Group teaching optimization algorithm: A novel metaheuristic method for solving global optimization problems

•A new classification method for metaheuristic algorithms is presented.•Group teaching optimization algorithm is proposed for global optimization.•Group teaching optimization algorithm is inspired by group teaching.•Experiments show that the proposed method outperforms state-of-the-art algorithms. I...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 148; p. 113246
Main Authors Zhang, Yiying, Jin, Zhigang
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.06.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A new classification method for metaheuristic algorithms is presented.•Group teaching optimization algorithm is proposed for global optimization.•Group teaching optimization algorithm is inspired by group teaching.•Experiments show that the proposed method outperforms state-of-the-art algorithms. In last 30 years, many metaheuristic algorithms have been developed to solve optimization problems. However, most existing metaheuristic algorithms have extra control parameters except the essential population size and stopping criterion. Considering different characteristics of different optimization problems, how to adjust these extra control parameters is a great challenge for these algorithms in solving different optimization problems. In order to address this challenge, a new metaheuristic algorithm called group teaching optimization algorithm (GTOA) is presented in this paper. The proposed GTOA is inspired by group teaching mechanism. To adapt group teaching to be suitable for using as an optimization technique, without loss of generality, four simple rules are first defined. Then a group teaching model is built under the guide of the four rules, which consists of teacher allocation phase, ability grouping phase, teacher phase and student phase. Note that GTOA needs only the essential population size and stopping criterion without extra control parameters, which has great potential to be used widely. GTOA is first examined over 28 well-known unconstrained benchmark problems and the optimization results are compared with nine state-of-the-art algorithms. Experimental results show the superior performance of the proposed GTOA for these problems in terms of solution quality, convergence speed and stability. Furthermore, GTOA is used to solve four constrained engineering design optimization problems in the real world. Simulation results demonstrate the proposed GTOA can find better solutions with faster speed compared with the reported optimizers.
AbstractList In last 30 years, many metaheuristic algorithms have been developed to solve optimization problems. However, most existing metaheuristic algorithms have extra control parameters except the essential population size and stopping criterion. Considering different characteristics of different optimization problems, how to adjust these extra control parameters is a great challenge for these algorithms in solving different optimization problems. In order to address this challenge, a new metaheuristic algorithm called group teaching optimization algorithm (GTOA) is presented in this paper. The proposed GTOA is inspired by group teaching mechanism. To adapt group teaching to be suitable for using as an optimization technique, without loss of generality, four simple rules are first defined. Then a group teaching model is built under the guide of the four rules, which consists of teacher allocation phase, ability grouping phase, teacher phase and student phase. Note that GTOA needs only the essential population size and stopping criterion without extra control parameters, which has great potential to be used widely. GTOA is first examined over 28 well-known unconstrained benchmark problems and the optimization results are compared with nine state-of-the-art algorithms. Experimental results show the superior performance of the proposed GTOA for these problems in terms of solution quality, convergence speed and stability. Furthermore, GTOA is used to solve four constrained engineering design optimization problems in the real world. Simulation results demonstrate the proposed GTOA can find better solutions with faster speed compared with the reported optimizers.
•A new classification method for metaheuristic algorithms is presented.•Group teaching optimization algorithm is proposed for global optimization.•Group teaching optimization algorithm is inspired by group teaching.•Experiments show that the proposed method outperforms state-of-the-art algorithms. In last 30 years, many metaheuristic algorithms have been developed to solve optimization problems. However, most existing metaheuristic algorithms have extra control parameters except the essential population size and stopping criterion. Considering different characteristics of different optimization problems, how to adjust these extra control parameters is a great challenge for these algorithms in solving different optimization problems. In order to address this challenge, a new metaheuristic algorithm called group teaching optimization algorithm (GTOA) is presented in this paper. The proposed GTOA is inspired by group teaching mechanism. To adapt group teaching to be suitable for using as an optimization technique, without loss of generality, four simple rules are first defined. Then a group teaching model is built under the guide of the four rules, which consists of teacher allocation phase, ability grouping phase, teacher phase and student phase. Note that GTOA needs only the essential population size and stopping criterion without extra control parameters, which has great potential to be used widely. GTOA is first examined over 28 well-known unconstrained benchmark problems and the optimization results are compared with nine state-of-the-art algorithms. Experimental results show the superior performance of the proposed GTOA for these problems in terms of solution quality, convergence speed and stability. Furthermore, GTOA is used to solve four constrained engineering design optimization problems in the real world. Simulation results demonstrate the proposed GTOA can find better solutions with faster speed compared with the reported optimizers.
ArticleNumber 113246
Author Jin, Zhigang
Zhang, Yiying
Author_xml – sequence: 1
  givenname: Yiying
  surname: Zhang
  fullname: Zhang, Yiying
  email: zhangyiying@tju.edu.cn
– sequence: 2
  givenname: Zhigang
  surname: Jin
  fullname: Jin, Zhigang
  email: zgjin@tju.edu.cn
BookMark eNp9kDFPwzAQhS1UJNrCH2CKxJxix0mcIJaqgoJUiQVmy7EvrSMnDrZbBL-ehLLA0Ol0p_e9u3szNOlsBwhdE7wgmOS3zQL8h1gkOBkGhCZpfoampGA0zllJJ2iKy4zFKWHpBZp532BMGMZsisza2X0fBRByp7ttZPugW_0lgrZdJMzWOh127V20jDp7ABO1EMQO9k77oOXY7ayKausib81hNNgaWwnz16d3tjLQ-kt0Xgvj4eq3ztHb48Pr6inevKyfV8tNLGlShLgiRCUKy0xVmKkKlAAqlVAkr2VNayggyxSpslTQnJSskELllSzLRNKcKZXSObo5-g6L3_fgA2_s3nXDSp6ktCiLEjM6qIqjSjrrvYOaSx1-Dg5OaMMJ5mO2vOFjtnzMlh-zHdDkH9o73Qr3eRq6P0IwvH7Q4LiXGjoJSjuQgSurT-HfyM6Yzg
CitedBy_id crossref_primary_10_1007_s10922_023_09779_4
crossref_primary_10_3390_biomimetics9090509
crossref_primary_10_1109_ACCESS_2022_3212081
crossref_primary_10_1007_s10462_022_10340_z
crossref_primary_10_1016_j_knosys_2021_107405
crossref_primary_10_3390_math10101626
crossref_primary_10_1016_j_asoc_2022_109847
crossref_primary_10_1016_j_eswa_2024_123734
crossref_primary_10_1371_journal_pone_0275346
crossref_primary_10_3934_mbe_2023592
crossref_primary_10_1016_j_eswa_2021_114577
crossref_primary_10_3390_math10224350
crossref_primary_10_1016_j_dajour_2023_100360
crossref_primary_10_1007_s11831_023_09912_1
crossref_primary_10_1007_s10472_022_09799_x
crossref_primary_10_3390_biomimetics8080619
crossref_primary_10_1016_j_ijleo_2022_170166
crossref_primary_10_1007_s10462_024_10738_x
crossref_primary_10_3390_electronics13132622
crossref_primary_10_1093_jcde_qwad048
crossref_primary_10_1109_ACCESS_2023_3304889
crossref_primary_10_3233_JIFS_222516
crossref_primary_10_1109_ACCESS_2021_3096726
crossref_primary_10_1002_int_22707
crossref_primary_10_1109_ACCESS_2022_3223388
crossref_primary_10_1016_j_swevo_2023_101373
crossref_primary_10_1038_s41598_024_69010_5
crossref_primary_10_3390_jmse10091305
crossref_primary_10_1016_j_matcom_2022_08_017
crossref_primary_10_1109_TNNLS_2021_3109565
crossref_primary_10_1038_s41598_024_53602_2
crossref_primary_10_1007_s40747_021_00478_8
crossref_primary_10_1016_j_jpowsour_2024_235615
crossref_primary_10_1016_j_eswa_2023_120639
crossref_primary_10_1007_s11803_022_2116_1
crossref_primary_10_1007_s12065_022_00722_1
crossref_primary_10_32604_cmc_2022_021059
crossref_primary_10_3390_electronics9111962
crossref_primary_10_1016_j_oceaneng_2022_113308
crossref_primary_10_1016_j_cma_2025_117908
crossref_primary_10_3390_math12223464
crossref_primary_10_1007_s00500_022_07107_7
crossref_primary_10_1007_s40747_021_00549_w
crossref_primary_10_1016_j_knosys_2022_109484
crossref_primary_10_1016_j_asoc_2021_107808
crossref_primary_10_1080_0305215X_2023_2296538
crossref_primary_10_35377_saucis___1474767
crossref_primary_10_1016_j_eswa_2021_116026
crossref_primary_10_1016_j_eswa_2023_120207
crossref_primary_10_1007_s10586_024_04328_3
crossref_primary_10_1007_s12083_021_01186_3
crossref_primary_10_1016_j_enconman_2020_113301
crossref_primary_10_3934_mbe_2023443
crossref_primary_10_1007_s13042_024_02197_1
crossref_primary_10_1155_2021_9210050
crossref_primary_10_1016_j_cosrev_2020_100342
crossref_primary_10_1002_int_22524
crossref_primary_10_1108_COMPEL_12_2020_0422
crossref_primary_10_1016_j_ijepes_2023_109586
crossref_primary_10_1038_s41598_024_57518_9
crossref_primary_10_1155_2022_7272048
crossref_primary_10_37391_ijeer_12et_evs05
crossref_primary_10_1007_s10462_024_10986_x
crossref_primary_10_1093_jcde_qwad096
crossref_primary_10_1016_j_asoc_2023_110908
crossref_primary_10_1016_j_cie_2021_107198
crossref_primary_10_1016_j_knosys_2021_107555
crossref_primary_10_1007_s11144_021_01927_8
crossref_primary_10_1007_s10489_022_03994_3
crossref_primary_10_1109_ACCESS_2022_3153493
crossref_primary_10_1155_2022_1928343
crossref_primary_10_1016_j_engappai_2023_107721
crossref_primary_10_1007_s10915_022_01955_z
crossref_primary_10_3390_en15062105
crossref_primary_10_7717_peerj_cs_1526
crossref_primary_10_1007_s10489_021_02629_3
crossref_primary_10_1038_s41598_022_15170_1
crossref_primary_10_1007_s11276_023_03359_9
crossref_primary_10_1002_ett_4402
crossref_primary_10_1142_S0219622022500754
crossref_primary_10_1007_s00500_024_09689_w
crossref_primary_10_3390_math10193604
crossref_primary_10_3390_biomimetics9080500
crossref_primary_10_1007_s11831_023_10060_9
crossref_primary_10_1016_j_asoc_2025_113071
crossref_primary_10_1016_j_eswa_2022_117493
crossref_primary_10_1007_s40430_022_03700_x
crossref_primary_10_1016_j_jer_2024_05_008
crossref_primary_10_3390_math10132179
crossref_primary_10_1007_s10489_020_02091_7
crossref_primary_10_1016_j_apm_2022_11_016
crossref_primary_10_1038_s41598_022_22170_8
crossref_primary_10_1111_exsy_70016
crossref_primary_10_1016_j_dajour_2022_100043
crossref_primary_10_1007_s12065_024_00937_4
crossref_primary_10_1016_j_oor_2024_100260
crossref_primary_10_1080_0954898X_2024_2321391
crossref_primary_10_2139_ssrn_4165791
crossref_primary_10_3390_atmos12010064
crossref_primary_10_3390_pr9020200
crossref_primary_10_1007_s12597_024_00785_x
crossref_primary_10_1155_2022_6627409
crossref_primary_10_1007_s00500_022_07283_6
crossref_primary_10_1016_j_cie_2020_107050
crossref_primary_10_1007_s10462_023_10567_4
crossref_primary_10_1016_j_engappai_2022_105622
crossref_primary_10_1016_j_eswa_2020_113612
crossref_primary_10_1002_eng2_12974
crossref_primary_10_3390_biomimetics8050396
crossref_primary_10_1007_s13369_024_09807_8
crossref_primary_10_1016_j_eswa_2021_115178
crossref_primary_10_1109_TGRS_2024_3462752
crossref_primary_10_1140_epjs_s11734_021_00208_8
crossref_primary_10_1007_s00366_020_01120_w
crossref_primary_10_1016_j_eswa_2021_115690
crossref_primary_10_1142_S0218625X22501268
crossref_primary_10_32604_csse_2023_030132
crossref_primary_10_1007_s10845_021_01872_2
crossref_primary_10_1007_s12065_022_00762_7
crossref_primary_10_3390_su15064982
crossref_primary_10_1007_s00500_021_05886_z
crossref_primary_10_3390_math11102340
crossref_primary_10_7717_peerj_cs_2278
crossref_primary_10_1016_j_istruc_2022_04_014
crossref_primary_10_3390_biomimetics9070419
crossref_primary_10_1007_s11276_021_02630_1
crossref_primary_10_1016_j_advengsoft_2020_102885
crossref_primary_10_1080_1448837X_2025_2467585
crossref_primary_10_1007_s42235_024_00545_z
crossref_primary_10_1093_jcde_qwae044
crossref_primary_10_1093_jcde_qwad110
crossref_primary_10_1016_j_cma_2022_114570
crossref_primary_10_1016_j_eswa_2024_124400
crossref_primary_10_1093_jcde_qwad060
crossref_primary_10_1016_j_advengsoft_2022_103185
crossref_primary_10_1109_ACCESS_2022_3157400
crossref_primary_10_1016_j_eswa_2022_117993
crossref_primary_10_1016_j_phycom_2021_101411
crossref_primary_10_1038_s41598_025_92983_w
crossref_primary_10_3390_biomimetics10010014
crossref_primary_10_1007_s00521_022_08058_8
crossref_primary_10_1007_s10462_021_10035_x
crossref_primary_10_3390_app14209610
crossref_primary_10_1088_1361_665X_ad939c
crossref_primary_10_1007_s10115_024_02210_7
crossref_primary_10_1016_j_jksuci_2024_102255
crossref_primary_10_1007_s10462_023_10680_4
crossref_primary_10_1016_j_asej_2024_102883
crossref_primary_10_55546_jmm_1291032
crossref_primary_10_1016_j_yofte_2022_102971
crossref_primary_10_3390_math10203765
crossref_primary_10_3390_biomimetics9050280
crossref_primary_10_1007_s00521_021_05708_1
crossref_primary_10_15388_24_INFOR563
crossref_primary_10_1016_j_compind_2024_104209
crossref_primary_10_1007_s10586_024_04508_1
crossref_primary_10_1016_j_egyr_2023_12_053
crossref_primary_10_1016_j_engappai_2023_106959
crossref_primary_10_1109_ACCESS_2021_3064799
crossref_primary_10_1007_s11831_023_10030_1
crossref_primary_10_3390_electronics14020274
crossref_primary_10_1007_s10462_024_11035_3
crossref_primary_10_3390_biomimetics9060361
crossref_primary_10_1038_s41598_023_49438_x
crossref_primary_10_1007_s10462_022_10173_w
crossref_primary_10_1063_5_0073335
crossref_primary_10_1007_s00521_024_10694_1
crossref_primary_10_1007_s11277_021_09249_7
Cites_doi 10.1080/00207160902971533
10.1115/1.2919393
10.1016/j.eswa.2011.03.053
10.1016/j.advengsoft.2017.07.002
10.1109/TETCI.2018.2890048
10.1007/s00521-013-1367-1
10.1016/j.asoc.2018.07.039
10.1016/j.compstruc.2016.01.008
10.1016/j.eswa.2009.06.044
10.1016/j.advengsoft.2016.01.008
10.1016/j.asoc.2012.11.026
10.1016/j.asoc.2017.10.013
10.1016/j.swevo.2011.02.002
10.1016/j.amc.2015.05.012
10.1016/j.knosys.2018.08.003
10.1109/TEVC.2007.894200
10.1007/s00366-011-0241-y
10.1016/j.eswa.2018.04.012
10.1016/j.advengsoft.2013.12.007
10.1016/j.ins.2011.08.006
10.1016/j.ins.2018.08.049
10.1016/j.eswa.2019.112971
10.1016/j.amc.2006.07.134
10.1016/j.swevo.2016.03.001
10.1016/j.eswa.2018.08.027
10.1016/j.eswa.2019.113016
10.1016/j.eswa.2018.08.008
10.1023/A:1008202821328
10.1016/j.apm.2015.10.040
10.1016/j.apm.2018.06.036
10.1016/j.cma.2004.09.007
10.1016/j.asoc.2009.08.031
10.1016/j.compstruc.2014.03.007
10.1109/4235.585893
10.1016/j.eswa.2008.02.039
10.1016/j.eswa.2016.02.036
10.1109/TEVC.2008.919004
10.1016/j.knosys.2017.10.018
10.1016/j.knosys.2015.12.022
10.1016/j.knosys.2017.11.037
10.1016/j.ins.2014.11.001
10.1016/j.eswa.2018.11.032
10.1109/4235.771163
10.1016/j.compstruc.2012.07.010
10.1007/s00521-015-1949-1
10.1016/j.asoc.2018.02.049
10.1016/j.eswa.2018.06.023
10.3846/13923730.2014.897986
10.1016/j.cie.2012.07.011
10.1007/s00158-008-0238-3
10.1016/j.engappai.2006.03.003
10.1016/j.ins.2011.03.016
10.1016/j.cad.2010.12.015
10.1016/j.eswa.2009.12.039
10.1016/j.knosys.2019.01.004
10.1016/S0166-3615(99)00046-9
10.1016/j.eswa.2018.04.028
10.1016/j.asoc.2016.09.048
ContentType Journal Article
Copyright 2020
Copyright Elsevier BV Jun 15, 2020
Copyright_xml – notice: 2020
– notice: Copyright Elsevier BV Jun 15, 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.113246
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_113246
S0957417420300725
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-b11d2d0c5db07dbedae3cdad16fcf3fe8e55d1b54a361978cad6bc992c367dd43
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Mon Jul 14 07:40:31 EDT 2025
Tue Jul 01 04:05:47 EDT 2025
Thu Apr 24 23:05:58 EDT 2025
Fri Feb 23 02:48:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Engineering design
Group teaching
Global optimization
Swarm intelligence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-b11d2d0c5db07dbedae3cdad16fcf3fe8e55d1b54a361978cad6bc992c367dd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2438989073
PQPubID 2045477
ParticipantIDs proquest_journals_2438989073
crossref_citationtrail_10_1016_j_eswa_2020_113246
crossref_primary_10_1016_j_eswa_2020_113246
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113246
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-15
PublicationDateYYYYMMDD 2020-06-15
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Ibrahim, Elaziz, Lu (bib0014) 2018; 108
Kannan, Kramer (bib0016) 1994; 116
Mafarja, Aljarah, Heidari, Faris, Fournier-Viger, Li (bib0024) 2018; 161
Shi, Eberhart (bib0045) 1998
Simon (bib0046) 2008; 12
Yao, Liu, Lin (bib0059) 1999; 3
Babalik, Cinar, Kiran (bib0001) 2018; 63
Gandomi, Yang, Alavi (bib0010) 2013; 29
He, Wang (bib0012) 2007; 20
Rao, Savsani, Vakharia (bib0038) 2011; 43
Pence, Cesmeli, Senel, Cetisli (bib0034) 2016; 55
He, Wang (bib0011) 2007; 186
Coelho (bib0004) 2010; 37
Rao, Savsani, Vakharia (bib0039) 2012; 183
Storn, Price (bib0047) 1997; 11
Huang, Wang, Wang, Yang (bib0013) 2019
Chen, Zou, Li, Wang, Li (bib0002) 2015; 297
Watson (bib0055) 2007
Sun, Wang, Chen, Liu (bib0049) 2018; 114
Ouyang, Gao, Kong, Zou, Li (bib0033) 2015; 265
Wang, Ru, Wang, Huang (bib0054) 2019
Kaveh, Bakhshpoori (bib0017) 2016; 167
Long, Wu, Liang, Xu (bib0022) 2019; 123
Rakhshani, Rahati (bib0036) 2017; 52
Lu, Gao, Yi (bib0023) 2018; 107
Rahnamayan, Tizhoosh, Salama (bib0035) 2008; 12
Zhang, Huang, Zhang (bib0064) 2019; 471
Coello Coello (bib0005) 2000; 41
Kuroki, Young, Haupt (bib0018) 2010; 37
Yang, Deb (bib0057) 2009
Cheng, Prayogo (bib0003) 2014; 139
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (bib0027) 2017; 114
Nazarahari, Khanmirza, Doostie (bib0032) 2019; 115
Wang, Zhou (bib0052) 2016; 27
Eskandar, Sadollah, Bahreininejad, Hamdi (bib0007) 2012; 110–111
Derrac, García, Molina, Herrera (bib0006) 2011; 1
Liu, Cai, Wang (bib0021) 2010; 10
Ewees, Abd Elaziz, Houssein (bib0008) 2018; 112
Lee, Geem (bib0019) 2005; 194
Wang, Cai, Zhou, Fan (bib0053) 2009; 37
Mirjalili (bib0026) 2016; 96
Zahara, Kao (bib0061) 2009; 36
Sadollah, Bahreininejad, Eskandar, Hamdi (bib0041) 2013; 13
Yang, Deb (bib0058) 2014; 24
Martínez-Peñaloza, Mezura-Montes (bib0025) 2018; 142
Sun, Ma, Ren, Zhang, Jia (bib0048) 2018; 139
Mirjalili, Lewis (bib0029) 2016; 95
Wang, Wu, Rahnamayan, Liu, Ventresca (bib0051) 2011; 181
Jain, Katarya, Sachdeva (bib0015) 2020; 142
Yi, Gao, Li, Shoemaker, Lu (bib0060) 2019; 170
Wolpert, Macready (bib0056) 1997; 1
Zhang, Xiao, Gao, Pan (bib0063) 2018; 63
Liao, Kao, Li (bib0020) 2011; 38
Zhang, Kang, Cheng, Wang (bib0065) 2018; 67
Sadollah, Sayyaadi, Yadav (bib0042) 2018; 71
Zhang, Jin, Chen (bib0066) 2019
Mlakar, Fister, Fister (bib0031) 2016; 29
Valian, Tavakoli, Mohanna, Haghi (bib0050) 2013; 64
Gandomi, Alavi (bib0009) 2016; 22
Savsani, Savsani (bib0044) 2016; 40
Rocha, Fernandes (bib0040) 2009; 86
Zareie, Sheikhahmadi, Jalili (bib0062) 2020; 142
Mirjalili, Mirjalili, Lewis (bib0030) 2014; 69
Ouyang (10.1016/j.eswa.2020.113246_bib0033) 2015; 265
Mirjalili (10.1016/j.eswa.2020.113246_bib0026) 2016; 96
Zhang (10.1016/j.eswa.2020.113246_bib0064) 2019; 471
Shi (10.1016/j.eswa.2020.113246_bib0045) 1998
Liao (10.1016/j.eswa.2020.113246_bib0020) 2011; 38
Zareie (10.1016/j.eswa.2020.113246_bib0062) 2020; 142
Long (10.1016/j.eswa.2020.113246_bib0022) 2019; 123
Wang (10.1016/j.eswa.2020.113246_bib0053) 2009; 37
Derrac (10.1016/j.eswa.2020.113246_bib0006) 2011; 1
Martínez-Peñaloza (10.1016/j.eswa.2020.113246_bib0025) 2018; 142
Eskandar (10.1016/j.eswa.2020.113246_bib0007) 2012; 110–111
Storn (10.1016/j.eswa.2020.113246_bib0047) 1997; 11
Rakhshani (10.1016/j.eswa.2020.113246_bib0036) 2017; 52
Rahnamayan (10.1016/j.eswa.2020.113246_bib0035) 2008; 12
Lu (10.1016/j.eswa.2020.113246_bib0023) 2018; 107
Zahara (10.1016/j.eswa.2020.113246_bib0061) 2009; 36
Rao (10.1016/j.eswa.2020.113246_bib0038) 2011; 43
Coelho (10.1016/j.eswa.2020.113246_bib0004) 2010; 37
He (10.1016/j.eswa.2020.113246_bib0012) 2007; 20
Mirjalili (10.1016/j.eswa.2020.113246_bib0029) 2016; 95
Pence (10.1016/j.eswa.2020.113246_bib0034) 2016; 55
Liu (10.1016/j.eswa.2020.113246_bib0021) 2010; 10
Nazarahari (10.1016/j.eswa.2020.113246_bib0032) 2019; 115
Mafarja (10.1016/j.eswa.2020.113246_bib0024) 2018; 161
Wang (10.1016/j.eswa.2020.113246_bib0054) 2019
Yang (10.1016/j.eswa.2020.113246_bib0057) 2009
Mirjalili (10.1016/j.eswa.2020.113246_bib0027) 2017; 114
Huang (10.1016/j.eswa.2020.113246_bib0013) 2019
Sun (10.1016/j.eswa.2020.113246_bib0048) 2018; 139
Kannan (10.1016/j.eswa.2020.113246_bib0016) 1994; 116
Sadollah (10.1016/j.eswa.2020.113246_bib0042) 2018; 71
Wang (10.1016/j.eswa.2020.113246_bib0052) 2016; 27
Kaveh (10.1016/j.eswa.2020.113246_bib0017) 2016; 167
Yao (10.1016/j.eswa.2020.113246_bib0059) 1999; 3
Babalik (10.1016/j.eswa.2020.113246_bib0001) 2018; 63
Lee (10.1016/j.eswa.2020.113246_bib0019) 2005; 194
Yi (10.1016/j.eswa.2020.113246_bib0060) 2019; 170
Watson (10.1016/j.eswa.2020.113246_bib0055) 2007
Sun (10.1016/j.eswa.2020.113246_bib0049) 2018; 114
Valian (10.1016/j.eswa.2020.113246_bib0050) 2013; 64
Wolpert (10.1016/j.eswa.2020.113246_bib0056) 1997; 1
Gandomi (10.1016/j.eswa.2020.113246_bib0010) 2013; 29
Gandomi (10.1016/j.eswa.2020.113246_bib0009) 2016; 22
Cheng (10.1016/j.eswa.2020.113246_bib0003) 2014; 139
Zhang (10.1016/j.eswa.2020.113246_bib0063) 2018; 63
Yang (10.1016/j.eswa.2020.113246_bib0058) 2014; 24
Rocha (10.1016/j.eswa.2020.113246_bib0040) 2009; 86
Savsani (10.1016/j.eswa.2020.113246_bib0044) 2016; 40
Coello Coello (10.1016/j.eswa.2020.113246_bib0005) 2000; 41
Kuroki (10.1016/j.eswa.2020.113246_bib0018) 2010; 37
Zhang (10.1016/j.eswa.2020.113246_bib0065) 2018; 67
Rao (10.1016/j.eswa.2020.113246_bib0039) 2012; 183
Jain (10.1016/j.eswa.2020.113246_bib0015) 2020; 142
Sadollah (10.1016/j.eswa.2020.113246_bib0041) 2013; 13
He (10.1016/j.eswa.2020.113246_bib0011) 2007; 186
Zhang (10.1016/j.eswa.2020.113246_bib0066) 2019
Chen (10.1016/j.eswa.2020.113246_bib0002) 2015; 297
Wang (10.1016/j.eswa.2020.113246_bib0051) 2011; 181
Ibrahim (10.1016/j.eswa.2020.113246_bib0014) 2018; 108
Mirjalili (10.1016/j.eswa.2020.113246_bib0030) 2014; 69
Ewees (10.1016/j.eswa.2020.113246_bib0008) 2018; 112
Mlakar (10.1016/j.eswa.2020.113246_bib0031) 2016; 29
Simon (10.1016/j.eswa.2020.113246_bib0046) 2008; 12
References_xml – volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: bib0038
  article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Computer-Aided Design
– volume: 13
  start-page: 2592
  year: 2013
  end-page: 2612
  ident: bib0041
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Applied Soft Computing
– volume: 41
  start-page: 113
  year: 2000
  end-page: 127
  ident: bib0005
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Computers in Industry
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: bib0027
  article-title: Salp Swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
– volume: 297
  start-page: 171
  year: 2015
  end-page: 190
  ident: bib0002
  article-title: An improved teaching–learning-based optimization algorithm for solving global optimization problem
  publication-title: Information Sciences
– volume: 167
  start-page: 69
  year: 2016
  end-page: 85
  ident: bib0017
  article-title: Water evaporation optimization: A novel physically inspired optimization algorithm
  publication-title: Computers & Structures
– volume: 265
  start-page: 533
  year: 2015
  end-page: 556
  ident: bib0033
  article-title: Teaching-learning based optimization with global crossover for global optimization problems
  publication-title: Applied Mathematics and Computation
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: bib0026
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowledge-Based Systems
– volume: 12
  start-page: 64
  year: 2008
  end-page: 79
  ident: bib0035
  article-title: Opposition-based differential evolution
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 107
  start-page: 89
  year: 2018
  end-page: 114
  ident: bib0023
  article-title: Grey wolf optimizer with cellular topological structure
  publication-title: Expert Systems with Applications
– volume: 29
  start-page: 17
  year: 2013
  end-page: 35
  ident: bib0010
  article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems
  publication-title: Engineering with Computers
– volume: 37
  start-page: 4687
  year: 2010
  end-page: 4697
  ident: bib0018
  article-title: UAV navigation by an expert system for contaminant mapping with a genetic algorithm
  publication-title: Expert Systems with Applications
– volume: 38
  start-page: 12180
  year: 2011
  end-page: 12188
  ident: bib0020
  article-title: A sensor deployment approach using glowworm swarm optimization algorithm in wireless sensor networks
  publication-title: Expert Systems with Applications
– volume: 471
  start-page: 1
  year: 2019
  end-page: 18
  ident: bib0064
  article-title: Enhancing comprehensive learning particle swarm optimization with local optima topology
  publication-title: Information Sciences
– volume: 86
  start-page: 1932
  year: 2009
  end-page: 1946
  ident: bib0040
  article-title: Hybridizing the electromagnetism-like algorithm with descent search for solving engineering design problems
  publication-title: International Journal of Computer Mathematics
– volume: 170
  start-page: 1
  year: 2019
  end-page: 19
  ident: bib0060
  article-title: An on-line variable-fidelity surrogate-assisted harmony search algorithm with multi-level screening strategy for expensive engineering design optimization
  publication-title: Knowledge-Based Systems
– volume: 142
  start-page: 192
  year: 2018
  end-page: 219
  ident: bib0025
  article-title: Immune generalized differential evolution for dynamic multi-objective environments: An empirical study
  publication-title: Knowledge-Based Systems
– volume: 36
  start-page: 3880
  year: 2009
  end-page: 3886
  ident: bib0061
  article-title: Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems
  publication-title: Expert Systems with Applications
– volume: 108
  start-page: 1
  year: 2018
  end-page: 27
  ident: bib0014
  article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization
  publication-title: Expert Systems with Applications
– volume: 186
  start-page: 1407
  year: 2007
  end-page: 1422
  ident: bib0011
  article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization
  publication-title: Applied Mathematics and Computation
– volume: 37
  start-page: 395
  year: 2009
  end-page: 413
  ident: bib0053
  article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique
  publication-title: Structural and Multidisciplinary Optimization
– start-page: 1
  year: 2019
  end-page: 14
  ident: bib0054
  article-title: Joint deployment and task scheduling optimization for large-scale mobile users in multi-UAV-enabled mobile edge computing
  publication-title: IEEE Transactions on Cybernetics
– volume: 181
  start-page: 4699
  year: 2011
  end-page: 4714
  ident: bib0051
  article-title: Enhancing particle swarm optimization using generalized opposition-based learning
  publication-title: Information Sciences
– volume: 194
  start-page: 3902
  year: 2005
  end-page: 3933
  ident: bib0019
  article-title: A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 71
  start-page: 747
  year: 2018
  end-page: 782
  ident: bib0042
  article-title: A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural network algorithm
  publication-title: Applied Soft Computing
– volume: 40
  start-page: 3951
  year: 2016
  end-page: 3978
  ident: bib0044
  article-title: Passing vehicle search (PVS): A novel metaheuristic algorithm
  publication-title: Applied Mathematical Modelling
– volume: 142
  year: 2020
  ident: bib0062
  article-title: Identification of influential users in social network using gray wolf optimization algorithm
  publication-title: Expert Systems with Applications
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: bib0056
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 139
  start-page: 200
  year: 2018
  end-page: 213
  ident: bib0048
  article-title: A stability constrained adaptive alpha for gravitational search algorithm
  publication-title: Knowledge-Based Systems
– volume: 116
  start-page: 405
  year: 1994
  end-page: 411
  ident: bib0016
  article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: Journal of Mechanical Design
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: bib0029
  article-title: The Whale optimization algorithm
  publication-title: Advances in Engineering Software
– volume: 110–111
  start-page: 151
  year: 2012
  end-page: 166
  ident: bib0007
  article-title: Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Computers & Structures
– volume: 161
  start-page: 185
  year: 2018
  end-page: 204
  ident: bib0024
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowledge-Based Systems
– volume: 27
  start-page: 1511
  year: 2016
  end-page: 1517
  ident: bib0052
  article-title: A hybrid adaptive cuckoo search optimization algorithm for the problem of chaotic systems parameter estimation
  publication-title: Neural Computing and Applications
– volume: 64
  start-page: 459
  year: 2013
  end-page: 468
  ident: bib0050
  article-title: Improved cuckoo search for reliability optimization problems
  publication-title: Computers & Industrial Engineering
– volume: 63
  start-page: 289
  year: 2018
  end-page: 305
  ident: bib0001
  article-title: A modification of tree-seed algorithm using Deb's rules for constrained optimization
  publication-title: Applied Soft Computing
– volume: 139
  start-page: 98
  year: 2014
  end-page: 112
  ident: bib0003
  article-title: Symbiotic organisms search: A new metaheuristic optimization algorithm
  publication-title: Computers & Structures
– volume: 20
  start-page: 89
  year: 2007
  end-page: 99
  ident: bib0012
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Engineering Applications of Artificial Intelligence
– start-page: 210
  year: 2009
  end-page: 214
  ident: bib0057
  article-title: Cuckoo search via lévy flights
  publication-title: Proceedings of the World Congress on Nature Biologically Inspired Computing (NaBIC)
– volume: 67
  start-page: 197
  year: 2018
  end-page: 214
  ident: bib0065
  article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer
  publication-title: Applied Soft Computing
– volume: 37
  start-page: 1676
  year: 2010
  end-page: 1683
  ident: bib0004
  article-title: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems
  publication-title: Expert Systems with Applications
– volume: 3
  start-page: 82
  year: 1999
  end-page: 102
  ident: bib0059
  article-title: Evolutionary programming made faster
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 2007
  ident: bib0055
  article-title: The analects of confucius
– volume: 24
  start-page: 169
  year: 2014
  end-page: 174
  ident: bib0058
  article-title: Cuckoo search: Recent advances and applications
  publication-title: Neural Computing and Applications
– volume: 63
  start-page: 464
  year: 2018
  end-page: 490
  ident: bib0063
  article-title: Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems
  publication-title: Applied Mathematical Modelling
– volume: 183
  start-page: 1
  year: 2012
  end-page: 15
  ident: bib0039
  article-title: Teaching–Learning-Based optimization: An optimization method for continuous non-linear large scale problems
  publication-title: Information Sciences
– volume: 22
  start-page: 302
  year: 2016
  end-page: 310
  ident: bib0009
  article-title: An introduction of Krill Herd algorithm for engineering optimization
  publication-title: Journal of Civil Engineering and Management
– volume: 10
  start-page: 629
  year: 2010
  end-page: 640
  ident: bib0021
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Applied Soft Computing
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: bib0030
  article-title: Grey Wolf optimizer
  publication-title: Advances in Engineering Software
– volume: 112
  start-page: 156
  year: 2018
  end-page: 172
  ident: bib0008
  article-title: Improved grasshopper optimization algorithm using opposition-based learning
  publication-title: Expert Systems with Applications
– volume: 55
  start-page: 493
  year: 2016
  end-page: 507
  ident: bib0034
  article-title: A new unconstrained global optimization method based on clustering and parabolic approximation
  publication-title: Expert Systems with Applications
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib0047
  article-title: Differential evolution – A Simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
– start-page: 69
  year: 1998
  end-page: 73
  ident: bib0045
  article-title: A modified particle swarm optimizer
  publication-title: Proceedings of the IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360)
– volume: 114
  start-page: 563
  year: 2018
  end-page: 577
  ident: bib0049
  article-title: A modified whale optimization algorithm for large-scale global optimization problems
  publication-title: Expert Systems with Applications
– start-page: 1
  year: 2019
  end-page: 12
  ident: bib0013
  article-title: Differential evolution with a variable population size for deployment optimization in a UAV-Assisted IoT data collection system
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
– volume: 29
  start-page: 47
  year: 2016
  end-page: 72
  ident: bib0031
  article-title: Hybrid self-adaptive cuckoo search for global optimization
  publication-title: Swarm and Evolutionary Computation
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: bib0006
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
– volume: 52
  start-page: 771
  year: 2017
  end-page: 794
  ident: bib0036
  article-title: Snap-drift cuckoo search: a novel cuckoo search optimization algorithm
  publication-title: Applied Soft Computing
– volume: 123
  start-page: 108
  year: 2019
  end-page: 126
  ident: bib0022
  article-title: Solving high-dimensional global optimization problems using an improved sine cosine algorithm
  publication-title: Expert Systems with Applications
– volume: 12
  start-page: 702
  year: 2008
  end-page: 713
  ident: bib0046
  article-title: Biogeography-based optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 142
  year: 2020
  ident: bib0015
  article-title: Opinion leader detection using whale optimization algorithm in online social network
  publication-title: Expert Systems with Applications
– volume: 115
  start-page: 106
  year: 2019
  end-page: 120
  ident: bib0032
  article-title: Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm
  publication-title: Expert Systems with Applications
– year: 2019
  ident: bib0066
  article-title: Hybrid teaching–learning-based optimization and neural network algorithm for engineering design optimization problems
  publication-title: Knowledge-Based Systems
– volume: 86
  start-page: 1932
  issue: 10–11
  year: 2009
  ident: 10.1016/j.eswa.2020.113246_bib0040
  article-title: Hybridizing the electromagnetism-like algorithm with descent search for solving engineering design problems
  publication-title: International Journal of Computer Mathematics
  doi: 10.1080/00207160902971533
– volume: 116
  start-page: 405
  issue: 2
  year: 1994
  ident: 10.1016/j.eswa.2020.113246_bib0016
  article-title: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design
  publication-title: Journal of Mechanical Design
  doi: 10.1115/1.2919393
– volume: 38
  start-page: 12180
  issue: 10
  year: 2011
  ident: 10.1016/j.eswa.2020.113246_bib0020
  article-title: A sensor deployment approach using glowworm swarm optimization algorithm in wireless sensor networks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.03.053
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.eswa.2020.113246_bib0027
  article-title: Salp Swarm algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.07.002
– year: 2007
  ident: 10.1016/j.eswa.2020.113246_bib0055
– start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2020.113246_bib0013
  article-title: Differential evolution with a variable population size for deployment optimization in a UAV-Assisted IoT data collection system
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
  doi: 10.1109/TETCI.2018.2890048
– volume: 24
  start-page: 169
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2020.113246_bib0058
  article-title: Cuckoo search: Recent advances and applications
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-013-1367-1
– volume: 71
  start-page: 747
  year: 2018
  ident: 10.1016/j.eswa.2020.113246_bib0042
  article-title: A dynamic metaheuristic optimization model inspired by biological nervous systems: Neural network algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.07.039
– volume: 167
  start-page: 69
  year: 2016
  ident: 10.1016/j.eswa.2020.113246_bib0017
  article-title: Water evaporation optimization: A novel physically inspired optimization algorithm
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2016.01.008
– volume: 37
  start-page: 1676
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2020.113246_bib0004
  article-title: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.06.044
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.eswa.2020.113246_bib0029
  article-title: The Whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 13
  start-page: 2592
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2020.113246_bib0041
  article-title: Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.11.026
– volume: 63
  start-page: 289
  year: 2018
  ident: 10.1016/j.eswa.2020.113246_bib0001
  article-title: A modification of tree-seed algorithm using Deb's rules for constrained optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.10.013
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2020.113246_bib0006
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2011.02.002
– volume: 265
  start-page: 533
  year: 2015
  ident: 10.1016/j.eswa.2020.113246_bib0033
  article-title: Teaching-learning based optimization with global crossover for global optimization problems
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2015.05.012
– volume: 161
  start-page: 185
  year: 2018
  ident: 10.1016/j.eswa.2020.113246_bib0024
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.08.003
– volume: 12
  start-page: 64
  issue: 1
  year: 2008
  ident: 10.1016/j.eswa.2020.113246_bib0035
  article-title: Opposition-based differential evolution
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2007.894200
– volume: 29
  start-page: 17
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2020.113246_bib0010
  article-title: Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-011-0241-y
– volume: 107
  start-page: 89
  year: 2018
  ident: 10.1016/j.eswa.2020.113246_bib0023
  article-title: Grey wolf optimizer with cellular topological structure
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.04.012
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.eswa.2020.113246_bib0030
  article-title: Grey Wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 183
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2020.113246_bib0039
  article-title: Teaching–Learning-Based optimization: An optimization method for continuous non-linear large scale problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.08.006
– volume: 471
  start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2020.113246_bib0064
  article-title: Enhancing comprehensive learning particle swarm optimization with local optima topology
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.08.049
– volume: 142
  year: 2020
  ident: 10.1016/j.eswa.2020.113246_bib0062
  article-title: Identification of influential users in social network using gray wolf optimization algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.112971
– start-page: 210
  year: 2009
  ident: 10.1016/j.eswa.2020.113246_bib0057
  article-title: Cuckoo search via lévy flights
– volume: 186
  start-page: 1407
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2020.113246_bib0011
  article-title: A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.07.134
– volume: 29
  start-page: 47
  year: 2016
  ident: 10.1016/j.eswa.2020.113246_bib0031
  article-title: Hybrid self-adaptive cuckoo search for global optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2016.03.001
– volume: 114
  start-page: 563
  year: 2018
  ident: 10.1016/j.eswa.2020.113246_bib0049
  article-title: A modified whale optimization algorithm for large-scale global optimization problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.08.027
– volume: 142
  year: 2020
  ident: 10.1016/j.eswa.2020.113246_bib0015
  article-title: Opinion leader detection using whale optimization algorithm in online social network
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.113016
– volume: 115
  start-page: 106
  year: 2019
  ident: 10.1016/j.eswa.2020.113246_bib0032
  article-title: Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.08.008
– start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2020.113246_bib0054
  article-title: Joint deployment and task scheduling optimization for large-scale mobile users in multi-UAV-enabled mobile edge computing
  publication-title: IEEE Transactions on Cybernetics
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.eswa.2020.113246_bib0047
  article-title: Differential evolution – A Simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: 40
  start-page: 3951
  issue: 5–6
  year: 2016
  ident: 10.1016/j.eswa.2020.113246_bib0044
  article-title: Passing vehicle search (PVS): A novel metaheuristic algorithm
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2015.10.040
– volume: 63
  start-page: 464
  year: 2018
  ident: 10.1016/j.eswa.2020.113246_bib0063
  article-title: Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2018.06.036
– volume: 194
  start-page: 3902
  issue: 36
  year: 2005
  ident: 10.1016/j.eswa.2020.113246_bib0019
  article-title: A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2004.09.007
– volume: 10
  start-page: 629
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2020.113246_bib0021
  article-title: Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2009.08.031
– volume: 139
  start-page: 98
  year: 2014
  ident: 10.1016/j.eswa.2020.113246_bib0003
  article-title: Symbiotic organisms search: A new metaheuristic optimization algorithm
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2014.03.007
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.eswa.2020.113246_bib0056
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– volume: 36
  start-page: 3880
  issue: 2, Part 2
  year: 2009
  ident: 10.1016/j.eswa.2020.113246_bib0061
  article-title: Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.02.039
– volume: 55
  start-page: 493
  year: 2016
  ident: 10.1016/j.eswa.2020.113246_bib0034
  article-title: A new unconstrained global optimization method based on clustering and parabolic approximation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.02.036
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 10.1016/j.eswa.2020.113246_bib0046
  article-title: Biogeography-based optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.919004
– volume: 139
  start-page: 200
  year: 2018
  ident: 10.1016/j.eswa.2020.113246_bib0048
  article-title: A stability constrained adaptive alpha for gravitational search algorithm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.10.018
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.eswa.2020.113246_bib0026
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.12.022
– volume: 142
  start-page: 192
  year: 2018
  ident: 10.1016/j.eswa.2020.113246_bib0025
  article-title: Immune generalized differential evolution for dynamic multi-objective environments: An empirical study
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.11.037
– volume: 297
  start-page: 171
  year: 2015
  ident: 10.1016/j.eswa.2020.113246_bib0002
  article-title: An improved teaching–learning-based optimization algorithm for solving global optimization problem
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.11.001
– volume: 123
  start-page: 108
  year: 2019
  ident: 10.1016/j.eswa.2020.113246_bib0022
  article-title: Solving high-dimensional global optimization problems using an improved sine cosine algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.11.032
– volume: 3
  start-page: 82
  issue: 2
  year: 1999
  ident: 10.1016/j.eswa.2020.113246_bib0059
  article-title: Evolutionary programming made faster
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.771163
– year: 2019
  ident: 10.1016/j.eswa.2020.113246_bib0066
  article-title: Hybrid teaching–learning-based optimization and neural network algorithm for engineering design optimization problems
  publication-title: Knowledge-Based Systems
– volume: 110–111
  start-page: 151
  year: 2012
  ident: 10.1016/j.eswa.2020.113246_bib0007
  article-title: Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2012.07.010
– volume: 27
  start-page: 1511
  issue: 6
  year: 2016
  ident: 10.1016/j.eswa.2020.113246_bib0052
  article-title: A hybrid adaptive cuckoo search optimization algorithm for the problem of chaotic systems parameter estimation
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1949-1
– volume: 67
  start-page: 197
  year: 2018
  ident: 10.1016/j.eswa.2020.113246_bib0065
  article-title: A novel hybrid algorithm based on biogeography-based optimization and grey wolf optimizer
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.02.049
– volume: 112
  start-page: 156
  year: 2018
  ident: 10.1016/j.eswa.2020.113246_bib0008
  article-title: Improved grasshopper optimization algorithm using opposition-based learning
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.06.023
– volume: 22
  start-page: 302
  issue: 3
  year: 2016
  ident: 10.1016/j.eswa.2020.113246_bib0009
  article-title: An introduction of Krill Herd algorithm for engineering optimization
  publication-title: Journal of Civil Engineering and Management
  doi: 10.3846/13923730.2014.897986
– volume: 64
  start-page: 459
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2020.113246_bib0050
  article-title: Improved cuckoo search for reliability optimization problems
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2012.07.011
– volume: 37
  start-page: 395
  issue: 4
  year: 2009
  ident: 10.1016/j.eswa.2020.113246_bib0053
  article-title: Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-008-0238-3
– volume: 20
  start-page: 89
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2020.113246_bib0012
  article-title: An effective co-evolutionary particle swarm optimization for constrained engineering design problems
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2006.03.003
– volume: 181
  start-page: 4699
  issue: 20
  year: 2011
  ident: 10.1016/j.eswa.2020.113246_bib0051
  article-title: Enhancing particle swarm optimization using generalized opposition-based learning
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.03.016
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2020.113246_bib0038
  article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Computer-Aided Design
  doi: 10.1016/j.cad.2010.12.015
– volume: 37
  start-page: 4687
  issue: 6
  year: 2010
  ident: 10.1016/j.eswa.2020.113246_bib0018
  article-title: UAV navigation by an expert system for contaminant mapping with a genetic algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.12.039
– volume: 170
  start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2020.113246_bib0060
  article-title: An on-line variable-fidelity surrogate-assisted harmony search algorithm with multi-level screening strategy for expensive engineering design optimization
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.01.004
– start-page: 69
  year: 1998
  ident: 10.1016/j.eswa.2020.113246_bib0045
  article-title: A modified particle swarm optimizer
– volume: 41
  start-page: 113
  issue: 2
  year: 2000
  ident: 10.1016/j.eswa.2020.113246_bib0005
  article-title: Use of a self-adaptive penalty approach for engineering optimization problems
  publication-title: Computers in Industry
  doi: 10.1016/S0166-3615(99)00046-9
– volume: 108
  start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2020.113246_bib0014
  article-title: Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.04.028
– volume: 52
  start-page: 771
  year: 2017
  ident: 10.1016/j.eswa.2020.113246_bib0036
  article-title: Snap-drift cuckoo search: a novel cuckoo search optimization algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.09.048
SSID ssj0017007
Score 2.6450398
Snippet •A new classification method for metaheuristic algorithms is presented.•Group teaching optimization algorithm is proposed for global optimization.•Group...
In last 30 years, many metaheuristic algorithms have been developed to solve optimization problems. However, most existing metaheuristic algorithms have extra...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113246
SubjectTerms Algorithms
Computer simulation
Criteria
Design engineering
Design optimization
Engineering design
Global optimization
Group teaching
Heuristic methods
Optimization algorithms
Optimization techniques
Parameters
Swarm intelligence
Teachers
Teaching
Title Group teaching optimization algorithm: A novel metaheuristic method for solving global optimization problems
URI https://dx.doi.org/10.1016/j.eswa.2020.113246
https://www.proquest.com/docview/2438989073
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRhRK5YENhSaxHSdsVUVVQHSBSmyWX6FFfalNYeO3Y8dOpSLEwJjItqLz-e4cffd9AFwJ25ErEQ1CotIAKyyDNEEiyDCKQ0ylyku0-9Mg6Q_xwyt5rYFu1QtjYZU-9ruYXkZr_6btrdlejMftZ1McmHRornbGT0Ma20ZzjKn18puvDczD0s9Rx7dHAzvaN844jJdefVruobiUNoltEfx7cvoRpsvc0zsAe75ohB33XYegpmdHYL8SZID-fB6DSfknCRYeIQnnJh5MfaMl5JO3-XJcjKa3sANn8w89gVNd8JFeO7Jm6MSkoalioXFI-6MBOrqQ7XW8BM3qBAx7dy_dfuDlFAKJ4rQIRBSpWIWSKBFSJbTiGknFVZTkMke5TjUhKhIEc2RuVTSVXCVCZlksUUKVwugU1GfzmT4DMEScI2lKuSgTWBHFBeaZSHMdCW7WpQ0QVXZk0nONW8mLCatAZe_M2p5Z2zNn-wa43sxZOKaNP0eTanvYlr8wkwr-nNes9pL507pisZWATzMT7c7_uewF2LVPFkMWkSaoF8u1vjTVSiFapTu2wE7n_rE_-AYPwuy4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMsDCG1GeHthQ1CS282CrKlCB0gWQ2Cy_AkV9qU3h72PHDhIIMbAmPis6n-_Oznf3AZwLW5ErcRqEVGUBUUQGWYJFkBMchySVqqjQ7veDpPdEbp_pcwO6dS2MhVV63-98euWt_ZO212Z7Nhy2H0xyYMKhOdoZOw3TmK7Aqu1ORZuw2rm56w2-fiakoauaNuMDK-BrZxzMSy8-bPuhuGI3iW0e_Ht8-uGpq_BzvQUbPm9EHfdp29DQkx3YrDkZkN-iuzCqLpNQ6UGSaGpcwtjXWiI-epnOh-Xr-BJ10GT6rkdorEv-qpeuXzNyfNLIJLLI2KS9a0CuY8j3eTwLzWIPnq6vHru9wDMqBBLHWRmIKFKxCiVVIkyV0IprLBVXUVLIAhc605SqSFDCsTlYpZnkKhEyz2OJk1QpgvehOZlO9AGgEHOOpcnmolwQRRUXhOciK3QkuJk3bUFU65FJ327csl6MWI0re2NW98zqnjndt-DiS2bmmm38OZrWy8O-mQwz0eBPueN6LZnfsAsWWxb4LDcO7_Cf057BWu_xvs_6N4O7I1i3byykLKLH0CznS31ikpdSnHrj_AQm_u9p
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group+teaching+optimization+algorithm%3A+A+novel+metaheuristic+method+for+solving+global+optimization+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Zhang%2C+Yiying&rft.au=Jin%2C+Zhigang&rft.date=2020-06-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=148&rft_id=info:doi/10.1016%2Fj.eswa.2020.113246&rft.externalDocID=S0957417420300725
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon