Parallel and distributed paradigms for community detection in social networks: A methodological review
[Display omitted] •Systematic procedures are followed to obtain the most relevant studies.•Mendeley web application is used in filtering process to extract the relevant studies.•Each relevant study is evaluated based on the performance analysis questions.•Selected studies are compared based on the v...
Saved in:
Published in | Expert systems with applications Vol. 187; p. 115956 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.01.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Systematic procedures are followed to obtain the most relevant studies.•Mendeley web application is used in filtering process to extract the relevant studies.•Each relevant study is evaluated based on the performance analysis questions.•Selected studies are compared based on the various important parameters.•The articles are categorized based on the type of framework used for implementations.
Community detection in social networks is the process of identifying the cohesive groups of similar nodes. Detection of these groups can be helpful in many applications, such as finding networks of protein interaction in biological networks, finding the users of similar mind for ads and suggestions, finding a shared research field in collaborative networks, analyzing public health, future link prediction in social networks, analyzing criminology, and many more. However, with the increase in the number of profiles and content shared on social media platforms, the analysis is often time-consuming and exhaustive. In order to speed up and optimize the community detection process, parallel processing and Shared/Distributed memory techniques are widely used. Despite community detection has widespread use in social networks, no attempt has ever been made to compile and systematically discuss research efforts on the emerging subject of identifying parallel and distributed methods for community detection in social networks. Most of the surveys described the serial algorithms used for community detection. Our survey work comes under the scope of new design techniques, exciting or novel applications, components or standards, and applications of an educational, transactional, and co-operational nature. This paper accommodates and presents a systematic literature review with state-of-the-art research on the application of parallel processing and Shared/Distributed techniques to determine communities for social network analysis. Advanced search strategy has been performed on several digital libraries for extracting several studies for the review. The systematic search landed in finding 3220 studies, among which 65 relevant studies are selected after conducting various screening phases for further review. The application of parallel computing, shared memory, and distributed memory on the existing community detection methodologies have been discussed thoroughly. More specifically, the central significance of this paper is that a systematic literature review is conducted to gather the relevant studies from different digital libraries and gray literature. Then, different parametric values of each selected study are appropriately compared. Moreover, the need for further research to speed up the process of community formation in parallel and shared approaches has been pinpointed more suitably. A pictorial glance of this paper is depicted as follows: |
---|---|
AbstractList | [Display omitted]
•Systematic procedures are followed to obtain the most relevant studies.•Mendeley web application is used in filtering process to extract the relevant studies.•Each relevant study is evaluated based on the performance analysis questions.•Selected studies are compared based on the various important parameters.•The articles are categorized based on the type of framework used for implementations.
Community detection in social networks is the process of identifying the cohesive groups of similar nodes. Detection of these groups can be helpful in many applications, such as finding networks of protein interaction in biological networks, finding the users of similar mind for ads and suggestions, finding a shared research field in collaborative networks, analyzing public health, future link prediction in social networks, analyzing criminology, and many more. However, with the increase in the number of profiles and content shared on social media platforms, the analysis is often time-consuming and exhaustive. In order to speed up and optimize the community detection process, parallel processing and Shared/Distributed memory techniques are widely used. Despite community detection has widespread use in social networks, no attempt has ever been made to compile and systematically discuss research efforts on the emerging subject of identifying parallel and distributed methods for community detection in social networks. Most of the surveys described the serial algorithms used for community detection. Our survey work comes under the scope of new design techniques, exciting or novel applications, components or standards, and applications of an educational, transactional, and co-operational nature. This paper accommodates and presents a systematic literature review with state-of-the-art research on the application of parallel processing and Shared/Distributed techniques to determine communities for social network analysis. Advanced search strategy has been performed on several digital libraries for extracting several studies for the review. The systematic search landed in finding 3220 studies, among which 65 relevant studies are selected after conducting various screening phases for further review. The application of parallel computing, shared memory, and distributed memory on the existing community detection methodologies have been discussed thoroughly. More specifically, the central significance of this paper is that a systematic literature review is conducted to gather the relevant studies from different digital libraries and gray literature. Then, different parametric values of each selected study are appropriately compared. Moreover, the need for further research to speed up the process of community formation in parallel and shared approaches has been pinpointed more suitably. A pictorial glance of this paper is depicted as follows: Community detection in social networks is the process of identifying the cohesive groups of similar nodes. Detection of these groups can be helpful in many applications, such as finding networks of protein interaction in biological networks, finding the users of similar mind for ads and suggestions, finding a shared research field in collaborative networks, analyzing public health, future link prediction in social networks, analyzing criminology, and many more. However, with the increase in the number of profiles and content shared on social media platforms, the analysis is often time-consuming and exhaustive. In order to speed up and optimize the community detection process, parallel processing and Shared/Distributed memory techniques are widely used. Despite community detection has widespread use in social networks, no attempt has ever been made to compile and systematically discuss research efforts on the emerging subject of identifying parallel and distributed methods for community detection in social networks. Most of the surveys described the serial algorithms used for community detection. Our survey work comes under the scope of new design techniques, exciting or novel applications, components or standards, and applications of an educational, transactional, and co-operational nature. This paper accommodates and presents a systematic literature review with state-of-the-art research on the application of parallel processing and Shared/Distributed techniques to determine communities for social network analysis. Advanced search strategy has been performed on several digital libraries for extracting several studies for the review. The systematic search landed in finding 3220 studies, among which 65 relevant studies are selected after conducting various screening phases for further review. The application of parallel computing, shared memory, and distributed memory on the existing community detection methodologies have been discussed thoroughly. More specifically, the central significance of this paper is that a systematic literature review is conducted to gather the relevant studies from different digital libraries and gray literature. Then, different parametric values of each selected study are appropriately compared. Moreover, the need for further research to speed up the process of community formation in parallel and shared approaches has been pinpointed more suitably. A pictorial glance of this paper is depicted as follows: |
ArticleNumber | 115956 |
Author | Naik, Debadatta Gandomi, Amir H. Ramesh, Dharavath Babu Gorojanam, Naveen |
Author_xml | – sequence: 1 givenname: Debadatta surname: Naik fullname: Naik, Debadatta organization: Department of Computer Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India – sequence: 2 givenname: Dharavath surname: Ramesh fullname: Ramesh, Dharavath email: drramesh@iitism.ac.in organization: Department of Computer Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India – sequence: 3 givenname: Amir H. surname: Gandomi fullname: Gandomi, Amir H. organization: Department of Engineering & Information Technology, University of Technology Sydney, Ultimo, NSW, Australia – sequence: 4 givenname: Naveen surname: Babu Gorojanam fullname: Babu Gorojanam, Naveen organization: Department of Computer Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India |
BookMark | eNp9kLtOwzAUhi1UJFrgBZgsMafYTmI3iAVV3KRKMMBsOfZJcUnsYrtUfXtclYmh0xn-853LN0Ej5x0gdEXJlBLKb1ZTiFs1ZYTRKaV1U_MTNKYzURZcNOUIjUlTi6KiojpDkxhXhFBBiBij7k0F1ffQY-UMNjamYNtNAoPXOTB2OUTc-YC1H4aNs2mHDSTQyXqHrcPRa6t67CBtffiKt_geD5A-vfG9X1qdowA_FrYX6LRTfYTLv3qOPh4f3ufPxeL16WV-vyh0yWapaPNZpq1a0um2FXVdaUF1RVtRVqWoy453lAkOtSorJQxnDCjTpG4Za7jqaFWeo-vD3HXw3xuISa78Jri8UjKe5RDRNDx3sUOXDj7GAJ1cBzuosJOUyL1PuZJ7n3LvUx58Zmj2D9I2qb2IFJTtj6N3BxTy61lHkFFbcBqMDdmlNN4ew38BzUiT-Q |
CitedBy_id | crossref_primary_10_3390_electronics11131931 crossref_primary_10_3390_math10060970 crossref_primary_10_1016_j_chaos_2022_112421 crossref_primary_10_1007_s41109_023_00592_1 crossref_primary_10_1016_j_eswa_2023_119775 crossref_primary_10_1016_j_neucom_2024_127703 crossref_primary_10_2139_ssrn_4179225 crossref_primary_10_1016_j_dajour_2022_100065 crossref_primary_10_1016_j_ress_2022_108817 crossref_primary_10_1007_s00607_022_01131_z crossref_primary_10_1109_TR_2023_3332090 crossref_primary_10_1007_s12038_024_00437_8 crossref_primary_10_1016_j_eswa_2023_122799 crossref_primary_10_1007_s11227_024_06003_1 crossref_primary_10_1007_s10115_024_02201_8 crossref_primary_10_1016_j_eswa_2022_118937 crossref_primary_10_1016_j_osnem_2025_100312 crossref_primary_10_1142_S2196888823300016 |
Cites_doi | 10.1007/978-3-319-98539-8_2 10.1007/978-1-4614-1800-9_33 10.1109/ASONAM.2018.8508730 10.1016/j.physrep.2009.11.002 10.1103/PhysRevE.76.036106 10.1109/IPDPSW.2012.203 10.1109/CEC.2018.8477659 10.1016/j.eswa.2017.10.047 10.1002/9780470712184 10.1007/978-3-030-58811-3_64 10.1109/BigData.2014.7004318 10.1109/CBD.2014.52 10.1371/journal.pone.0091431 10.1016/j.compeleceng.2018.01.003 10.1109/CADS.2015.7377794 10.1145/2566486.2568010 10.1109/TSE.2002.1027796 10.1002/bies.20820 10.1016/j.micpro.2017.08.002 10.1109/ACCESS.2018.2880157 10.1109/COMSNETS.2018.8328289 10.1007/s10586-015-0452-x 10.1109/SocialCom.2010.24 10.1016/j.procs.2016.07.311 10.1007/s10115-017-1105-6 10.1147/JRD.2013.2251982 10.1103/PhysRevE.80.056117 10.1016/j.physa.2019.121552 10.1016/j.comnet.2016.06.002 10.1109/TKDE.2018.2803818 10.1109/ICBDA.2017.8078743 10.1016/j.knosys.2013.06.014 10.1109/ICDE.2018.00142 10.1109/CBD.2016.040 10.1016/j.jss.2006.07.009 10.1137/0611030 10.1109/IKT.2013.6620116 10.1109/HiPC.2012.6507522 10.1007/978-1-4419-8462-3_1 10.1080/15427951.2009.10129177 10.1007/s10115-018-1156-3 10.1007/s11227-018-2500-9 10.1109/CSIT.2016.7549467 10.1016/j.inffus.2015.08.005 10.1145/3110025.3110135 10.1016/j.physrep.2013.08.002 10.1016/j.knosys.2018.09.002 10.1007/s00521-019-04487-0 10.1109/CIDM.2014.7008660 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00122 10.1109/ICCP.2010.5606467 10.1109/BigData.2017.8257995 10.1016/j.asoc.2017.07.035 10.1109/UCC.2014.146 10.1109/TKDE.2010.271 10.1177/0038038588022001007 10.1109/IPDPS.2011.61 10.1109/SBAC-PAD.2015.22 10.1073/pnas.0706851105 10.1145/2807591.2807668 10.1145/2492517.2492518 10.1109/W-FiCloud.2016.57 10.1016/j.datak.2015.05.001 10.1207/s15327906mbr2302_6 10.1109/HPEC.2014.7040973 10.1007/978-981-13-1132-1_23 10.1109/IOTA.2016.7562715 10.1109/IPDPSW.2016.165 10.1145/2775108 10.1109/CICSyN.2011.66 10.1002/sam.10133 10.1038/nature03607 10.1007/s11280-017-0519-0 10.1177/0049124193022001001 10.1109/MIS.2007.41 10.1109/IPDPS.2018.00098 10.1145/2660460.2660474 10.1109/SocialCom.2013.37 10.1007/978-1-4419-7142-5_16 10.1016/j.eswa.2016.03.033 10.1109/NUICONE.2015.7449651 10.1109/SBAC-PADW.2017.18 10.1016/j.eswa.2020.113184 10.1016/j.cosrev.2007.05.001 10.1016/j.infsof.2008.09.009 10.1007/978-1-4471-4555-4_4 10.1073/pnas.122653799 10.1109/SMC.2015.239 10.1145/3219819.3220093 10.1186/s40537-016-0060-5 10.1103/PhysRevE.70.066111 10.1109/ACCESS.2018.2859788 10.1109/BESC.2016.7804476 10.1007/978-3-540-87700-4_107 10.1109/ICDMW.2014.158 10.1126/science.1165821 10.1016/j.jnca.2016.05.008 10.1109/IPDPSW.2013.229 10.1007/s10994-010-5214-7 10.1016/j.bdr.2017.10.003 10.1155/2015/849140 10.3390/app7111173 10.1016/j.ins.2017.11.055 10.1142/S0218213010000431 10.1016/j.physa.2018.02.130 10.1007/s10618-011-0224-z 10.1093/acprof:oso/9780195301014.001.0001 10.1007/s10586-015-0504-2 10.1137/080734315 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jan 2022 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jan 2022 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2021.115956 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Public Health |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2021_115956 S0957417421013099 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c328t-b017db4b0fcbb7554c71c41b7343753f6f1276e5a34a7d622e12c05b2296af143 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Fri Jul 25 05:01:52 EDT 2025 Tue Jul 01 04:05:55 EDT 2025 Thu Apr 24 23:10:34 EDT 2025 Fri Feb 23 02:47:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Social Networks Community Detection Parallel Algorithms Distributed Algorithms |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-b017db4b0fcbb7554c71c41b7343753f6f1276e5a34a7d622e12c05b2296af143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2602107996 |
PQPubID | 2045477 |
ParticipantIDs | proquest_journals_2602107996 crossref_primary_10_1016_j_eswa_2021_115956 crossref_citationtrail_10_1016_j_eswa_2021_115956 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115956 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Expert systems with applications |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Borgatti, Mehra, Brass, Labianca (b0065) 2009; 323 Rosvall, Bergstrom (b0510) 2008; 105 Scott (b0535) 1988; 22 Pothen, Simon, Liou (b0470) 1990; 11 Girvan, Newman (b0195) 2002; 99 Kitchenham, Pearl Brereton, Budgen, Turner, Bailey, Linkman (b0315) 2009; 51 Tang, Liu (b0570) 2010 Leskovec, Lang, Dasgupta, Mahoney (b0340) 2009; 6 Chaitanya, K., Somayajulu, D., and Krishna, P. (2018). A pso based community detection in social networks with node attributes. Brereton, Kitchenham, Budgen, Turner, Khalil (b0070) 2007; 80 Papadopoulos, Kompatsiaris, Vakali, Spyridonos (b0445) 2012; 24 Parthasarathy, Ruan, Satuluri (b0450) 2011 Chintalapudi, S. and Prasad, M. (2015). A survey on community detection algorithms in large scale real world networks. pages 1323–1327. Song, Q., Li, B., Yu, W., Li, J., and Shi, B. (2014). Nslpa: A node similarity based label propagation algorithm for real-time community detection. pages 896–901. Moon, S., Lee, J.-G., and Kang, M. (2014). Scalable community detection from networks by computing edge betweenness on mapreduce. pages 145–148. Gui, F., Ma, Y., Zhang, F., Liu, M., Yin, R., and Shen, W. (2016). A stable and distributed community detection algorithm based on maximal cliques. pages 1346–1350. Plantie, Crampes (b0460) 2013 He, Fei, Li, Tang, Liu, Liu (b0250) 2018; 74 Wasserman (b0610) 1994 Orzeszyna, W., Madeyski, L., and Torkar, R. (2016). Protocol for a systematic literature review of methods dealing with equivalent mutant problem, wroclaw univ. of technology. Available online at Carrington, Scott, Wasserman (b0090) 2005 . Prat-Pérez, Dominguez-Sal, Brunat, Larriba-Pey (b0475) 2016; 10 Moon, Lee, Kang, Choy, Lee (b0395) 2016; 104 Jain, A., Nasre, R., and Ravindran, B. (2018). Dceil: Distributed community detection with the ceil score. volume 2018-January, pages 146–153. Bello-Orgaz, Jung, Camacho (b0050) 2016; 28 Chen, N., Liu, Y., Cheng, J., and Liu, Q. (2017). Parallelizing label propagation for overlapping community detection. Varamesh, A., Akbari, M., Fereiduni, M., Sharifian, S., and Bagheri, A. (2013). Distributed clique percolation based community detection on social networks using mapreduce. pages 478–483. Khan, K. S., Ter Riet, G., Glanville, J., Sowden, A. J., and Kleijnen, J. (2001). Undertaking systematic reviews of research on effectiveness: CRD’s guidance for carrying out or commissioning reviews. Number 4 (2nd Edition). NHS Centre for Reviews and Dissemination. Chen, Saad (b0100) 2012; 24 Zhang, Raitoharju, Kiranyaz, Gabbouj (b0655) 2016; 3 Aggarwal, C. C. (2011). An introduction to social network data analytics. In Social network data analytics, pages 1–15. Xin, Xie, Yang (b0630) 2016; 58 Schaeffer (b0525) 2007; 1 Raghavan, Albert, Kumara (b0490) 2007; 76 Buzun, N., Korshunov, A., Avanesov, V., Filonenko, I., Kozlov, I., Turdakov, D., and Kim, H. (2015). Egolp: Fast and distributed community detection in billion-node social networks. volume 2015-January, pages 533–540. Gao, G., Bu, Z., Wu, Z., Li, Y., and Cao, J. (2015). Efficient parallel community detection in large edge-intensive networks. Pages 253–260. Gulbahce, Lehmann (b0210) 2008; 30 Wan, C., Peng, S., Wang, C., and Yuan, Y. (2017). Communities detection algorithm based on general stochastic block model in mobile social networks. pages 178–185. Moher, Liberati, Tetzlaff, Altman (b0385) 2009; 339 Sharma, Oliveira (b0540) 2017; 10 Bae, S.-H. and Howe, B. (2015). Gossipmap: A distributed community detection algorithm for billion-edge directed graphs. volume 15-20-November-2015. Al-Ayyoub, Al-andoli, Jararweh, Smadi, Gupta (b0010) 2019; 74 Duriakova, E., Hurley, N., Ajwani, D., and Sala, A. (2014). Analysis of the semi-synchronous approach to large-scale parallel community finding. pages 51–62. Ovelgönne, M. (2013). Distributed community detection in web-scale networks. pages 66–73. Hajeer, M., Dasgupta, D., Semenov, A., and Veijalainen, J. (2015). Distributed evolutionary approach to data clustering and modeling. Pages 142–148. Ma, Yue, Qu, Tian, Al-Dhelaan, Al-Rodhaan (b0370) 2018; 503 Galaskiewicz, Wasserman (b0180) 1993; 22 Qiao, Han, Gao, Li, Huang, Guo, Wu (b0485) 2018; 30 Fazlali, Moradi, Tabatabaee Malazi (b0165) 2017; 54 Halalai, R., Lemnaru, C., and Potolea, R. (2010). Distributed community detection in social networks with genetic algorithms. pages 35–41. Li, G., Guo, K., Chen, Y., Wu, L., and Zhu, D. (2017). A dynamic community detection algorithm based on parallel incremental related vertices. pages 779–783. Behera, R., Rath, S., and Jena, M. (2016). Spanning tree based community detection using min-max modularity. volume 93, pages 1070–1076. Collins, Dent (b0125) 1988; 23 Conte, A., Grossi, R., De Matteis, T., Marino, A., De Sensi, D., and Versari, L. (2018). D2k: Scalable community detection in massive networks via small-diameter k-plexes. pages 1272–1281. Zhang, C., Zhang, Y., and Wu, B. (2018). A parallel community detection algorithm based on incremental clustering in dynamic network. pages 946–953. Nguyen, Dinh, Shen, Thai, Gomez-Gardenes (b0415) 2014; 9 Nerurkar, Chandane, Bhirud (b0405) 2019; 798 Zhao, W., Martha, V., and Xu, X. (2013). Pscan: A parallel structural clustering algorithm for big networks in mapreduce. pages 862–869. Kuzmin, K., Shah, S., and Szymanski, B. (2013). Parallel overlapping community detection with slpa. pages 204–212. Ogata, H., Dayarathna, M., and Suzumura, T. (2012). Towards highly scalable x10 based spectral clustering. Behera, Rath, Misra, Damaševičius, Maskeliūnas (b0045) 2017; 7 Handbook, C. C. T. C. R. (2003). Version 4.2. 1. December. Dybala, Ptaszynski, Rzepka, Araki (b0155) 2010; 19 Kitchenham (b0310) 2004 Wu, B., Zhang, C., and Guo, Q. (2017). A parallel network community detection algorithm based on distance dynamics. pages 819–826. Resende, H., Fazenda, A., and Quiles, M. (2017). Parallel algorithm for dynamic community detection. pages 55–60. Khlopotine, A., Sathanur, A., and Jandhyala, V. (2016). Optimized parallel label propagation based community detection on the intel(r) xeon phi(tm) architecture. volume 2016-January, pages 9–16. Sattar, N. and Arifuzzaman, S. (2018). Parallelizing louvain algorithm: Distributed memory challenges. pages 695–701. Clauset, A., Newman, M., and Moore, C. (2004). Finding community structure in very large networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 70(6 2):066111/1–066111/6. Kitchenham, Pfleeger, Pickard, Jones, Hoaglin, El Emam, Rosenberg (b0320) 2002; 28 Higgins, J. and Green, S. (2008). Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series. Shi, J., Xue, W., Wang, W., Zhang, Y., Yang, B., and Li, J. (2013). Scalable community detection in massive social networks using mapreduce. IBM Journal of Research and Development, 57(3/4):12–1. Nur, N., Dou, W., Niu, X., Krishnan, S., and Park, N. (2018). Gi-ohms: Graphical inference to detect overlapping communities. arXiv preprint arXiv:1810.01547. Truică, C.-O., Novović, O., Brdar, S., and Papadopoulos, A. (2018). Community detection in who-calls-whom social networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor- matics), 11031 LNCS:19–33. Masdarolomoor, Z., Azmi, R., Aliakbary, S., and Riahi, N. (2011). Finding community structure in complex networks using parallel approach. pages 474–479. Lancichinetti, Fortunato (b0335) 2009; 80 Jin, Lin, Yin, Yang, Li, Deng (b0285) 2015; 18 Behera, R. and Rath, S. (2016). An efficient modularity based algorithm for community detection in social network. Pages 162–167. Zhao, Li, Zhang, Chiclana, Viedma (b0670) 2019; 163 Blondel, Guillaume, Lambiotte, Lefebvre (b0060) 2011; 10 Alandoli, M., Al-Ayyoub, M., Al-Smadi, M., Jararweh, Y., and Benkhelifa, E. (2016a). Using dynamic parallelism to speed up clustering-based community detection in social networks. pages 240–245. Goldberg, M., Kelley, S., Magdon-Ismail, M., Mertsalov, K., and Wallace, A. (2010). Finding overlapping communities in social networks. pages 104–113. Moradi, E., Fazlali, M., and Malazi, H. (2016). Fast parallel community detection algorithm based on modularity. Gupta, Mittal, Gupta, Singhal, Khatri, Gupta, Kumar (b0215) 2017; 61 Prat-Pérez, A., Dominguez-Sal, D., and Larriba-Pey, J.-L. (2014). High quality, scalable and parallel community detection for large real graphs. pages 225–235. Jena, Behera, Rath (b0275) 2019 Sarswat, A. and Guddeti, R. (2018). A novel overlapping community detection using parallel cfm and sequential nash equilibrium. volume 2018-January, pages 649–654. Han, Tian, Lan, Li, Xiao (b0230) 2018; 94 Kumari, A., Behera, R., Shukla, A., Sahoo, S., Misra, S., and Rath, S. (2020). Quantifying influential communities in granu- lar social networks using fuzzy theory. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12252 LNCS:906–917. Ghosh, S., Halappanavar, M., Tumeo, A., Kalyanaraman, A., Lu, H., Chavarria-Miranda, D., Khan, A., and Gebremedhin, A. (2018). Distributed louvain algorithm for graph community detection. Pages 885–895. Fortunato, S. and Castellano, C. (2012). Community structure in graphs, volume 9781461418009. Vo, N., Lee, K., and Tran, T. (2017). Mrattractor: Detecting communities from large-scale graphs. volume 2018-January, pages 797–806. Yin, C., Zhu, S., Chen, H., Zhang, B., and David, B. (2015). A method for community detection of complex networks based on hierarchical clustering. International Journal of Distributed Sensor Networks, 2015. Porter, Onnela, Mucha (b0465) 2009; 56 Souravlas, Sifaleras, Katsavounis (b0560) 2018; 6 He, Cai, Meng, Chen, Deng, Cao (b0255) 2018; 6 Bhatia, Rani (b0055) 2018; 57 Yang, B., Liu, D., and Liu, J. (2010). Discovering communities from social networks: methodologies and applications. In Handbook of social network technologies and applications, pages 331–346. Riedy, J. and Bader, D. (2013). Multithreaded community monitoring for massive streaming graph data. pages 1646–1655. Liu, Zhou, 10.1016/j.eswa.2021.115956_b0200 Papadopoulos (10.1016/j.eswa.2021.115956_b0445) 2012; 24 Pothen (10.1016/j.eswa.2021.115956_b0470) 1990; 11 Yang (10.1016/j.eswa.2021.115956_b0640) 2011; 82 10.1016/j.eswa.2021.115956_b0325 10.1016/j.eswa.2021.115956_b0600 10.1016/j.eswa.2021.115956_b0205 Brereton (10.1016/j.eswa.2021.115956_b0070) 2007; 80 Fazlali (10.1016/j.eswa.2021.115956_b0165) 2017; 54 He (10.1016/j.eswa.2021.115956_b0255) 2018; 6 Schaeffer (10.1016/j.eswa.2021.115956_b0525) 2007; 1 Li (10.1016/j.eswa.2021.115956_b0350) 2019; 531 Palla (10.1016/j.eswa.2021.115956_b0440) 2005; 435 Nguyen (10.1016/j.eswa.2021.115956_b0415) 2014; 9 10.1016/j.eswa.2021.115956_b0455 10.1016/j.eswa.2021.115956_b0295 10.1016/j.eswa.2021.115956_b0330 10.1016/j.eswa.2021.115956_b0175 10.1016/j.eswa.2021.115956_b0615 Al-Ayyoub (10.1016/j.eswa.2021.115956_b0010) 2019; 74 Kitchenham (10.1016/j.eswa.2021.115956_b0315) 2009; 51 Bu (10.1016/j.eswa.2021.115956_b0075) 2018; 55 Karimi (10.1016/j.eswa.2021.115956_b0290) 2020; 146 Han (10.1016/j.eswa.2021.115956_b0230) 2018; 94 Tang (10.1016/j.eswa.2021.115956_b0570) 2010 10.1016/j.eswa.2021.115956_b0585 10.1016/j.eswa.2021.115956_b0345 10.1016/j.eswa.2021.115956_b0620 10.1016/j.eswa.2021.115956_b0185 10.1016/j.eswa.2021.115956_b0580 10.1016/j.eswa.2021.115956_b0220 Plantie (10.1016/j.eswa.2021.115956_b0460) 2013 10.1016/j.eswa.2021.115956_b0505 10.1016/j.eswa.2021.115956_b0105 10.1016/j.eswa.2021.115956_b0225 10.1016/j.eswa.2021.115956_b0500 Su (10.1016/j.eswa.2021.115956_b0565) 2018; 29 Huang (10.1016/j.eswa.2021.115956_b0265) 2018; 432 Raghavan (10.1016/j.eswa.2021.115956_b0490) 2007; 76 Girvan (10.1016/j.eswa.2021.115956_b0195) 2002; 99 He (10.1016/j.eswa.2021.115956_b0250) 2018; 74 Scott (10.1016/j.eswa.2021.115956_b0535) 1988; 22 10.1016/j.eswa.2021.115956_b0590 Nerurkar (10.1016/j.eswa.2021.115956_b0405) 2019; 798 10.1016/j.eswa.2021.115956_b0190 Bello-Orgaz (10.1016/j.eswa.2021.115956_b0050) 2016; 28 Newman (10.1016/j.eswa.2021.115956_b0410) 2004; 69 10.1016/j.eswa.2021.115956_b0595 10.1016/j.eswa.2021.115956_b0235 10.1016/j.eswa.2021.115956_b0355 Qiao (10.1016/j.eswa.2021.115956_b0485) 2018; 30 Wasserman (10.1016/j.eswa.2021.115956_b0610) 1994 Leskovec (10.1016/j.eswa.2021.115956_b0340) 2009; 6 10.1016/j.eswa.2021.115956_b0515 10.1016/j.eswa.2021.115956_b0115 Galaskiewicz (10.1016/j.eswa.2021.115956_b0180) 1993; 22 10.1016/j.eswa.2021.115956_b0635 Moon (10.1016/j.eswa.2021.115956_b0395) 2016; 104 Ma (10.1016/j.eswa.2021.115956_b0370) 2018; 503 Coscia (10.1016/j.eswa.2021.115956_b0135) 2011; 4 10.1016/j.eswa.2021.115956_b0480 Zhao (10.1016/j.eswa.2021.115956_b0670) 2019; 163 Haythornthwaite (10.1016/j.eswa.2021.115956_b0245) 2007 10.1016/j.eswa.2021.115956_b0365 10.1016/j.eswa.2021.115956_b0400 Xin (10.1016/j.eswa.2021.115956_b0630) 2016; 58 10.1016/j.eswa.2021.115956_b0520 Harel (10.1016/j.eswa.2021.115956_b0240) 2001; 2245 10.1016/j.eswa.2021.115956_b0085 Behera (10.1016/j.eswa.2021.115956_b0045) 2017; 7 10.1016/j.eswa.2021.115956_b0120 Chen (10.1016/j.eswa.2021.115956_b0100) 2012; 24 Dybala (10.1016/j.eswa.2021.115956_b0155) 2010; 19 10.1016/j.eswa.2021.115956_b0005 10.1016/j.eswa.2021.115956_b0645 Souravlas (10.1016/j.eswa.2021.115956_b0560) 2018; 6 Collins (10.1016/j.eswa.2021.115956_b0125) 1988; 23 Porter (10.1016/j.eswa.2021.115956_b0465) 2009; 56 10.1016/j.eswa.2021.115956_b0095 Traud (10.1016/j.eswa.2021.115956_b0575) 2011; 53 Liu (10.1016/j.eswa.2021.115956_b0360) 2016; 70 10.1016/j.eswa.2021.115956_b0530 10.1016/j.eswa.2021.115956_b0650 10.1016/j.eswa.2021.115956_b0015 10.1016/j.eswa.2021.115956_b0130 10.1016/j.eswa.2021.115956_b0495 Jin (10.1016/j.eswa.2021.115956_b0285) 2015; 18 Wu (10.1016/j.eswa.2021.115956_b0625) 2016; 19 Moher (10.1016/j.eswa.2021.115956_b0385) 2009; 339 Bu (10.1016/j.eswa.2021.115956_b0080) 2013; 50 Prat-Pérez (10.1016/j.eswa.2021.115956_b0475) 2016; 10 Danon (10.1016/j.eswa.2021.115956_b0140) 2005; 9 Kitchenham (10.1016/j.eswa.2021.115956_b0320) 2002; 28 10.1016/j.eswa.2021.115956_b0260 10.1016/j.eswa.2021.115956_b0380 Kitchenham (10.1016/j.eswa.2021.115956_b0310) 2004 Wang (10.1016/j.eswa.2021.115956_b0605) 2007; 22 10.1016/j.eswa.2021.115956_b0145 10.1016/j.eswa.2021.115956_b0420 10.1016/j.eswa.2021.115956_b0025 Borgatti (10.1016/j.eswa.2021.115956_b0065) 2009; 323 10.1016/j.eswa.2021.115956_b0300 10.1016/j.eswa.2021.115956_b0020 10.1016/j.eswa.2021.115956_b0545 Zhang (10.1016/j.eswa.2021.115956_b0660) 2016; 107 10.1016/j.eswa.2021.115956_b0665 10.1016/j.eswa.2021.115956_b0305 10.1016/j.eswa.2021.115956_b0425 Blondel (10.1016/j.eswa.2021.115956_b0060) 2011; 10 Carrington (10.1016/j.eswa.2021.115956_b0090) 2005 10.1016/j.eswa.2021.115956_b0390 10.1016/j.eswa.2021.115956_b0150 Gulbahce (10.1016/j.eswa.2021.115956_b0210) 2008; 30 10.1016/j.eswa.2021.115956_b0270 Chen (10.1016/j.eswa.2021.115956_b0110) 2018; 21 Behera (10.1016/j.eswa.2021.115956_b0030) 2020; 32 Malliaros (10.1016/j.eswa.2021.115956_b0375) 2013; 533 10.1016/j.eswa.2021.115956_b0035 10.1016/j.eswa.2021.115956_b0430 Gupta (10.1016/j.eswa.2021.115956_b0215) 2017; 61 10.1016/j.eswa.2021.115956_b0550 10.1016/j.eswa.2021.115956_b0435 10.1016/j.eswa.2021.115956_b0555 Bhatia (10.1016/j.eswa.2021.115956_b0055) 2018; 57 Jena (10.1016/j.eswa.2021.115956_b0275) 2019 Lancichinetti (10.1016/j.eswa.2021.115956_b0335) 2009; 80 Fortunato (10.1016/j.eswa.2021.115956_b0170) 2010; 486 Sharma (10.1016/j.eswa.2021.115956_b0540) 2017; 10 Zhang (10.1016/j.eswa.2021.115956_b0655) 2016; 3 Rosvall (10.1016/j.eswa.2021.115956_b0510) 2008; 105 10.1016/j.eswa.2021.115956_b0280 10.1016/j.eswa.2021.115956_b0040 10.1016/j.eswa.2021.115956_b0160 Parthasarathy (10.1016/j.eswa.2021.115956_b0450) 2011 |
References_xml | – reference: Gao, G., Bu, Z., Wu, Z., Li, Y., and Cao, J. (2015). Efficient parallel community detection in large edge-intensive networks. Pages 253–260. – reference: Moradi, E., Fazlali, M., and Malazi, H. (2016). Fast parallel community detection algorithm based on modularity. – reference: Yang, B., Liu, D., and Liu, J. (2010). Discovering communities from social networks: methodologies and applications. In Handbook of social network technologies and applications, pages 331–346. – volume: 531 year: 2019 ident: b0350 article-title: Communities detection in social network based on local edge centrality publication-title: Physica A: Statistical Mechanics and its Applications – reference: Masdarolomoor, Z., Azmi, R., Aliakbary, S., and Riahi, N. (2011). Finding community structure in complex networks using parallel approach. pages 474–479. – volume: 486 start-page: 75 year: 2010 end-page: 174 ident: b0170 article-title: Community detection in graphs publication-title: Physics Reports – reference: Ling, X., Yang, J., Wang, D., Chen, J., and Li, L. (2017). Fast community detection in large weighted networks using graphx in the cloud. pages 1–8. – reference: Moon, S., Lee, J.-G., and Kang, M. (2014). Scalable community detection from networks by computing edge betweenness on mapreduce. pages 145–148. – reference: Zhang, C., Zhang, Y., and Wu, B. (2018). A parallel community detection algorithm based on incremental clustering in dynamic network. pages 946–953. – volume: 9 start-page: 219 year: 2005 end-page: 228 ident: b0140 article-title: Comparing community structure identification publication-title: Journal of Statistical Mechanics: Theory and Experiment – reference: Zhao, W., Martha, V., and Xu, X. (2013). Pscan: A parallel structural clustering algorithm for big networks in mapreduce. pages 862–869. – reference: Fortunato, S. and Castellano, C. (2012). Community structure in graphs, volume 9781461418009. – reference: Kumari, A., Behera, R., Shukla, A., Sahoo, S., Misra, S., and Rath, S. (2020). Quantifying influential communities in granu- lar social networks using fuzzy theory. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12252 LNCS:906–917. – reference: Ovelgönne, M. (2013). Distributed community detection in web-scale networks. pages 66–73. – start-page: 79 year: 2011 end-page: 113 ident: b0450 article-title: Community discovery in social networks: Applications, methods and emerging trends publication-title: Social Network Data Analytics – volume: 22 start-page: 3 year: 1993 end-page: 22 ident: b0180 article-title: Social network analysis: Concepts, methodology, and directions for the 1990s publication-title: Sociological Methods Research – reference: Wickramaarachchi, C., Frincu, M., Small, P., and Prasanna, V. (2014). Fast parallel algorithm for unfolding of communities in large graphs. – reference: Behera, R., Rath, S., and Jena, M. (2016). Spanning tree based community detection using min-max modularity. volume 93, pages 1070–1076. – volume: 74 start-page: 533 year: 2019 end-page: 546 ident: b0010 article-title: Improving fuzzy c-mean-based community detection in social networks using dynamic parallelism publication-title: Computers and Electrical Engineering – reference: Schöpfel, J. (2010). Towards a prague definition of grey literature. In Twelfth International Conference on Grey Literature:Transparency in Grey Literature. Grey Tech Approaches to High Tech Issues. Prague, pages 11–26. – reference: Higgins, J. and Green, S. (2008). Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series. – volume: 798 start-page: 287 year: 2019 end-page: 298 ident: b0405 article-title: A comparative analysis of community detection algorithms on social networks publication-title: Advances in Intelligent Systems and Computing – volume: 69 start-page: 5 year: 2004 ident: b0410 article-title: Fast algorithm for detecting community structure in networks publication-title: Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics – start-page: 121 year: 2007 end-page: 137 ident: b0245 article-title: Social networks and online community publication-title: The Oxford handbook of Internet psychology – reference: Behera, R. and Rath, S. (2016). An efficient modularity based algorithm for community detection in social network. Pages 162–167. – volume: 2245 start-page: 18 year: 2001 end-page: 41 ident: b0240 article-title: On clustering using random walks publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – reference: Vo, N., Lee, K., and Tran, T. (2017). Mrattractor: Detecting communities from large-scale graphs. volume 2018-January, pages 797–806. – volume: 24 start-page: 515 year: 2012 end-page: 554 ident: b0445 article-title: Community detection in social media performance and application considerations publication-title: Data Mining and Knowledge Discovery – reference: Alandoli, M., Al-Ayyoub, M., Al-Smadi, M., Jararweh, Y., and Benkhelifa, E. (2016a). Using dynamic parallelism to speed up clustering-based community detection in social networks. pages 240–245. – volume: 7 start-page: 1173 year: 2017 ident: b0045 article-title: Large scale community detection using a small world model publication-title: Applied Sciences (Switzerland) – reference: Keele, S. (2007). Guidelines for performing systematic literature reviews in software engineering. In Technical report, Ver. 2.3 EBSE Technical Report. EBSE. – reference: Chen, N., Liu, Y., Cheng, J., and Liu, Q. (2017). Parallelizing label propagation for overlapping community detection. – reference: Soman, J. and Narang, A. (2011). Fast community detection algorithm with gpus and multicore architectures. Pages 568–579. – reference: Conte, A., Grossi, R., De Matteis, T., Marino, A., De Sensi, D., and Versari, L. (2018). D2k: Scalable community detection in massive networks via small-diameter k-plexes. pages 1272–1281. – reference: Duriakova, E., Hurley, N., Ajwani, D., and Sala, A. (2014). Analysis of the semi-synchronous approach to large-scale parallel community finding. pages 51–62. – reference: Alandoli, M., Shehab, M., Al-Ayyoub, M., Jararweh, Y., and Al-Smadi, M. (2016b). Using gpus to speed-up fcm-based community detection in social networks. – volume: 51 start-page: 7 year: 2009 end-page: 15 ident: b0315 article-title: Systematic literature reviews in software engineering - a systematic literature review publication-title: Information and Software Technology – reference: Chaitanya, K., Somayajulu, D., and Krishna, P. (2018). A pso based community detection in social networks with node attributes. – reference: Hajeer, M., Dasgupta, D., Semenov, A., and Veijalainen, J. (2015). Distributed evolutionary approach to data clustering and modeling. Pages 142–148. – reference: Valente, T. (2010). Social Networks and Health: Models, Methods, and Applications. – volume: 3 year: 2016 ident: b0655 article-title: Limited random walk algorithm for big graph data clustering publication-title: Journal of Big Data – volume: 32 start-page: 9649 year: 2020 end-page: 9665 ident: b0030 article-title: Genetic algorithm-based community detection in large-scale social networks publication-title: Neural Computing and Applications – reference: Truică, C.-O., Novović, O., Brdar, S., and Papadopoulos, A. (2018). Community detection in who-calls-whom social networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor- matics), 11031 LNCS:19–33. – volume: 22 start-page: 79 year: 2007 end-page: 83 ident: b0605 article-title: Social computing: From social informatics to social intelligence publication-title: IEEE Intelligent Systems – volume: 6 start-page: 29 year: 2009 end-page: 123 ident: b0340 article-title: Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters publication-title: Internet Mathematics – reference: Gui, F., Ma, Y., Zhang, F., Liu, M., Yin, R., and Shen, W. (2016). A stable and distributed community detection algorithm based on maximal cliques. pages 1346–1350. – volume: 22 start-page: 109 year: 1988 end-page: 127 ident: b0535 article-title: Social network analysis publication-title: Sociology – volume: 10 start-page: 44 year: 2017 end-page: 52 ident: b0540 article-title: Community detection algorithm for big social networks using hybrid architecture publication-title: Big Data Research – reference: Kuzmin, K., Shah, S., and Szymanski, B. (2013). Parallel overlapping community detection with slpa. pages 204–212. – volume: 104 start-page: 17 year: 2016 end-page: 31 ident: b0395 article-title: Parallel community detection on large graphs with mapreduce and graphchi publication-title: Data and Knowledge Engineering – reference: Yin, C., Zhu, S., Chen, H., Zhang, B., and David, B. (2015). A method for community detection of complex networks based on hierarchical clustering. International Journal of Distributed Sensor Networks, 2015. – volume: 28 start-page: 721 year: 2002 end-page: 734 ident: b0320 article-title: Preliminary guidelines for empirical research in software engineering publication-title: IEEE Transactions on Software Engineering – volume: 163 start-page: 404 year: 2019 end-page: 415 ident: b0670 article-title: An incremental method to detect communities in dynamic evolving social networks publication-title: Knowledge-Based Systems – reference: Ghosh, S., Halappanavar, M., Tumeo, A., Kalyanaraman, A., Lu, H., Chavarria-Miranda, D., Khan, A., and Gebremedhin, A. (2018). Distributed louvain algorithm for graph community detection. Pages 885–895. – volume: 58 start-page: 10 year: 2016 end-page: 19 ident: b0630 article-title: An adaptive random walk sampling method on dynamic community detection publication-title: Expert Systems with Applications – reference: Varamesh, A., Akbari, M., Fereiduni, M., Sharifian, S., and Bagheri, A. (2013). Distributed clique percolation based community detection on social networks using mapreduce. pages 478–483. – volume: 28 start-page: 45 year: 2016 end-page: 59 ident: b0050 article-title: Social big data: Recent achievements and new challenges publication-title: Information Fusion – reference: Jain, A., Nasre, R., and Ravindran, B. (2018). Dceil: Distributed community detection with the ceil score. volume 2018-January, pages 146–153. – volume: 57 start-page: 159 year: 2018 end-page: 181 ident: b0055 article-title: Dfuzzy: A deep learning-based fuzzy clustering model for large graphs publication-title: Knowledge and Information Systems – reference: Khlopotine, A., Sathanur, A., and Jandhyala, V. (2016). Optimized parallel label propagation based community detection on the intel(r) xeon phi(tm) architecture. volume 2016-January, pages 9–16. – reference: Pizzuti, C. (2008). Ga-net: A genetic algorithm for community detection in social networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5199 LNCS:1081–1090. – start-page: 65 year: 2013 end-page: 85 ident: b0460 article-title: Survey on social community detection publication-title: Social media retrieval – reference: Wu, B., Zhang, C., and Guo, Q. (2017). A parallel network community detection algorithm based on distance dynamics. pages 819–826. – start-page: 1 year: 2004 end-page: 26 ident: b0310 publication-title: Procedures for performing systematic reviews – volume: 80 year: 2009 ident: b0335 article-title: Community detection algorithms: A comparative analysis publication-title: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics – volume: 11 start-page: 430 year: 1990 end-page: 452 ident: b0470 article-title: Partitioning sparse matrices with eigenvectors of graphs publication-title: SIAM journal on matrix analysis and applications – volume: 6 start-page: 42775 year: 2018 end-page: 42789 ident: b0255 article-title: Parallel community detection based on distance dynamics for large-scale network publication-title: IEEE Access – volume: 53 start-page: 526 year: 2011 end-page: 543 ident: b0575 article-title: Comparing community structure to characteristics in online collegiate social networks publication-title: SIAM Review – volume: 23 start-page: 231 year: 1988 end-page: 242 ident: b0125 article-title: Omega: A general formulation of the rand index of cluster recovery suitable for non-disjoint solutions publication-title: Multivariate Behavioral Research – volume: 29 start-page: 165 year: 2018 end-page: 178 ident: b0565 article-title: A dynamic method to adjust overlapping community structures publication-title: Journal of Computers (Taiwan) – reference: Sattar, N. and Arifuzzaman, S. (2018). Parallelizing louvain algorithm: Distributed memory challenges. pages 695–701. – volume: 19 start-page: 211 year: 2016 end-page: 221 ident: b0625 article-title: Simple: A simplifying-ensembling framework for parallel community detection from large networks publication-title: Cluster Computing – reference: Li, G., Guo, K., Chen, Y., Wu, L., and Zhu, D. (2017). A dynamic community detection algorithm based on parallel incremental related vertices. pages 779–783. – reference: El-Helw, I., Hofman, R., Li, W., Ahn, S., Welling, M., and Bal, H. (2016). Scalable overlapping community detection. pages 1463–1472. – volume: 80 start-page: 571 year: 2007 end-page: 583 ident: b0070 article-title: Lessons from applying the systematic literature review process within the software engineering domain publication-title: Journal of Systems and Software – volume: 10 start-page: 1 year: 2016 end-page: 42 ident: b0475 article-title: Put three and three together: Triangle-driven community detection publication-title: ACM Transactions on Knowledge Discovery from Data – volume: 435 start-page: 814 year: 2005 end-page: 818 ident: b0440 article-title: Uncovering the overlapping community structure of complex networks in nature and society publication-title: Nature – reference: Riedy, J., Bader, D., and Meyerhenke, H. (2012). Scalable multi-threaded community detection in social networks. pages 1619– 1628. – volume: 503 start-page: 366 year: 2018 end-page: 378 ident: b0370 article-title: Psplpa: Probability and similarity based parallel label propagation algorithm on spark publication-title: Physica A: Statistical Mechanics and its Applications – volume: 30 start-page: 934 year: 2008 end-page: 938 ident: b0210 article-title: The art of community detection publication-title: BioEssays – volume: 70 start-page: 89 year: 2016 end-page: 101 ident: b0360 article-title: Miracle: A multiple independent random walks community parallel detection algorithm for big graphs publication-title: Journal of Network and Computer Applications – volume: 55 start-page: 741 year: 2018 end-page: 770 ident: b0075 article-title: Gleam: A graph clustering framework based on potential game optimization for large-scale social networks publication-title: Knowledge and Information Systems – volume: 76 year: 2007 ident: b0490 article-title: Near linear time algorithm to detect community structures in large-scale networks publication-title: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics – start-page: 101 year: 2019 end-page: 108 ident: b0275 article-title: Machine learning models for stock prediction using real-time streaming data publication-title: International Conference on Biologically Inspired Techniques in Many-Criteria Decision Making – volume: 30 start-page: 1638 year: 2018 end-page: 1651 ident: b0485 article-title: A fast parallel community discovery model on complex networks through approximate optimization publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: Riedy, J. and Bader, D. (2013). Multithreaded community monitoring for massive streaming graph data. pages 1646–1655. – volume: 56 start-page: 1082 year: 2009 end-page: 1097 ident: b0465 article-title: Communities in networks publication-title: Notices of the American Mathematical Society – volume: 323 start-page: 892 year: 2009 end-page: 895 ident: b0065 article-title: Network analysis in the social sciences publication-title: Science – volume: 74 start-page: 5601 year: 2018 end-page: 5624 ident: b0250 article-title: Improving nmf-based community discovery using distributed robust nonnegative matrix factorization with simrank similarity measure publication-title: Journal of Supercomputing – reference: Nur, N., Dou, W., Niu, X., Krishnan, S., and Park, N. (2018). Gi-ohms: Graphical inference to detect overlapping communities. arXiv preprint arXiv:1810.01547. – volume: 6 start-page: 68415 year: 2018 end-page: 68428 ident: b0560 article-title: A novel, interdisciplinary, approach for community detection based on remote file requests publication-title: IEEE Access – reference: Ogata, H., Dayarathna, M., and Suzumura, T. (2012). Towards highly scalable x10 based spectral clustering. – volume: 4 start-page: 512 year: 2011 end-page: 546 ident: b0135 article-title: A classification for community discovery methods in complex networks publication-title: Statistical Analysis and Data Mining – year: 2005 ident: b0090 article-title: Models and methods in social network analysis – volume: 146 start-page: 113184 year: 2020 ident: b0290 article-title: Multiplex community detection in complex networks using an evolutionary ap- proach publication-title: Expert Systems with Applications – reference: Halalai, R., Lemnaru, C., and Potolea, R. (2010). Distributed community detection in social networks with genetic algorithms. pages 35–41. – volume: 99 start-page: 7821 year: 2002 end-page: 7826 ident: b0195 article-title: Community structure in social and biological networks publication-title: Proceedings of the National Academy of Sciences of the United States of America – reference: Khan, K. S., Ter Riet, G., Glanville, J., Sowden, A. J., and Kleijnen, J. (2001). Undertaking systematic reviews of research on effectiveness: CRD’s guidance for carrying out or commissioning reviews. Number 4 (2nd Edition). NHS Centre for Reviews and Dissemination. – volume: 54 start-page: 26 year: 2017 end-page: 34 ident: b0165 article-title: Adaptive parallel louvain community detection on a multicore platform publication-title: Microprocessors and Microsystems – volume: 61 start-page: 331 year: 2017 end-page: 353 ident: b0215 article-title: Parallel quantum-inspired evolutionary algorithms for community detection in social networks publication-title: Applied Soft Computing Journal – volume: 94 start-page: 70 year: 2018 end-page: 80 ident: b0230 article-title: Revealing the densest communities of social networks efficiently through intelligent data space reduction publication-title: Expert Systems with Applications – reference: Sarswat, A. and Guddeti, R. (2018). A novel overlapping community detection using parallel cfm and sequential nash equilibrium. volume 2018-January, pages 649–654. – volume: 533 start-page: 95 year: 2013 end-page: 142 ident: b0375 article-title: Clustering and community detection in directed networks: A survey publication-title: Physics Reports – volume: 105 start-page: 1118 year: 2008 end-page: 1123 ident: b0510 article-title: Maps of random walks on complex networks reveal community structure publication-title: Proceedings of the National Academy of Sciences of the United States of America – reference: Goldberg, M., Kelley, S., Magdon-Ismail, M., Mertsalov, K., and Wallace, A. (2010). Finding overlapping communities in social networks. pages 104–113. – volume: 9 year: 2014 ident: b0415 article-title: Dynamic social community detection and its applications publication-title: PLoS ONE – reference: Aggarwal, C. C. (2011). An introduction to social network data analytics. In Social network data analytics, pages 1–15. – volume: 24 start-page: 1216 year: 2012 end-page: 1230 ident: b0100 article-title: Dense subgraph extraction with application to community detection publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 21 start-page: 1377 year: 2018 end-page: 1398 ident: b0110 article-title: A novel parallel community detection scheme based on label propagation publication-title: World Wide Web – volume: 432 start-page: 164 year: 2018 end-page: 184 ident: b0265 article-title: Overlapping community detection in heterogeneous social networks via the user model publication-title: Information Sciences – volume: 107 start-page: 133 year: 2016 end-page: 143 ident: b0660 article-title: A social community detection algorithm based on parallel grey label propagation publication-title: Computer Networks – reference: Clauset, A., Newman, M., and Moore, C. (2004). Finding community structure in very large networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 70(6 2):066111/1–066111/6. – volume: 1 start-page: 27 year: 2007 end-page: 64 ident: b0525 article-title: Graph clustering publication-title: Computer science review – reference: Handbook, C. C. T. C. R. (2003). Version 4.2. 1. December. – volume: 82 start-page: 157 year: 2011 end-page: 189 ident: b0640 article-title: Detecting communities and their evolutions in dynamic social networks - a bayesian approach publication-title: Machine Learning – volume: 10 start-page: P10008 year: 2011 ident: b0060 article-title: The louvain method for community detection in large networks publication-title: Journal of Statistical Mechanics: Theory and Experiment – reference: Jian, X., Lian, X., and Chen, L. (2018). On efficiently detecting overlapping communities over distributed dynamic graphs. pages 1332–1335. – year: 1994 ident: b0610 article-title: Advances in social network analysis: Research in the social and behavioral sciences – reference: Orzeszyna, W., Madeyski, L., and Torkar, R. (2016). Protocol for a systematic literature review of methods dealing with equivalent mutant problem, wroclaw univ. of technology. Available online at – reference: Bae, S.-H. and Howe, B. (2015). Gossipmap: A distributed community detection algorithm for billion-edge directed graphs. volume 15-20-November-2015. – volume: 19 start-page: 819 year: 2010 end-page: 856 ident: b0155 article-title: Evaluating subjective aspects of hci on an example of a non-task oriented conversational system publication-title: International Journal on Artificial Intelligence Tools – reference: Shi, J., Xue, W., Wang, W., Zhang, Y., Yang, B., and Li, J. (2013). Scalable community detection in massive social networks using mapreduce. IBM Journal of Research and Development, 57(3/4):12–1. – volume: 50 start-page: 246 year: 2013 end-page: 259 ident: b0080 article-title: A fast parallel modularity optimization algorithm (fpmqa) for community detection in online social network publication-title: Knowledge-Based Systems – reference: Lunagariya, D., Somayajulu, D., and Krishna, P. (2014). Se-cda: A scalable and efficient community detection algorithm. pages 877–882. – reference: Chintalapudi, S. and Prasad, M. (2015). A survey on community detection algorithms in large scale real world networks. pages 1323–1327. – reference: Didwania, A. and Narmawala, Z. (2016). A comparative study of various community detection algorithms in the mobile social network. – reference: . – start-page: 487 year: 2010 end-page: 513 ident: b0570 article-title: Graph mining applications to social network analysis publication-title: Managing and Mining Graph Data – volume: 18 start-page: 999 year: 2015 end-page: 1010 ident: b0285 article-title: Community structure mining in big data social media networks with mapreduce publication-title: Cluster Computing – reference: Buzun, N., Korshunov, A., Avanesov, V., Filonenko, I., Kozlov, I., Turdakov, D., and Kim, H. (2015). Egolp: Fast and distributed community detection in billion-node social networks. volume 2015-January, pages 533–540. – reference: Prat-Pérez, A., Dominguez-Sal, D., and Larriba-Pey, J.-L. (2014). High quality, scalable and parallel community detection for large real graphs. pages 225–235. – volume: 339 start-page: 332 year: 2009 end-page: 336 ident: b0385 article-title: Preferred reporting items for systematic reviews and meta-analyses: The prisma statement publication-title: BMJ (Online) – reference: Resende, H., Fazenda, A., and Quiles, M. (2017). Parallel algorithm for dynamic community detection. pages 55–60. – reference: Wan, C., Peng, S., Wang, C., and Yuan, Y. (2017). Communities detection algorithm based on general stochastic block model in mobile social networks. pages 178–185. – reference: Song, Q., Li, B., Yu, W., Li, J., and Shi, B. (2014). Nslpa: A node similarity based label propagation algorithm for real-time community detection. pages 896–901. – ident: 10.1016/j.eswa.2021.115956_b0355 – ident: 10.1016/j.eswa.2021.115956_b0580 doi: 10.1007/978-3-319-98539-8_2 – ident: 10.1016/j.eswa.2021.115956_b0175 doi: 10.1007/978-1-4614-1800-9_33 – ident: 10.1016/j.eswa.2021.115956_b0650 doi: 10.1109/ASONAM.2018.8508730 – volume: 486 start-page: 75 issue: 3–5 year: 2010 ident: 10.1016/j.eswa.2021.115956_b0170 article-title: Community detection in graphs publication-title: Physics Reports doi: 10.1016/j.physrep.2009.11.002 – volume: 76 issue: 3 year: 2007 ident: 10.1016/j.eswa.2021.115956_b0490 article-title: Near linear time algorithm to detect community structures in large-scale networks publication-title: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics doi: 10.1103/PhysRevE.76.036106 – ident: 10.1016/j.eswa.2021.115956_b0505 doi: 10.1109/IPDPSW.2012.203 – ident: 10.1016/j.eswa.2021.115956_b0095 doi: 10.1109/CEC.2018.8477659 – volume: 94 start-page: 70 year: 2018 ident: 10.1016/j.eswa.2021.115956_b0230 article-title: Revealing the densest communities of social networks efficiently through intelligent data space reduction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.10.047 – ident: 10.1016/j.eswa.2021.115956_b0390 – ident: 10.1016/j.eswa.2021.115956_b0260 doi: 10.1002/9780470712184 – ident: 10.1016/j.eswa.2021.115956_b0325 doi: 10.1007/978-3-030-58811-3_64 – ident: 10.1016/j.eswa.2021.115956_b0365 doi: 10.1109/BigData.2014.7004318 – ident: 10.1016/j.eswa.2021.115956_b0185 doi: 10.1109/CBD.2014.52 – volume: 9 issue: 4 year: 2014 ident: 10.1016/j.eswa.2021.115956_b0415 article-title: Dynamic social community detection and its applications publication-title: PLoS ONE doi: 10.1371/journal.pone.0091431 – volume: 74 start-page: 533 year: 2019 ident: 10.1016/j.eswa.2021.115956_b0010 article-title: Improving fuzzy c-mean-based community detection in social networks using dynamic parallelism publication-title: Computers and Electrical Engineering doi: 10.1016/j.compeleceng.2018.01.003 – ident: 10.1016/j.eswa.2021.115956_b0400 doi: 10.1109/CADS.2015.7377794 – ident: 10.1016/j.eswa.2021.115956_b0480 doi: 10.1145/2566486.2568010 – ident: 10.1016/j.eswa.2021.115956_b0300 – volume: 28 start-page: 721 issue: 8 year: 2002 ident: 10.1016/j.eswa.2021.115956_b0320 article-title: Preliminary guidelines for empirical research in software engineering publication-title: IEEE Transactions on Software Engineering doi: 10.1109/TSE.2002.1027796 – volume: 30 start-page: 934 issue: 10 year: 2008 ident: 10.1016/j.eswa.2021.115956_b0210 article-title: The art of community detection publication-title: BioEssays doi: 10.1002/bies.20820 – year: 1994 ident: 10.1016/j.eswa.2021.115956_b0610 – volume: 54 start-page: 26 year: 2017 ident: 10.1016/j.eswa.2021.115956_b0165 article-title: Adaptive parallel louvain community detection on a multicore platform publication-title: Microprocessors and Microsystems doi: 10.1016/j.micpro.2017.08.002 – volume: 6 start-page: 68415 year: 2018 ident: 10.1016/j.eswa.2021.115956_b0560 article-title: A novel, interdisciplinary, approach for community detection based on remote file requests publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2880157 – ident: 10.1016/j.eswa.2021.115956_b0515 doi: 10.1109/COMSNETS.2018.8328289 – volume: 18 start-page: 999 issue: 3 year: 2015 ident: 10.1016/j.eswa.2021.115956_b0285 article-title: Community structure mining in big data social media networks with mapreduce publication-title: Cluster Computing doi: 10.1007/s10586-015-0452-x – ident: 10.1016/j.eswa.2021.115956_b0200 doi: 10.1109/SocialCom.2010.24 – ident: 10.1016/j.eswa.2021.115956_b0040 doi: 10.1016/j.procs.2016.07.311 – volume: 55 start-page: 741 issue: 3 year: 2018 ident: 10.1016/j.eswa.2021.115956_b0075 article-title: Gleam: A graph clustering framework based on potential game optimization for large-scale social networks publication-title: Knowledge and Information Systems doi: 10.1007/s10115-017-1105-6 – ident: 10.1016/j.eswa.2021.115956_b0545 doi: 10.1147/JRD.2013.2251982 – volume: 80 issue: 5 year: 2009 ident: 10.1016/j.eswa.2021.115956_b0335 article-title: Community detection algorithms: A comparative analysis publication-title: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics doi: 10.1103/PhysRevE.80.056117 – volume: 531 year: 2019 ident: 10.1016/j.eswa.2021.115956_b0350 article-title: Communities detection in social network based on local edge centrality publication-title: Physica A: Statistical Mechanics and its Applications doi: 10.1016/j.physa.2019.121552 – volume: 107 start-page: 133 year: 2016 ident: 10.1016/j.eswa.2021.115956_b0660 article-title: A social community detection algorithm based on parallel grey label propagation publication-title: Computer Networks doi: 10.1016/j.comnet.2016.06.002 – volume: 30 start-page: 1638 issue: 9 year: 2018 ident: 10.1016/j.eswa.2021.115956_b0485 article-title: A fast parallel community discovery model on complex networks through approximate optimization publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2018.2803818 – ident: 10.1016/j.eswa.2021.115956_b0530 – ident: 10.1016/j.eswa.2021.115956_b0345 doi: 10.1109/ICBDA.2017.8078743 – volume: 50 start-page: 246 year: 2013 ident: 10.1016/j.eswa.2021.115956_b0080 article-title: A fast parallel modularity optimization algorithm (fpmqa) for community detection in online social network publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2013.06.014 – start-page: 487 year: 2010 ident: 10.1016/j.eswa.2021.115956_b0570 article-title: Graph mining applications to social network analysis – ident: 10.1016/j.eswa.2021.115956_b0280 doi: 10.1109/ICDE.2018.00142 – ident: 10.1016/j.eswa.2021.115956_b0600 doi: 10.1109/CBD.2016.040 – volume: 80 start-page: 571 issue: 4 year: 2007 ident: 10.1016/j.eswa.2021.115956_b0070 article-title: Lessons from applying the systematic literature review process within the software engineering domain publication-title: Journal of Systems and Software doi: 10.1016/j.jss.2006.07.009 – volume: 11 start-page: 430 issue: 3 year: 1990 ident: 10.1016/j.eswa.2021.115956_b0470 article-title: Partitioning sparse matrices with eigenvectors of graphs publication-title: SIAM journal on matrix analysis and applications doi: 10.1137/0611030 – ident: 10.1016/j.eswa.2021.115956_b0590 doi: 10.1109/IKT.2013.6620116 – ident: 10.1016/j.eswa.2021.115956_b0235 – ident: 10.1016/j.eswa.2021.115956_b0430 – ident: 10.1016/j.eswa.2021.115956_b0665 – ident: 10.1016/j.eswa.2021.115956_b0425 doi: 10.1109/HiPC.2012.6507522 – ident: 10.1016/j.eswa.2021.115956_b0005 doi: 10.1007/978-1-4419-8462-3_1 – volume: 6 start-page: 29 issue: 1 year: 2009 ident: 10.1016/j.eswa.2021.115956_b0340 article-title: Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters publication-title: Internet Mathematics doi: 10.1080/15427951.2009.10129177 – volume: 57 start-page: 159 issue: 1 year: 2018 ident: 10.1016/j.eswa.2021.115956_b0055 article-title: Dfuzzy: A deep learning-based fuzzy clustering model for large graphs publication-title: Knowledge and Information Systems doi: 10.1007/s10115-018-1156-3 – volume: 74 start-page: 5601 issue: 10 year: 2018 ident: 10.1016/j.eswa.2021.115956_b0250 article-title: Improving nmf-based community discovery using distributed robust nonnegative matrix factorization with simrank similarity measure publication-title: Journal of Supercomputing doi: 10.1007/s11227-018-2500-9 – ident: 10.1016/j.eswa.2021.115956_b0020 doi: 10.1109/CSIT.2016.7549467 – volume: 28 start-page: 45 year: 2016 ident: 10.1016/j.eswa.2021.115956_b0050 article-title: Social big data: Recent achievements and new challenges publication-title: Information Fusion doi: 10.1016/j.inffus.2015.08.005 – ident: 10.1016/j.eswa.2021.115956_b0620 doi: 10.1145/3110025.3110135 – volume: 339 start-page: 332 issue: 7716 year: 2009 ident: 10.1016/j.eswa.2021.115956_b0385 article-title: Preferred reporting items for systematic reviews and meta-analyses: The prisma statement publication-title: BMJ (Online) – volume: 533 start-page: 95 issue: 4 year: 2013 ident: 10.1016/j.eswa.2021.115956_b0375 article-title: Clustering and community detection in directed networks: A survey publication-title: Physics Reports doi: 10.1016/j.physrep.2013.08.002 – volume: 163 start-page: 404 year: 2019 ident: 10.1016/j.eswa.2021.115956_b0670 article-title: An incremental method to detect communities in dynamic evolving social networks publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.09.002 – volume: 32 start-page: 9649 issue: 13 year: 2020 ident: 10.1016/j.eswa.2021.115956_b0030 article-title: Genetic algorithm-based community detection in large-scale social networks publication-title: Neural Computing and Applications doi: 10.1007/s00521-019-04487-0 – ident: 10.1016/j.eswa.2021.115956_b0220 doi: 10.1109/CIDM.2014.7008660 – ident: 10.1016/j.eswa.2021.115956_b0520 doi: 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00122 – ident: 10.1016/j.eswa.2021.115956_b0225 doi: 10.1109/ICCP.2010.5606467 – year: 2005 ident: 10.1016/j.eswa.2021.115956_b0090 – ident: 10.1016/j.eswa.2021.115956_b0595 doi: 10.1109/BigData.2017.8257995 – volume: 61 start-page: 331 year: 2017 ident: 10.1016/j.eswa.2021.115956_b0215 article-title: Parallel quantum-inspired evolutionary algorithms for community detection in social networks publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2017.07.035 – ident: 10.1016/j.eswa.2021.115956_b0555 doi: 10.1109/UCC.2014.146 – volume: 24 start-page: 1216 issue: 7 year: 2012 ident: 10.1016/j.eswa.2021.115956_b0100 article-title: Dense subgraph extraction with application to community detection publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2010.271 – volume: 22 start-page: 109 issue: 1 year: 1988 ident: 10.1016/j.eswa.2021.115956_b0535 article-title: Social network analysis publication-title: Sociology doi: 10.1177/0038038588022001007 – ident: 10.1016/j.eswa.2021.115956_b0550 doi: 10.1109/IPDPS.2011.61 – ident: 10.1016/j.eswa.2021.115956_b0305 doi: 10.1109/SBAC-PAD.2015.22 – volume: 105 start-page: 1118 issue: 4 year: 2008 ident: 10.1016/j.eswa.2021.115956_b0510 article-title: Maps of random walks on complex networks reveal community structure publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0706851105 – volume: 9 start-page: 219 year: 2005 ident: 10.1016/j.eswa.2021.115956_b0140 article-title: Comparing community structure identification publication-title: Journal of Statistical Mechanics: Theory and Experiment – ident: 10.1016/j.eswa.2021.115956_b0025 doi: 10.1145/2807591.2807668 – ident: 10.1016/j.eswa.2021.115956_b0435 doi: 10.1145/2492517.2492518 – ident: 10.1016/j.eswa.2021.115956_b0015 doi: 10.1109/W-FiCloud.2016.57 – volume: 104 start-page: 17 year: 2016 ident: 10.1016/j.eswa.2021.115956_b0395 article-title: Parallel community detection on large graphs with mapreduce and graphchi publication-title: Data and Knowledge Engineering doi: 10.1016/j.datak.2015.05.001 – volume: 23 start-page: 231 issue: 2 year: 1988 ident: 10.1016/j.eswa.2021.115956_b0125 article-title: Omega: A general formulation of the rand index of cluster recovery suitable for non-disjoint solutions publication-title: Multivariate Behavioral Research doi: 10.1207/s15327906mbr2302_6 – ident: 10.1016/j.eswa.2021.115956_b0615 doi: 10.1109/HPEC.2014.7040973 – volume: 798 start-page: 287 year: 2019 ident: 10.1016/j.eswa.2021.115956_b0405 article-title: A comparative analysis of community detection algorithms on social networks publication-title: Advances in Intelligent Systems and Computing doi: 10.1007/978-981-13-1132-1_23 – ident: 10.1016/j.eswa.2021.115956_b0035 doi: 10.1109/IOTA.2016.7562715 – ident: 10.1016/j.eswa.2021.115956_b0160 doi: 10.1109/IPDPSW.2016.165 – volume: 10 start-page: 1 issue: 3 year: 2016 ident: 10.1016/j.eswa.2021.115956_b0475 article-title: Put three and three together: Triangle-driven community detection publication-title: ACM Transactions on Knowledge Discovery from Data doi: 10.1145/2775108 – ident: 10.1016/j.eswa.2021.115956_b0380 doi: 10.1109/CICSyN.2011.66 – ident: 10.1016/j.eswa.2021.115956_b0115 – volume: 4 start-page: 512 issue: 5 year: 2011 ident: 10.1016/j.eswa.2021.115956_b0135 article-title: A classification for community discovery methods in complex networks publication-title: Statistical Analysis and Data Mining doi: 10.1002/sam.10133 – volume: 435 start-page: 814 issue: 7043 year: 2005 ident: 10.1016/j.eswa.2021.115956_b0440 article-title: Uncovering the overlapping community structure of complex networks in nature and society publication-title: Nature doi: 10.1038/nature03607 – volume: 21 start-page: 1377 issue: 5 year: 2018 ident: 10.1016/j.eswa.2021.115956_b0110 article-title: A novel parallel community detection scheme based on label propagation publication-title: World Wide Web doi: 10.1007/s11280-017-0519-0 – volume: 22 start-page: 3 issue: 1 year: 1993 ident: 10.1016/j.eswa.2021.115956_b0180 article-title: Social network analysis: Concepts, methodology, and directions for the 1990s publication-title: Sociological Methods Research doi: 10.1177/0049124193022001001 – volume: 22 start-page: 79 issue: 2 year: 2007 ident: 10.1016/j.eswa.2021.115956_b0605 article-title: Social computing: From social informatics to social intelligence publication-title: IEEE Intelligent Systems doi: 10.1109/MIS.2007.41 – ident: 10.1016/j.eswa.2021.115956_b0190 doi: 10.1109/IPDPS.2018.00098 – ident: 10.1016/j.eswa.2021.115956_b0150 doi: 10.1145/2660460.2660474 – volume: 2245 start-page: 18 year: 2001 ident: 10.1016/j.eswa.2021.115956_b0240 article-title: On clustering using random walks publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – ident: 10.1016/j.eswa.2021.115956_b0330 doi: 10.1109/SocialCom.2013.37 – ident: 10.1016/j.eswa.2021.115956_b0635 doi: 10.1007/978-1-4419-7142-5_16 – start-page: 1 year: 2004 ident: 10.1016/j.eswa.2021.115956_b0310 – volume: 56 start-page: 1082 issue: 9 year: 2009 ident: 10.1016/j.eswa.2021.115956_b0465 article-title: Communities in networks publication-title: Notices of the American Mathematical Society – volume: 58 start-page: 10 year: 2016 ident: 10.1016/j.eswa.2021.115956_b0630 article-title: An adaptive random walk sampling method on dynamic community detection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.03.033 – ident: 10.1016/j.eswa.2021.115956_b0145 doi: 10.1109/NUICONE.2015.7449651 – ident: 10.1016/j.eswa.2021.115956_b0495 doi: 10.1109/SBAC-PADW.2017.18 – ident: 10.1016/j.eswa.2021.115956_b0420 – start-page: 79 year: 2011 ident: 10.1016/j.eswa.2021.115956_b0450 article-title: Community discovery in social networks: Applications, methods and emerging trends – volume: 146 start-page: 113184 year: 2020 ident: 10.1016/j.eswa.2021.115956_b0290 article-title: Multiplex community detection in complex networks using an evolutionary ap- proach publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113184 – volume: 1 start-page: 27 issue: 1 year: 2007 ident: 10.1016/j.eswa.2021.115956_b0525 article-title: Graph clustering publication-title: Computer science review doi: 10.1016/j.cosrev.2007.05.001 – volume: 51 start-page: 7 issue: 1 year: 2009 ident: 10.1016/j.eswa.2021.115956_b0315 article-title: Systematic literature reviews in software engineering - a systematic literature review publication-title: Information and Software Technology doi: 10.1016/j.infsof.2008.09.009 – start-page: 65 year: 2013 ident: 10.1016/j.eswa.2021.115956_b0460 article-title: Survey on social community detection publication-title: Social media retrieval doi: 10.1007/978-1-4471-4555-4_4 – volume: 99 start-page: 7821 issue: 12 year: 2002 ident: 10.1016/j.eswa.2021.115956_b0195 article-title: Community structure in social and biological networks publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.122653799 – ident: 10.1016/j.eswa.2021.115956_b0205 doi: 10.1109/SMC.2015.239 – ident: 10.1016/j.eswa.2021.115956_b0130 doi: 10.1145/3219819.3220093 – start-page: 121 year: 2007 ident: 10.1016/j.eswa.2021.115956_b0245 article-title: Social networks and online community – volume: 3 issue: 1 year: 2016 ident: 10.1016/j.eswa.2021.115956_b0655 article-title: Limited random walk algorithm for big graph data clustering publication-title: Journal of Big Data doi: 10.1186/s40537-016-0060-5 – ident: 10.1016/j.eswa.2021.115956_b0120 doi: 10.1103/PhysRevE.70.066111 – volume: 6 start-page: 42775 year: 2018 ident: 10.1016/j.eswa.2021.115956_b0255 article-title: Parallel community detection based on distance dynamics for large-scale network publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2859788 – ident: 10.1016/j.eswa.2021.115956_b0105 doi: 10.1109/BESC.2016.7804476 – ident: 10.1016/j.eswa.2021.115956_b0455 doi: 10.1007/978-3-540-87700-4_107 – volume: 69 start-page: 5 issue: 6 year: 2004 ident: 10.1016/j.eswa.2021.115956_b0410 article-title: Fast algorithm for detecting community structure in networks publication-title: Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics – volume: 29 start-page: 165 issue: 3 year: 2018 ident: 10.1016/j.eswa.2021.115956_b0565 article-title: A dynamic method to adjust overlapping community structures publication-title: Journal of Computers (Taiwan) – start-page: 101 year: 2019 ident: 10.1016/j.eswa.2021.115956_b0275 article-title: Machine learning models for stock prediction using real-time streaming data – volume: 10 start-page: P10008 year: 2011 ident: 10.1016/j.eswa.2021.115956_b0060 article-title: The louvain method for community detection in large networks publication-title: Journal of Statistical Mechanics: Theory and Experiment – ident: 10.1016/j.eswa.2021.115956_b0085 doi: 10.1109/ICDMW.2014.158 – volume: 323 start-page: 892 issue: 5916 year: 2009 ident: 10.1016/j.eswa.2021.115956_b0065 article-title: Network analysis in the social sciences publication-title: Science doi: 10.1126/science.1165821 – ident: 10.1016/j.eswa.2021.115956_b0295 – volume: 70 start-page: 89 year: 2016 ident: 10.1016/j.eswa.2021.115956_b0360 article-title: Miracle: A multiple independent random walks community parallel detection algorithm for big graphs publication-title: Journal of Network and Computer Applications doi: 10.1016/j.jnca.2016.05.008 – ident: 10.1016/j.eswa.2021.115956_b0270 – ident: 10.1016/j.eswa.2021.115956_b0500 doi: 10.1109/IPDPSW.2013.229 – volume: 82 start-page: 157 issue: 2 year: 2011 ident: 10.1016/j.eswa.2021.115956_b0640 article-title: Detecting communities and their evolutions in dynamic social networks - a bayesian approach publication-title: Machine Learning doi: 10.1007/s10994-010-5214-7 – volume: 10 start-page: 44 year: 2017 ident: 10.1016/j.eswa.2021.115956_b0540 article-title: Community detection algorithm for big social networks using hybrid architecture publication-title: Big Data Research doi: 10.1016/j.bdr.2017.10.003 – ident: 10.1016/j.eswa.2021.115956_b0645 doi: 10.1155/2015/849140 – volume: 7 start-page: 1173 issue: 11 year: 2017 ident: 10.1016/j.eswa.2021.115956_b0045 article-title: Large scale community detection using a small world model publication-title: Applied Sciences (Switzerland) doi: 10.3390/app7111173 – volume: 432 start-page: 164 year: 2018 ident: 10.1016/j.eswa.2021.115956_b0265 article-title: Overlapping community detection in heterogeneous social networks via the user model publication-title: Information Sciences doi: 10.1016/j.ins.2017.11.055 – volume: 19 start-page: 819 issue: 6 year: 2010 ident: 10.1016/j.eswa.2021.115956_b0155 article-title: Evaluating subjective aspects of hci on an example of a non-task oriented conversational system publication-title: International Journal on Artificial Intelligence Tools doi: 10.1142/S0218213010000431 – volume: 503 start-page: 366 year: 2018 ident: 10.1016/j.eswa.2021.115956_b0370 article-title: Psplpa: Probability and similarity based parallel label propagation algorithm on spark publication-title: Physica A: Statistical Mechanics and its Applications doi: 10.1016/j.physa.2018.02.130 – volume: 24 start-page: 515 issue: 3 year: 2012 ident: 10.1016/j.eswa.2021.115956_b0445 article-title: Community detection in social media performance and application considerations publication-title: Data Mining and Knowledge Discovery doi: 10.1007/s10618-011-0224-z – ident: 10.1016/j.eswa.2021.115956_b0585 doi: 10.1093/acprof:oso/9780195301014.001.0001 – volume: 19 start-page: 211 issue: 1 year: 2016 ident: 10.1016/j.eswa.2021.115956_b0625 article-title: Simple: A simplifying-ensembling framework for parallel community detection from large networks publication-title: Cluster Computing doi: 10.1007/s10586-015-0504-2 – volume: 53 start-page: 526 issue: 3 year: 2011 ident: 10.1016/j.eswa.2021.115956_b0575 article-title: Comparing community structure to characteristics in online collegiate social networks publication-title: SIAM Review doi: 10.1137/080734315 |
SSID | ssj0017007 |
Score | 2.4743664 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Systematic procedures are followed to obtain the most relevant studies.•Mendeley web application is used in filtering process to extract the... Community detection in social networks is the process of identifying the cohesive groups of similar nodes. Detection of these groups can be helpful in many... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115956 |
SubjectTerms | Algorithms Community Detection Digital libraries Distributed Algorithms Distributed memory Libraries Literature reviews Network analysis Parallel Algorithms Parallel processing Public health Search methods Social network analysis Social Networks State-of-the-art reviews Systematic review |
Title | Parallel and distributed paradigms for community detection in social networks: A methodological review |
URI | https://dx.doi.org/10.1016/j.eswa.2021.115956 https://www.proquest.com/docview/2602107996 |
Volume | 187 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy--xTc5eJO6mzRNtt4WUVbFRdAFb6F5VFa0LrsV8eJvd6ZJBUU8eC1JKTOTeaQz30fIIZcuL5m1CYTTMhHM5klPGpOwsseVFKorGA4KXw_lYCQu77P7OXLazsJgW2X0_cGnN946PulEaXYm43HnFpIDCIdQ2jH8-5bjEJ8QCq38-OOrzQPh51TA21MJro6DM6HHy8_eEHuIM_AcWY4k1r8Hpx9uuok95ytkKSaNtB--a5XM-WqNLLeEDDSez3VS3hRT5EZ5okXlqENMXKSz8o4iwrcbPzzPKCSp1IapkPqdOl83vVgVHVc03J_TKnSGz05onwaC6dZB0jDoskFG52d3p4MkEikkNuW9OjEgBmeE6ZbWGAUJhFXMCmZUKlIoV0pZMlCMz4pUFMpJzj3jtpsZznNZlJBRbZL56qXyW4QiIjz4JQWVlQdpK6OgvrZGOp6lmVRqm7BWgtpGlHEku3jSbTvZo0apa5S6DlLfJkdfeyYBY-PP1VmrGP3NUjQEgT_37bVa1PGczjRUc2A-Coq-nX--dpcscpyIaG5l9sh8PX31-5Cn1OagMcQDstC_uBoMPwE_kOYB |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PejFt_hYNQdvUnaTpsnW27Io62sRVPAWmkdlRau4FfHfO9mkgiIevJaklEnyzUw633wAB0zYvKTGJOhOy4RTkyc9oXVCyx6Tgssup54ofDkSw1t-dpfdzcCg4cL4ssqI_QHTp2gdn3SiNTsv43HnGoMDdIeY2lH_9y3PZ2HOd6fKWjDXPz0fjr5-JshuYE3j-MRPiNyZUOblJu--_RCjCB5Z7nWsf_dPP5B66n5OlmExxo2kHz5tBWZctQpLjSYDiUd0Dcqr4tXLozySorLE-ra4XtHKWeKbfNvx_dOEYJxKTCCG1B_EunpajlWRcUXCFTqpQnH45Ij0SdCYbjCSBK7LOtyeHN8MhknUUkhMynp1otEMVnPdLY3WEmMII6nhVMuUp5ixlKKkuDYuK1JeSCsYc5SZbqYZy0VRYlC1Aa3quXKbQHxTeIQmicmV41xKLTHFNlpYlqWZkHILaGNBZWKjca938aiairIH5a2uvNVVsPoWHH7NeQltNv4cnTULo75tFoV-4M957WYVVTyqE4UJHe4giXnf9j9fuw_zw5vLC3VxOjrfgQXmCRLTS5o2tOrXN7eLYUut9-K2_AQq6eiy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+and+distributed+paradigms+for+community+detection+in+social+networks%3A+A+methodological+review&rft.jtitle=Expert+systems+with+applications&rft.au=Naik%2C+Debadatta&rft.au=Ramesh%2C+Dharavath&rft.au=Gandomi%2C+Amir+H&rft.au=Gorojanam%2C+Naveen+Babu&rft.date=2022-01-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=187&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2021.115956&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |