm0zbKimN1ixdd5489azSzRjPrysxNcrYa81aJavzZW9Yrob-5hgbU_3Ncq142HTfmXPeAcEkFMWZ29M9pj8kGvmFKC5ctsrZ4__AnQEwWebv0vDZZH1xeT26_AHYC4g0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQHNoLUNqKx9L60J6Q2Tix8zhwQMvSpbtwAQQ31_FD2oouiCxaceFP8QeZSZyVWqkckPYWOY4VzUy--RyNvyHkW2RkkXIXMS4yy4TLAAfzyDNhuM5dxrWrqypPz9LBpfh5La-XyHN7FgbLKgP2N5heo3UY6QZrdu_G4-45kANIh7C14yiKmUShsnLoHmewb6sOTo7Ayd_j-Lh_0Ruw0FqAmSTOp6wEplwCk9GFKVHSSwCP1zzznsfeWW196lOTC2_KwsCg8ynQCBNJ47gxVqDaAeD-igC4wLYJ-0_zuhLUu8sagb-M4euFkzpNUZmrZih2FHOAKilz_r9s-E9eqJPd8TpZDSyVHjaG-ECW3GSDrLUdIGgAhI_kqofLsuqhxN85tN__QV3TF4gapOVYh1S7nmK2tBQuvJsxiDx3QzX2gq40fgHU3v7R4wkM6RrCPpHLhdjzM1me3E7cJqHCo0ajT3QKzBSnZUnJ09TJwloLi24R3ppMmaBjju00blRbsPZboZkVmlk1Zt4ie_Nn7hoVj1dny9YT6q9YVJBmXn2u07pNBSSoVAwMT2awqS2237jsV_JucHE6UqOTs-EOeY93sJ6Gyw5Znt4_uF1gRdPySx2FlPxadNi_ADS0H9I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-subject+EEG+emotion+classification+based+on+few-label+adversarial+domain+adaption&rft.jtitle=Expert+systems+with+applications&rft.au=Wang%2C+Yingdong&rft.au=Liu%2C+Jiatong&rft.au=Ruan%2C+Qunsheng&rft.au=Wang%2C+Shuocheng&rft.date=2021-12-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=185&rft_id=info:doi/10.1016%2Fj.eswa.2021.115581&rft.externalDocID=S0957417421009830
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon