A Structure Data-Driven Framework for Virtual Metrology Modeling

Virtual metrology (VM) has been widely studied in the semiconductor industry with the purpose of decreasing the cycle time and reducing the expensive metrology measurements. Ideally, a VM model should not only be able to provide accurate predictions but also present an interpretable and rational str...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 17; no. 3; pp. 1297 - 1306
Main Authors Yang, Wei-Ting, Blue, Jakey, Roussy, Agnes, Pinaton, Jacques, Reis, Marco S.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Virtual metrology (VM) has been widely studied in the semiconductor industry with the purpose of decreasing the cycle time and reducing the expensive metrology measurements. Ideally, a VM model should not only be able to provide accurate predictions but also present an interpretable and rational structure to accommodate fundamental restrictions and relationships that are known to be present in the process. The last aspects have been missing in the VM models proposed hitherto. Therefore, in this article, we propose a novel framework by combining in a single VM model the capability to learn from data with the ability to incorporate the domain knowledge on the process. Thus, the new methodology can use the best of both information sources: data and the subject-matter expert (SME) knowledge. The framework consists of two phases. In the first phase, a Gaussian Bayesian network (GBN) is used to extract the implicit relationships between the metrology and production/process variables. In the second phase, the target response variable is defined, the predictors are selected through the associated Markov blanket, and finally, an empirical model is estimated to accurately predict the response. The proposed framework was tested and its effectiveness was confirmed through a real industrial data from a chemical-mechanical polishing (CMP) process in semiconductor fabrication. The physical meaning of the model obtained was also scrutinized by an SME. Note to Practitioners- Unlike the conventional virtual metrology (VM) techniques that model the x-y relationship based only on process data, the proposed method aims at consolidating the process knowledge from experts into an extensive relational structure. Not only the x-y model is inferred but also the relationships among the predictors are revealed. The structure is illustrated in a form of a connected graph so that the correlation between parameters can be expressed explicitly, which is also compatible with the physical laws. With the clear visualization of the correlation structure of variables, the practitioners are able to utilize the result in different applications. The learned structure can be further integrated into the plant advanced process control system, including VM, process monitoring and diagnosis, and run-to-run (R2R) control.
AbstractList Virtual metrology (VM) has been widely studied in the semiconductor industry with the purpose of decreasing the cycle time and reducing the expensive metrology measurements. Ideally, a VM model should not only be able to provide accurate predictions but also present an interpretable and rational structure to accommodate fundamental restrictions and relationships that are known to be present in the process. The last aspects have been missing in the VM models proposed hitherto. Therefore, in this article, we propose a novel framework by combining in a single VM model the capability to learn from data with the ability to incorporate the domain knowledge on the process. Thus, the new methodology can use the best of both information sources: data and the subject-matter expert (SME) knowledge. The framework consists of two phases. In the first phase, a Gaussian Bayesian network (GBN) is used to extract the implicit relationships between the metrology and production/process variables. In the second phase, the target response variable is defined, the predictors are selected through the associated Markov blanket, and finally, an empirical model is estimated to accurately predict the response. The proposed framework was tested and its effectiveness was confirmed through a real industrial data from a chemical–mechanical polishing (CMP) process in semiconductor fabrication. The physical meaning of the model obtained was also scrutinized by an SME. Note to Practitioners— Unlike the conventional virtual metrology (VM) techniques that model the x–y relationship based only on process data, the proposed method aims at consolidating the process knowledge from experts into an extensive relational structure. Not only the x–y model is inferred but also the relationships among the predictors are revealed. The structure is illustrated in a form of a connected graph so that the correlation between parameters can be expressed explicitly, which is also compatible with the physical laws. With the clear visualization of the correlation structure of variables, the practitioners are able to utilize the result in different applications. The learned structure can be further integrated into the plant advanced process control system, including VM, process monitoring and diagnosis, and run-to-run (R2R) control.
Author Roussy, Agnes
Pinaton, Jacques
Reis, Marco S.
Yang, Wei-Ting
Blue, Jakey
Author_xml – sequence: 1
  givenname: Wei-Ting
  orcidid: 0000-0002-4276-8988
  surname: Yang
  fullname: Yang, Wei-Ting
  email: wei-ting.yang@emse.fr
  organization: Department of Manufacturing Sciences and Logistics, École des Mines de Saint-Étienne, Gardanne, France
– sequence: 2
  givenname: Jakey
  orcidid: 0000-0001-7771-4368
  surname: Blue
  fullname: Blue, Jakey
  email: jakeyblue@ntu.edu.tw
  organization: Institute of Industrial Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 3
  givenname: Agnes
  surname: Roussy
  fullname: Roussy, Agnes
  email: roussy@emse.fr
  organization: Department of Manufacturing Sciences and Logistics, École des Mines de Saint-Étienne, Gardanne, France
– sequence: 4
  givenname: Jacques
  surname: Pinaton
  fullname: Pinaton, Jacques
  email: jacques.pinaton@st.com
  organization: Department of Process Control, STMicroelectronics Rousset, Rousset, France
– sequence: 5
  givenname: Marco S.
  orcidid: 0000-0002-4997-8865
  surname: Reis
  fullname: Reis, Marco S.
  email: marco@eq.uc.pt
  organization: Department of Chemical Engineering, Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Coimbra, Portugal
BackLink https://hal-emse.ccsd.cnrs.fr/emse-02499670$$DView record in HAL
BookMark eNp9kLFOwzAQhi1UJKDwAIglEhtSiu3YSbxRtZQitWJoxWpdkjMY0hgcB9S3J1WBgYHpbvi-03__CRk0rkFCzhkdMUbV9Xq8uh1xytSIK8GoyA7IMZMyj5MsTwa7XchYKimPyEnbvlDKRa7oMbkZR6vguzJ0HqMpBIin3n5gE808bPDT-dfIOB89Wh86qKMlBu9q97SNlq7C2jZPp-TQQN3i2fcckvXsdj2Zx4uHu_vJeBGXCc9DDP2oUAowzBikBWChisqUXCErIaMFskqmJpW8ggQy4NygEYJWNKVFSZMhudqffYZav3m7Ab_VDqyejxcaNy3q_iOl0ox-sB6-3MNv3r132Ab94jrf9PE0F0wJJdJE9lS2p0rv2taj0aUNEKxrggdba0b1rlq9q1bvqtXf1fYm-2P-JPrPudg7FhF_-TyXPM1p8gUHEoZx
CODEN ITASC7
CitedBy_id crossref_primary_10_1109_TASE_2021_3124157
crossref_primary_10_1016_j_engappai_2022_105385
crossref_primary_10_1016_j_eswa_2020_113424
crossref_primary_10_1109_TASE_2021_3111096
crossref_primary_10_1109_TASE_2022_3141426
crossref_primary_10_1109_LRA_2021_3084882
crossref_primary_10_1109_TSM_2022_3170270
crossref_primary_10_1109_TASE_2022_3140784
crossref_primary_10_1115_1_4053520
Cites_doi 10.1109/TMECH.2007.897275
10.1016/j.eswa.2009.05.053
10.1023/B:STCO.0000035301.49549.88
10.1016/j.talanta.2016.10.062
10.1109/CASE.2011.6042425
10.1109/TSM.2007.907609
10.18637/jss.v035.i03
10.1016/0893-6080(94)00064-S
10.1093/biomet/asq008
10.1016/j.chemolab.2018.08.004
10.1109/21.376493
10.1002/cem.1360
10.1109/ASMC.2011.5898187
10.1037/a0016973
10.1109/TSM.2009.2031750
10.1111/j.2517-6161.1996.tb02080.x
10.1007/978-1-4612-2748-9
10.1137/0905052
10.1109/CoASE.2013.6653980
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
1XC
DOI 10.1109/TASE.2019.2941047
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library (LUT)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Computer Science
EISSN 1558-3783
EndPage 1306
ExternalDocumentID oai_HAL_emse_02499670v1
10_1109_TASE_2019_2941047
8852680
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c328t-ac32de54af1ffe0baeb9bdfc29e1ca70be1d56f652da3a7a22fef440d060bc03
IEDL.DBID RIE
ISSN 1545-5955
IngestDate Fri May 09 12:27:07 EDT 2025
Mon Jun 30 03:58:08 EDT 2025
Tue Jul 01 02:56:30 EDT 2025
Thu Apr 24 23:02:34 EDT 2025
Wed Aug 27 02:37:46 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-ac32de54af1ffe0baeb9bdfc29e1ca70be1d56f652da3a7a22fef440d060bc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4997-8865
0000-0002-4276-8988
0000-0001-7771-4368
PQID 2419494635
PQPubID 27623
PageCount 10
ParticipantIDs hal_primary_oai_HAL_emse_02499670v1
proquest_journals_2419494635
ieee_primary_8852680
crossref_citationtrail_10_1109_TASE_2019_2941047
crossref_primary_10_1109_TASE_2019_2941047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref12
ref15
yung-cheng (ref2) 2005
ref11
ref10
ref17
ref16
huang (ref23) 2009
ref19
ref18
heckerman (ref21) 1995
ref24
ref26
ref25
ref20
asim (ref14) 1995; 8
wan (ref9) 2014
rasmussen (ref13) 2003
ref8
ref7
ref4
cowell (ref22) 1999
ref3
breiman (ref27) 1984
ref6
chen (ref1) 2005
ref5
References_xml – ident: ref3
  doi: 10.1109/TMECH.2007.897275
– ident: ref5
  doi: 10.1016/j.eswa.2009.05.053
– start-page: 124
  year: 2005
  ident: ref2
  article-title: Application development of virtual metrology in semiconductor industry
  publication-title: Proc IEEE Ind Electron Soc Annu Conf (IECON)
– ident: ref17
  doi: 10.1023/B:STCO.0000035301.49549.88
– ident: ref18
  doi: 10.1016/j.talanta.2016.10.062
– ident: ref7
  doi: 10.1109/CASE.2011.6042425
– start-page: 63
  year: 2003
  ident: ref13
  article-title: Gaussian processes in machine learning
  publication-title: Advanced Lectures on Machine Learning
– year: 1999
  ident: ref22
  publication-title: Probabilistic Networks and Expert Systems Exact Computational Methods for Bayesian Networks
– ident: ref4
  doi: 10.1109/TSM.2007.907609
– start-page: 927
  year: 2009
  ident: ref23
  article-title: Developing a product quality fault detection scheme
  publication-title: Proc IEEE Int Conf Robot Automat
– ident: ref26
  doi: 10.18637/jss.v035.i03
– volume: 8
  start-page: 179
  year: 1995
  ident: ref14
  article-title: An algorithm to generate radial basis function (RBF)-like nets for classification problems
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(94)00064-S
– ident: ref24
  doi: 10.1093/biomet/asq008
– ident: ref19
  doi: 10.1016/j.chemolab.2018.08.004
– start-page: 155
  year: 2005
  ident: ref1
  article-title: Virtual metrology: A solution for wafer to wafer advanced process control
  publication-title: Proc IEEE Symp Semicond Manuf
– ident: ref15
  doi: 10.1109/21.376493
– start-page: 274
  year: 1995
  ident: ref21
  article-title: Learning Bayesian networks: A unification for discrete and Gaussian domains
  publication-title: Proc 11th Europ Conf Artificial Intell
– ident: ref10
  doi: 10.1002/cem.1360
– ident: ref20
  doi: 10.1109/ASMC.2011.5898187
– ident: ref16
  doi: 10.1037/a0016973
– ident: ref6
  doi: 10.1109/TSM.2009.2031750
– year: 1984
  ident: ref27
  publication-title: Classfication and regression trees
– ident: ref12
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref25
  doi: 10.1007/978-1-4612-2748-9
– ident: ref11
  doi: 10.1137/0905052
– ident: ref8
  doi: 10.1109/CoASE.2013.6653980
– start-page: 380
  year: 2014
  ident: ref9
  article-title: On regression methods for virtual metrology in semiconductor manufacturing
  publication-title: Proc 25th IET Irish Signals Syst Conf China-Ireland Int Conf Inf Commun Technol (ISSC/CIICT)
SSID ssj0024890
Score 2.331684
Snippet Virtual metrology (VM) has been widely studied in the semiconductor industry with the purpose of decreasing the cycle time and reducing the expensive metrology...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1297
SubjectTerms Automatic Control Engineering
Bayes methods
Bayesian analysis
Chemical-mechanical polishing
Chemical–mechanical polishing (CMP)
Computer Science
Cycle time
Data Analysis, Statistics and Probability
Data models
Gaussian Bayesian network (GBN)
Information sources
Markov processes
Metrology
Physics
Predictive models
Process control
Process controls
Process variables
Semiconductor device modeling
virtual metrology (VM)
Title A Structure Data-Driven Framework for Virtual Metrology Modeling
URI https://ieeexplore.ieee.org/document/8852680
https://www.proquest.com/docview/2419494635
https://hal-emse.ccsd.cnrs.fr/emse-02499670
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB0lPcGhBdqqKS2yBCfEJl7H613fGtFGESJcGqrcLHs9LqglQflAgl-Px9mETyFOuwdbsvZ57Tf2mzcAL7DQXFXSZTX3lkqYqUyXLmR9rx2lcoaQvDvH79TovXwzLaYteLXLhUHEJD7DLr2mu3w_r9d0VNarKjIniQF6OwZum1ytH756VTpPIUaQFboomhvMnOveZHB9RSIu3RVakjXBL3tQ-wMpIFNplT_W47TJDA9gvB3eRlty112vXLf-9ptz4_-O_xHsN2yTDTbT4zG0cPYEHv7kQXgIFwN2nTxk1wtkl3Zls8sFrYBsuJVtschr2c3HBWWasDGSsn1--5VRFTXKZT-CyfBq8nqUNWUVsrovqlVm48NjIW3IQ0DuLDrtfKiFxry2JXeY-0IFVQhv-7a0QgQMUnLPFXc17x_D3mw-wxNgyawrBijOeyWxzJ1QwQqruOUu8jzdAb79zqZuLMep8sW9SaEH14agMQSNaaDpwMtdl88bv41_NX4ewdu1I6fs0eCtwU9LNGSFqFXJv-QdOCQods0aFDpwtgXbNP_t0kQ-o6WWkYWd_r3XU3ggKOJOgt0z2IsA4XmkJSv3LM3H7_nm3Ss
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB2VcgAO5aOgphSwBCfEpl7H9q5vRLRRgKSXBtSbZa_HgAoJSpNK5dfjcTbhU4jT7sGWdvd57Tf2mzcAz1AZrmvpi4YHRyXMdGEqH4teMJ5SOWPM3p3jEz18J9-cqbMteLHJhUHELD7DLt3ms_wwa5a0VXZY12ROkgL062ndV-UqW-uHs16dd1SIExTKKNWeYZbcHE76p8ck4zJdYSSZE_yyCl37SBrIXFzljxk5LzOD2zBeP-BKXXLeXS58t_n2m3fj_77BHdhp-SbrrwbIXdjC6T249ZML4S687LPT7CK7nCM7cgtXHM1pDmSDtXCLJWbL3n-aU64JGyNp22cfrhjVUaNs9vswGRxPXg2LtrBC0fREvShcugRU0sUyRuTeoTc-xEYYLBtXcY9lUDpqJYLrucoJETFKyQPX3De89wC2p7Mp7gHLdl0pRPEhaIlV6YWOTjjNHfeJ6ZkO8PV3tk1rOk61Lz7bHHxwYwkaS9DYFpoOPN90-bpy3PhX46cJvE078soe9kcWv1ygJTNEoyt-WXZgl6DYNGtR6MDBGmzb_rkXNjEaI41MPGz_772ewI3hZDyyo9cnbx_CTUHxd5bvHsB2AgsfJZKy8I_z2PwOrVLgdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Structure+Data-Driven+Framework+for+Virtual+Metrology+Modeling&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Yang%2C+Wei-Ting&rft.au=Blue%2C+Jakey&rft.au=Roussy%2C+Agnes&rft.au=Pinaton%2C+Jacques&rft.date=2020-07-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTASE.2019.2941047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2019_2941047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon