Group teaching optimization algorithm: A novel metaheuristic method for solving global optimization problems
•A new classification method for metaheuristic algorithms is presented.•Group teaching optimization algorithm is proposed for global optimization.•Group teaching optimization algorithm is inspired by group teaching.•Experiments show that the proposed method outperforms state-of-the-art algorithms. I...
Saved in:
Published in | Expert systems with applications Vol. 148; p. 113246 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
15.06.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A new classification method for metaheuristic algorithms is presented.•Group teaching optimization algorithm is proposed for global optimization.•Group teaching optimization algorithm is inspired by group teaching.•Experiments show that the proposed method outperforms state-of-the-art algorithms.
In last 30 years, many metaheuristic algorithms have been developed to solve optimization problems. However, most existing metaheuristic algorithms have extra control parameters except the essential population size and stopping criterion. Considering different characteristics of different optimization problems, how to adjust these extra control parameters is a great challenge for these algorithms in solving different optimization problems. In order to address this challenge, a new metaheuristic algorithm called group teaching optimization algorithm (GTOA) is presented in this paper. The proposed GTOA is inspired by group teaching mechanism. To adapt group teaching to be suitable for using as an optimization technique, without loss of generality, four simple rules are first defined. Then a group teaching model is built under the guide of the four rules, which consists of teacher allocation phase, ability grouping phase, teacher phase and student phase. Note that GTOA needs only the essential population size and stopping criterion without extra control parameters, which has great potential to be used widely. GTOA is first examined over 28 well-known unconstrained benchmark problems and the optimization results are compared with nine state-of-the-art algorithms. Experimental results show the superior performance of the proposed GTOA for these problems in terms of solution quality, convergence speed and stability. Furthermore, GTOA is used to solve four constrained engineering design optimization problems in the real world. Simulation results demonstrate the proposed GTOA can find better solutions with faster speed compared with the reported optimizers. |
---|---|
AbstractList | In last 30 years, many metaheuristic algorithms have been developed to solve optimization problems. However, most existing metaheuristic algorithms have extra control parameters except the essential population size and stopping criterion. Considering different characteristics of different optimization problems, how to adjust these extra control parameters is a great challenge for these algorithms in solving different optimization problems. In order to address this challenge, a new metaheuristic algorithm called group teaching optimization algorithm (GTOA) is presented in this paper. The proposed GTOA is inspired by group teaching mechanism. To adapt group teaching to be suitable for using as an optimization technique, without loss of generality, four simple rules are first defined. Then a group teaching model is built under the guide of the four rules, which consists of teacher allocation phase, ability grouping phase, teacher phase and student phase. Note that GTOA needs only the essential population size and stopping criterion without extra control parameters, which has great potential to be used widely. GTOA is first examined over 28 well-known unconstrained benchmark problems and the optimization results are compared with nine state-of-the-art algorithms. Experimental results show the superior performance of the proposed GTOA for these problems in terms of solution quality, convergence speed and stability. Furthermore, GTOA is used to solve four constrained engineering design optimization problems in the real world. Simulation results demonstrate the proposed GTOA can find better solutions with faster speed compared with the reported optimizers. •A new classification method for metaheuristic algorithms is presented.•Group teaching optimization algorithm is proposed for global optimization.•Group teaching optimization algorithm is inspired by group teaching.•Experiments show that the proposed method outperforms state-of-the-art algorithms. In last 30 years, many metaheuristic algorithms have been developed to solve optimization problems. However, most existing metaheuristic algorithms have extra control parameters except the essential population size and stopping criterion. Considering different characteristics of different optimization problems, how to adjust these extra control parameters is a great challenge for these algorithms in solving different optimization problems. In order to address this challenge, a new metaheuristic algorithm called group teaching optimization algorithm (GTOA) is presented in this paper. The proposed GTOA is inspired by group teaching mechanism. To adapt group teaching to be suitable for using as an optimization technique, without loss of generality, four simple rules are first defined. Then a group teaching model is built under the guide of the four rules, which consists of teacher allocation phase, ability grouping phase, teacher phase and student phase. Note that GTOA needs only the essential population size and stopping criterion without extra control parameters, which has great potential to be used widely. GTOA is first examined over 28 well-known unconstrained benchmark problems and the optimization results are compared with nine state-of-the-art algorithms. Experimental results show the superior performance of the proposed GTOA for these problems in terms of solution quality, convergence speed and stability. Furthermore, GTOA is used to solve four constrained engineering design optimization problems in the real world. Simulation results demonstrate the proposed GTOA can find better solutions with faster speed compared with the reported optimizers. |
ArticleNumber | 113246 |
Author | Jin, Zhigang Zhang, Yiying |
Author_xml | – sequence: 1 givenname: Yiying surname: Zhang fullname: Zhang, Yiying email: zhangyiying@tju.edu.cn – sequence: 2 givenname: Zhigang surname: Jin fullname: Jin, Zhigang email: zgjin@tju.edu.cn |
BookMark | eNp9kDFPwzAQhS1UJNrCH2CKxJxix0mcIJaqgoJUiQVmy7EvrSMnDrZbBL-ehLLA0Ol0p_e9u3szNOlsBwhdE7wgmOS3zQL8h1gkOBkGhCZpfoampGA0zllJJ2iKy4zFKWHpBZp532BMGMZsisza2X0fBRByp7ttZPugW_0lgrZdJMzWOh127V20jDp7ABO1EMQO9k77oOXY7ayKausib81hNNgaWwnz16d3tjLQ-kt0Xgvj4eq3ztHb48Pr6inevKyfV8tNLGlShLgiRCUKy0xVmKkKlAAqlVAkr2VNayggyxSpslTQnJSskELllSzLRNKcKZXSObo5-g6L3_fgA2_s3nXDSp6ktCiLEjM6qIqjSjrrvYOaSx1-Dg5OaMMJ5mO2vOFjtnzMlh-zHdDkH9o73Qr3eRq6P0IwvH7Q4LiXGjoJSjuQgSurT-HfyM6Yzg |
CitedBy_id | crossref_primary_10_1007_s10922_023_09779_4 crossref_primary_10_3390_biomimetics9090509 crossref_primary_10_1109_ACCESS_2022_3212081 crossref_primary_10_1007_s10462_022_10340_z crossref_primary_10_1016_j_knosys_2021_107405 crossref_primary_10_3390_math10101626 crossref_primary_10_1016_j_asoc_2022_109847 crossref_primary_10_1016_j_eswa_2024_123734 crossref_primary_10_1371_journal_pone_0275346 crossref_primary_10_3934_mbe_2023592 crossref_primary_10_1016_j_eswa_2021_114577 crossref_primary_10_3390_math10224350 crossref_primary_10_1016_j_dajour_2023_100360 crossref_primary_10_1007_s11831_023_09912_1 crossref_primary_10_1007_s10472_022_09799_x crossref_primary_10_3390_biomimetics8080619 crossref_primary_10_1016_j_ijleo_2022_170166 crossref_primary_10_1007_s10462_024_10738_x crossref_primary_10_3390_electronics13132622 crossref_primary_10_1093_jcde_qwad048 crossref_primary_10_1109_ACCESS_2023_3304889 crossref_primary_10_3233_JIFS_222516 crossref_primary_10_1109_ACCESS_2021_3096726 crossref_primary_10_1002_int_22707 crossref_primary_10_1109_ACCESS_2022_3223388 crossref_primary_10_1016_j_swevo_2023_101373 crossref_primary_10_1038_s41598_024_69010_5 crossref_primary_10_3390_jmse10091305 crossref_primary_10_1016_j_matcom_2022_08_017 crossref_primary_10_1109_TNNLS_2021_3109565 crossref_primary_10_1038_s41598_024_53602_2 crossref_primary_10_1007_s40747_021_00478_8 crossref_primary_10_1016_j_jpowsour_2024_235615 crossref_primary_10_1016_j_eswa_2023_120639 crossref_primary_10_1007_s11803_022_2116_1 crossref_primary_10_1007_s12065_022_00722_1 crossref_primary_10_32604_cmc_2022_021059 crossref_primary_10_3390_electronics9111962 crossref_primary_10_1016_j_oceaneng_2022_113308 crossref_primary_10_1016_j_cma_2025_117908 crossref_primary_10_3390_math12223464 crossref_primary_10_1007_s00500_022_07107_7 crossref_primary_10_1007_s40747_021_00549_w crossref_primary_10_1016_j_knosys_2022_109484 crossref_primary_10_1016_j_asoc_2021_107808 crossref_primary_10_1080_0305215X_2023_2296538 crossref_primary_10_35377_saucis___1474767 crossref_primary_10_1016_j_eswa_2021_116026 crossref_primary_10_1016_j_eswa_2023_120207 crossref_primary_10_1007_s10586_024_04328_3 crossref_primary_10_1007_s12083_021_01186_3 crossref_primary_10_1016_j_enconman_2020_113301 crossref_primary_10_3934_mbe_2023443 crossref_primary_10_1007_s13042_024_02197_1 crossref_primary_10_1155_2021_9210050 crossref_primary_10_1016_j_cosrev_2020_100342 crossref_primary_10_1002_int_22524 crossref_primary_10_1108_COMPEL_12_2020_0422 crossref_primary_10_1016_j_ijepes_2023_109586 crossref_primary_10_1038_s41598_024_57518_9 crossref_primary_10_1155_2022_7272048 crossref_primary_10_37391_ijeer_12et_evs05 crossref_primary_10_1007_s10462_024_10986_x crossref_primary_10_1093_jcde_qwad096 crossref_primary_10_1016_j_asoc_2023_110908 crossref_primary_10_1016_j_cie_2021_107198 crossref_primary_10_1016_j_knosys_2021_107555 crossref_primary_10_1007_s11144_021_01927_8 crossref_primary_10_1007_s10489_022_03994_3 crossref_primary_10_1109_ACCESS_2022_3153493 crossref_primary_10_1155_2022_1928343 crossref_primary_10_1016_j_engappai_2023_107721 crossref_primary_10_1007_s10915_022_01955_z crossref_primary_10_3390_en15062105 crossref_primary_10_7717_peerj_cs_1526 crossref_primary_10_1007_s10489_021_02629_3 crossref_primary_10_1038_s41598_022_15170_1 crossref_primary_10_1007_s11276_023_03359_9 crossref_primary_10_1002_ett_4402 crossref_primary_10_1142_S0219622022500754 crossref_primary_10_1007_s00500_024_09689_w crossref_primary_10_3390_math10193604 crossref_primary_10_3390_biomimetics9080500 crossref_primary_10_1007_s11831_023_10060_9 crossref_primary_10_1016_j_asoc_2025_113071 crossref_primary_10_1016_j_eswa_2022_117493 crossref_primary_10_1007_s40430_022_03700_x crossref_primary_10_1016_j_jer_2024_05_008 crossref_primary_10_3390_math10132179 crossref_primary_10_1007_s10489_020_02091_7 crossref_primary_10_1016_j_apm_2022_11_016 crossref_primary_10_1038_s41598_022_22170_8 crossref_primary_10_1111_exsy_70016 crossref_primary_10_1016_j_dajour_2022_100043 crossref_primary_10_1007_s12065_024_00937_4 crossref_primary_10_1016_j_oor_2024_100260 crossref_primary_10_1080_0954898X_2024_2321391 crossref_primary_10_2139_ssrn_4165791 crossref_primary_10_3390_atmos12010064 crossref_primary_10_3390_pr9020200 crossref_primary_10_1007_s12597_024_00785_x crossref_primary_10_1155_2022_6627409 crossref_primary_10_1007_s00500_022_07283_6 crossref_primary_10_1016_j_cie_2020_107050 crossref_primary_10_1007_s10462_023_10567_4 crossref_primary_10_1016_j_engappai_2022_105622 crossref_primary_10_1016_j_eswa_2020_113612 crossref_primary_10_1002_eng2_12974 crossref_primary_10_3390_biomimetics8050396 crossref_primary_10_1007_s13369_024_09807_8 crossref_primary_10_1016_j_eswa_2021_115178 crossref_primary_10_1109_TGRS_2024_3462752 crossref_primary_10_1140_epjs_s11734_021_00208_8 crossref_primary_10_1007_s00366_020_01120_w crossref_primary_10_1016_j_eswa_2021_115690 crossref_primary_10_1142_S0218625X22501268 crossref_primary_10_32604_csse_2023_030132 crossref_primary_10_1007_s10845_021_01872_2 crossref_primary_10_1007_s12065_022_00762_7 crossref_primary_10_3390_su15064982 crossref_primary_10_1007_s00500_021_05886_z crossref_primary_10_3390_math11102340 crossref_primary_10_7717_peerj_cs_2278 crossref_primary_10_1016_j_istruc_2022_04_014 crossref_primary_10_3390_biomimetics9070419 crossref_primary_10_1007_s11276_021_02630_1 crossref_primary_10_1016_j_advengsoft_2020_102885 crossref_primary_10_1080_1448837X_2025_2467585 crossref_primary_10_1007_s42235_024_00545_z crossref_primary_10_1093_jcde_qwae044 crossref_primary_10_1093_jcde_qwad110 crossref_primary_10_1016_j_cma_2022_114570 crossref_primary_10_1016_j_eswa_2024_124400 crossref_primary_10_1093_jcde_qwad060 crossref_primary_10_1016_j_advengsoft_2022_103185 crossref_primary_10_1109_ACCESS_2022_3157400 crossref_primary_10_1016_j_eswa_2022_117993 crossref_primary_10_1016_j_phycom_2021_101411 crossref_primary_10_1038_s41598_025_92983_w crossref_primary_10_3390_biomimetics10010014 crossref_primary_10_1007_s00521_022_08058_8 crossref_primary_10_1007_s10462_021_10035_x crossref_primary_10_3390_app14209610 crossref_primary_10_1088_1361_665X_ad939c crossref_primary_10_1007_s10115_024_02210_7 crossref_primary_10_1016_j_jksuci_2024_102255 crossref_primary_10_1007_s10462_023_10680_4 crossref_primary_10_1016_j_asej_2024_102883 crossref_primary_10_55546_jmm_1291032 crossref_primary_10_1016_j_yofte_2022_102971 crossref_primary_10_3390_math10203765 crossref_primary_10_3390_biomimetics9050280 crossref_primary_10_1007_s00521_021_05708_1 crossref_primary_10_15388_24_INFOR563 crossref_primary_10_1016_j_compind_2024_104209 crossref_primary_10_1007_s10586_024_04508_1 crossref_primary_10_1016_j_egyr_2023_12_053 crossref_primary_10_1016_j_engappai_2023_106959 crossref_primary_10_1109_ACCESS_2021_3064799 crossref_primary_10_1007_s11831_023_10030_1 crossref_primary_10_3390_electronics14020274 crossref_primary_10_1007_s10462_024_11035_3 crossref_primary_10_3390_biomimetics9060361 crossref_primary_10_1038_s41598_023_49438_x crossref_primary_10_1007_s10462_022_10173_w crossref_primary_10_1063_5_0073335 crossref_primary_10_1007_s00521_024_10694_1 crossref_primary_10_1007_s11277_021_09249_7 |
Cites_doi | 10.1080/00207160902971533 10.1115/1.2919393 10.1016/j.eswa.2011.03.053 10.1016/j.advengsoft.2017.07.002 10.1109/TETCI.2018.2890048 10.1007/s00521-013-1367-1 10.1016/j.asoc.2018.07.039 10.1016/j.compstruc.2016.01.008 10.1016/j.eswa.2009.06.044 10.1016/j.advengsoft.2016.01.008 10.1016/j.asoc.2012.11.026 10.1016/j.asoc.2017.10.013 10.1016/j.swevo.2011.02.002 10.1016/j.amc.2015.05.012 10.1016/j.knosys.2018.08.003 10.1109/TEVC.2007.894200 10.1007/s00366-011-0241-y 10.1016/j.eswa.2018.04.012 10.1016/j.advengsoft.2013.12.007 10.1016/j.ins.2011.08.006 10.1016/j.ins.2018.08.049 10.1016/j.eswa.2019.112971 10.1016/j.amc.2006.07.134 10.1016/j.swevo.2016.03.001 10.1016/j.eswa.2018.08.027 10.1016/j.eswa.2019.113016 10.1016/j.eswa.2018.08.008 10.1023/A:1008202821328 10.1016/j.apm.2015.10.040 10.1016/j.apm.2018.06.036 10.1016/j.cma.2004.09.007 10.1016/j.asoc.2009.08.031 10.1016/j.compstruc.2014.03.007 10.1109/4235.585893 10.1016/j.eswa.2008.02.039 10.1016/j.eswa.2016.02.036 10.1109/TEVC.2008.919004 10.1016/j.knosys.2017.10.018 10.1016/j.knosys.2015.12.022 10.1016/j.knosys.2017.11.037 10.1016/j.ins.2014.11.001 10.1016/j.eswa.2018.11.032 10.1109/4235.771163 10.1016/j.compstruc.2012.07.010 10.1007/s00521-015-1949-1 10.1016/j.asoc.2018.02.049 10.1016/j.eswa.2018.06.023 10.3846/13923730.2014.897986 10.1016/j.cie.2012.07.011 10.1007/s00158-008-0238-3 10.1016/j.engappai.2006.03.003 10.1016/j.ins.2011.03.016 10.1016/j.cad.2010.12.015 10.1016/j.eswa.2009.12.039 10.1016/j.knosys.2019.01.004 10.1016/S0166-3615(99)00046-9 10.1016/j.eswa.2018.04.028 10.1016/j.asoc.2016.09.048 |
ContentType | Journal Article |
Copyright | 2020 Copyright Elsevier BV Jun 15, 2020 |
Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Jun 15, 2020 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2020.113246 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2020_113246 S0957417420300725 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ XPP ZMT 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c328t-b11d2d0c5db07dbedae3cdad16fcf3fe8e55d1b54a361978cad6bc992c367dd43 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Mon Jul 14 07:40:31 EDT 2025 Tue Jul 01 04:05:47 EDT 2025 Thu Apr 24 23:05:58 EDT 2025 Fri Feb 23 02:48:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Engineering design Group teaching Global optimization Swarm intelligence |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-b11d2d0c5db07dbedae3cdad16fcf3fe8e55d1b54a361978cad6bc992c367dd43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2438989073 |
PQPubID | 2045477 |
ParticipantIDs | proquest_journals_2438989073 crossref_citationtrail_10_1016_j_eswa_2020_113246 crossref_primary_10_1016_j_eswa_2020_113246 elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113246 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-15 |
PublicationDateYYYYMMDD | 2020-06-15 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Expert systems with applications |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Ibrahim, Elaziz, Lu (bib0014) 2018; 108 Kannan, Kramer (bib0016) 1994; 116 Mafarja, Aljarah, Heidari, Faris, Fournier-Viger, Li (bib0024) 2018; 161 Shi, Eberhart (bib0045) 1998 Simon (bib0046) 2008; 12 Yao, Liu, Lin (bib0059) 1999; 3 Babalik, Cinar, Kiran (bib0001) 2018; 63 Gandomi, Yang, Alavi (bib0010) 2013; 29 He, Wang (bib0012) 2007; 20 Rao, Savsani, Vakharia (bib0038) 2011; 43 Pence, Cesmeli, Senel, Cetisli (bib0034) 2016; 55 He, Wang (bib0011) 2007; 186 Coelho (bib0004) 2010; 37 Rao, Savsani, Vakharia (bib0039) 2012; 183 Storn, Price (bib0047) 1997; 11 Huang, Wang, Wang, Yang (bib0013) 2019 Chen, Zou, Li, Wang, Li (bib0002) 2015; 297 Watson (bib0055) 2007 Sun, Wang, Chen, Liu (bib0049) 2018; 114 Ouyang, Gao, Kong, Zou, Li (bib0033) 2015; 265 Wang, Ru, Wang, Huang (bib0054) 2019 Kaveh, Bakhshpoori (bib0017) 2016; 167 Long, Wu, Liang, Xu (bib0022) 2019; 123 Rakhshani, Rahati (bib0036) 2017; 52 Lu, Gao, Yi (bib0023) 2018; 107 Rahnamayan, Tizhoosh, Salama (bib0035) 2008; 12 Zhang, Huang, Zhang (bib0064) 2019; 471 Coello Coello (bib0005) 2000; 41 Kuroki, Young, Haupt (bib0018) 2010; 37 Yang, Deb (bib0057) 2009 Cheng, Prayogo (bib0003) 2014; 139 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (bib0027) 2017; 114 Nazarahari, Khanmirza, Doostie (bib0032) 2019; 115 Wang, Zhou (bib0052) 2016; 27 Eskandar, Sadollah, Bahreininejad, Hamdi (bib0007) 2012; 110–111 Derrac, García, Molina, Herrera (bib0006) 2011; 1 Liu, Cai, Wang (bib0021) 2010; 10 Ewees, Abd Elaziz, Houssein (bib0008) 2018; 112 Lee, Geem (bib0019) 2005; 194 Wang, Cai, Zhou, Fan (bib0053) 2009; 37 Mirjalili (bib0026) 2016; 96 Zahara, Kao (bib0061) 2009; 36 Sadollah, Bahreininejad, Eskandar, Hamdi (bib0041) 2013; 13 Yang, Deb (bib0058) 2014; 24 Martínez-Peñaloza, Mezura-Montes (bib0025) 2018; 142 Sun, Ma, Ren, Zhang, Jia (bib0048) 2018; 139 Mirjalili, Lewis (bib0029) 2016; 95 Wang, Wu, Rahnamayan, Liu, Ventresca (bib0051) 2011; 181 Jain, Katarya, Sachdeva (bib0015) 2020; 142 Yi, Gao, Li, Shoemaker, Lu (bib0060) 2019; 170 Wolpert, Macready (bib0056) 1997; 1 Zhang, Xiao, Gao, Pan (bib0063) 2018; 63 Liao, Kao, Li (bib0020) 2011; 38 Zhang, Kang, Cheng, Wang (bib0065) 2018; 67 Sadollah, Sayyaadi, Yadav (bib0042) 2018; 71 Zhang, Jin, Chen (bib0066) 2019 Mlakar, Fister, Fister (bib0031) 2016; 29 Valian, Tavakoli, Mohanna, Haghi (bib0050) 2013; 64 Gandomi, Alavi (bib0009) 2016; 22 Savsani, Savsani (bib0044) 2016; 40 Rocha, Fernandes (bib0040) 2009; 86 Zareie, Sheikhahmadi, Jalili (bib0062) 2020; 142 Mirjalili, Mirjalili, Lewis (bib0030) 2014; 69 Ouyang (10.1016/j.eswa.2020.113246_bib0033) 2015; 265 Mirjalili (10.1016/j.eswa.2020.113246_bib0026) 2016; 96 Zhang (10.1016/j.eswa.2020.113246_bib0064) 2019; 471 Shi (10.1016/j.eswa.2020.113246_bib0045) 1998 Liao (10.1016/j.eswa.2020.113246_bib0020) 2011; 38 Zareie (10.1016/j.eswa.2020.113246_bib0062) 2020; 142 Long (10.1016/j.eswa.2020.113246_bib0022) 2019; 123 Wang (10.1016/j.eswa.2020.113246_bib0053) 2009; 37 Derrac (10.1016/j.eswa.2020.113246_bib0006) 2011; 1 Martínez-Peñaloza (10.1016/j.eswa.2020.113246_bib0025) 2018; 142 Eskandar (10.1016/j.eswa.2020.113246_bib0007) 2012; 110–111 Storn (10.1016/j.eswa.2020.113246_bib0047) 1997; 11 Rakhshani (10.1016/j.eswa.2020.113246_bib0036) 2017; 52 Rahnamayan (10.1016/j.eswa.2020.113246_bib0035) 2008; 12 Lu (10.1016/j.eswa.2020.113246_bib0023) 2018; 107 Zahara (10.1016/j.eswa.2020.113246_bib0061) 2009; 36 Rao (10.1016/j.eswa.2020.113246_bib0038) 2011; 43 Coelho (10.1016/j.eswa.2020.113246_bib0004) 2010; 37 He (10.1016/j.eswa.2020.113246_bib0012) 2007; 20 Mirjalili (10.1016/j.eswa.2020.113246_bib0029) 2016; 95 Pence (10.1016/j.eswa.2020.113246_bib0034) 2016; 55 Liu (10.1016/j.eswa.2020.113246_bib0021) 2010; 10 Nazarahari (10.1016/j.eswa.2020.113246_bib0032) 2019; 115 Mafarja (10.1016/j.eswa.2020.113246_bib0024) 2018; 161 Wang (10.1016/j.eswa.2020.113246_bib0054) 2019 Yang (10.1016/j.eswa.2020.113246_bib0057) 2009 Mirjalili (10.1016/j.eswa.2020.113246_bib0027) 2017; 114 Huang (10.1016/j.eswa.2020.113246_bib0013) 2019 Sun (10.1016/j.eswa.2020.113246_bib0048) 2018; 139 Kannan (10.1016/j.eswa.2020.113246_bib0016) 1994; 116 Sadollah (10.1016/j.eswa.2020.113246_bib0042) 2018; 71 Wang (10.1016/j.eswa.2020.113246_bib0052) 2016; 27 Kaveh (10.1016/j.eswa.2020.113246_bib0017) 2016; 167 Yao (10.1016/j.eswa.2020.113246_bib0059) 1999; 3 Babalik (10.1016/j.eswa.2020.113246_bib0001) 2018; 63 Lee (10.1016/j.eswa.2020.113246_bib0019) 2005; 194 Yi (10.1016/j.eswa.2020.113246_bib0060) 2019; 170 Watson (10.1016/j.eswa.2020.113246_bib0055) 2007 Sun (10.1016/j.eswa.2020.113246_bib0049) 2018; 114 Valian (10.1016/j.eswa.2020.113246_bib0050) 2013; 64 Wolpert (10.1016/j.eswa.2020.113246_bib0056) 1997; 1 Gandomi (10.1016/j.eswa.2020.113246_bib0010) 2013; 29 Gandomi (10.1016/j.eswa.2020.113246_bib0009) 2016; 22 Cheng (10.1016/j.eswa.2020.113246_bib0003) 2014; 139 Zhang (10.1016/j.eswa.2020.113246_bib0063) 2018; 63 Yang (10.1016/j.eswa.2020.113246_bib0058) 2014; 24 Rocha (10.1016/j.eswa.2020.113246_bib0040) 2009; 86 Savsani (10.1016/j.eswa.2020.113246_bib0044) 2016; 40 Coello Coello (10.1016/j.eswa.2020.113246_bib0005) 2000; 41 Kuroki (10.1016/j.eswa.2020.113246_bib0018) 2010; 37 Zhang (10.1016/j.eswa.2020.113246_bib0065) 2018; 67 Rao (10.1016/j.eswa.2020.113246_bib0039) 2012; 183 Jain (10.1016/j.eswa.2020.113246_bib0015) 2020; 142 Sadollah (10.1016/j.eswa.2020.113246_bib0041) 2013; 13 He (10.1016/j.eswa.2020.113246_bib0011) 2007; 186 Zhang (10.1016/j.eswa.2020.113246_bib0066) 2019 Chen (10.1016/j.eswa.2020.113246_bib0002) 2015; 297 Wang (10.1016/j.eswa.2020.113246_bib0051) 2011; 181 Ibrahim (10.1016/j.eswa.2020.113246_bib0014) 2018; 108 Mirjalili (10.1016/j.eswa.2020.113246_bib0030) 2014; 69 Ewees (10.1016/j.eswa.2020.113246_bib0008) 2018; 112 Mlakar (10.1016/j.eswa.2020.113246_bib0031) 2016; 29 Simon (10.1016/j.eswa.2020.113246_bib0046) 2008; 12 |
References_xml | – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: bib0038 article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Computer-Aided Design – volume: 13 start-page: 2592 year: 2013 end-page: 2612 ident: bib0041 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Applied Soft Computing – volume: 41 start-page: 113 year: 2000 end-page: 127 ident: bib0005 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Computers in Industry – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: bib0027 article-title: Salp Swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software – volume: 297 start-page: 171 year: 2015 end-page: 190 ident: bib0002 article-title: An improved teaching–learning-based optimization algorithm for solving global optimization problem publication-title: Information Sciences – volume: 167 start-page: 69 year: 2016 end-page: 85 ident: bib0017 article-title: Water evaporation optimization: A novel physically inspired optimization algorithm publication-title: Computers & Structures – volume: 265 start-page: 533 year: 2015 end-page: 556 ident: bib0033 article-title: Teaching-learning based optimization with global crossover for global optimization problems publication-title: Applied Mathematics and Computation – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: bib0026 article-title: SCA: A sine cosine algorithm for solving optimization problems publication-title: Knowledge-Based Systems – volume: 12 start-page: 64 year: 2008 end-page: 79 ident: bib0035 article-title: Opposition-based differential evolution publication-title: IEEE Transactions on Evolutionary Computation – volume: 107 start-page: 89 year: 2018 end-page: 114 ident: bib0023 article-title: Grey wolf optimizer with cellular topological structure publication-title: Expert Systems with Applications – volume: 29 start-page: 17 year: 2013 end-page: 35 ident: bib0010 article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems publication-title: Engineering with Computers – volume: 37 start-page: 4687 year: 2010 end-page: 4697 ident: bib0018 article-title: UAV navigation by an expert system for contaminant mapping with a genetic algorithm publication-title: Expert Systems with Applications – volume: 38 start-page: 12180 year: 2011 end-page: 12188 ident: bib0020 article-title: A sensor deployment approach using glowworm swarm optimization algorithm in wireless sensor networks publication-title: Expert Systems with Applications – volume: 471 start-page: 1 year: 2019 end-page: 18 ident: bib0064 article-title: Enhancing comprehensive learning particle swarm optimization with local optima topology publication-title: Information Sciences – volume: 86 start-page: 1932 year: 2009 end-page: 1946 ident: bib0040 article-title: Hybridizing the electromagnetism-like algorithm with descent search for solving engineering design problems publication-title: International Journal of Computer Mathematics – volume: 170 start-page: 1 year: 2019 end-page: 19 ident: bib0060 article-title: An on-line variable-fidelity surrogate-assisted harmony search algorithm with multi-level screening strategy for expensive engineering design optimization publication-title: Knowledge-Based Systems – volume: 142 start-page: 192 year: 2018 end-page: 219 ident: bib0025 article-title: Immune generalized differential evolution for dynamic multi-objective environments: An empirical study publication-title: Knowledge-Based Systems – volume: 36 start-page: 3880 year: 2009 end-page: 3886 ident: bib0061 article-title: Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems publication-title: Expert Systems with Applications – volume: 108 start-page: 1 year: 2018 end-page: 27 ident: bib0014 article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization publication-title: Expert Systems with Applications – volume: 186 start-page: 1407 year: 2007 end-page: 1422 ident: bib0011 article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization publication-title: Applied Mathematics and Computation – volume: 37 start-page: 395 year: 2009 end-page: 413 ident: bib0053 article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique publication-title: Structural and Multidisciplinary Optimization – start-page: 1 year: 2019 end-page: 14 ident: bib0054 article-title: Joint deployment and task scheduling optimization for large-scale mobile users in multi-UAV-enabled mobile edge computing publication-title: IEEE Transactions on Cybernetics – volume: 181 start-page: 4699 year: 2011 end-page: 4714 ident: bib0051 article-title: Enhancing particle swarm optimization using generalized opposition-based learning publication-title: Information Sciences – volume: 194 start-page: 3902 year: 2005 end-page: 3933 ident: bib0019 article-title: A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 71 start-page: 747 year: 2018 end-page: 782 ident: bib0042 article-title: A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural network algorithm publication-title: Applied Soft Computing – volume: 40 start-page: 3951 year: 2016 end-page: 3978 ident: bib0044 article-title: Passing vehicle search (PVS): A novel metaheuristic algorithm publication-title: Applied Mathematical Modelling – volume: 142 year: 2020 ident: bib0062 article-title: Identification of influential users in social network using gray wolf optimization algorithm publication-title: Expert Systems with Applications – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: bib0056 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 139 start-page: 200 year: 2018 end-page: 213 ident: bib0048 article-title: A stability constrained adaptive alpha for gravitational search algorithm publication-title: Knowledge-Based Systems – volume: 116 start-page: 405 year: 1994 end-page: 411 ident: bib0016 article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: Journal of Mechanical Design – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: bib0029 article-title: The Whale optimization algorithm publication-title: Advances in Engineering Software – volume: 110–111 start-page: 151 year: 2012 end-page: 166 ident: bib0007 article-title: Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Computers & Structures – volume: 161 start-page: 185 year: 2018 end-page: 204 ident: bib0024 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowledge-Based Systems – volume: 27 start-page: 1511 year: 2016 end-page: 1517 ident: bib0052 article-title: A hybrid adaptive cuckoo search optimization algorithm for the problem of chaotic systems parameter estimation publication-title: Neural Computing and Applications – volume: 64 start-page: 459 year: 2013 end-page: 468 ident: bib0050 article-title: Improved cuckoo search for reliability optimization problems publication-title: Computers & Industrial Engineering – volume: 63 start-page: 289 year: 2018 end-page: 305 ident: bib0001 article-title: A modification of tree-seed algorithm using Deb's rules for constrained optimization publication-title: Applied Soft Computing – volume: 139 start-page: 98 year: 2014 end-page: 112 ident: bib0003 article-title: Symbiotic organisms search: A new metaheuristic optimization algorithm publication-title: Computers & Structures – volume: 20 start-page: 89 year: 2007 end-page: 99 ident: bib0012 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Engineering Applications of Artificial Intelligence – start-page: 210 year: 2009 end-page: 214 ident: bib0057 article-title: Cuckoo search via lévy flights publication-title: Proceedings of the World Congress on Nature Biologically Inspired Computing (NaBIC) – volume: 67 start-page: 197 year: 2018 end-page: 214 ident: bib0065 article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer publication-title: Applied Soft Computing – volume: 37 start-page: 1676 year: 2010 end-page: 1683 ident: bib0004 article-title: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems publication-title: Expert Systems with Applications – volume: 3 start-page: 82 year: 1999 end-page: 102 ident: bib0059 article-title: Evolutionary programming made faster publication-title: IEEE Transactions on Evolutionary Computation – year: 2007 ident: bib0055 article-title: The analects of confucius – volume: 24 start-page: 169 year: 2014 end-page: 174 ident: bib0058 article-title: Cuckoo search: Recent advances and applications publication-title: Neural Computing and Applications – volume: 63 start-page: 464 year: 2018 end-page: 490 ident: bib0063 article-title: Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems publication-title: Applied Mathematical Modelling – volume: 183 start-page: 1 year: 2012 end-page: 15 ident: bib0039 article-title: Teaching–Learning-Based optimization: An optimization method for continuous non-linear large scale problems publication-title: Information Sciences – volume: 22 start-page: 302 year: 2016 end-page: 310 ident: bib0009 article-title: An introduction of Krill Herd algorithm for engineering optimization publication-title: Journal of Civil Engineering and Management – volume: 10 start-page: 629 year: 2010 end-page: 640 ident: bib0021 article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization publication-title: Applied Soft Computing – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: bib0030 article-title: Grey Wolf optimizer publication-title: Advances in Engineering Software – volume: 112 start-page: 156 year: 2018 end-page: 172 ident: bib0008 article-title: Improved grasshopper optimization algorithm using opposition-based learning publication-title: Expert Systems with Applications – volume: 55 start-page: 493 year: 2016 end-page: 507 ident: bib0034 article-title: A new unconstrained global optimization method based on clustering and parabolic approximation publication-title: Expert Systems with Applications – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib0047 article-title: Differential evolution – A Simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization – start-page: 69 year: 1998 end-page: 73 ident: bib0045 article-title: A modified particle swarm optimizer publication-title: Proceedings of the IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360) – volume: 114 start-page: 563 year: 2018 end-page: 577 ident: bib0049 article-title: A modified whale optimization algorithm for large-scale global optimization problems publication-title: Expert Systems with Applications – start-page: 1 year: 2019 end-page: 12 ident: bib0013 article-title: Differential evolution with a variable population size for deployment optimization in a UAV-Assisted IoT data collection system publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence – volume: 29 start-page: 47 year: 2016 end-page: 72 ident: bib0031 article-title: Hybrid self-adaptive cuckoo search for global optimization publication-title: Swarm and Evolutionary Computation – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: bib0006 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation – volume: 52 start-page: 771 year: 2017 end-page: 794 ident: bib0036 article-title: Snap-drift cuckoo search: a novel cuckoo search optimization algorithm publication-title: Applied Soft Computing – volume: 123 start-page: 108 year: 2019 end-page: 126 ident: bib0022 article-title: Solving high-dimensional global optimization problems using an improved sine cosine algorithm publication-title: Expert Systems with Applications – volume: 12 start-page: 702 year: 2008 end-page: 713 ident: bib0046 article-title: Biogeography-based optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 142 year: 2020 ident: bib0015 article-title: Opinion leader detection using whale optimization algorithm in online social network publication-title: Expert Systems with Applications – volume: 115 start-page: 106 year: 2019 end-page: 120 ident: bib0032 article-title: Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm publication-title: Expert Systems with Applications – year: 2019 ident: bib0066 article-title: Hybrid teaching–learning-based optimization and neural network algorithm for engineering design optimization problems publication-title: Knowledge-Based Systems – volume: 86 start-page: 1932 issue: 10–11 year: 2009 ident: 10.1016/j.eswa.2020.113246_bib0040 article-title: Hybridizing the electromagnetism-like algorithm with descent search for solving engineering design problems publication-title: International Journal of Computer Mathematics doi: 10.1080/00207160902971533 – volume: 116 start-page: 405 issue: 2 year: 1994 ident: 10.1016/j.eswa.2020.113246_bib0016 article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: Journal of Mechanical Design doi: 10.1115/1.2919393 – volume: 38 start-page: 12180 issue: 10 year: 2011 ident: 10.1016/j.eswa.2020.113246_bib0020 article-title: A sensor deployment approach using glowworm swarm optimization algorithm in wireless sensor networks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.03.053 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.eswa.2020.113246_bib0027 article-title: Salp Swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.07.002 – year: 2007 ident: 10.1016/j.eswa.2020.113246_bib0055 – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2020.113246_bib0013 article-title: Differential evolution with a variable population size for deployment optimization in a UAV-Assisted IoT data collection system publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence doi: 10.1109/TETCI.2018.2890048 – volume: 24 start-page: 169 issue: 1 year: 2014 ident: 10.1016/j.eswa.2020.113246_bib0058 article-title: Cuckoo search: Recent advances and applications publication-title: Neural Computing and Applications doi: 10.1007/s00521-013-1367-1 – volume: 71 start-page: 747 year: 2018 ident: 10.1016/j.eswa.2020.113246_bib0042 article-title: A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural network algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.07.039 – volume: 167 start-page: 69 year: 2016 ident: 10.1016/j.eswa.2020.113246_bib0017 article-title: Water evaporation optimization: A novel physically inspired optimization algorithm publication-title: Computers & Structures doi: 10.1016/j.compstruc.2016.01.008 – volume: 37 start-page: 1676 issue: 2 year: 2010 ident: 10.1016/j.eswa.2020.113246_bib0004 article-title: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.06.044 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.eswa.2020.113246_bib0029 article-title: The Whale optimization algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 13 start-page: 2592 issue: 5 year: 2013 ident: 10.1016/j.eswa.2020.113246_bib0041 article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.11.026 – volume: 63 start-page: 289 year: 2018 ident: 10.1016/j.eswa.2020.113246_bib0001 article-title: A modification of tree-seed algorithm using Deb's rules for constrained optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.10.013 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.eswa.2020.113246_bib0006 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2011.02.002 – volume: 265 start-page: 533 year: 2015 ident: 10.1016/j.eswa.2020.113246_bib0033 article-title: Teaching-learning based optimization with global crossover for global optimization problems publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2015.05.012 – volume: 161 start-page: 185 year: 2018 ident: 10.1016/j.eswa.2020.113246_bib0024 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.08.003 – volume: 12 start-page: 64 issue: 1 year: 2008 ident: 10.1016/j.eswa.2020.113246_bib0035 article-title: Opposition-based differential evolution publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2007.894200 – volume: 29 start-page: 17 issue: 1 year: 2013 ident: 10.1016/j.eswa.2020.113246_bib0010 article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems publication-title: Engineering with Computers doi: 10.1007/s00366-011-0241-y – volume: 107 start-page: 89 year: 2018 ident: 10.1016/j.eswa.2020.113246_bib0023 article-title: Grey wolf optimizer with cellular topological structure publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.04.012 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.eswa.2020.113246_bib0030 article-title: Grey Wolf optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 183 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.eswa.2020.113246_bib0039 article-title: Teaching–Learning-Based optimization: An optimization method for continuous non-linear large scale problems publication-title: Information Sciences doi: 10.1016/j.ins.2011.08.006 – volume: 471 start-page: 1 year: 2019 ident: 10.1016/j.eswa.2020.113246_bib0064 article-title: Enhancing comprehensive learning particle swarm optimization with local optima topology publication-title: Information Sciences doi: 10.1016/j.ins.2018.08.049 – volume: 142 year: 2020 ident: 10.1016/j.eswa.2020.113246_bib0062 article-title: Identification of influential users in social network using gray wolf optimization algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.112971 – start-page: 210 year: 2009 ident: 10.1016/j.eswa.2020.113246_bib0057 article-title: Cuckoo search via lévy flights – volume: 186 start-page: 1407 issue: 2 year: 2007 ident: 10.1016/j.eswa.2020.113246_bib0011 article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.07.134 – volume: 29 start-page: 47 year: 2016 ident: 10.1016/j.eswa.2020.113246_bib0031 article-title: Hybrid self-adaptive cuckoo search for global optimization publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2016.03.001 – volume: 114 start-page: 563 year: 2018 ident: 10.1016/j.eswa.2020.113246_bib0049 article-title: A modified whale optimization algorithm for large-scale global optimization problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.08.027 – volume: 142 year: 2020 ident: 10.1016/j.eswa.2020.113246_bib0015 article-title: Opinion leader detection using whale optimization algorithm in online social network publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.113016 – volume: 115 start-page: 106 year: 2019 ident: 10.1016/j.eswa.2020.113246_bib0032 article-title: Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.08.008 – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2020.113246_bib0054 article-title: Joint deployment and task scheduling optimization for large-scale mobile users in multi-UAV-enabled mobile edge computing publication-title: IEEE Transactions on Cybernetics – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.eswa.2020.113246_bib0047 article-title: Differential evolution – A Simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – volume: 40 start-page: 3951 issue: 5–6 year: 2016 ident: 10.1016/j.eswa.2020.113246_bib0044 article-title: Passing vehicle search (PVS): A novel metaheuristic algorithm publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2015.10.040 – volume: 63 start-page: 464 year: 2018 ident: 10.1016/j.eswa.2020.113246_bib0063 article-title: Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2018.06.036 – volume: 194 start-page: 3902 issue: 36 year: 2005 ident: 10.1016/j.eswa.2020.113246_bib0019 article-title: A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2004.09.007 – volume: 10 start-page: 629 issue: 2 year: 2010 ident: 10.1016/j.eswa.2020.113246_bib0021 article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2009.08.031 – volume: 139 start-page: 98 year: 2014 ident: 10.1016/j.eswa.2020.113246_bib0003 article-title: Symbiotic organisms search: A new metaheuristic optimization algorithm publication-title: Computers & Structures doi: 10.1016/j.compstruc.2014.03.007 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.eswa.2020.113246_bib0056 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585893 – volume: 36 start-page: 3880 issue: 2, Part 2 year: 2009 ident: 10.1016/j.eswa.2020.113246_bib0061 article-title: Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.02.039 – volume: 55 start-page: 493 year: 2016 ident: 10.1016/j.eswa.2020.113246_bib0034 article-title: A new unconstrained global optimization method based on clustering and parabolic approximation publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.02.036 – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 10.1016/j.eswa.2020.113246_bib0046 article-title: Biogeography-based optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.919004 – volume: 139 start-page: 200 year: 2018 ident: 10.1016/j.eswa.2020.113246_bib0048 article-title: A stability constrained adaptive alpha for gravitational search algorithm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.10.018 – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.eswa.2020.113246_bib0026 article-title: SCA: A sine cosine algorithm for solving optimization problems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.12.022 – volume: 142 start-page: 192 year: 2018 ident: 10.1016/j.eswa.2020.113246_bib0025 article-title: Immune generalized differential evolution for dynamic multi-objective environments: An empirical study publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.11.037 – volume: 297 start-page: 171 year: 2015 ident: 10.1016/j.eswa.2020.113246_bib0002 article-title: An improved teaching–learning-based optimization algorithm for solving global optimization problem publication-title: Information Sciences doi: 10.1016/j.ins.2014.11.001 – volume: 123 start-page: 108 year: 2019 ident: 10.1016/j.eswa.2020.113246_bib0022 article-title: Solving high-dimensional global optimization problems using an improved sine cosine algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.11.032 – volume: 3 start-page: 82 issue: 2 year: 1999 ident: 10.1016/j.eswa.2020.113246_bib0059 article-title: Evolutionary programming made faster publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.771163 – year: 2019 ident: 10.1016/j.eswa.2020.113246_bib0066 article-title: Hybrid teaching–learning-based optimization and neural network algorithm for engineering design optimization problems publication-title: Knowledge-Based Systems – volume: 110–111 start-page: 151 year: 2012 ident: 10.1016/j.eswa.2020.113246_bib0007 article-title: Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Computers & Structures doi: 10.1016/j.compstruc.2012.07.010 – volume: 27 start-page: 1511 issue: 6 year: 2016 ident: 10.1016/j.eswa.2020.113246_bib0052 article-title: A hybrid adaptive cuckoo search optimization algorithm for the problem of chaotic systems parameter estimation publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1949-1 – volume: 67 start-page: 197 year: 2018 ident: 10.1016/j.eswa.2020.113246_bib0065 article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.02.049 – volume: 112 start-page: 156 year: 2018 ident: 10.1016/j.eswa.2020.113246_bib0008 article-title: Improved grasshopper optimization algorithm using opposition-based learning publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.06.023 – volume: 22 start-page: 302 issue: 3 year: 2016 ident: 10.1016/j.eswa.2020.113246_bib0009 article-title: An introduction of Krill Herd algorithm for engineering optimization publication-title: Journal of Civil Engineering and Management doi: 10.3846/13923730.2014.897986 – volume: 64 start-page: 459 issue: 1 year: 2013 ident: 10.1016/j.eswa.2020.113246_bib0050 article-title: Improved cuckoo search for reliability optimization problems publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2012.07.011 – volume: 37 start-page: 395 issue: 4 year: 2009 ident: 10.1016/j.eswa.2020.113246_bib0053 article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-008-0238-3 – volume: 20 start-page: 89 issue: 1 year: 2007 ident: 10.1016/j.eswa.2020.113246_bib0012 article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2006.03.003 – volume: 181 start-page: 4699 issue: 20 year: 2011 ident: 10.1016/j.eswa.2020.113246_bib0051 article-title: Enhancing particle swarm optimization using generalized opposition-based learning publication-title: Information Sciences doi: 10.1016/j.ins.2011.03.016 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 10.1016/j.eswa.2020.113246_bib0038 article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Computer-Aided Design doi: 10.1016/j.cad.2010.12.015 – volume: 37 start-page: 4687 issue: 6 year: 2010 ident: 10.1016/j.eswa.2020.113246_bib0018 article-title: UAV navigation by an expert system for contaminant mapping with a genetic algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.12.039 – volume: 170 start-page: 1 year: 2019 ident: 10.1016/j.eswa.2020.113246_bib0060 article-title: An on-line variable-fidelity surrogate-assisted harmony search algorithm with multi-level screening strategy for expensive engineering design optimization publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.01.004 – start-page: 69 year: 1998 ident: 10.1016/j.eswa.2020.113246_bib0045 article-title: A modified particle swarm optimizer – volume: 41 start-page: 113 issue: 2 year: 2000 ident: 10.1016/j.eswa.2020.113246_bib0005 article-title: Use of a self-adaptive penalty approach for engineering optimization problems publication-title: Computers in Industry doi: 10.1016/S0166-3615(99)00046-9 – volume: 108 start-page: 1 year: 2018 ident: 10.1016/j.eswa.2020.113246_bib0014 article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.04.028 – volume: 52 start-page: 771 year: 2017 ident: 10.1016/j.eswa.2020.113246_bib0036 article-title: Snap-drift cuckoo search: a novel cuckoo search optimization algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.09.048 |
SSID | ssj0017007 |
Score | 2.6450398 |
Snippet | •A new classification method for metaheuristic algorithms is presented.•Group teaching optimization algorithm is proposed for global optimization.•Group... In last 30 years, many metaheuristic algorithms have been developed to solve optimization problems. However, most existing metaheuristic algorithms have extra... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113246 |
SubjectTerms | Algorithms Computer simulation Criteria Design engineering Design optimization Engineering design Global optimization Group teaching Heuristic methods Optimization algorithms Optimization techniques Parameters Swarm intelligence Teachers Teaching |
Title | Group teaching optimization algorithm: A novel metaheuristic method for solving global optimization problems |
URI | https://dx.doi.org/10.1016/j.eswa.2020.113246 https://www.proquest.com/docview/2438989073 |
Volume | 148 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRhRK5YENhSaxHSdsVUVVQHSBSmyWX6FFfalNYeO3Y8dOpSLEwJjItqLz-e4cffd9AFwJ25ErEQ1CotIAKyyDNEEiyDCKQ0ylyku0-9Mg6Q_xwyt5rYFu1QtjYZU-9ruYXkZr_6btrdlejMftZ1McmHRornbGT0Ma20ZzjKn18puvDczD0s9Rx7dHAzvaN844jJdefVruobiUNoltEfx7cvoRpsvc0zsAe75ohB33XYegpmdHYL8SZID-fB6DSfknCRYeIQnnJh5MfaMl5JO3-XJcjKa3sANn8w89gVNd8JFeO7Jm6MSkoalioXFI-6MBOrqQ7XW8BM3qBAx7dy_dfuDlFAKJ4rQIRBSpWIWSKBFSJbTiGknFVZTkMke5TjUhKhIEc2RuVTSVXCVCZlksUUKVwugU1GfzmT4DMEScI2lKuSgTWBHFBeaZSHMdCW7WpQ0QVXZk0nONW8mLCatAZe_M2p5Z2zNn-wa43sxZOKaNP0eTanvYlr8wkwr-nNes9pL507pisZWATzMT7c7_uewF2LVPFkMWkSaoF8u1vjTVSiFapTu2wE7n_rE_-AYPwuy4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMsDCG1GeHthQ1CS282CrKlCB0gWQ2Cy_AkV9qU3h72PHDhIIMbAmPis6n-_Oznf3AZwLW5ErcRqEVGUBUUQGWYJFkBMchySVqqjQ7veDpPdEbp_pcwO6dS2MhVV63-98euWt_ZO212Z7Nhy2H0xyYMKhOdoZOw3TmK7Aqu1ORZuw2rm56w2-fiakoauaNuMDK-BrZxzMSy8-bPuhuGI3iW0e_Ht8-uGpq_BzvQUbPm9EHfdp29DQkx3YrDkZkN-iuzCqLpNQ6UGSaGpcwtjXWiI-epnOh-Xr-BJ10GT6rkdorEv-qpeuXzNyfNLIJLLI2KS9a0CuY8j3eTwLzWIPnq6vHru9wDMqBBLHWRmIKFKxCiVVIkyV0IprLBVXUVLIAhc605SqSFDCsTlYpZnkKhEyz2OJk1QpgvehOZlO9AGgEHOOpcnmolwQRRUXhOciK3QkuJk3bUFU65FJ327csl6MWI0re2NW98zqnjndt-DiS2bmmm38OZrWy8O-mQwz0eBPueN6LZnfsAsWWxb4LDcO7_Cf057BWu_xvs_6N4O7I1i3byykLKLH0CznS31ikpdSnHrj_AQm_u9p |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group+teaching+optimization+algorithm%3A+A+novel+metaheuristic+method+for+solving+global+optimization+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Zhang%2C+Yiying&rft.au=Jin%2C+Zhigang&rft.date=2020-06-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=148&rft_id=info:doi/10.1016%2Fj.eswa.2020.113246&rft.externalDocID=S0957417420300725 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |