Cross-subject EEG emotion classification based on few-label adversarial domain adaption
Emotion classification signal based on the electroencephalogram (EEG) is an important part of big data associated with health. One of the main challenges in this regard is the varying patterns of EEG indifferent subjects. Domain adaptation is an effective method to reduce the data difference between...
Saved in:
Published in | Expert systems with applications Vol. 185; p. 115581 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
15.12.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Emotion classification signal based on the electroencephalogram (EEG) is an important part of big data associated with health. One of the main challenges in this regard is the varying patterns of EEG indifferent subjects. Domain adaptation is an effective method to reduce the data difference between the source domain and the target domain. However, it is an enormous challenge to make a discriminator-based domain adaptation with a small target data and transform the target domain to the source domain. In the present study, a novel method called “few-label adversarial domain adaption” (FLADA) is proposed for cross-subject emotion classification tasks with small EEG data. The proposed method involves three steps: (a) Selecting subjects of the close source domain forming an adapted list. Few labeled target data are tested based on each emotion model of the source subject to get the subject list of the source domain. (b)Training three models based on each selected subject and the target subject. Three loss functions and six groups’ dataset are designed to get a domain adaption model for each selected source subject. (c) Distilling all classifiers for classifying the target emotion. In general, the main purpose of the proposed method, which originates from the Meta-learning, is to find a feature representation that is broadly suitable for the target subject and source subject with limited labels. The proposed method can be applied to all deep learning oriented models. In order to evaluate the performance of the proposed method, extensive experiments are carried out on SEED and DEAP datasets, which are public datasets. It is found that with a small amount of target data, the proposed FLADA model outperforms the state-of-art methods in terms of accuracy and AUC-ROC. All codes generated in this article are available at github: https://github.com/heibaipei/FLADA.
[Display omitted]
•Groups forming between source and target data tackles the small data adaption.•A shared feature extractor is proposed between the target model and the source model.•Multi-source domain adaption obtains the best results with a proper number of source.•Six groups with six labels maintains the high accuracy. |
---|---|
AbstractList | Emotion classification signal based on the electroencephalogram (EEG) is an important part of big data associated with health. One of the main challenges in this regard is the varying patterns of EEG indifferent subjects. Domain adaptation is an effective method to reduce the data difference between the source domain and the target domain. However, it is an enormous challenge to make a discriminator-based domain adaptation with a small target data and transform the target domain to the source domain. In the present study, a novel method called “few-label adversarial domain adaption” (FLADA) is proposed for cross-subject emotion classification tasks with small EEG data. The proposed method involves three steps: (a) Selecting subjects of the close source domain forming an adapted list. Few labeled target data are tested based on each emotion model of the source subject to get the subject list of the source domain. (b)Training three models based on each selected subject and the target subject. Three loss functions and six groups’ dataset are designed to get a domain adaption model for each selected source subject. (c) Distilling all classifiers for classifying the target emotion. In general, the main purpose of the proposed method, which originates from the Meta-learning, is to find a feature representation that is broadly suitable for the target subject and source subject with limited labels. The proposed method can be applied to all deep learning oriented models. In order to evaluate the performance of the proposed method, extensive experiments are carried out on SEED and DEAP datasets, which are public datasets. It is found that with a small amount of target data, the proposed FLADA model outperforms the state-of-art methods in terms of accuracy and AUC-ROC. All codes generated in this article are available at github: https://github.com/heibaipei/FLADA.
[Display omitted]
•Groups forming between source and target data tackles the small data adaption.•A shared feature extractor is proposed between the target model and the source model.•Multi-source domain adaption obtains the best results with a proper number of source.•Six groups with six labels maintains the high accuracy. Emotion classification signal based on the electroencephalogram (EEG) is an important part of big data associated with health. One of the main challenges in this regard is the varying patterns of EEG indifferent subjects. Domain adaptation is an effective method to reduce the data difference between the source domain and the target domain. However, it is an enormous challenge to make a discriminator-based domain adaptation with a small target data and transform the target domain to the source domain. In the present study, a novel method called "few-label adversarial domain adaption" (FLADA) is proposed for cross-subject emotion classification tasks with small EEG data. The proposed method involves three steps: (a) Selecting subjects of the close source domain forming an adapted list. Few labeled target data are tested based on each emotion model of the source subject to get the subject list of the source domain. (b)Training three models based on each selected subject and the target subject. Three loss functions and six groups' dataset are designed to get a domain adaption model for each selected source subject. (c) Distilling all classifiers for classifying the target emotion. In general, the main purpose of the proposed method, which originates from the Meta-learning, is to find a feature representation that is broadly suitable for the target subject and source subject with limited labels. The proposed method can be applied to all deep learning oriented models. In order to evaluate the performance of the proposed method, extensive experiments are carried out on SEED and DEAP datasets, which are public datasets. It is found that with a small amount of target data, the proposed FLADA model outperforms the state-of-art methods in terms of accuracy and AUC-ROC. All codes generated in this article are available at github: https://github.com/heibaipei/FLADA. |
ArticleNumber | 115581 |
Author | Liu, Jiatong Ruan, Qunsheng Wang, Chen Wang, Yingdong Wang, Shuocheng |
Author_xml | – sequence: 1 givenname: Yingdong orcidid: 0000-0001-5510-3160 surname: Wang fullname: Wang, Yingdong email: wangyingdong@stu.xmu.edu.cn organization: School of Informatics, Xiamen University, No. 422, Siming South Road, Xiamen, Fujian, China – sequence: 2 givenname: Jiatong surname: Liu fullname: Liu, Jiatong email: liujiatong@stu.xmu.edu.cn organization: School of Informatics, Xiamen University, No. 422, Siming South Road, Xiamen, Fujian, China – sequence: 3 givenname: Qunsheng surname: Ruan fullname: Ruan, Qunsheng email: 24320170155333@stu.xmu.edu.cn organization: School of Informatics, Xiamen University, No. 422, Siming South Road, Xiamen, Fujian, China – sequence: 4 givenname: Shuocheng surname: Wang fullname: Wang, Shuocheng email: scwang@stu.xmu.edu.cn organization: School of Informatics, Xiamen University, No. 422, Siming South Road, Xiamen, Fujian, China – sequence: 5 givenname: Chen orcidid: 0000-0002-1922-1378 surname: Wang fullname: Wang, Chen email: 24320182203277@stu.xmu.edu.cn organization: School of Informatics, Xiamen University, No. 422, Siming South Road, Xiamen, Fujian, China |
BookMark | eNp9kEFLwzAUx4NMcJt-AU8Fz61J2qQJeJExpzDwongMafoCKV07k27Db2-6evKwU14e_997vN8Czbq-A4TuCc4IJvyxySCcdEYxJRkhjAlyheZElHnKS5nP0BxLVqYFKYsbtAihwZiUGJdz9LXyfQhpOFQNmCFZrzcJ7PrB9V1iWh2Cs87o87fSAeokFhZOaasraBNdH8EH7Z1uk7rfadfFlt6P8Vt0bXUb4O7vXaLPl_XH6jXdvm_eVs_b1ORUDGmVY14xzrU0lWAMFxxzTUprCbVQ69pyy40orKmkiU2wXFJpMDNAjKkLmi_RwzR37_vvA4RBNf3Bd3GlokwUrJRSyJiiU8qM13qwau_dTvsfRbAaBapGjQLVKFBNAiMk_kHGDWcXg9euvYw-TSjE048OvArGQWegdj5qVnXvLuG_POiPQQ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3540436 crossref_primary_10_1016_j_eswa_2024_126028 crossref_primary_10_1155_2024_6091523 crossref_primary_10_1016_j_ipm_2022_103097 crossref_primary_10_3390_brainsci14040364 crossref_primary_10_1016_j_bspc_2021_103361 crossref_primary_10_1145_3524499 crossref_primary_10_1109_ACCESS_2023_3276244 crossref_primary_10_1109_JPROC_2023_3277471 crossref_primary_10_1109_TCSS_2024_3406988 crossref_primary_10_1016_j_jneumeth_2024_110276 crossref_primary_10_1016_j_knosys_2025_113238 crossref_primary_10_3389_fnhum_2023_1280241 crossref_primary_10_3390_app14020702 crossref_primary_10_1007_s10489_022_04414_2 crossref_primary_10_1016_j_eswa_2023_122127 crossref_primary_10_7717_peerj_cs_2065 crossref_primary_10_1016_j_eswa_2024_123550 crossref_primary_10_1016_j_eswa_2024_123770 crossref_primary_10_1016_j_bspc_2024_106044 crossref_primary_10_1063_5_0133092 crossref_primary_10_1016_j_knosys_2024_112669 crossref_primary_10_3389_fphys_2023_1196919 crossref_primary_10_1109_JPROC_2023_3309299 crossref_primary_10_1016_j_eswa_2023_122777 crossref_primary_10_1016_j_procs_2023_10_113 crossref_primary_10_1145_3666002 crossref_primary_10_1016_j_heliyon_2024_e31485 crossref_primary_10_3389_fnhum_2024_1471634 crossref_primary_10_3389_fpsyg_2021_809459 |
Cites_doi | 10.1049/iet-cta.2020.0557 10.1109/79.911197 10.1023/A:1007979827043 10.1109/TCDS.2019.2949306 10.1109/TBME.2018.2889705 10.1214/13-AOS1140 10.1007/s11858-015-0754-8 10.1109/FG.2011.5771357 10.1007/s10803-009-0700-0 10.1109/TBME.2017.2742541 10.1007/s11071-021-06208-6 10.1007/s12193-013-0123-2 10.1109/TCDS.2018.2826840 10.1016/j.eswa.2020.113768 10.1109/T-AFFC.2011.15 10.1109/TCYB.2021.3108884 10.1109/TAFFC.2017.2712143 10.1002/rnc.5131 10.1214/aoms/1177729694 10.1016/j.neucom.2020.08.063 10.1609/aaai.v34i03.5656 10.3390/app7121239 10.1109/TAFFC.2017.2714671 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Dec 15, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Dec 15, 2021 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2021.115581 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2021_115581 S0957417421009830 |
GrantInformation_xml | – fundername: Natural Science Foundation of Fujian Province of China grantid: 2019J01846; 2018J01555; 2017J01773 funderid: http://dx.doi.org/10.13039/501100003392 – fundername: Key Project of National Key RD Project grantid: 2017YFC1703303 funderid: http://dx.doi.org/10.13039/501100012166 – fundername: Science and Technology Guiding Project of Fujian Province, China grantid: 2019Y0046 – fundername: External Cooperation Project of Fujian Province, China grantid: 2019I0001 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ XPP ZMT 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c328t-b306b566a9cb85504606a17ff12fedadf6f6c84fcb9cff1ef6929c05ce1ccd423 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Fri Jul 25 02:49:21 EDT 2025 Thu Apr 24 22:49:22 EDT 2025 Tue Jul 01 04:05:54 EDT 2025 Fri Feb 23 02:44:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electroencephalogram (EEG) Cross-subject Emotion classification Few label adversarial domain adaption |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-b306b566a9cb85504606a17ff12fedadf6f6c84fcb9cff1ef6929c05ce1ccd423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1922-1378 0000-0001-5510-3160 |
PQID | 2584579989 |
PQPubID | 2045477 |
ParticipantIDs | proquest_journals_2584579989 crossref_primary_10_1016_j_eswa_2021_115581 crossref_citationtrail_10_1016_j_eswa_2021_115581 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115581 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-15 |
PublicationDateYYYYMMDD | 2021-12-15 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Expert systems with applications |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Koch, Zemel, Salakhutdinov (b19) 2015 Fazli, Grozea, Danoczy, Blankertz, Popescu, Muller (b11) 2009 Tan, Sun, Zhang (b42) 2018 Finn, Abbeel, Levine (b12) 2017 Spuler, Walter, Rosenstiel, Moller, Klein (b40) 2016; 48 Joshi, Goecke, Alghowinem, Dhall, Wagner, Epps, Parker, Breakspear (b18) 2013; 7 Tripathi, Acharya, Sharma, Mittal, Bhattacharya (b44) 2017 Cowie, Douglascowie, Tsapatsoulis, Votsis, Kollias, Fellenz, Taylor (b8) 2001; 18 Duan, Chauhan, Shaikh, Srihari (b9) 2020 Tao, Li, Chen, Stojanovic, Yang (b43) 2020; 14 Stojanovic, He, Zhang (b41) 2020; 30 Zheng, Lu (b50) 2016 Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (b20) 2012; 3 Cheng, He, Stojanovic, Luan, Liu (b7) 2021 Chen, Zhang, Stojanovic, Zhang, Zhang (b5) 2020; 417 Rodrigues, Jutten, Congedo (b34) 2019; 66 Gretton, Borgwardt, Rasch, Schölkopf, Smola (b15) 2006 Gunes, H., Schuller, B., Pantic, M., & Cowie, R. (2011). Emotion representation, analysis and synthesis in continuous space: A survey. In Radford, Metz, Chintala (b33) 2015 Zanini, Congedo, Jutten, Said, Berthoumieu (b48) 2018; 65 Kuusikko, Haapsamo, Janssonverkasalo, Hurtig, Mattila, Ebeling, Jussila, Bolte, Moilanen (b22) 2009; 39 Li, Zheng, Wang, Zong, Cui (b27) 2019 Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (b13) 2016; 17 Alnafjan, Hosny, Alohali, Alwabil (b2) 2017; 7 Sejdinovic, Sriperumbudur, Gretton, Fukumizu (b36) 2013; 41 Yin, Liu, Chen, Zhao, Wang (b47) 2020; 162 Caselles, Kimmel, Sapiro (b4) 1995; 22 Li, Qiu, Shen, Liu, He (b26) 2019 Song, Zheng, Liu, Zong, Cui (b38) 2020 Motiian, Jones, Iranmanesh, Doretto (b32) 2017 Zheng, Zhu, Lu (b51) 2019; 10 Ang, Chin, Zhang, Guan (b3) 2008 Alarcao, Fonseca (b1) 2019; 10 Zhao, Wang, Zhang, Gu, Li, Song, Xu, Hu, Chai, Keutzer (b49) 2020 Wei, Xiaodi, Stojanovic (b45) 2021; 103 Duan, Zhu, Lu (b10) 2013 Yao, Doretto (b46) 2010 Haeusser, Frerix, Mordvintsev, Cremers (b17) 2017 Kullback, Leibler (b21) 1951; 22 Li, Zheng, Wang, Zong, Cui (b28) 2019 (pp. 827–834). Li, Qiu, Du, Wang, He (b25) 2020; 12 Cheng, Chen, Li (b6) 2020 Laureanti, Bilucaglia, Zito, Circi, Fici, Rivetti, Valesi, Oldrini, Mainardi, Russo (b24) 2013 Song, Zheng, Song, Cui (b39) 2018; 1 Lin (b30) 2019 Shi, Lu (b37) 2010; 2010 Ma, Li, Luo, Lu (b31) 2019 Lan, Sourina, Wang, Scherer, Mullerputz (b23) 2019; 11 Goodfellow, Pougetabadie, Mirza, Xu, Wardefarley, Ozair, Courville, Bengio (b14) 2014 Li, Zheng, Zong, Cui, Zhang, Zhou (b29) 2018 Rozgic, Vitaladevuni, Prasad (b35) 2013 Lin (10.1016/j.eswa.2021.115581_b30) 2019 Zanini (10.1016/j.eswa.2021.115581_b48) 2018; 65 Laureanti (10.1016/j.eswa.2021.115581_b24) 2013 Kullback (10.1016/j.eswa.2021.115581_b21) 1951; 22 10.1016/j.eswa.2021.115581_b16 Wei (10.1016/j.eswa.2021.115581_b45) 2021; 103 Rodrigues (10.1016/j.eswa.2021.115581_b34) 2019; 66 Li (10.1016/j.eswa.2021.115581_b25) 2020; 12 Tripathi (10.1016/j.eswa.2021.115581_b44) 2017 Ang (10.1016/j.eswa.2021.115581_b3) 2008 Joshi (10.1016/j.eswa.2021.115581_b18) 2013; 7 Gretton (10.1016/j.eswa.2021.115581_b15) 2006 Li (10.1016/j.eswa.2021.115581_b27) 2019 Yin (10.1016/j.eswa.2021.115581_b47) 2020; 162 Chen (10.1016/j.eswa.2021.115581_b5) 2020; 417 Duan (10.1016/j.eswa.2021.115581_b9) 2020 Koelstra (10.1016/j.eswa.2021.115581_b20) 2012; 3 Kuusikko (10.1016/j.eswa.2021.115581_b22) 2009; 39 Alnafjan (10.1016/j.eswa.2021.115581_b2) 2017; 7 Song (10.1016/j.eswa.2021.115581_b38) 2020 Fazli (10.1016/j.eswa.2021.115581_b11) 2009 Cowie (10.1016/j.eswa.2021.115581_b8) 2001; 18 Zheng (10.1016/j.eswa.2021.115581_b50) 2016 Alarcao (10.1016/j.eswa.2021.115581_b1) 2019; 10 Goodfellow (10.1016/j.eswa.2021.115581_b14) 2014 Caselles (10.1016/j.eswa.2021.115581_b4) 1995; 22 Haeusser (10.1016/j.eswa.2021.115581_b17) 2017 Finn (10.1016/j.eswa.2021.115581_b12) 2017 Li (10.1016/j.eswa.2021.115581_b26) 2019 Motiian (10.1016/j.eswa.2021.115581_b32) 2017 Rozgic (10.1016/j.eswa.2021.115581_b35) 2013 Duan (10.1016/j.eswa.2021.115581_b10) 2013 Radford (10.1016/j.eswa.2021.115581_b33) 2015 Shi (10.1016/j.eswa.2021.115581_b37) 2010; 2010 Li (10.1016/j.eswa.2021.115581_b29) 2018 Cheng (10.1016/j.eswa.2021.115581_b7) 2021 Sejdinovic (10.1016/j.eswa.2021.115581_b36) 2013; 41 Ma (10.1016/j.eswa.2021.115581_b31) 2019 Ganin (10.1016/j.eswa.2021.115581_b13) 2016; 17 Stojanovic (10.1016/j.eswa.2021.115581_b41) 2020; 30 Zheng (10.1016/j.eswa.2021.115581_b51) 2019; 10 Song (10.1016/j.eswa.2021.115581_b39) 2018; 1 Tan (10.1016/j.eswa.2021.115581_b42) 2018 Tao (10.1016/j.eswa.2021.115581_b43) 2020; 14 Cheng (10.1016/j.eswa.2021.115581_b6) 2020 Spuler (10.1016/j.eswa.2021.115581_b40) 2016; 48 Yao (10.1016/j.eswa.2021.115581_b46) 2010 Koch (10.1016/j.eswa.2021.115581_b19) 2015 Li (10.1016/j.eswa.2021.115581_b28) 2019 Lan (10.1016/j.eswa.2021.115581_b23) 2019; 11 Zhao (10.1016/j.eswa.2021.115581_b49) 2020 |
References_xml | – start-page: 2672 year: 2014 end-page: 2680 ident: b14 article-title: Generative adversarial nets publication-title: Neural Information Processing Systems – start-page: 6670 year: 2017 end-page: 6680 ident: b32 article-title: Few-shot adversarial domain adaptation publication-title: NIPS – volume: 48 start-page: 267 year: 2016 end-page: 278 ident: b40 article-title: Eeg-based prediction of cognitive workload induced by arithmetic: a step towards online adaptation in numerical learning publication-title: Zdm – start-page: 513 year: 2009 end-page: 521 ident: b11 article-title: Subject independent EEG-based BCI decoding publication-title: Neural Information Processing Systems – start-page: 1 year: 2019 ident: b28 article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition publication-title: IEEE Transactions on Affective Computing – volume: 7 start-page: 1239 year: 2017 ident: b2 article-title: Review and classification of emotion recognition based on eeg brain-computer interface system research: A systematic review publication-title: Applied Sciences – year: 2020 ident: b38 article-title: Instance-adaptive graph for EEG emotion recognition publication-title: AAAI – volume: 2010 start-page: 6587 year: 2010 end-page: 6590 ident: b37 article-title: Off-line and on-line vigilance estimation based on linear dynamical system and manifold learning publication-title: IEEE Engineering in Medicine and Biology Society – year: 2020 ident: b6 article-title: Emotion recognition from multi-channel EEG via deep forest publication-title: IEEE Journal Biomed Health Inform – volume: 11 start-page: 85 year: 2019 end-page: 94 ident: b23 article-title: Domain adaptation techniques for EEG-based emotion recognition: A comparative study on two public datasets publication-title: IEEE Transactions on Cognitive and Developmental Systems – volume: 66 start-page: 2390 year: 2019 end-page: 2401 ident: b34 article-title: Riemannian procrustes analysis: Transfer learning for brain-computer interfaces publication-title: IEEE Transactions on Biomedical Engineering – start-page: 1 year: 2019 end-page: 13 ident: b26 article-title: Multisource transfer learning for cross-subject EEG emotion recognition publication-title: IEEE Transactions on Systems, Man, and Cybernetics – start-page: 916 year: 2018 end-page: 920 ident: b42 article-title: Deep transfer learning for EEG-based brain computer interface publication-title: 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP) – volume: 65 start-page: 1107 year: 2018 end-page: 1116 ident: b48 article-title: Transfer learning: A Riemannian geometry framework with applications to brain-computer interfaces publication-title: IEEE Transactions on Biomedical Engineering – start-page: 513 year: 2006 end-page: 520 ident: b15 article-title: A kernel method for the two-sample-problem publication-title: Advances in neural information processing systems 19, Proceedings of the twentieth annual conference on neural information processing systems, Vancouver, British Columbia, Canada, December 4-7, 2006 – volume: 30 start-page: 6683 year: 2020 end-page: 6700 ident: b41 article-title: State and parameter joint estimation of linear stochastic systems in presence of faults and non-Gaussian noises publication-title: International Journal of Robust and Nonlinear Control – start-page: 1855 year: 2010 end-page: 1862 ident: b46 article-title: Boosting for transfer learning with multiple sources publication-title: Computer Vision and Pattern Recognition – start-page: 1 year: 2018 ident: b29 article-title: A bi-hemisphere domain adversarial neural network model for EEG emotion recognition publication-title: IEEE Transactions on Affective Computing – volume: 162 year: 2020 ident: b47 article-title: Locally robust EEG feature selection for individual-independent emotion recognition publication-title: Expert Systems with Applications – volume: 10 start-page: 417 year: 2019 end-page: 429 ident: b51 article-title: Identifying stable patterns over time for emotion recognition from EEG publication-title: IEEE Transactions on Affective Computing – volume: 39 start-page: 938 year: 2009 end-page: 945 ident: b22 article-title: Emotion recognition in children and adolescents with autism spectrum disorders publication-title: Journal of Autism and Developmental Disorders – start-page: 1 year: 2019 ident: b30 article-title: Constructing a personalized cross-day EEG-based emotion-classification model using transfer learning publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 1 start-page: 1 year: 2018 ident: b39 article-title: Eeg emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Transactions on Affective Computing – volume: 22 start-page: 79 year: 1951 end-page: 86 ident: b21 article-title: On information and sufficiency publication-title: The Annals of Mathematical Statistics – volume: 12 start-page: 344 year: 2020 end-page: 353 ident: b25 article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity publication-title: IEEE Transactions on Cognitive and Developmental Systems – start-page: 1 year: 2019 ident: b27 article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition publication-title: IEEE Transactions on Affective Computing – volume: 417 start-page: 322 year: 2020 end-page: 332 ident: b5 article-title: Event-based fuzzy control for T-S fuzzy networked systems with various data missing publication-title: Neurocomputing – year: 2020 ident: b49 article-title: Multi-source distilling domain adaptation publication-title: AAAI – volume: 7 start-page: 217 year: 2013 end-page: 228 ident: b18 article-title: Multimodal assistive technologies for depression diagnosis and monitoring publication-title: Journal on Multimodal User Interfaces – volume: 3 start-page: 18 year: 2012 end-page: 31 ident: b20 article-title: Deap: A database for emotion analysis ;using physiological signals publication-title: IEEE Transactions on Affective Computing – start-page: 1 year: 2019 end-page: 8 ident: b31 article-title: Depersonalized cross-subject vigilance estimation with adversarial domain generalization publication-title: International Joint Conference on Neural Network – reference: Gunes, H., Schuller, B., Pantic, M., & Cowie, R. (2011). Emotion representation, analysis and synthesis in continuous space: A survey. In – start-page: 1286 year: 2013 end-page: 1290 ident: b35 article-title: Robust EEG emotion classification using segment level decision fusion publication-title: 2013 IEEE international conference on acoustics, speech and signal processing – reference: (pp. 827–834). – start-page: 2732 year: 2016 end-page: 2738 ident: b50 article-title: Personalizing EEG-based affective models with transfer learning publication-title: International Joint Conference on Artificial Intelligence – start-page: 2390 year: 2008 end-page: 2397 ident: b3 article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface publication-title: International Joint Conference on Neural Network – year: 2020 ident: b9 article-title: Ultra efficient transfer learning with meta update for cross subject EEG classification – year: 2017 ident: b12 article-title: Model-agnostic meta-learning for fast adaptation of deep networks – start-page: 2784 year: 2017 end-page: 2792 ident: b17 article-title: Associative domain adaptation publication-title: ICCV – volume: 14 start-page: 3344 year: 2020 end-page: 3350 ident: b43 article-title: Robust point-to-point iterative learning control with trial-varying initial conditions publication-title: IET Control Theory & Applications – start-page: 1 year: 2021 end-page: 10 ident: b7 article-title: Fuzzy fault detection for Markov jump systems with partly accessible hidden information: An event-triggered approach publication-title: IEEE Transactions on Cybernetics – start-page: 81 year: 2013 end-page: 84 ident: b10 article-title: Differential entropy feature for EEG-based emotion classification publication-title: 6th international IEEE/EMBS conference on neural engineering (NER) – start-page: 255 year: 2015 end-page: 256 ident: b19 article-title: Siamese neural networks for one-shot image recognition publication-title: Neural-networks one-shot-learning – volume: 18 start-page: 32 year: 2001 end-page: 80 ident: b8 article-title: Emotion recognition in human-computer interaction publication-title: IEEE Signal Processing Magazine – volume: 17 start-page: 189 year: 2016 end-page: 209 ident: b13 article-title: Domain-adversarial training of neural networks publication-title: Journal of Machine Learning Research – volume: 22 start-page: 61 year: 1995 end-page: 79 ident: b4 article-title: Geodesic active contours publication-title: International Journal of Computer Vision – volume: 41 start-page: 2263 year: 2013 end-page: 2291 ident: b36 article-title: Equivalence of distance-based and rkhs-based statistics in hypothesis testing publication-title: The Annals of Statistics – year: 2015 ident: b33 article-title: Unsupervised representation learning with deep convolutional generative adversarial networks – start-page: 81 year: 2013 end-page: 84 ident: b24 article-title: Emotion assessment using machine learning and low-cost wearable devices publication-title: 6th international IEEE/EMBS conference on neural engineering (NER) – volume: 10 start-page: 374 year: 2019 end-page: 393 ident: b1 article-title: Emotions recognition using EEG signals: A survey publication-title: IEEE Transactions on Affective Computing – year: 2017 ident: b44 article-title: Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset publication-title: AAAI – volume: 103 start-page: 1733 year: 2021 end-page: 1755 ident: b45 article-title: Input-to-state stability of impulsive reaction–diffusion neural networks with infinite distributed delays publication-title: Nonlinear Dynamics – year: 2020 ident: 10.1016/j.eswa.2021.115581_b9 – volume: 14 start-page: 3344 issue: 19 year: 2020 ident: 10.1016/j.eswa.2021.115581_b43 article-title: Robust point-to-point iterative learning control with trial-varying initial conditions publication-title: IET Control Theory & Applications doi: 10.1049/iet-cta.2020.0557 – year: 2020 ident: 10.1016/j.eswa.2021.115581_b6 article-title: Emotion recognition from multi-channel EEG via deep forest publication-title: IEEE Journal Biomed Health Inform – start-page: 513 year: 2006 ident: 10.1016/j.eswa.2021.115581_b15 article-title: A kernel method for the two-sample-problem – year: 2015 ident: 10.1016/j.eswa.2021.115581_b33 – volume: 18 start-page: 32 issue: 1 year: 2001 ident: 10.1016/j.eswa.2021.115581_b8 article-title: Emotion recognition in human-computer interaction publication-title: IEEE Signal Processing Magazine doi: 10.1109/79.911197 – volume: 22 start-page: 61 issue: 1 year: 1995 ident: 10.1016/j.eswa.2021.115581_b4 article-title: Geodesic active contours publication-title: International Journal of Computer Vision doi: 10.1023/A:1007979827043 – volume: 12 start-page: 344 issue: 2 year: 2020 ident: 10.1016/j.eswa.2021.115581_b25 article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity publication-title: IEEE Transactions on Cognitive and Developmental Systems doi: 10.1109/TCDS.2019.2949306 – volume: 2010 start-page: 6587 year: 2010 ident: 10.1016/j.eswa.2021.115581_b37 article-title: Off-line and on-line vigilance estimation based on linear dynamical system and manifold learning publication-title: IEEE Engineering in Medicine and Biology Society – volume: 66 start-page: 2390 issue: 8 year: 2019 ident: 10.1016/j.eswa.2021.115581_b34 article-title: Riemannian procrustes analysis: Transfer learning for brain-computer interfaces publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2018.2889705 – volume: 41 start-page: 2263 issue: 5 year: 2013 ident: 10.1016/j.eswa.2021.115581_b36 article-title: Equivalence of distance-based and rkhs-based statistics in hypothesis testing publication-title: The Annals of Statistics doi: 10.1214/13-AOS1140 – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2021.115581_b27 article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition publication-title: IEEE Transactions on Affective Computing – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2021.115581_b30 article-title: Constructing a personalized cross-day EEG-based emotion-classification model using transfer learning publication-title: IEEE Journal of Biomedical and Health Informatics – start-page: 6670 year: 2017 ident: 10.1016/j.eswa.2021.115581_b32 article-title: Few-shot adversarial domain adaptation publication-title: NIPS – volume: 48 start-page: 267 issue: 3 year: 2016 ident: 10.1016/j.eswa.2021.115581_b40 article-title: Eeg-based prediction of cognitive workload induced by arithmetic: a step towards online adaptation in numerical learning publication-title: Zdm doi: 10.1007/s11858-015-0754-8 – ident: 10.1016/j.eswa.2021.115581_b16 doi: 10.1109/FG.2011.5771357 – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2021.115581_b26 article-title: Multisource transfer learning for cross-subject EEG emotion recognition publication-title: IEEE Transactions on Systems, Man, and Cybernetics – start-page: 2672 year: 2014 ident: 10.1016/j.eswa.2021.115581_b14 article-title: Generative adversarial nets publication-title: Neural Information Processing Systems – volume: 39 start-page: 938 issue: 6 year: 2009 ident: 10.1016/j.eswa.2021.115581_b22 article-title: Emotion recognition in children and adolescents with autism spectrum disorders publication-title: Journal of Autism and Developmental Disorders doi: 10.1007/s10803-009-0700-0 – volume: 65 start-page: 1107 issue: 5 year: 2018 ident: 10.1016/j.eswa.2021.115581_b48 article-title: Transfer learning: A Riemannian geometry framework with applications to brain-computer interfaces publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2017.2742541 – volume: 103 start-page: 1733 year: 2021 ident: 10.1016/j.eswa.2021.115581_b45 article-title: Input-to-state stability of impulsive reaction–diffusion neural networks with infinite distributed delays publication-title: Nonlinear Dynamics doi: 10.1007/s11071-021-06208-6 – start-page: 513 year: 2009 ident: 10.1016/j.eswa.2021.115581_b11 article-title: Subject independent EEG-based BCI decoding publication-title: Neural Information Processing Systems – volume: 7 start-page: 217 issue: 3 year: 2013 ident: 10.1016/j.eswa.2021.115581_b18 article-title: Multimodal assistive technologies for depression diagnosis and monitoring publication-title: Journal on Multimodal User Interfaces doi: 10.1007/s12193-013-0123-2 – volume: 17 start-page: 189 issue: 1 year: 2016 ident: 10.1016/j.eswa.2021.115581_b13 article-title: Domain-adversarial training of neural networks publication-title: Journal of Machine Learning Research – volume: 11 start-page: 85 issue: 1 year: 2019 ident: 10.1016/j.eswa.2021.115581_b23 article-title: Domain adaptation techniques for EEG-based emotion recognition: A comparative study on two public datasets publication-title: IEEE Transactions on Cognitive and Developmental Systems doi: 10.1109/TCDS.2018.2826840 – start-page: 255 year: 2015 ident: 10.1016/j.eswa.2021.115581_b19 article-title: Siamese neural networks for one-shot image recognition – start-page: 1 year: 2018 ident: 10.1016/j.eswa.2021.115581_b29 article-title: A bi-hemisphere domain adversarial neural network model for EEG emotion recognition publication-title: IEEE Transactions on Affective Computing – start-page: 2732 year: 2016 ident: 10.1016/j.eswa.2021.115581_b50 article-title: Personalizing EEG-based affective models with transfer learning publication-title: International Joint Conference on Artificial Intelligence – start-page: 916 year: 2018 ident: 10.1016/j.eswa.2021.115581_b42 article-title: Deep transfer learning for EEG-based brain computer interface – start-page: 2390 year: 2008 ident: 10.1016/j.eswa.2021.115581_b3 article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface publication-title: International Joint Conference on Neural Network – volume: 162 year: 2020 ident: 10.1016/j.eswa.2021.115581_b47 article-title: Locally robust EEG feature selection for individual-independent emotion recognition publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113768 – year: 2017 ident: 10.1016/j.eswa.2021.115581_b44 article-title: Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2021.115581_b28 article-title: From regional to global brain: A novel hierarchical spatial-temporal neural network model for EEG emotion recognition publication-title: IEEE Transactions on Affective Computing – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2021.115581_b31 article-title: Depersonalized cross-subject vigilance estimation with adversarial domain generalization publication-title: International Joint Conference on Neural Network – start-page: 2784 year: 2017 ident: 10.1016/j.eswa.2021.115581_b17 article-title: Associative domain adaptation – start-page: 81 year: 2013 ident: 10.1016/j.eswa.2021.115581_b10 article-title: Differential entropy feature for EEG-based emotion classification – volume: 3 start-page: 18 issue: 1 year: 2012 ident: 10.1016/j.eswa.2021.115581_b20 article-title: Deap: A database for emotion analysis ;using physiological signals publication-title: IEEE Transactions on Affective Computing doi: 10.1109/T-AFFC.2011.15 – start-page: 1855 year: 2010 ident: 10.1016/j.eswa.2021.115581_b46 article-title: Boosting for transfer learning with multiple sources publication-title: Computer Vision and Pattern Recognition – start-page: 1 year: 2021 ident: 10.1016/j.eswa.2021.115581_b7 article-title: Fuzzy fault detection for Markov jump systems with partly accessible hidden information: An event-triggered approach publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2021.3108884 – volume: 10 start-page: 417 issue: 3 year: 2019 ident: 10.1016/j.eswa.2021.115581_b51 article-title: Identifying stable patterns over time for emotion recognition from EEG publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2017.2712143 – start-page: 81 year: 2013 ident: 10.1016/j.eswa.2021.115581_b24 article-title: Emotion assessment using machine learning and low-cost wearable devices – volume: 30 start-page: 6683 issue: 16 year: 2020 ident: 10.1016/j.eswa.2021.115581_b41 article-title: State and parameter joint estimation of linear stochastic systems in presence of faults and non-Gaussian noises publication-title: International Journal of Robust and Nonlinear Control doi: 10.1002/rnc.5131 – year: 2017 ident: 10.1016/j.eswa.2021.115581_b12 – year: 2020 ident: 10.1016/j.eswa.2021.115581_b49 article-title: Multi-source distilling domain adaptation – volume: 22 start-page: 79 issue: 1 year: 1951 ident: 10.1016/j.eswa.2021.115581_b21 article-title: On information and sufficiency publication-title: The Annals of Mathematical Statistics doi: 10.1214/aoms/1177729694 – volume: 1 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.eswa.2021.115581_b39 article-title: Eeg emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Transactions on Affective Computing – start-page: 1286 year: 2013 ident: 10.1016/j.eswa.2021.115581_b35 article-title: Robust EEG emotion classification using segment level decision fusion – volume: 417 start-page: 322 year: 2020 ident: 10.1016/j.eswa.2021.115581_b5 article-title: Event-based fuzzy control for T-S fuzzy networked systems with various data missing publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.08.063 – year: 2020 ident: 10.1016/j.eswa.2021.115581_b38 article-title: Instance-adaptive graph for EEG emotion recognition publication-title: AAAI doi: 10.1609/aaai.v34i03.5656 – volume: 7 start-page: 1239 issue: 12 year: 2017 ident: 10.1016/j.eswa.2021.115581_b2 article-title: Review and classification of emotion recognition based on eeg brain-computer interface system research: A systematic review publication-title: Applied Sciences doi: 10.3390/app7121239 – volume: 10 start-page: 374 issue: 3 year: 2019 ident: 10.1016/j.eswa.2021.115581_b1 article-title: Emotions recognition using EEG signals: A survey publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2017.2714671 |
SSID | ssj0017007 |
Score | 2.526348 |
Snippet | Emotion classification signal based on the electroencephalogram (EEG) is an important part of big data associated with health. One of the main challenges in... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115581 |
SubjectTerms | Adaptation Big Data Cross-subject Datasets Deep learning Distillation Domains Electroencephalogram (EEG) Electroencephalography Emotion classification Emotions Few label adversarial domain adaption Indexing Machine learning Signal classification |
Title | Cross-subject EEG emotion classification based on few-label adversarial domain adaption |
URI | https://dx.doi.org/10.1016/j.eswa.2021.115581 https://www.proquest.com/docview/2584579989 |
Volume | 185 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA1FL178Fqu15OBNYps22eweS2mtil5U9Bay-YCKbsVWevO3O7ObLSjowdtuSMIymby8WSZvCDntWpkl3HcZF8ox4RXgYNoNTFhuUq-48WVW5c1tMnkQV0_yqUGG9V0YTKuM2F9heonWsaUTrdl5m047d0AO4DiE0I6jKGYf43YhFHr5-ecqzQPl51Slt6cY9o4XZ6ocLz9fovZQjwNySJny3w6nHzBdnj3jbbIZSSMdVN-1Qxq-2CVbdUEGGvfnHnkc4rRs_pHj3xU6Gl1QX5XpoRZZMqYFlStB8fByFB6CXzJwBP9CDZZmnht0SOpmr2ZaQJMpEWWfPIxH98MJi5UTmO330gXLIRDIgaiZzOaoWCYgTDFchcB7wTvjQhISm4pg88xCow8JsCTbldZzax0wrAOyVswKf0ioCCiZGPomAaKI3VQ_50niZeacg0mbhNcm0zbKimN1ixdd5489azSzRjPrysxNcrYa81aJavzZW9Yrob-5hgbU_3Ncq142HTfmXPeAcEkFMWZ29M9pj8kGvmFKC5ctsrZ4__AnQEwWebv0vDZZH1xeT26_AHYC4g0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQHNoLUNqKx9L60J6Q2Tix8zhwQMvSpbtwAQQ31_FD2oouiCxaceFP8QeZSZyVWqkckPYWOY4VzUy--RyNvyHkW2RkkXIXMS4yy4TLAAfzyDNhuM5dxrWrqypPz9LBpfh5La-XyHN7FgbLKgP2N5heo3UY6QZrdu_G4-45kANIh7C14yiKmUShsnLoHmewb6sOTo7Ayd_j-Lh_0Ruw0FqAmSTOp6wEplwCk9GFKVHSSwCP1zzznsfeWW196lOTC2_KwsCg8ynQCBNJ47gxVqDaAeD-igC4wLYJ-0_zuhLUu8sagb-M4euFkzpNUZmrZih2FHOAKilz_r9s-E9eqJPd8TpZDSyVHjaG-ECW3GSDrLUdIGgAhI_kqofLsuqhxN85tN__QV3TF4gapOVYh1S7nmK2tBQuvJsxiDx3QzX2gq40fgHU3v7R4wkM6RrCPpHLhdjzM1me3E7cJqHCo0ajT3QKzBSnZUnJ09TJwloLi24R3ppMmaBjju00blRbsPZboZkVmlk1Zt4ie_Nn7hoVj1dny9YT6q9YVJBmXn2u07pNBSSoVAwMT2awqS2237jsV_JucHE6UqOTs-EOeY93sJ6Gyw5Znt4_uF1gRdPySx2FlPxadNi_ADS0H9I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-subject+EEG+emotion+classification+based+on+few-label+adversarial+domain+adaption&rft.jtitle=Expert+systems+with+applications&rft.au=Wang%2C+Yingdong&rft.au=Liu%2C+Jiatong&rft.au=Ruan%2C+Qunsheng&rft.au=Wang%2C+Shuocheng&rft.date=2021-12-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=185&rft_id=info:doi/10.1016%2Fj.eswa.2021.115581&rft.externalDocID=S0957417421009830 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |