Parallel and distributed paradigms for community detection in social networks: A methodological review

[Display omitted] •Systematic procedures are followed to obtain the most relevant studies.•Mendeley web application is used in filtering process to extract the relevant studies.•Each relevant study is evaluated based on the performance analysis questions.•Selected studies are compared based on the v...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 187; p. 115956
Main Authors Naik, Debadatta, Ramesh, Dharavath, Gandomi, Amir H., Babu Gorojanam, Naveen
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.01.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Systematic procedures are followed to obtain the most relevant studies.•Mendeley web application is used in filtering process to extract the relevant studies.•Each relevant study is evaluated based on the performance analysis questions.•Selected studies are compared based on the various important parameters.•The articles are categorized based on the type of framework used for implementations. Community detection in social networks is the process of identifying the cohesive groups of similar nodes. Detection of these groups can be helpful in many applications, such as finding networks of protein interaction in biological networks, finding the users of similar mind for ads and suggestions, finding a shared research field in collaborative networks, analyzing public health, future link prediction in social networks, analyzing criminology, and many more. However, with the increase in the number of profiles and content shared on social media platforms, the analysis is often time-consuming and exhaustive. In order to speed up and optimize the community detection process, parallel processing and Shared/Distributed memory techniques are widely used. Despite community detection has widespread use in social networks, no attempt has ever been made to compile and systematically discuss research efforts on the emerging subject of identifying parallel and distributed methods for community detection in social networks. Most of the surveys described the serial algorithms used for community detection. Our survey work comes under the scope of new design techniques, exciting or novel applications, components or standards, and applications of an educational, transactional, and co-operational nature. This paper accommodates and presents a systematic literature review with state-of-the-art research on the application of parallel processing and Shared/Distributed techniques to determine communities for social network analysis. Advanced search strategy has been performed on several digital libraries for extracting several studies for the review. The systematic search landed in finding 3220 studies, among which 65 relevant studies are selected after conducting various screening phases for further review. The application of parallel computing, shared memory, and distributed memory on the existing community detection methodologies have been discussed thoroughly. More specifically, the central significance of this paper is that a systematic literature review is conducted to gather the relevant studies from different digital libraries and gray literature. Then, different parametric values of each selected study are appropriately compared. Moreover, the need for further research to speed up the process of community formation in parallel and shared approaches has been pinpointed more suitably. A pictorial glance of this paper is depicted as follows:
AbstractList [Display omitted] •Systematic procedures are followed to obtain the most relevant studies.•Mendeley web application is used in filtering process to extract the relevant studies.•Each relevant study is evaluated based on the performance analysis questions.•Selected studies are compared based on the various important parameters.•The articles are categorized based on the type of framework used for implementations. Community detection in social networks is the process of identifying the cohesive groups of similar nodes. Detection of these groups can be helpful in many applications, such as finding networks of protein interaction in biological networks, finding the users of similar mind for ads and suggestions, finding a shared research field in collaborative networks, analyzing public health, future link prediction in social networks, analyzing criminology, and many more. However, with the increase in the number of profiles and content shared on social media platforms, the analysis is often time-consuming and exhaustive. In order to speed up and optimize the community detection process, parallel processing and Shared/Distributed memory techniques are widely used. Despite community detection has widespread use in social networks, no attempt has ever been made to compile and systematically discuss research efforts on the emerging subject of identifying parallel and distributed methods for community detection in social networks. Most of the surveys described the serial algorithms used for community detection. Our survey work comes under the scope of new design techniques, exciting or novel applications, components or standards, and applications of an educational, transactional, and co-operational nature. This paper accommodates and presents a systematic literature review with state-of-the-art research on the application of parallel processing and Shared/Distributed techniques to determine communities for social network analysis. Advanced search strategy has been performed on several digital libraries for extracting several studies for the review. The systematic search landed in finding 3220 studies, among which 65 relevant studies are selected after conducting various screening phases for further review. The application of parallel computing, shared memory, and distributed memory on the existing community detection methodologies have been discussed thoroughly. More specifically, the central significance of this paper is that a systematic literature review is conducted to gather the relevant studies from different digital libraries and gray literature. Then, different parametric values of each selected study are appropriately compared. Moreover, the need for further research to speed up the process of community formation in parallel and shared approaches has been pinpointed more suitably. A pictorial glance of this paper is depicted as follows:
Community detection in social networks is the process of identifying the cohesive groups of similar nodes. Detection of these groups can be helpful in many applications, such as finding networks of protein interaction in biological networks, finding the users of similar mind for ads and suggestions, finding a shared research field in collaborative networks, analyzing public health, future link prediction in social networks, analyzing criminology, and many more. However, with the increase in the number of profiles and content shared on social media platforms, the analysis is often time-consuming and exhaustive. In order to speed up and optimize the community detection process, parallel processing and Shared/Distributed memory techniques are widely used. Despite community detection has widespread use in social networks, no attempt has ever been made to compile and systematically discuss research efforts on the emerging subject of identifying parallel and distributed methods for community detection in social networks. Most of the surveys described the serial algorithms used for community detection. Our survey work comes under the scope of new design techniques, exciting or novel applications, components or standards, and applications of an educational, transactional, and co-operational nature. This paper accommodates and presents a systematic literature review with state-of-the-art research on the application of parallel processing and Shared/Distributed techniques to determine communities for social network analysis. Advanced search strategy has been performed on several digital libraries for extracting several studies for the review. The systematic search landed in finding 3220 studies, among which 65 relevant studies are selected after conducting various screening phases for further review. The application of parallel computing, shared memory, and distributed memory on the existing community detection methodologies have been discussed thoroughly. More specifically, the central significance of this paper is that a systematic literature review is conducted to gather the relevant studies from different digital libraries and gray literature. Then, different parametric values of each selected study are appropriately compared. Moreover, the need for further research to speed up the process of community formation in parallel and shared approaches has been pinpointed more suitably. A pictorial glance of this paper is depicted as follows:
ArticleNumber 115956
Author Naik, Debadatta
Gandomi, Amir H.
Ramesh, Dharavath
Babu Gorojanam, Naveen
Author_xml – sequence: 1
  givenname: Debadatta
  surname: Naik
  fullname: Naik, Debadatta
  organization: Department of Computer Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
– sequence: 2
  givenname: Dharavath
  surname: Ramesh
  fullname: Ramesh, Dharavath
  email: drramesh@iitism.ac.in
  organization: Department of Computer Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
– sequence: 3
  givenname: Amir H.
  surname: Gandomi
  fullname: Gandomi, Amir H.
  organization: Department of Engineering & Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
– sequence: 4
  givenname: Naveen
  surname: Babu Gorojanam
  fullname: Babu Gorojanam, Naveen
  organization: Department of Computer Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
BookMark eNp9kLtOwzAUhi1UJFrgBZgsMafYTmI3iAVV3KRKMMBsOfZJcUnsYrtUfXtclYmh0xn-853LN0Ej5x0gdEXJlBLKb1ZTiFs1ZYTRKaV1U_MTNKYzURZcNOUIjUlTi6KiojpDkxhXhFBBiBij7k0F1ffQY-UMNjamYNtNAoPXOTB2OUTc-YC1H4aNs2mHDSTQyXqHrcPRa6t67CBtffiKt_geD5A-vfG9X1qdowA_FrYX6LRTfYTLv3qOPh4f3ufPxeL16WV-vyh0yWapaPNZpq1a0um2FXVdaUF1RVtRVqWoy453lAkOtSorJQxnDCjTpG4Za7jqaFWeo-vD3HXw3xuISa78Jri8UjKe5RDRNDx3sUOXDj7GAJ1cBzuosJOUyL1PuZJ7n3LvUx58Zmj2D9I2qb2IFJTtj6N3BxTy61lHkFFbcBqMDdmlNN4ew38BzUiT-Q
CitedBy_id crossref_primary_10_3390_electronics11131931
crossref_primary_10_3390_math10060970
crossref_primary_10_1016_j_chaos_2022_112421
crossref_primary_10_1007_s41109_023_00592_1
crossref_primary_10_1016_j_eswa_2023_119775
crossref_primary_10_1016_j_neucom_2024_127703
crossref_primary_10_2139_ssrn_4179225
crossref_primary_10_1016_j_dajour_2022_100065
crossref_primary_10_1016_j_ress_2022_108817
crossref_primary_10_1007_s00607_022_01131_z
crossref_primary_10_1109_TR_2023_3332090
crossref_primary_10_1007_s12038_024_00437_8
crossref_primary_10_1016_j_eswa_2023_122799
crossref_primary_10_1007_s11227_024_06003_1
crossref_primary_10_1007_s10115_024_02201_8
crossref_primary_10_1016_j_eswa_2022_118937
crossref_primary_10_1016_j_osnem_2025_100312
crossref_primary_10_1142_S2196888823300016
Cites_doi 10.1007/978-3-319-98539-8_2
10.1007/978-1-4614-1800-9_33
10.1109/ASONAM.2018.8508730
10.1016/j.physrep.2009.11.002
10.1103/PhysRevE.76.036106
10.1109/IPDPSW.2012.203
10.1109/CEC.2018.8477659
10.1016/j.eswa.2017.10.047
10.1002/9780470712184
10.1007/978-3-030-58811-3_64
10.1109/BigData.2014.7004318
10.1109/CBD.2014.52
10.1371/journal.pone.0091431
10.1016/j.compeleceng.2018.01.003
10.1109/CADS.2015.7377794
10.1145/2566486.2568010
10.1109/TSE.2002.1027796
10.1002/bies.20820
10.1016/j.micpro.2017.08.002
10.1109/ACCESS.2018.2880157
10.1109/COMSNETS.2018.8328289
10.1007/s10586-015-0452-x
10.1109/SocialCom.2010.24
10.1016/j.procs.2016.07.311
10.1007/s10115-017-1105-6
10.1147/JRD.2013.2251982
10.1103/PhysRevE.80.056117
10.1016/j.physa.2019.121552
10.1016/j.comnet.2016.06.002
10.1109/TKDE.2018.2803818
10.1109/ICBDA.2017.8078743
10.1016/j.knosys.2013.06.014
10.1109/ICDE.2018.00142
10.1109/CBD.2016.040
10.1016/j.jss.2006.07.009
10.1137/0611030
10.1109/IKT.2013.6620116
10.1109/HiPC.2012.6507522
10.1007/978-1-4419-8462-3_1
10.1080/15427951.2009.10129177
10.1007/s10115-018-1156-3
10.1007/s11227-018-2500-9
10.1109/CSIT.2016.7549467
10.1016/j.inffus.2015.08.005
10.1145/3110025.3110135
10.1016/j.physrep.2013.08.002
10.1016/j.knosys.2018.09.002
10.1007/s00521-019-04487-0
10.1109/CIDM.2014.7008660
10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00122
10.1109/ICCP.2010.5606467
10.1109/BigData.2017.8257995
10.1016/j.asoc.2017.07.035
10.1109/UCC.2014.146
10.1109/TKDE.2010.271
10.1177/0038038588022001007
10.1109/IPDPS.2011.61
10.1109/SBAC-PAD.2015.22
10.1073/pnas.0706851105
10.1145/2807591.2807668
10.1145/2492517.2492518
10.1109/W-FiCloud.2016.57
10.1016/j.datak.2015.05.001
10.1207/s15327906mbr2302_6
10.1109/HPEC.2014.7040973
10.1007/978-981-13-1132-1_23
10.1109/IOTA.2016.7562715
10.1109/IPDPSW.2016.165
10.1145/2775108
10.1109/CICSyN.2011.66
10.1002/sam.10133
10.1038/nature03607
10.1007/s11280-017-0519-0
10.1177/0049124193022001001
10.1109/MIS.2007.41
10.1109/IPDPS.2018.00098
10.1145/2660460.2660474
10.1109/SocialCom.2013.37
10.1007/978-1-4419-7142-5_16
10.1016/j.eswa.2016.03.033
10.1109/NUICONE.2015.7449651
10.1109/SBAC-PADW.2017.18
10.1016/j.eswa.2020.113184
10.1016/j.cosrev.2007.05.001
10.1016/j.infsof.2008.09.009
10.1007/978-1-4471-4555-4_4
10.1073/pnas.122653799
10.1109/SMC.2015.239
10.1145/3219819.3220093
10.1186/s40537-016-0060-5
10.1103/PhysRevE.70.066111
10.1109/ACCESS.2018.2859788
10.1109/BESC.2016.7804476
10.1007/978-3-540-87700-4_107
10.1109/ICDMW.2014.158
10.1126/science.1165821
10.1016/j.jnca.2016.05.008
10.1109/IPDPSW.2013.229
10.1007/s10994-010-5214-7
10.1016/j.bdr.2017.10.003
10.1155/2015/849140
10.3390/app7111173
10.1016/j.ins.2017.11.055
10.1142/S0218213010000431
10.1016/j.physa.2018.02.130
10.1007/s10618-011-0224-z
10.1093/acprof:oso/9780195301014.001.0001
10.1007/s10586-015-0504-2
10.1137/080734315
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jan 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 2022
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.115956
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Public Health
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_115956
S0957417421013099
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-b017db4b0fcbb7554c71c41b7343753f6f1276e5a34a7d622e12c05b2296af143
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Jul 25 05:01:52 EDT 2025
Tue Jul 01 04:05:55 EDT 2025
Thu Apr 24 23:10:34 EDT 2025
Fri Feb 23 02:47:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Social Networks
Community Detection
Parallel Algorithms
Distributed Algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-b017db4b0fcbb7554c71c41b7343753f6f1276e5a34a7d622e12c05b2296af143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2602107996
PQPubID 2045477
ParticipantIDs proquest_journals_2602107996
crossref_primary_10_1016_j_eswa_2021_115956
crossref_citationtrail_10_1016_j_eswa_2021_115956
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115956
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Borgatti, Mehra, Brass, Labianca (b0065) 2009; 323
Rosvall, Bergstrom (b0510) 2008; 105
Scott (b0535) 1988; 22
Pothen, Simon, Liou (b0470) 1990; 11
Girvan, Newman (b0195) 2002; 99
Kitchenham, Pearl Brereton, Budgen, Turner, Bailey, Linkman (b0315) 2009; 51
Tang, Liu (b0570) 2010
Leskovec, Lang, Dasgupta, Mahoney (b0340) 2009; 6
Chaitanya, K., Somayajulu, D., and Krishna, P. (2018). A pso based community detection in social networks with node attributes.
Brereton, Kitchenham, Budgen, Turner, Khalil (b0070) 2007; 80
Papadopoulos, Kompatsiaris, Vakali, Spyridonos (b0445) 2012; 24
Parthasarathy, Ruan, Satuluri (b0450) 2011
Chintalapudi, S. and Prasad, M. (2015). A survey on community detection algorithms in large scale real world networks. pages 1323–1327.
Song, Q., Li, B., Yu, W., Li, J., and Shi, B. (2014). Nslpa: A node similarity based label propagation algorithm for real-time community detection. pages 896–901.
Moon, S., Lee, J.-G., and Kang, M. (2014). Scalable community detection from networks by computing edge betweenness on mapreduce. pages 145–148.
Gui, F., Ma, Y., Zhang, F., Liu, M., Yin, R., and Shen, W. (2016). A stable and distributed community detection algorithm based on maximal cliques. pages 1346–1350.
Plantie, Crampes (b0460) 2013
He, Fei, Li, Tang, Liu, Liu (b0250) 2018; 74
Wasserman (b0610) 1994
Orzeszyna, W., Madeyski, L., and Torkar, R. (2016). Protocol for a systematic literature review of methods dealing with equivalent mutant problem, wroclaw univ. of technology. Available online at
Carrington, Scott, Wasserman (b0090) 2005
.
Prat-Pérez, Dominguez-Sal, Brunat, Larriba-Pey (b0475) 2016; 10
Moon, Lee, Kang, Choy, Lee (b0395) 2016; 104
Jain, A., Nasre, R., and Ravindran, B. (2018). Dceil: Distributed community detection with the ceil score. volume 2018-January, pages 146–153.
Bello-Orgaz, Jung, Camacho (b0050) 2016; 28
Chen, N., Liu, Y., Cheng, J., and Liu, Q. (2017). Parallelizing label propagation for overlapping community detection.
Varamesh, A., Akbari, M., Fereiduni, M., Sharifian, S., and Bagheri, A. (2013). Distributed clique percolation based community detection on social networks using mapreduce. pages 478–483.
Khan, K. S., Ter Riet, G., Glanville, J., Sowden, A. J., and Kleijnen, J. (2001). Undertaking systematic reviews of research on effectiveness: CRD’s guidance for carrying out or commissioning reviews. Number 4 (2nd Edition). NHS Centre for Reviews and Dissemination.
Chen, Saad (b0100) 2012; 24
Zhang, Raitoharju, Kiranyaz, Gabbouj (b0655) 2016; 3
Aggarwal, C. C. (2011). An introduction to social network data analytics. In Social network data analytics, pages 1–15.
Xin, Xie, Yang (b0630) 2016; 58
Schaeffer (b0525) 2007; 1
Raghavan, Albert, Kumara (b0490) 2007; 76
Buzun, N., Korshunov, A., Avanesov, V., Filonenko, I., Kozlov, I., Turdakov, D., and Kim, H. (2015). Egolp: Fast and distributed community detection in billion-node social networks. volume 2015-January, pages 533–540.
Gao, G., Bu, Z., Wu, Z., Li, Y., and Cao, J. (2015). Efficient parallel community detection in large edge-intensive networks. Pages 253–260.
Gulbahce, Lehmann (b0210) 2008; 30
Wan, C., Peng, S., Wang, C., and Yuan, Y. (2017). Communities detection algorithm based on general stochastic block model in mobile social networks. pages 178–185.
Moher, Liberati, Tetzlaff, Altman (b0385) 2009; 339
Sharma, Oliveira (b0540) 2017; 10
Bae, S.-H. and Howe, B. (2015). Gossipmap: A distributed community detection algorithm for billion-edge directed graphs. volume 15-20-November-2015.
Al-Ayyoub, Al-andoli, Jararweh, Smadi, Gupta (b0010) 2019; 74
Duriakova, E., Hurley, N., Ajwani, D., and Sala, A. (2014). Analysis of the semi-synchronous approach to large-scale parallel community finding. pages 51–62.
Ovelgönne, M. (2013). Distributed community detection in web-scale networks. pages 66–73.
Hajeer, M., Dasgupta, D., Semenov, A., and Veijalainen, J. (2015). Distributed evolutionary approach to data clustering and modeling. Pages 142–148.
Ma, Yue, Qu, Tian, Al-Dhelaan, Al-Rodhaan (b0370) 2018; 503
Galaskiewicz, Wasserman (b0180) 1993; 22
Qiao, Han, Gao, Li, Huang, Guo, Wu (b0485) 2018; 30
Fazlali, Moradi, Tabatabaee Malazi (b0165) 2017; 54
Halalai, R., Lemnaru, C., and Potolea, R. (2010). Distributed community detection in social networks with genetic algorithms. pages 35–41.
Li, G., Guo, K., Chen, Y., Wu, L., and Zhu, D. (2017). A dynamic community detection algorithm based on parallel incremental related vertices. pages 779–783.
Behera, R., Rath, S., and Jena, M. (2016). Spanning tree based community detection using min-max modularity. volume 93, pages 1070–1076.
Collins, Dent (b0125) 1988; 23
Conte, A., Grossi, R., De Matteis, T., Marino, A., De Sensi, D., and Versari, L. (2018). D2k: Scalable community detection in massive networks via small-diameter k-plexes. pages 1272–1281.
Zhang, C., Zhang, Y., and Wu, B. (2018). A parallel community detection algorithm based on incremental clustering in dynamic network. pages 946–953.
Nguyen, Dinh, Shen, Thai, Gomez-Gardenes (b0415) 2014; 9
Nerurkar, Chandane, Bhirud (b0405) 2019; 798
Zhao, W., Martha, V., and Xu, X. (2013). Pscan: A parallel structural clustering algorithm for big networks in mapreduce. pages 862–869.
Kuzmin, K., Shah, S., and Szymanski, B. (2013). Parallel overlapping community detection with slpa. pages 204–212.
Ogata, H., Dayarathna, M., and Suzumura, T. (2012). Towards highly scalable x10 based spectral clustering.
Behera, Rath, Misra, Damaševičius, Maskeliūnas (b0045) 2017; 7
Handbook, C. C. T. C. R. (2003). Version 4.2. 1. December.
Dybala, Ptaszynski, Rzepka, Araki (b0155) 2010; 19
Kitchenham (b0310) 2004
Wu, B., Zhang, C., and Guo, Q. (2017). A parallel network community detection algorithm based on distance dynamics. pages 819–826.
Resende, H., Fazenda, A., and Quiles, M. (2017). Parallel algorithm for dynamic community detection. pages 55–60.
Khlopotine, A., Sathanur, A., and Jandhyala, V. (2016). Optimized parallel label propagation based community detection on the intel(r) xeon phi(tm) architecture. volume 2016-January, pages 9–16.
Sattar, N. and Arifuzzaman, S. (2018). Parallelizing louvain algorithm: Distributed memory challenges. pages 695–701.
Clauset, A., Newman, M., and Moore, C. (2004). Finding community structure in very large networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 70(6 2):066111/1–066111/6.
Kitchenham, Pfleeger, Pickard, Jones, Hoaglin, El Emam, Rosenberg (b0320) 2002; 28
Higgins, J. and Green, S. (2008). Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series.
Shi, J., Xue, W., Wang, W., Zhang, Y., Yang, B., and Li, J. (2013). Scalable community detection in massive social networks using mapreduce. IBM Journal of Research and Development, 57(3/4):12–1.
Nur, N., Dou, W., Niu, X., Krishnan, S., and Park, N. (2018). Gi-ohms: Graphical inference to detect overlapping communities. arXiv preprint arXiv:1810.01547.
Truică, C.-O., Novović, O., Brdar, S., and Papadopoulos, A. (2018). Community detection in who-calls-whom social networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor- matics), 11031 LNCS:19–33.
Masdarolomoor, Z., Azmi, R., Aliakbary, S., and Riahi, N. (2011). Finding community structure in complex networks using parallel approach. pages 474–479.
Lancichinetti, Fortunato (b0335) 2009; 80
Jin, Lin, Yin, Yang, Li, Deng (b0285) 2015; 18
Behera, R. and Rath, S. (2016). An efficient modularity based algorithm for community detection in social network. Pages 162–167.
Zhao, Li, Zhang, Chiclana, Viedma (b0670) 2019; 163
Blondel, Guillaume, Lambiotte, Lefebvre (b0060) 2011; 10
Alandoli, M., Al-Ayyoub, M., Al-Smadi, M., Jararweh, Y., and Benkhelifa, E. (2016a). Using dynamic parallelism to speed up clustering-based community detection in social networks. pages 240–245.
Goldberg, M., Kelley, S., Magdon-Ismail, M., Mertsalov, K., and Wallace, A. (2010). Finding overlapping communities in social networks. pages 104–113.
Moradi, E., Fazlali, M., and Malazi, H. (2016). Fast parallel community detection algorithm based on modularity.
Gupta, Mittal, Gupta, Singhal, Khatri, Gupta, Kumar (b0215) 2017; 61
Prat-Pérez, A., Dominguez-Sal, D., and Larriba-Pey, J.-L. (2014). High quality, scalable and parallel community detection for large real graphs. pages 225–235.
Jena, Behera, Rath (b0275) 2019
Sarswat, A. and Guddeti, R. (2018). A novel overlapping community detection using parallel cfm and sequential nash equilibrium. volume 2018-January, pages 649–654.
Han, Tian, Lan, Li, Xiao (b0230) 2018; 94
Kumari, A., Behera, R., Shukla, A., Sahoo, S., Misra, S., and Rath, S. (2020). Quantifying influential communities in granu- lar social networks using fuzzy theory. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12252 LNCS:906–917.
Ghosh, S., Halappanavar, M., Tumeo, A., Kalyanaraman, A., Lu, H., Chavarria-Miranda, D., Khan, A., and Gebremedhin, A. (2018). Distributed louvain algorithm for graph community detection. Pages 885–895.
Fortunato, S. and Castellano, C. (2012). Community structure in graphs, volume 9781461418009.
Vo, N., Lee, K., and Tran, T. (2017). Mrattractor: Detecting communities from large-scale graphs. volume 2018-January, pages 797–806.
Yin, C., Zhu, S., Chen, H., Zhang, B., and David, B. (2015). A method for community detection of complex networks based on hierarchical clustering. International Journal of Distributed Sensor Networks, 2015.
Porter, Onnela, Mucha (b0465) 2009; 56
Souravlas, Sifaleras, Katsavounis (b0560) 2018; 6
He, Cai, Meng, Chen, Deng, Cao (b0255) 2018; 6
Bhatia, Rani (b0055) 2018; 57
Yang, B., Liu, D., and Liu, J. (2010). Discovering communities from social networks: methodologies and applications. In Handbook of social network technologies and applications, pages 331–346.
Riedy, J. and Bader, D. (2013). Multithreaded community monitoring for massive streaming graph data. pages 1646–1655.
Liu, Zhou,
10.1016/j.eswa.2021.115956_b0200
Papadopoulos (10.1016/j.eswa.2021.115956_b0445) 2012; 24
Pothen (10.1016/j.eswa.2021.115956_b0470) 1990; 11
Yang (10.1016/j.eswa.2021.115956_b0640) 2011; 82
10.1016/j.eswa.2021.115956_b0325
10.1016/j.eswa.2021.115956_b0600
10.1016/j.eswa.2021.115956_b0205
Brereton (10.1016/j.eswa.2021.115956_b0070) 2007; 80
Fazlali (10.1016/j.eswa.2021.115956_b0165) 2017; 54
He (10.1016/j.eswa.2021.115956_b0255) 2018; 6
Schaeffer (10.1016/j.eswa.2021.115956_b0525) 2007; 1
Li (10.1016/j.eswa.2021.115956_b0350) 2019; 531
Palla (10.1016/j.eswa.2021.115956_b0440) 2005; 435
Nguyen (10.1016/j.eswa.2021.115956_b0415) 2014; 9
10.1016/j.eswa.2021.115956_b0455
10.1016/j.eswa.2021.115956_b0295
10.1016/j.eswa.2021.115956_b0330
10.1016/j.eswa.2021.115956_b0175
10.1016/j.eswa.2021.115956_b0615
Al-Ayyoub (10.1016/j.eswa.2021.115956_b0010) 2019; 74
Kitchenham (10.1016/j.eswa.2021.115956_b0315) 2009; 51
Bu (10.1016/j.eswa.2021.115956_b0075) 2018; 55
Karimi (10.1016/j.eswa.2021.115956_b0290) 2020; 146
Han (10.1016/j.eswa.2021.115956_b0230) 2018; 94
Tang (10.1016/j.eswa.2021.115956_b0570) 2010
10.1016/j.eswa.2021.115956_b0585
10.1016/j.eswa.2021.115956_b0345
10.1016/j.eswa.2021.115956_b0620
10.1016/j.eswa.2021.115956_b0185
10.1016/j.eswa.2021.115956_b0580
10.1016/j.eswa.2021.115956_b0220
Plantie (10.1016/j.eswa.2021.115956_b0460) 2013
10.1016/j.eswa.2021.115956_b0505
10.1016/j.eswa.2021.115956_b0105
10.1016/j.eswa.2021.115956_b0225
10.1016/j.eswa.2021.115956_b0500
Su (10.1016/j.eswa.2021.115956_b0565) 2018; 29
Huang (10.1016/j.eswa.2021.115956_b0265) 2018; 432
Raghavan (10.1016/j.eswa.2021.115956_b0490) 2007; 76
Girvan (10.1016/j.eswa.2021.115956_b0195) 2002; 99
He (10.1016/j.eswa.2021.115956_b0250) 2018; 74
Scott (10.1016/j.eswa.2021.115956_b0535) 1988; 22
10.1016/j.eswa.2021.115956_b0590
Nerurkar (10.1016/j.eswa.2021.115956_b0405) 2019; 798
10.1016/j.eswa.2021.115956_b0190
Bello-Orgaz (10.1016/j.eswa.2021.115956_b0050) 2016; 28
Newman (10.1016/j.eswa.2021.115956_b0410) 2004; 69
10.1016/j.eswa.2021.115956_b0595
10.1016/j.eswa.2021.115956_b0235
10.1016/j.eswa.2021.115956_b0355
Qiao (10.1016/j.eswa.2021.115956_b0485) 2018; 30
Wasserman (10.1016/j.eswa.2021.115956_b0610) 1994
Leskovec (10.1016/j.eswa.2021.115956_b0340) 2009; 6
10.1016/j.eswa.2021.115956_b0515
10.1016/j.eswa.2021.115956_b0115
Galaskiewicz (10.1016/j.eswa.2021.115956_b0180) 1993; 22
10.1016/j.eswa.2021.115956_b0635
Moon (10.1016/j.eswa.2021.115956_b0395) 2016; 104
Ma (10.1016/j.eswa.2021.115956_b0370) 2018; 503
Coscia (10.1016/j.eswa.2021.115956_b0135) 2011; 4
10.1016/j.eswa.2021.115956_b0480
Zhao (10.1016/j.eswa.2021.115956_b0670) 2019; 163
Haythornthwaite (10.1016/j.eswa.2021.115956_b0245) 2007
10.1016/j.eswa.2021.115956_b0365
10.1016/j.eswa.2021.115956_b0400
Xin (10.1016/j.eswa.2021.115956_b0630) 2016; 58
10.1016/j.eswa.2021.115956_b0520
Harel (10.1016/j.eswa.2021.115956_b0240) 2001; 2245
10.1016/j.eswa.2021.115956_b0085
Behera (10.1016/j.eswa.2021.115956_b0045) 2017; 7
10.1016/j.eswa.2021.115956_b0120
Chen (10.1016/j.eswa.2021.115956_b0100) 2012; 24
Dybala (10.1016/j.eswa.2021.115956_b0155) 2010; 19
10.1016/j.eswa.2021.115956_b0005
10.1016/j.eswa.2021.115956_b0645
Souravlas (10.1016/j.eswa.2021.115956_b0560) 2018; 6
Collins (10.1016/j.eswa.2021.115956_b0125) 1988; 23
Porter (10.1016/j.eswa.2021.115956_b0465) 2009; 56
10.1016/j.eswa.2021.115956_b0095
Traud (10.1016/j.eswa.2021.115956_b0575) 2011; 53
Liu (10.1016/j.eswa.2021.115956_b0360) 2016; 70
10.1016/j.eswa.2021.115956_b0530
10.1016/j.eswa.2021.115956_b0650
10.1016/j.eswa.2021.115956_b0015
10.1016/j.eswa.2021.115956_b0130
10.1016/j.eswa.2021.115956_b0495
Jin (10.1016/j.eswa.2021.115956_b0285) 2015; 18
Wu (10.1016/j.eswa.2021.115956_b0625) 2016; 19
Moher (10.1016/j.eswa.2021.115956_b0385) 2009; 339
Bu (10.1016/j.eswa.2021.115956_b0080) 2013; 50
Prat-Pérez (10.1016/j.eswa.2021.115956_b0475) 2016; 10
Danon (10.1016/j.eswa.2021.115956_b0140) 2005; 9
Kitchenham (10.1016/j.eswa.2021.115956_b0320) 2002; 28
10.1016/j.eswa.2021.115956_b0260
10.1016/j.eswa.2021.115956_b0380
Kitchenham (10.1016/j.eswa.2021.115956_b0310) 2004
Wang (10.1016/j.eswa.2021.115956_b0605) 2007; 22
10.1016/j.eswa.2021.115956_b0145
10.1016/j.eswa.2021.115956_b0420
10.1016/j.eswa.2021.115956_b0025
Borgatti (10.1016/j.eswa.2021.115956_b0065) 2009; 323
10.1016/j.eswa.2021.115956_b0300
10.1016/j.eswa.2021.115956_b0020
10.1016/j.eswa.2021.115956_b0545
Zhang (10.1016/j.eswa.2021.115956_b0660) 2016; 107
10.1016/j.eswa.2021.115956_b0665
10.1016/j.eswa.2021.115956_b0305
10.1016/j.eswa.2021.115956_b0425
Blondel (10.1016/j.eswa.2021.115956_b0060) 2011; 10
Carrington (10.1016/j.eswa.2021.115956_b0090) 2005
10.1016/j.eswa.2021.115956_b0390
10.1016/j.eswa.2021.115956_b0150
Gulbahce (10.1016/j.eswa.2021.115956_b0210) 2008; 30
10.1016/j.eswa.2021.115956_b0270
Chen (10.1016/j.eswa.2021.115956_b0110) 2018; 21
Behera (10.1016/j.eswa.2021.115956_b0030) 2020; 32
Malliaros (10.1016/j.eswa.2021.115956_b0375) 2013; 533
10.1016/j.eswa.2021.115956_b0035
10.1016/j.eswa.2021.115956_b0430
Gupta (10.1016/j.eswa.2021.115956_b0215) 2017; 61
10.1016/j.eswa.2021.115956_b0550
10.1016/j.eswa.2021.115956_b0435
10.1016/j.eswa.2021.115956_b0555
Bhatia (10.1016/j.eswa.2021.115956_b0055) 2018; 57
Jena (10.1016/j.eswa.2021.115956_b0275) 2019
Lancichinetti (10.1016/j.eswa.2021.115956_b0335) 2009; 80
Fortunato (10.1016/j.eswa.2021.115956_b0170) 2010; 486
Sharma (10.1016/j.eswa.2021.115956_b0540) 2017; 10
Zhang (10.1016/j.eswa.2021.115956_b0655) 2016; 3
Rosvall (10.1016/j.eswa.2021.115956_b0510) 2008; 105
10.1016/j.eswa.2021.115956_b0280
10.1016/j.eswa.2021.115956_b0040
10.1016/j.eswa.2021.115956_b0160
Parthasarathy (10.1016/j.eswa.2021.115956_b0450) 2011
References_xml – reference: Gao, G., Bu, Z., Wu, Z., Li, Y., and Cao, J. (2015). Efficient parallel community detection in large edge-intensive networks. Pages 253–260.
– reference: Moradi, E., Fazlali, M., and Malazi, H. (2016). Fast parallel community detection algorithm based on modularity.
– reference: Yang, B., Liu, D., and Liu, J. (2010). Discovering communities from social networks: methodologies and applications. In Handbook of social network technologies and applications, pages 331–346.
– volume: 531
  year: 2019
  ident: b0350
  article-title: Communities detection in social network based on local edge centrality
  publication-title: Physica A: Statistical Mechanics and its Applications
– reference: Masdarolomoor, Z., Azmi, R., Aliakbary, S., and Riahi, N. (2011). Finding community structure in complex networks using parallel approach. pages 474–479.
– volume: 486
  start-page: 75
  year: 2010
  end-page: 174
  ident: b0170
  article-title: Community detection in graphs
  publication-title: Physics Reports
– reference: Ling, X., Yang, J., Wang, D., Chen, J., and Li, L. (2017). Fast community detection in large weighted networks using graphx in the cloud. pages 1–8.
– reference: Moon, S., Lee, J.-G., and Kang, M. (2014). Scalable community detection from networks by computing edge betweenness on mapreduce. pages 145–148.
– reference: Zhang, C., Zhang, Y., and Wu, B. (2018). A parallel community detection algorithm based on incremental clustering in dynamic network. pages 946–953.
– volume: 9
  start-page: 219
  year: 2005
  end-page: 228
  ident: b0140
  article-title: Comparing community structure identification
  publication-title: Journal of Statistical Mechanics: Theory and Experiment
– reference: Zhao, W., Martha, V., and Xu, X. (2013). Pscan: A parallel structural clustering algorithm for big networks in mapreduce. pages 862–869.
– reference: Fortunato, S. and Castellano, C. (2012). Community structure in graphs, volume 9781461418009.
– reference: Kumari, A., Behera, R., Shukla, A., Sahoo, S., Misra, S., and Rath, S. (2020). Quantifying influential communities in granu- lar social networks using fuzzy theory. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12252 LNCS:906–917.
– reference: Ovelgönne, M. (2013). Distributed community detection in web-scale networks. pages 66–73.
– start-page: 79
  year: 2011
  end-page: 113
  ident: b0450
  article-title: Community discovery in social networks: Applications, methods and emerging trends
  publication-title: Social Network Data Analytics
– volume: 22
  start-page: 3
  year: 1993
  end-page: 22
  ident: b0180
  article-title: Social network analysis: Concepts, methodology, and directions for the 1990s
  publication-title: Sociological Methods Research
– reference: Wickramaarachchi, C., Frincu, M., Small, P., and Prasanna, V. (2014). Fast parallel algorithm for unfolding of communities in large graphs.
– reference: Behera, R., Rath, S., and Jena, M. (2016). Spanning tree based community detection using min-max modularity. volume 93, pages 1070–1076.
– volume: 74
  start-page: 533
  year: 2019
  end-page: 546
  ident: b0010
  article-title: Improving fuzzy c-mean-based community detection in social networks using dynamic parallelism
  publication-title: Computers and Electrical Engineering
– reference: Schöpfel, J. (2010). Towards a prague definition of grey literature. In Twelfth International Conference on Grey Literature:Transparency in Grey Literature. Grey Tech Approaches to High Tech Issues. Prague, pages 11–26.
– reference: Higgins, J. and Green, S. (2008). Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series.
– volume: 798
  start-page: 287
  year: 2019
  end-page: 298
  ident: b0405
  article-title: A comparative analysis of community detection algorithms on social networks
  publication-title: Advances in Intelligent Systems and Computing
– volume: 69
  start-page: 5
  year: 2004
  ident: b0410
  article-title: Fast algorithm for detecting community structure in networks
  publication-title: Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
– start-page: 121
  year: 2007
  end-page: 137
  ident: b0245
  article-title: Social networks and online community
  publication-title: The Oxford handbook of Internet psychology
– reference: Behera, R. and Rath, S. (2016). An efficient modularity based algorithm for community detection in social network. Pages 162–167.
– volume: 2245
  start-page: 18
  year: 2001
  end-page: 41
  ident: b0240
  article-title: On clustering using random walks
  publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– reference: Vo, N., Lee, K., and Tran, T. (2017). Mrattractor: Detecting communities from large-scale graphs. volume 2018-January, pages 797–806.
– volume: 24
  start-page: 515
  year: 2012
  end-page: 554
  ident: b0445
  article-title: Community detection in social media performance and application considerations
  publication-title: Data Mining and Knowledge Discovery
– reference: Alandoli, M., Al-Ayyoub, M., Al-Smadi, M., Jararweh, Y., and Benkhelifa, E. (2016a). Using dynamic parallelism to speed up clustering-based community detection in social networks. pages 240–245.
– volume: 7
  start-page: 1173
  year: 2017
  ident: b0045
  article-title: Large scale community detection using a small world model
  publication-title: Applied Sciences (Switzerland)
– reference: Keele, S. (2007). Guidelines for performing systematic literature reviews in software engineering. In Technical report, Ver. 2.3 EBSE Technical Report. EBSE.
– reference: Chen, N., Liu, Y., Cheng, J., and Liu, Q. (2017). Parallelizing label propagation for overlapping community detection.
– reference: Soman, J. and Narang, A. (2011). Fast community detection algorithm with gpus and multicore architectures. Pages 568–579.
– reference: Conte, A., Grossi, R., De Matteis, T., Marino, A., De Sensi, D., and Versari, L. (2018). D2k: Scalable community detection in massive networks via small-diameter k-plexes. pages 1272–1281.
– reference: Duriakova, E., Hurley, N., Ajwani, D., and Sala, A. (2014). Analysis of the semi-synchronous approach to large-scale parallel community finding. pages 51–62.
– reference: Alandoli, M., Shehab, M., Al-Ayyoub, M., Jararweh, Y., and Al-Smadi, M. (2016b). Using gpus to speed-up fcm-based community detection in social networks.
– volume: 51
  start-page: 7
  year: 2009
  end-page: 15
  ident: b0315
  article-title: Systematic literature reviews in software engineering - a systematic literature review
  publication-title: Information and Software Technology
– reference: Chaitanya, K., Somayajulu, D., and Krishna, P. (2018). A pso based community detection in social networks with node attributes.
– reference: Hajeer, M., Dasgupta, D., Semenov, A., and Veijalainen, J. (2015). Distributed evolutionary approach to data clustering and modeling. Pages 142–148.
– reference: Valente, T. (2010). Social Networks and Health: Models, Methods, and Applications.
– volume: 3
  year: 2016
  ident: b0655
  article-title: Limited random walk algorithm for big graph data clustering
  publication-title: Journal of Big Data
– volume: 32
  start-page: 9649
  year: 2020
  end-page: 9665
  ident: b0030
  article-title: Genetic algorithm-based community detection in large-scale social networks
  publication-title: Neural Computing and Applications
– reference: Truică, C.-O., Novović, O., Brdar, S., and Papadopoulos, A. (2018). Community detection in who-calls-whom social networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor- matics), 11031 LNCS:19–33.
– volume: 22
  start-page: 79
  year: 2007
  end-page: 83
  ident: b0605
  article-title: Social computing: From social informatics to social intelligence
  publication-title: IEEE Intelligent Systems
– volume: 6
  start-page: 29
  year: 2009
  end-page: 123
  ident: b0340
  article-title: Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters
  publication-title: Internet Mathematics
– reference: Gui, F., Ma, Y., Zhang, F., Liu, M., Yin, R., and Shen, W. (2016). A stable and distributed community detection algorithm based on maximal cliques. pages 1346–1350.
– volume: 22
  start-page: 109
  year: 1988
  end-page: 127
  ident: b0535
  article-title: Social network analysis
  publication-title: Sociology
– volume: 10
  start-page: 44
  year: 2017
  end-page: 52
  ident: b0540
  article-title: Community detection algorithm for big social networks using hybrid architecture
  publication-title: Big Data Research
– reference: Kuzmin, K., Shah, S., and Szymanski, B. (2013). Parallel overlapping community detection with slpa. pages 204–212.
– volume: 104
  start-page: 17
  year: 2016
  end-page: 31
  ident: b0395
  article-title: Parallel community detection on large graphs with mapreduce and graphchi
  publication-title: Data and Knowledge Engineering
– reference: Yin, C., Zhu, S., Chen, H., Zhang, B., and David, B. (2015). A method for community detection of complex networks based on hierarchical clustering. International Journal of Distributed Sensor Networks, 2015.
– volume: 28
  start-page: 721
  year: 2002
  end-page: 734
  ident: b0320
  article-title: Preliminary guidelines for empirical research in software engineering
  publication-title: IEEE Transactions on Software Engineering
– volume: 163
  start-page: 404
  year: 2019
  end-page: 415
  ident: b0670
  article-title: An incremental method to detect communities in dynamic evolving social networks
  publication-title: Knowledge-Based Systems
– reference: Ghosh, S., Halappanavar, M., Tumeo, A., Kalyanaraman, A., Lu, H., Chavarria-Miranda, D., Khan, A., and Gebremedhin, A. (2018). Distributed louvain algorithm for graph community detection. Pages 885–895.
– volume: 58
  start-page: 10
  year: 2016
  end-page: 19
  ident: b0630
  article-title: An adaptive random walk sampling method on dynamic community detection
  publication-title: Expert Systems with Applications
– reference: Varamesh, A., Akbari, M., Fereiduni, M., Sharifian, S., and Bagheri, A. (2013). Distributed clique percolation based community detection on social networks using mapreduce. pages 478–483.
– volume: 28
  start-page: 45
  year: 2016
  end-page: 59
  ident: b0050
  article-title: Social big data: Recent achievements and new challenges
  publication-title: Information Fusion
– reference: Jain, A., Nasre, R., and Ravindran, B. (2018). Dceil: Distributed community detection with the ceil score. volume 2018-January, pages 146–153.
– volume: 57
  start-page: 159
  year: 2018
  end-page: 181
  ident: b0055
  article-title: Dfuzzy: A deep learning-based fuzzy clustering model for large graphs
  publication-title: Knowledge and Information Systems
– reference: Khlopotine, A., Sathanur, A., and Jandhyala, V. (2016). Optimized parallel label propagation based community detection on the intel(r) xeon phi(tm) architecture. volume 2016-January, pages 9–16.
– reference: Pizzuti, C. (2008). Ga-net: A genetic algorithm for community detection in social networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5199 LNCS:1081–1090.
– start-page: 65
  year: 2013
  end-page: 85
  ident: b0460
  article-title: Survey on social community detection
  publication-title: Social media retrieval
– reference: Wu, B., Zhang, C., and Guo, Q. (2017). A parallel network community detection algorithm based on distance dynamics. pages 819–826.
– start-page: 1
  year: 2004
  end-page: 26
  ident: b0310
  publication-title: Procedures for performing systematic reviews
– volume: 80
  year: 2009
  ident: b0335
  article-title: Community detection algorithms: A comparative analysis
  publication-title: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
– volume: 11
  start-page: 430
  year: 1990
  end-page: 452
  ident: b0470
  article-title: Partitioning sparse matrices with eigenvectors of graphs
  publication-title: SIAM journal on matrix analysis and applications
– volume: 6
  start-page: 42775
  year: 2018
  end-page: 42789
  ident: b0255
  article-title: Parallel community detection based on distance dynamics for large-scale network
  publication-title: IEEE Access
– volume: 53
  start-page: 526
  year: 2011
  end-page: 543
  ident: b0575
  article-title: Comparing community structure to characteristics in online collegiate social networks
  publication-title: SIAM Review
– volume: 23
  start-page: 231
  year: 1988
  end-page: 242
  ident: b0125
  article-title: Omega: A general formulation of the rand index of cluster recovery suitable for non-disjoint solutions
  publication-title: Multivariate Behavioral Research
– volume: 29
  start-page: 165
  year: 2018
  end-page: 178
  ident: b0565
  article-title: A dynamic method to adjust overlapping community structures
  publication-title: Journal of Computers (Taiwan)
– reference: Sattar, N. and Arifuzzaman, S. (2018). Parallelizing louvain algorithm: Distributed memory challenges. pages 695–701.
– volume: 19
  start-page: 211
  year: 2016
  end-page: 221
  ident: b0625
  article-title: Simple: A simplifying-ensembling framework for parallel community detection from large networks
  publication-title: Cluster Computing
– reference: Li, G., Guo, K., Chen, Y., Wu, L., and Zhu, D. (2017). A dynamic community detection algorithm based on parallel incremental related vertices. pages 779–783.
– reference: El-Helw, I., Hofman, R., Li, W., Ahn, S., Welling, M., and Bal, H. (2016). Scalable overlapping community detection. pages 1463–1472.
– volume: 80
  start-page: 571
  year: 2007
  end-page: 583
  ident: b0070
  article-title: Lessons from applying the systematic literature review process within the software engineering domain
  publication-title: Journal of Systems and Software
– volume: 10
  start-page: 1
  year: 2016
  end-page: 42
  ident: b0475
  article-title: Put three and three together: Triangle-driven community detection
  publication-title: ACM Transactions on Knowledge Discovery from Data
– volume: 435
  start-page: 814
  year: 2005
  end-page: 818
  ident: b0440
  article-title: Uncovering the overlapping community structure of complex networks in nature and society
  publication-title: Nature
– reference: Riedy, J., Bader, D., and Meyerhenke, H. (2012). Scalable multi-threaded community detection in social networks. pages 1619– 1628.
– volume: 503
  start-page: 366
  year: 2018
  end-page: 378
  ident: b0370
  article-title: Psplpa: Probability and similarity based parallel label propagation algorithm on spark
  publication-title: Physica A: Statistical Mechanics and its Applications
– volume: 30
  start-page: 934
  year: 2008
  end-page: 938
  ident: b0210
  article-title: The art of community detection
  publication-title: BioEssays
– volume: 70
  start-page: 89
  year: 2016
  end-page: 101
  ident: b0360
  article-title: Miracle: A multiple independent random walks community parallel detection algorithm for big graphs
  publication-title: Journal of Network and Computer Applications
– volume: 55
  start-page: 741
  year: 2018
  end-page: 770
  ident: b0075
  article-title: Gleam: A graph clustering framework based on potential game optimization for large-scale social networks
  publication-title: Knowledge and Information Systems
– volume: 76
  year: 2007
  ident: b0490
  article-title: Near linear time algorithm to detect community structures in large-scale networks
  publication-title: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
– start-page: 101
  year: 2019
  end-page: 108
  ident: b0275
  article-title: Machine learning models for stock prediction using real-time streaming data
  publication-title: International Conference on Biologically Inspired Techniques in Many-Criteria Decision Making
– volume: 30
  start-page: 1638
  year: 2018
  end-page: 1651
  ident: b0485
  article-title: A fast parallel community discovery model on complex networks through approximate optimization
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: Riedy, J. and Bader, D. (2013). Multithreaded community monitoring for massive streaming graph data. pages 1646–1655.
– volume: 56
  start-page: 1082
  year: 2009
  end-page: 1097
  ident: b0465
  article-title: Communities in networks
  publication-title: Notices of the American Mathematical Society
– volume: 323
  start-page: 892
  year: 2009
  end-page: 895
  ident: b0065
  article-title: Network analysis in the social sciences
  publication-title: Science
– volume: 74
  start-page: 5601
  year: 2018
  end-page: 5624
  ident: b0250
  article-title: Improving nmf-based community discovery using distributed robust nonnegative matrix factorization with simrank similarity measure
  publication-title: Journal of Supercomputing
– reference: Nur, N., Dou, W., Niu, X., Krishnan, S., and Park, N. (2018). Gi-ohms: Graphical inference to detect overlapping communities. arXiv preprint arXiv:1810.01547.
– volume: 6
  start-page: 68415
  year: 2018
  end-page: 68428
  ident: b0560
  article-title: A novel, interdisciplinary, approach for community detection based on remote file requests
  publication-title: IEEE Access
– reference: Ogata, H., Dayarathna, M., and Suzumura, T. (2012). Towards highly scalable x10 based spectral clustering.
– volume: 4
  start-page: 512
  year: 2011
  end-page: 546
  ident: b0135
  article-title: A classification for community discovery methods in complex networks
  publication-title: Statistical Analysis and Data Mining
– year: 2005
  ident: b0090
  article-title: Models and methods in social network analysis
– volume: 146
  start-page: 113184
  year: 2020
  ident: b0290
  article-title: Multiplex community detection in complex networks using an evolutionary ap- proach
  publication-title: Expert Systems with Applications
– reference: Halalai, R., Lemnaru, C., and Potolea, R. (2010). Distributed community detection in social networks with genetic algorithms. pages 35–41.
– volume: 99
  start-page: 7821
  year: 2002
  end-page: 7826
  ident: b0195
  article-title: Community structure in social and biological networks
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– reference: Khan, K. S., Ter Riet, G., Glanville, J., Sowden, A. J., and Kleijnen, J. (2001). Undertaking systematic reviews of research on effectiveness: CRD’s guidance for carrying out or commissioning reviews. Number 4 (2nd Edition). NHS Centre for Reviews and Dissemination.
– volume: 54
  start-page: 26
  year: 2017
  end-page: 34
  ident: b0165
  article-title: Adaptive parallel louvain community detection on a multicore platform
  publication-title: Microprocessors and Microsystems
– volume: 61
  start-page: 331
  year: 2017
  end-page: 353
  ident: b0215
  article-title: Parallel quantum-inspired evolutionary algorithms for community detection in social networks
  publication-title: Applied Soft Computing Journal
– volume: 94
  start-page: 70
  year: 2018
  end-page: 80
  ident: b0230
  article-title: Revealing the densest communities of social networks efficiently through intelligent data space reduction
  publication-title: Expert Systems with Applications
– reference: Sarswat, A. and Guddeti, R. (2018). A novel overlapping community detection using parallel cfm and sequential nash equilibrium. volume 2018-January, pages 649–654.
– volume: 533
  start-page: 95
  year: 2013
  end-page: 142
  ident: b0375
  article-title: Clustering and community detection in directed networks: A survey
  publication-title: Physics Reports
– volume: 105
  start-page: 1118
  year: 2008
  end-page: 1123
  ident: b0510
  article-title: Maps of random walks on complex networks reveal community structure
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– reference: Goldberg, M., Kelley, S., Magdon-Ismail, M., Mertsalov, K., and Wallace, A. (2010). Finding overlapping communities in social networks. pages 104–113.
– volume: 9
  year: 2014
  ident: b0415
  article-title: Dynamic social community detection and its applications
  publication-title: PLoS ONE
– reference: Aggarwal, C. C. (2011). An introduction to social network data analytics. In Social network data analytics, pages 1–15.
– volume: 24
  start-page: 1216
  year: 2012
  end-page: 1230
  ident: b0100
  article-title: Dense subgraph extraction with application to community detection
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 21
  start-page: 1377
  year: 2018
  end-page: 1398
  ident: b0110
  article-title: A novel parallel community detection scheme based on label propagation
  publication-title: World Wide Web
– volume: 432
  start-page: 164
  year: 2018
  end-page: 184
  ident: b0265
  article-title: Overlapping community detection in heterogeneous social networks via the user model
  publication-title: Information Sciences
– volume: 107
  start-page: 133
  year: 2016
  end-page: 143
  ident: b0660
  article-title: A social community detection algorithm based on parallel grey label propagation
  publication-title: Computer Networks
– reference: Clauset, A., Newman, M., and Moore, C. (2004). Finding community structure in very large networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 70(6 2):066111/1–066111/6.
– volume: 1
  start-page: 27
  year: 2007
  end-page: 64
  ident: b0525
  article-title: Graph clustering
  publication-title: Computer science review
– reference: Handbook, C. C. T. C. R. (2003). Version 4.2. 1. December.
– volume: 82
  start-page: 157
  year: 2011
  end-page: 189
  ident: b0640
  article-title: Detecting communities and their evolutions in dynamic social networks - a bayesian approach
  publication-title: Machine Learning
– volume: 10
  start-page: P10008
  year: 2011
  ident: b0060
  article-title: The louvain method for community detection in large networks
  publication-title: Journal of Statistical Mechanics: Theory and Experiment
– reference: Jian, X., Lian, X., and Chen, L. (2018). On efficiently detecting overlapping communities over distributed dynamic graphs. pages 1332–1335.
– year: 1994
  ident: b0610
  article-title: Advances in social network analysis: Research in the social and behavioral sciences
– reference: Orzeszyna, W., Madeyski, L., and Torkar, R. (2016). Protocol for a systematic literature review of methods dealing with equivalent mutant problem, wroclaw univ. of technology. Available online at
– reference: Bae, S.-H. and Howe, B. (2015). Gossipmap: A distributed community detection algorithm for billion-edge directed graphs. volume 15-20-November-2015.
– volume: 19
  start-page: 819
  year: 2010
  end-page: 856
  ident: b0155
  article-title: Evaluating subjective aspects of hci on an example of a non-task oriented conversational system
  publication-title: International Journal on Artificial Intelligence Tools
– reference: Shi, J., Xue, W., Wang, W., Zhang, Y., Yang, B., and Li, J. (2013). Scalable community detection in massive social networks using mapreduce. IBM Journal of Research and Development, 57(3/4):12–1.
– volume: 50
  start-page: 246
  year: 2013
  end-page: 259
  ident: b0080
  article-title: A fast parallel modularity optimization algorithm (fpmqa) for community detection in online social network
  publication-title: Knowledge-Based Systems
– reference: Lunagariya, D., Somayajulu, D., and Krishna, P. (2014). Se-cda: A scalable and efficient community detection algorithm. pages 877–882.
– reference: Chintalapudi, S. and Prasad, M. (2015). A survey on community detection algorithms in large scale real world networks. pages 1323–1327.
– reference: Didwania, A. and Narmawala, Z. (2016). A comparative study of various community detection algorithms in the mobile social network.
– reference: .
– start-page: 487
  year: 2010
  end-page: 513
  ident: b0570
  article-title: Graph mining applications to social network analysis
  publication-title: Managing and Mining Graph Data
– volume: 18
  start-page: 999
  year: 2015
  end-page: 1010
  ident: b0285
  article-title: Community structure mining in big data social media networks with mapreduce
  publication-title: Cluster Computing
– reference: Buzun, N., Korshunov, A., Avanesov, V., Filonenko, I., Kozlov, I., Turdakov, D., and Kim, H. (2015). Egolp: Fast and distributed community detection in billion-node social networks. volume 2015-January, pages 533–540.
– reference: Prat-Pérez, A., Dominguez-Sal, D., and Larriba-Pey, J.-L. (2014). High quality, scalable and parallel community detection for large real graphs. pages 225–235.
– volume: 339
  start-page: 332
  year: 2009
  end-page: 336
  ident: b0385
  article-title: Preferred reporting items for systematic reviews and meta-analyses: The prisma statement
  publication-title: BMJ (Online)
– reference: Resende, H., Fazenda, A., and Quiles, M. (2017). Parallel algorithm for dynamic community detection. pages 55–60.
– reference: Wan, C., Peng, S., Wang, C., and Yuan, Y. (2017). Communities detection algorithm based on general stochastic block model in mobile social networks. pages 178–185.
– reference: Song, Q., Li, B., Yu, W., Li, J., and Shi, B. (2014). Nslpa: A node similarity based label propagation algorithm for real-time community detection. pages 896–901.
– ident: 10.1016/j.eswa.2021.115956_b0355
– ident: 10.1016/j.eswa.2021.115956_b0580
  doi: 10.1007/978-3-319-98539-8_2
– ident: 10.1016/j.eswa.2021.115956_b0175
  doi: 10.1007/978-1-4614-1800-9_33
– ident: 10.1016/j.eswa.2021.115956_b0650
  doi: 10.1109/ASONAM.2018.8508730
– volume: 486
  start-page: 75
  issue: 3–5
  year: 2010
  ident: 10.1016/j.eswa.2021.115956_b0170
  article-title: Community detection in graphs
  publication-title: Physics Reports
  doi: 10.1016/j.physrep.2009.11.002
– volume: 76
  issue: 3
  year: 2007
  ident: 10.1016/j.eswa.2021.115956_b0490
  article-title: Near linear time algorithm to detect community structures in large-scale networks
  publication-title: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
  doi: 10.1103/PhysRevE.76.036106
– ident: 10.1016/j.eswa.2021.115956_b0505
  doi: 10.1109/IPDPSW.2012.203
– ident: 10.1016/j.eswa.2021.115956_b0095
  doi: 10.1109/CEC.2018.8477659
– volume: 94
  start-page: 70
  year: 2018
  ident: 10.1016/j.eswa.2021.115956_b0230
  article-title: Revealing the densest communities of social networks efficiently through intelligent data space reduction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.10.047
– ident: 10.1016/j.eswa.2021.115956_b0390
– ident: 10.1016/j.eswa.2021.115956_b0260
  doi: 10.1002/9780470712184
– ident: 10.1016/j.eswa.2021.115956_b0325
  doi: 10.1007/978-3-030-58811-3_64
– ident: 10.1016/j.eswa.2021.115956_b0365
  doi: 10.1109/BigData.2014.7004318
– ident: 10.1016/j.eswa.2021.115956_b0185
  doi: 10.1109/CBD.2014.52
– volume: 9
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2021.115956_b0415
  article-title: Dynamic social community detection and its applications
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0091431
– volume: 74
  start-page: 533
  year: 2019
  ident: 10.1016/j.eswa.2021.115956_b0010
  article-title: Improving fuzzy c-mean-based community detection in social networks using dynamic parallelism
  publication-title: Computers and Electrical Engineering
  doi: 10.1016/j.compeleceng.2018.01.003
– ident: 10.1016/j.eswa.2021.115956_b0400
  doi: 10.1109/CADS.2015.7377794
– ident: 10.1016/j.eswa.2021.115956_b0480
  doi: 10.1145/2566486.2568010
– ident: 10.1016/j.eswa.2021.115956_b0300
– volume: 28
  start-page: 721
  issue: 8
  year: 2002
  ident: 10.1016/j.eswa.2021.115956_b0320
  article-title: Preliminary guidelines for empirical research in software engineering
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/TSE.2002.1027796
– volume: 30
  start-page: 934
  issue: 10
  year: 2008
  ident: 10.1016/j.eswa.2021.115956_b0210
  article-title: The art of community detection
  publication-title: BioEssays
  doi: 10.1002/bies.20820
– year: 1994
  ident: 10.1016/j.eswa.2021.115956_b0610
– volume: 54
  start-page: 26
  year: 2017
  ident: 10.1016/j.eswa.2021.115956_b0165
  article-title: Adaptive parallel louvain community detection on a multicore platform
  publication-title: Microprocessors and Microsystems
  doi: 10.1016/j.micpro.2017.08.002
– volume: 6
  start-page: 68415
  year: 2018
  ident: 10.1016/j.eswa.2021.115956_b0560
  article-title: A novel, interdisciplinary, approach for community detection based on remote file requests
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2880157
– ident: 10.1016/j.eswa.2021.115956_b0515
  doi: 10.1109/COMSNETS.2018.8328289
– volume: 18
  start-page: 999
  issue: 3
  year: 2015
  ident: 10.1016/j.eswa.2021.115956_b0285
  article-title: Community structure mining in big data social media networks with mapreduce
  publication-title: Cluster Computing
  doi: 10.1007/s10586-015-0452-x
– ident: 10.1016/j.eswa.2021.115956_b0200
  doi: 10.1109/SocialCom.2010.24
– ident: 10.1016/j.eswa.2021.115956_b0040
  doi: 10.1016/j.procs.2016.07.311
– volume: 55
  start-page: 741
  issue: 3
  year: 2018
  ident: 10.1016/j.eswa.2021.115956_b0075
  article-title: Gleam: A graph clustering framework based on potential game optimization for large-scale social networks
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-017-1105-6
– ident: 10.1016/j.eswa.2021.115956_b0545
  doi: 10.1147/JRD.2013.2251982
– volume: 80
  issue: 5
  year: 2009
  ident: 10.1016/j.eswa.2021.115956_b0335
  article-title: Community detection algorithms: A comparative analysis
  publication-title: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
  doi: 10.1103/PhysRevE.80.056117
– volume: 531
  year: 2019
  ident: 10.1016/j.eswa.2021.115956_b0350
  article-title: Communities detection in social network based on local edge centrality
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2019.121552
– volume: 107
  start-page: 133
  year: 2016
  ident: 10.1016/j.eswa.2021.115956_b0660
  article-title: A social community detection algorithm based on parallel grey label propagation
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2016.06.002
– volume: 30
  start-page: 1638
  issue: 9
  year: 2018
  ident: 10.1016/j.eswa.2021.115956_b0485
  article-title: A fast parallel community discovery model on complex networks through approximate optimization
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2018.2803818
– ident: 10.1016/j.eswa.2021.115956_b0530
– ident: 10.1016/j.eswa.2021.115956_b0345
  doi: 10.1109/ICBDA.2017.8078743
– volume: 50
  start-page: 246
  year: 2013
  ident: 10.1016/j.eswa.2021.115956_b0080
  article-title: A fast parallel modularity optimization algorithm (fpmqa) for community detection in online social network
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2013.06.014
– start-page: 487
  year: 2010
  ident: 10.1016/j.eswa.2021.115956_b0570
  article-title: Graph mining applications to social network analysis
– ident: 10.1016/j.eswa.2021.115956_b0280
  doi: 10.1109/ICDE.2018.00142
– ident: 10.1016/j.eswa.2021.115956_b0600
  doi: 10.1109/CBD.2016.040
– volume: 80
  start-page: 571
  issue: 4
  year: 2007
  ident: 10.1016/j.eswa.2021.115956_b0070
  article-title: Lessons from applying the systematic literature review process within the software engineering domain
  publication-title: Journal of Systems and Software
  doi: 10.1016/j.jss.2006.07.009
– volume: 11
  start-page: 430
  issue: 3
  year: 1990
  ident: 10.1016/j.eswa.2021.115956_b0470
  article-title: Partitioning sparse matrices with eigenvectors of graphs
  publication-title: SIAM journal on matrix analysis and applications
  doi: 10.1137/0611030
– ident: 10.1016/j.eswa.2021.115956_b0590
  doi: 10.1109/IKT.2013.6620116
– ident: 10.1016/j.eswa.2021.115956_b0235
– ident: 10.1016/j.eswa.2021.115956_b0430
– ident: 10.1016/j.eswa.2021.115956_b0665
– ident: 10.1016/j.eswa.2021.115956_b0425
  doi: 10.1109/HiPC.2012.6507522
– ident: 10.1016/j.eswa.2021.115956_b0005
  doi: 10.1007/978-1-4419-8462-3_1
– volume: 6
  start-page: 29
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2021.115956_b0340
  article-title: Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters
  publication-title: Internet Mathematics
  doi: 10.1080/15427951.2009.10129177
– volume: 57
  start-page: 159
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2021.115956_b0055
  article-title: Dfuzzy: A deep learning-based fuzzy clustering model for large graphs
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-018-1156-3
– volume: 74
  start-page: 5601
  issue: 10
  year: 2018
  ident: 10.1016/j.eswa.2021.115956_b0250
  article-title: Improving nmf-based community discovery using distributed robust nonnegative matrix factorization with simrank similarity measure
  publication-title: Journal of Supercomputing
  doi: 10.1007/s11227-018-2500-9
– ident: 10.1016/j.eswa.2021.115956_b0020
  doi: 10.1109/CSIT.2016.7549467
– volume: 28
  start-page: 45
  year: 2016
  ident: 10.1016/j.eswa.2021.115956_b0050
  article-title: Social big data: Recent achievements and new challenges
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2015.08.005
– ident: 10.1016/j.eswa.2021.115956_b0620
  doi: 10.1145/3110025.3110135
– volume: 339
  start-page: 332
  issue: 7716
  year: 2009
  ident: 10.1016/j.eswa.2021.115956_b0385
  article-title: Preferred reporting items for systematic reviews and meta-analyses: The prisma statement
  publication-title: BMJ (Online)
– volume: 533
  start-page: 95
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2021.115956_b0375
  article-title: Clustering and community detection in directed networks: A survey
  publication-title: Physics Reports
  doi: 10.1016/j.physrep.2013.08.002
– volume: 163
  start-page: 404
  year: 2019
  ident: 10.1016/j.eswa.2021.115956_b0670
  article-title: An incremental method to detect communities in dynamic evolving social networks
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.09.002
– volume: 32
  start-page: 9649
  issue: 13
  year: 2020
  ident: 10.1016/j.eswa.2021.115956_b0030
  article-title: Genetic algorithm-based community detection in large-scale social networks
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-019-04487-0
– ident: 10.1016/j.eswa.2021.115956_b0220
  doi: 10.1109/CIDM.2014.7008660
– ident: 10.1016/j.eswa.2021.115956_b0520
  doi: 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00122
– ident: 10.1016/j.eswa.2021.115956_b0225
  doi: 10.1109/ICCP.2010.5606467
– year: 2005
  ident: 10.1016/j.eswa.2021.115956_b0090
– ident: 10.1016/j.eswa.2021.115956_b0595
  doi: 10.1109/BigData.2017.8257995
– volume: 61
  start-page: 331
  year: 2017
  ident: 10.1016/j.eswa.2021.115956_b0215
  article-title: Parallel quantum-inspired evolutionary algorithms for community detection in social networks
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2017.07.035
– ident: 10.1016/j.eswa.2021.115956_b0555
  doi: 10.1109/UCC.2014.146
– volume: 24
  start-page: 1216
  issue: 7
  year: 2012
  ident: 10.1016/j.eswa.2021.115956_b0100
  article-title: Dense subgraph extraction with application to community detection
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2010.271
– volume: 22
  start-page: 109
  issue: 1
  year: 1988
  ident: 10.1016/j.eswa.2021.115956_b0535
  article-title: Social network analysis
  publication-title: Sociology
  doi: 10.1177/0038038588022001007
– ident: 10.1016/j.eswa.2021.115956_b0550
  doi: 10.1109/IPDPS.2011.61
– ident: 10.1016/j.eswa.2021.115956_b0305
  doi: 10.1109/SBAC-PAD.2015.22
– volume: 105
  start-page: 1118
  issue: 4
  year: 2008
  ident: 10.1016/j.eswa.2021.115956_b0510
  article-title: Maps of random walks on complex networks reveal community structure
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0706851105
– volume: 9
  start-page: 219
  year: 2005
  ident: 10.1016/j.eswa.2021.115956_b0140
  article-title: Comparing community structure identification
  publication-title: Journal of Statistical Mechanics: Theory and Experiment
– ident: 10.1016/j.eswa.2021.115956_b0025
  doi: 10.1145/2807591.2807668
– ident: 10.1016/j.eswa.2021.115956_b0435
  doi: 10.1145/2492517.2492518
– ident: 10.1016/j.eswa.2021.115956_b0015
  doi: 10.1109/W-FiCloud.2016.57
– volume: 104
  start-page: 17
  year: 2016
  ident: 10.1016/j.eswa.2021.115956_b0395
  article-title: Parallel community detection on large graphs with mapreduce and graphchi
  publication-title: Data and Knowledge Engineering
  doi: 10.1016/j.datak.2015.05.001
– volume: 23
  start-page: 231
  issue: 2
  year: 1988
  ident: 10.1016/j.eswa.2021.115956_b0125
  article-title: Omega: A general formulation of the rand index of cluster recovery suitable for non-disjoint solutions
  publication-title: Multivariate Behavioral Research
  doi: 10.1207/s15327906mbr2302_6
– ident: 10.1016/j.eswa.2021.115956_b0615
  doi: 10.1109/HPEC.2014.7040973
– volume: 798
  start-page: 287
  year: 2019
  ident: 10.1016/j.eswa.2021.115956_b0405
  article-title: A comparative analysis of community detection algorithms on social networks
  publication-title: Advances in Intelligent Systems and Computing
  doi: 10.1007/978-981-13-1132-1_23
– ident: 10.1016/j.eswa.2021.115956_b0035
  doi: 10.1109/IOTA.2016.7562715
– ident: 10.1016/j.eswa.2021.115956_b0160
  doi: 10.1109/IPDPSW.2016.165
– volume: 10
  start-page: 1
  issue: 3
  year: 2016
  ident: 10.1016/j.eswa.2021.115956_b0475
  article-title: Put three and three together: Triangle-driven community detection
  publication-title: ACM Transactions on Knowledge Discovery from Data
  doi: 10.1145/2775108
– ident: 10.1016/j.eswa.2021.115956_b0380
  doi: 10.1109/CICSyN.2011.66
– ident: 10.1016/j.eswa.2021.115956_b0115
– volume: 4
  start-page: 512
  issue: 5
  year: 2011
  ident: 10.1016/j.eswa.2021.115956_b0135
  article-title: A classification for community discovery methods in complex networks
  publication-title: Statistical Analysis and Data Mining
  doi: 10.1002/sam.10133
– volume: 435
  start-page: 814
  issue: 7043
  year: 2005
  ident: 10.1016/j.eswa.2021.115956_b0440
  article-title: Uncovering the overlapping community structure of complex networks in nature and society
  publication-title: Nature
  doi: 10.1038/nature03607
– volume: 21
  start-page: 1377
  issue: 5
  year: 2018
  ident: 10.1016/j.eswa.2021.115956_b0110
  article-title: A novel parallel community detection scheme based on label propagation
  publication-title: World Wide Web
  doi: 10.1007/s11280-017-0519-0
– volume: 22
  start-page: 3
  issue: 1
  year: 1993
  ident: 10.1016/j.eswa.2021.115956_b0180
  article-title: Social network analysis: Concepts, methodology, and directions for the 1990s
  publication-title: Sociological Methods Research
  doi: 10.1177/0049124193022001001
– volume: 22
  start-page: 79
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2021.115956_b0605
  article-title: Social computing: From social informatics to social intelligence
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/MIS.2007.41
– ident: 10.1016/j.eswa.2021.115956_b0190
  doi: 10.1109/IPDPS.2018.00098
– ident: 10.1016/j.eswa.2021.115956_b0150
  doi: 10.1145/2660460.2660474
– volume: 2245
  start-page: 18
  year: 2001
  ident: 10.1016/j.eswa.2021.115956_b0240
  article-title: On clustering using random walks
  publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– ident: 10.1016/j.eswa.2021.115956_b0330
  doi: 10.1109/SocialCom.2013.37
– ident: 10.1016/j.eswa.2021.115956_b0635
  doi: 10.1007/978-1-4419-7142-5_16
– start-page: 1
  year: 2004
  ident: 10.1016/j.eswa.2021.115956_b0310
– volume: 56
  start-page: 1082
  issue: 9
  year: 2009
  ident: 10.1016/j.eswa.2021.115956_b0465
  article-title: Communities in networks
  publication-title: Notices of the American Mathematical Society
– volume: 58
  start-page: 10
  year: 2016
  ident: 10.1016/j.eswa.2021.115956_b0630
  article-title: An adaptive random walk sampling method on dynamic community detection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.03.033
– ident: 10.1016/j.eswa.2021.115956_b0145
  doi: 10.1109/NUICONE.2015.7449651
– ident: 10.1016/j.eswa.2021.115956_b0495
  doi: 10.1109/SBAC-PADW.2017.18
– ident: 10.1016/j.eswa.2021.115956_b0420
– start-page: 79
  year: 2011
  ident: 10.1016/j.eswa.2021.115956_b0450
  article-title: Community discovery in social networks: Applications, methods and emerging trends
– volume: 146
  start-page: 113184
  year: 2020
  ident: 10.1016/j.eswa.2021.115956_b0290
  article-title: Multiplex community detection in complex networks using an evolutionary ap- proach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113184
– volume: 1
  start-page: 27
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2021.115956_b0525
  article-title: Graph clustering
  publication-title: Computer science review
  doi: 10.1016/j.cosrev.2007.05.001
– volume: 51
  start-page: 7
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2021.115956_b0315
  article-title: Systematic literature reviews in software engineering - a systematic literature review
  publication-title: Information and Software Technology
  doi: 10.1016/j.infsof.2008.09.009
– start-page: 65
  year: 2013
  ident: 10.1016/j.eswa.2021.115956_b0460
  article-title: Survey on social community detection
  publication-title: Social media retrieval
  doi: 10.1007/978-1-4471-4555-4_4
– volume: 99
  start-page: 7821
  issue: 12
  year: 2002
  ident: 10.1016/j.eswa.2021.115956_b0195
  article-title: Community structure in social and biological networks
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.122653799
– ident: 10.1016/j.eswa.2021.115956_b0205
  doi: 10.1109/SMC.2015.239
– ident: 10.1016/j.eswa.2021.115956_b0130
  doi: 10.1145/3219819.3220093
– start-page: 121
  year: 2007
  ident: 10.1016/j.eswa.2021.115956_b0245
  article-title: Social networks and online community
– volume: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2021.115956_b0655
  article-title: Limited random walk algorithm for big graph data clustering
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-016-0060-5
– ident: 10.1016/j.eswa.2021.115956_b0120
  doi: 10.1103/PhysRevE.70.066111
– volume: 6
  start-page: 42775
  year: 2018
  ident: 10.1016/j.eswa.2021.115956_b0255
  article-title: Parallel community detection based on distance dynamics for large-scale network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2859788
– ident: 10.1016/j.eswa.2021.115956_b0105
  doi: 10.1109/BESC.2016.7804476
– ident: 10.1016/j.eswa.2021.115956_b0455
  doi: 10.1007/978-3-540-87700-4_107
– volume: 69
  start-page: 5
  issue: 6
  year: 2004
  ident: 10.1016/j.eswa.2021.115956_b0410
  article-title: Fast algorithm for detecting community structure in networks
  publication-title: Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
– volume: 29
  start-page: 165
  issue: 3
  year: 2018
  ident: 10.1016/j.eswa.2021.115956_b0565
  article-title: A dynamic method to adjust overlapping community structures
  publication-title: Journal of Computers (Taiwan)
– start-page: 101
  year: 2019
  ident: 10.1016/j.eswa.2021.115956_b0275
  article-title: Machine learning models for stock prediction using real-time streaming data
– volume: 10
  start-page: P10008
  year: 2011
  ident: 10.1016/j.eswa.2021.115956_b0060
  article-title: The louvain method for community detection in large networks
  publication-title: Journal of Statistical Mechanics: Theory and Experiment
– ident: 10.1016/j.eswa.2021.115956_b0085
  doi: 10.1109/ICDMW.2014.158
– volume: 323
  start-page: 892
  issue: 5916
  year: 2009
  ident: 10.1016/j.eswa.2021.115956_b0065
  article-title: Network analysis in the social sciences
  publication-title: Science
  doi: 10.1126/science.1165821
– ident: 10.1016/j.eswa.2021.115956_b0295
– volume: 70
  start-page: 89
  year: 2016
  ident: 10.1016/j.eswa.2021.115956_b0360
  article-title: Miracle: A multiple independent random walks community parallel detection algorithm for big graphs
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2016.05.008
– ident: 10.1016/j.eswa.2021.115956_b0270
– ident: 10.1016/j.eswa.2021.115956_b0500
  doi: 10.1109/IPDPSW.2013.229
– volume: 82
  start-page: 157
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2021.115956_b0640
  article-title: Detecting communities and their evolutions in dynamic social networks - a bayesian approach
  publication-title: Machine Learning
  doi: 10.1007/s10994-010-5214-7
– volume: 10
  start-page: 44
  year: 2017
  ident: 10.1016/j.eswa.2021.115956_b0540
  article-title: Community detection algorithm for big social networks using hybrid architecture
  publication-title: Big Data Research
  doi: 10.1016/j.bdr.2017.10.003
– ident: 10.1016/j.eswa.2021.115956_b0645
  doi: 10.1155/2015/849140
– volume: 7
  start-page: 1173
  issue: 11
  year: 2017
  ident: 10.1016/j.eswa.2021.115956_b0045
  article-title: Large scale community detection using a small world model
  publication-title: Applied Sciences (Switzerland)
  doi: 10.3390/app7111173
– volume: 432
  start-page: 164
  year: 2018
  ident: 10.1016/j.eswa.2021.115956_b0265
  article-title: Overlapping community detection in heterogeneous social networks via the user model
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.11.055
– volume: 19
  start-page: 819
  issue: 6
  year: 2010
  ident: 10.1016/j.eswa.2021.115956_b0155
  article-title: Evaluating subjective aspects of hci on an example of a non-task oriented conversational system
  publication-title: International Journal on Artificial Intelligence Tools
  doi: 10.1142/S0218213010000431
– volume: 503
  start-page: 366
  year: 2018
  ident: 10.1016/j.eswa.2021.115956_b0370
  article-title: Psplpa: Probability and similarity based parallel label propagation algorithm on spark
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2018.02.130
– volume: 24
  start-page: 515
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2021.115956_b0445
  article-title: Community detection in social media performance and application considerations
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1007/s10618-011-0224-z
– ident: 10.1016/j.eswa.2021.115956_b0585
  doi: 10.1093/acprof:oso/9780195301014.001.0001
– volume: 19
  start-page: 211
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2021.115956_b0625
  article-title: Simple: A simplifying-ensembling framework for parallel community detection from large networks
  publication-title: Cluster Computing
  doi: 10.1007/s10586-015-0504-2
– volume: 53
  start-page: 526
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2021.115956_b0575
  article-title: Comparing community structure to characteristics in online collegiate social networks
  publication-title: SIAM Review
  doi: 10.1137/080734315
SSID ssj0017007
Score 2.4743664
SecondaryResourceType review_article
Snippet [Display omitted] •Systematic procedures are followed to obtain the most relevant studies.•Mendeley web application is used in filtering process to extract the...
Community detection in social networks is the process of identifying the cohesive groups of similar nodes. Detection of these groups can be helpful in many...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115956
SubjectTerms Algorithms
Community Detection
Digital libraries
Distributed Algorithms
Distributed memory
Libraries
Literature reviews
Network analysis
Parallel Algorithms
Parallel processing
Public health
Search methods
Social network analysis
Social Networks
State-of-the-art reviews
Systematic review
Title Parallel and distributed paradigms for community detection in social networks: A methodological review
URI https://dx.doi.org/10.1016/j.eswa.2021.115956
https://www.proquest.com/docview/2602107996
Volume 187
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFy--xTc5eJO6mzRNtt4WUVbFRdAFb6F5VFa0LrsV8eJvd6ZJBUU8eC1JKTOTeaQz30fIIZcuL5m1CYTTMhHM5klPGpOwsseVFKorGA4KXw_lYCQu77P7OXLazsJgW2X0_cGnN946PulEaXYm43HnFpIDCIdQ2jH8-5bjEJ8QCq38-OOrzQPh51TA21MJro6DM6HHy8_eEHuIM_AcWY4k1r8Hpx9uuok95ytkKSaNtB--a5XM-WqNLLeEDDSez3VS3hRT5EZ5okXlqENMXKSz8o4iwrcbPzzPKCSp1IapkPqdOl83vVgVHVc03J_TKnSGz05onwaC6dZB0jDoskFG52d3p4MkEikkNuW9OjEgBmeE6ZbWGAUJhFXMCmZUKlIoV0pZMlCMz4pUFMpJzj3jtpsZznNZlJBRbZL56qXyW4QiIjz4JQWVlQdpK6OgvrZGOp6lmVRqm7BWgtpGlHEku3jSbTvZo0apa5S6DlLfJkdfeyYBY-PP1VmrGP3NUjQEgT_37bVa1PGczjRUc2A-Coq-nX--dpcscpyIaG5l9sh8PX31-5Cn1OagMcQDstC_uBoMPwE_kOYB
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PejFt_hYNQdvUnaTpsnW27Io62sRVPAWmkdlRau4FfHfO9mkgiIevJaklEnyzUw633wAB0zYvKTGJOhOy4RTkyc9oXVCyx6Tgssup54ofDkSw1t-dpfdzcCg4cL4ssqI_QHTp2gdn3SiNTsv43HnGoMDdIeY2lH_9y3PZ2HOd6fKWjDXPz0fjr5-JshuYE3j-MRPiNyZUOblJu--_RCjCB5Z7nWsf_dPP5B66n5OlmExxo2kHz5tBWZctQpLjSYDiUd0Dcqr4tXLozySorLE-ra4XtHKWeKbfNvx_dOEYJxKTCCG1B_EunpajlWRcUXCFTqpQnH45Ij0SdCYbjCSBK7LOtyeHN8MhknUUkhMynp1otEMVnPdLY3WEmMII6nhVMuUp5ixlKKkuDYuK1JeSCsYc5SZbqYZy0VRYlC1Aa3quXKbQHxTeIQmicmV41xKLTHFNlpYlqWZkHILaGNBZWKjca938aiairIH5a2uvNVVsPoWHH7NeQltNv4cnTULo75tFoV-4M957WYVVTyqE4UJHe4giXnf9j9fuw_zw5vLC3VxOjrfgQXmCRLTS5o2tOrXN7eLYUut9-K2_AQq6eiy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+and+distributed+paradigms+for+community+detection+in+social+networks%3A+A+methodological+review&rft.jtitle=Expert+systems+with+applications&rft.au=Naik%2C+Debadatta&rft.au=Ramesh%2C+Dharavath&rft.au=Gandomi%2C+Amir+H&rft.au=Gorojanam%2C+Naveen+Babu&rft.date=2022-01-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=187&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2021.115956&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon