A dynamic cooperative lane-changing model for connected and autonomous vehicles with possible accelerations of a preceding vehicle

•A cooperative lane-changing strategy allowing accelerations of a preceding vehicle.•A dynamic cooperative lane-changing model for connected and autonomous vehicles.•Numerical simulations revealing the effectiveness and robustness of the model. The emerging connected and autonomous vehicle (CAV) tec...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 173; p. 114675
Main Authors Wang, Zhen, Zhao, Xiangmo, Chen, Zhiwei, Li, Xiaopeng
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.07.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2021.114675

Cover

Loading…
Abstract •A cooperative lane-changing strategy allowing accelerations of a preceding vehicle.•A dynamic cooperative lane-changing model for connected and autonomous vehicles.•Numerical simulations revealing the effectiveness and robustness of the model. The emerging connected and autonomous vehicle (CAV) technologies offer a promising solution to design better lane-changing maneuvers that can reduce the negative impacts of vehicle lane-changing behavior on traffic operations. Existing studies on this topic have predominantly focused on designing lane-changing maneuvers for a subject vehicle (SV) and typically assumed that a vehicle in the target lane must decelerate to make space for the SV due to safety considerations. Nevertheless, jointly designing the trajectories of the SV and surrounding vehicles and allowing possible accelerations of a preceding vehicle may further alleviate the negative impacts of CAV’s lane-changing maneuvers. To investigate this possibility, this paper proposes a dynamic cooperative lane-changing model for CAVs with possible accelerations of a preceding vehicle. This model collects information of the surrounding vehicles and updates the lane-changing decisions for the SV in real time via three steps, namely lane-changing decision making, cooperative trajectory planning, and trajectory tracking. This model applies a linearized vehicle kinematic model to make lane-changing decisions for the SV given the states of the SV and surrounding vehicles, the minimum safety distance, and requirements on the comfort level for passengers. Furthermore, it dynamically designs the longitudinal and lateral trajectories for the SV and surrounding vehicles. Extensive numerical simulation experiments are conducted to evaluate the effectiveness of the proposed model. Results show that the proposed model increases the success rate of the SV’s lane-changing maneuvers, smoothens the trajectories of the SV and vehicles in the upstream direction at the cost of a slightly more significant oscillation of the last vehicle in the downstream direction. Overall, the proposed model reduces the negative impacts of lane-changing maneuvers on the surrounding traffic. The results also reveal the robustness of the model performance by varying several key input parameters in the experiments.
AbstractList The emerging connected and autonomous vehicle (CAV) technologies offer a promising solution to design better lane-changing maneuvers that can reduce the negative impacts of vehicle lane-changing behavior on traffic operations. Existing studies on this topic have predominantly focused on designing lane-changing maneuvers for a subject vehicle (SV) and typically assumed that a vehicle in the target lane must decelerate to make space for the SV due to safety considerations. Nevertheless, jointly designing the trajectories of the SV and surrounding vehicles and allowing possible accelerations of a preceding vehicle may further alleviate the negative impacts of CAV's lane-changing maneuvers. To investigate this possibility, this paper proposes a dynamic cooperative lane-changing model for CAVs with possible accelerations of a preceding vehicle. This model collects information of the surrounding vehicles and updates the lane-changing decisions for the SV in real time via three steps, namely lane-changing decision making, cooperative trajectory planning, and trajectory tracking. This model applies a linearized vehicle kinematic model to make lane-changing decisions for the SV given the states of the SV and surrounding vehicles, the minimum safety distance, and requirements on the comfort level for passengers. Furthermore, it dynamically designs the longitudinal and lateral trajectories for the SV and surrounding vehicles. Extensive numerical simulation experiments are conducted to evaluate the effectiveness of the proposed model. Results show that the proposed model increases the success rate of the SV's lane-changing maneuvers, smoothens the trajectories of the SV and vehicles in the upstream direction at the cost of a slightly more significant oscillation of the last vehicle in the downstream direction. Overall, the proposed model reduces the negative impacts of lane-changing maneuvers on the surrounding traffic. The results also reveal the robustness of the model performance by varying several key input parameters in the experiments.
•A cooperative lane-changing strategy allowing accelerations of a preceding vehicle.•A dynamic cooperative lane-changing model for connected and autonomous vehicles.•Numerical simulations revealing the effectiveness and robustness of the model. The emerging connected and autonomous vehicle (CAV) technologies offer a promising solution to design better lane-changing maneuvers that can reduce the negative impacts of vehicle lane-changing behavior on traffic operations. Existing studies on this topic have predominantly focused on designing lane-changing maneuvers for a subject vehicle (SV) and typically assumed that a vehicle in the target lane must decelerate to make space for the SV due to safety considerations. Nevertheless, jointly designing the trajectories of the SV and surrounding vehicles and allowing possible accelerations of a preceding vehicle may further alleviate the negative impacts of CAV’s lane-changing maneuvers. To investigate this possibility, this paper proposes a dynamic cooperative lane-changing model for CAVs with possible accelerations of a preceding vehicle. This model collects information of the surrounding vehicles and updates the lane-changing decisions for the SV in real time via three steps, namely lane-changing decision making, cooperative trajectory planning, and trajectory tracking. This model applies a linearized vehicle kinematic model to make lane-changing decisions for the SV given the states of the SV and surrounding vehicles, the minimum safety distance, and requirements on the comfort level for passengers. Furthermore, it dynamically designs the longitudinal and lateral trajectories for the SV and surrounding vehicles. Extensive numerical simulation experiments are conducted to evaluate the effectiveness of the proposed model. Results show that the proposed model increases the success rate of the SV’s lane-changing maneuvers, smoothens the trajectories of the SV and vehicles in the upstream direction at the cost of a slightly more significant oscillation of the last vehicle in the downstream direction. Overall, the proposed model reduces the negative impacts of lane-changing maneuvers on the surrounding traffic. The results also reveal the robustness of the model performance by varying several key input parameters in the experiments.
ArticleNumber 114675
Author Chen, Zhiwei
Li, Xiaopeng
Zhao, Xiangmo
Wang, Zhen
Author_xml – sequence: 1
  givenname: Zhen
  surname: Wang
  fullname: Wang, Zhen
  email: zhenwang@chd.edu.cn
  organization: School of Information Engineering, Chang’an University, Xian, Shaanxi 710064, PR China
– sequence: 2
  givenname: Xiangmo
  surname: Zhao
  fullname: Zhao, Xiangmo
  email: xmzhao@chd.edu.cn
  organization: School of Information Engineering, Chang’an University, Xian, Shaanxi 710064, PR China
– sequence: 3
  givenname: Zhiwei
  surname: Chen
  fullname: Chen, Zhiwei
  email: zhiweic@mail.usf.edu
  organization: Department of Civil and Environmental Engineering, University of South Florida, Florida 33620, USA
– sequence: 4
  givenname: Xiaopeng
  surname: Li
  fullname: Li, Xiaopeng
  email: xiaopengli@usf.edu
  organization: Department of Civil and Environmental Engineering, University of South Florida, Florida 33620, USA
BookMark eNp9kLFu2zAQhokiBeqkfYFOBDrLvaMoUQK6BEGbFgiQpZ0JijrFNGRSJWkHWfvkoeJMHTIQt_zff7zvkl344ImxzwhbBGy_7reUHs1WgMAtomxV845tsFN11aq-vmAb6BtVSVTyA7tMaQ-ACkBt2L9rPj55c3CW2xAWiia7E_HZeKrszvgH5x_4IYw08ynEkvGebKaRG1_eMQcfDuGY-Il2zs6U-KPLO76ElNwwEzfW0vxSGnziYeKGL5EsjWvtK_ORvZ_MnOjT67xif358_33zs7q7v_11c31X2Vp0uTLKAPSj7ZUAMK0ckIYGZd2DtJLEMPTT1GAHtjWIQiEobNTYdWCAGhr7-op9OfcuMfw9Usp6H47Rl5VaNAILJDtZUt05ZWM5ItKkrcsv_8_RuFkj6NW43uvVuF6N67Pxgor_0CW6g4lPb0PfzhCV00-Ook7WkV8VFVFZj8G9hT8DzHieAQ
CitedBy_id crossref_primary_10_1093_tse_tdac062
crossref_primary_10_1016_j_physa_2024_129976
crossref_primary_10_1016_j_eswa_2025_126802
crossref_primary_10_1016_j_eswa_2025_126724
crossref_primary_10_1109_ACCESS_2022_3217213
crossref_primary_10_29048_makufebed_1353922
crossref_primary_10_1177_03611981221094001
crossref_primary_10_1093_iti_liac020
crossref_primary_10_3390_su17031077
crossref_primary_10_1177_03611981231170187
crossref_primary_10_1016_j_eswa_2025_127274
crossref_primary_10_1145_3716631
crossref_primary_10_3390_math13061014
crossref_primary_10_3390_sym15122164
crossref_primary_10_1155_2022_4357954
crossref_primary_10_1016_j_eswa_2024_124163
crossref_primary_10_1080_19427867_2024_2329469
crossref_primary_10_1016_j_eswa_2025_126437
crossref_primary_10_1109_TIV_2023_3317957
crossref_primary_10_3390_s23094537
crossref_primary_10_1016_j_physa_2024_129689
crossref_primary_10_1016_j_trc_2022_103985
crossref_primary_10_1016_j_eswa_2024_124814
crossref_primary_10_1016_j_tre_2025_104007
crossref_primary_10_1109_TIV_2023_3324305
crossref_primary_10_1016_j_eswa_2023_120133
crossref_primary_10_1016_j_trc_2021_103441
crossref_primary_10_1016_j_eswa_2023_122158
crossref_primary_10_1016_j_trb_2024_103026
crossref_primary_10_3390_futuretransp2030032
crossref_primary_10_1016_j_trb_2024_103146
Cites_doi 10.1016/j.eswa.2017.09.025
10.1109/TVT.2013.2253500
10.1016/j.trc.2013.11.023
10.1016/j.ymssp.2015.10.021
10.1016/j.eswa.2013.07.085
10.1016/j.eswa.2019.04.032
10.1016/j.physa.2016.09.022
10.1007/s41745-019-00127-7
10.1109/IVS.2007.4290263
10.1016/j.eswa.2015.12.049
10.1109/TITS.2013.2272074
10.1016/j.trc.2016.05.002
10.1016/j.eswa.2016.11.023
10.1016/j.trc.2018.06.007
10.1109/IROS.2017.8206215
10.1016/j.trb.2017.09.020
10.1016/j.trc.2015.11.011
10.1016/j.trb.2018.11.006
10.1177/1687814016632992
10.1016/j.cnsns.2014.12.007
10.1016/j.eswa.2015.01.029
10.1109/87.865854
10.1109/TITS.2011.2143407
10.1016/j.trc.2013.11.024
10.1016/j.eswa.2015.03.022
10.1109/TIV.2018.2843159
10.1016/j.trc.2014.09.001
10.1016/j.trc.2015.07.009
10.1016/j.eswa.2019.112953
10.1016/j.eswa.2018.12.005
10.1109/ACCESS.2017.2649567
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jul 1, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 1, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.114675
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_114675
S0957417421001160
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-a7a009dc97200a64b1eb5143904c4e2bb9ff5180c6a1127107157d880a0e5ed93
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Mon Jul 14 07:04:32 EDT 2025
Thu Apr 24 22:53:35 EDT 2025
Tue Jul 01 04:05:51 EDT 2025
Fri Feb 23 02:43:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Connected and autonomous vehicles
Lane changing
Cooperative control
Dynamic planning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-a7a009dc97200a64b1eb5143904c4e2bb9ff5180c6a1127107157d880a0e5ed93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2521112484
PQPubID 2045477
ParticipantIDs proquest_journals_2521112484
crossref_citationtrail_10_1016_j_eswa_2021_114675
crossref_primary_10_1016_j_eswa_2021_114675
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_114675
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Li, Peng (b0060) 2012; 226
Tang, Liu, Zhang, Ke, Zou (b0115) 2018; 91
Pan, Lam, Sumalee, Zhong (b0095) 2016; 68
Peng, Su, Zhang, Guan, Zhao, Qiu, Xu (b0100) 2020; 141
Tang, Yu, Liu, Chen, Huang (b0120) 2019; 130
Rahman, Chowdhury, Xie, He (b0105) 2013; 14
Li, Sun, Cao, Liu, He (b0065) 2017; 87
Yang, Zheng, Wen, Jin, Ran (b0160) 2018; 95
González, Pérez, Milanés (b0025) 2017; 71
Li, Li (b0045) 2019; 119
Martín, Romana, Santos (b0080) 2016; 54
Ghasemi, Kazemi, Azadi (b0020) 2013; 62
You, Zhang, Lie, Wang, Wen, Xu (b0165) 2015; 42
Zhang, Zhu (b0170) 2019; 121
Wang, Hu, Wang, Wang, Qin, Bian (b0125) 2016; 8
Nie, Zhang, Ding, Wan, Chen, Ran (b0090) 2016; 4
Fagnant, Kockelman (b0010) 2015; 77
Wang, Daamen, Hoogendoorn, van Arem (b0130) 2014; 40
Ammoun, S., Nashashibi, F., & Laurgeau, C. (2007). An analysis of the lane changing manoeuvre on roads: the contribution of inter-vehicle cooperation via communication. 1095–1100.
Wang, Zhao, Xu, Li, Qu (b0150) 2020
Luo, Xiang, Cao, Li (b0075) 2016; 62
Stanković, Stanojević, Šiljak (b0110) 2000; 8
Ganji, Kouzani, Khoo, Shams-Zahraei (b0015) 2014; 41
Li, Sun (b0055) 2017; 467
Xiao, Gao (b0155) 2011; 12
Li, B., Zhang, Y., Ge, Y., Shao, Z., & Li, P. (2017). Optimal control-based online motion planning for cooperative lane changes of connected and automated vehicles. IEEE International Conference on Intelligent Robots and Systems, 2017-Septe, 3689–3694. 10.1109/IROS.2017.8206215.
Li, Zhang, Xu, Qian (b0070) 2015; 24
Wang, Daamen, Hoogendoorn, van Arem (b0135) 2014; 40
Hou, Edara, Sun (b0030) 2015; 42
Milanés, Shladover (b0085) 2014; 48
Wang, Shi, Li (b0145) 2019; 99
Wang, Hoogendoorn, Daamen, van Arem, Happee (b0140) 2015; 58
Li, P. (Taylor), & Zhou, X. (2017). Recasting and optimizing intersection automation as a connected-and-automated-vehicle (CAV) scheduling problem: A sequential branch-and-bound search approach in phase-time-traffic hypernetwork. Transportation Research Part B: Methodological, 105, 479–506. 10.1016/j.trb.2017.09.020.
Li, Zhang, Feng, Zhang, Ge, Shao (b0035) 2018; 3
Fagnant (10.1016/j.eswa.2021.114675_b0010) 2015; 77
Li (10.1016/j.eswa.2021.114675_b0035) 2018; 3
Li (10.1016/j.eswa.2021.114675_b0065) 2017; 87
Wang (10.1016/j.eswa.2021.114675_b0125) 2016; 8
Stanković (10.1016/j.eswa.2021.114675_b0110) 2000; 8
Tang (10.1016/j.eswa.2021.114675_b0120) 2019; 130
10.1016/j.eswa.2021.114675_b0040
Peng (10.1016/j.eswa.2021.114675_b0100) 2020; 141
Ghasemi (10.1016/j.eswa.2021.114675_b0020) 2013; 62
Wang (10.1016/j.eswa.2021.114675_b0150) 2020
González (10.1016/j.eswa.2021.114675_b0025) 2017; 71
Zhang (10.1016/j.eswa.2021.114675_b0170) 2019; 121
Ganji (10.1016/j.eswa.2021.114675_b0015) 2014; 41
Li (10.1016/j.eswa.2021.114675_b0045) 2019; 119
Martín (10.1016/j.eswa.2021.114675_b0080) 2016; 54
You (10.1016/j.eswa.2021.114675_b0165) 2015; 42
Yang (10.1016/j.eswa.2021.114675_b0160) 2018; 95
10.1016/j.eswa.2021.114675_b0005
Tang (10.1016/j.eswa.2021.114675_b0115) 2018; 91
Wang (10.1016/j.eswa.2021.114675_b0135) 2014; 40
Wang (10.1016/j.eswa.2021.114675_b0145) 2019; 99
Pan (10.1016/j.eswa.2021.114675_b0095) 2016; 68
Rahman (10.1016/j.eswa.2021.114675_b0105) 2013; 14
Nie (10.1016/j.eswa.2021.114675_b0090) 2016; 4
Li (10.1016/j.eswa.2021.114675_b0060) 2012; 226
Luo (10.1016/j.eswa.2021.114675_b0075) 2016; 62
10.1016/j.eswa.2021.114675_b0050
Wang (10.1016/j.eswa.2021.114675_b0140) 2015; 58
Hou (10.1016/j.eswa.2021.114675_b0030) 2015; 42
Wang (10.1016/j.eswa.2021.114675_b0130) 2014; 40
Xiao (10.1016/j.eswa.2021.114675_b0155) 2011; 12
Li (10.1016/j.eswa.2021.114675_b0055) 2017; 467
Li (10.1016/j.eswa.2021.114675_b0070) 2015; 24
Milanés (10.1016/j.eswa.2021.114675_b0085) 2014; 48
References_xml – volume: 71
  start-page: 332
  year: 2017
  end-page: 341
  ident: b0025
  article-title: Parametric-based path generation for automated vehicles at roundabouts
  publication-title: Expert Systems with Applications
– reference: Li, B., Zhang, Y., Ge, Y., Shao, Z., & Li, P. (2017). Optimal control-based online motion planning for cooperative lane changes of connected and automated vehicles. IEEE International Conference on Intelligent Robots and Systems, 2017-Septe, 3689–3694. 10.1109/IROS.2017.8206215.
– volume: 119
  start-page: 1
  year: 2019
  end-page: 21
  ident: b0045
  article-title: Parsimonious trajectory design of connected automated traffic
  publication-title: Transportation Research Part B: Methodological
– volume: 42
  start-page: 3875
  year: 2015
  end-page: 3882
  ident: b0030
  article-title: Situation assessment and decision making for lane change assistance using ensemble learning methods
  publication-title: Expert Systems with Applications
– volume: 24
  start-page: 52
  year: 2015
  end-page: 63
  ident: b0070
  article-title: Study on the effects of driver’s lane-changing aggressiveness on traffic stability from an extended two-lane lattice model
  publication-title: Communications in Nonlinear Science and Numerical Simulation
– volume: 12
  start-page: 1184
  year: 2011
  end-page: 1194
  ident: b0155
  article-title: Practical string stability of platoon of adaptive cruise control vehicles
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 141
  start-page: 112953
  year: 2020
  ident: b0100
  article-title: A new safe lane-change trajectory model and collision avoidance control method for automatic driving vehicles
  publication-title: Expert Systems with Applications
– year: 2020
  ident: b0150
  article-title: Modeling and Field Experiments on Lane Changing of an Autonomous Vehicle in Mixed Traffic
  publication-title: Computer-aided Civil and Infrastructure Engineering
– volume: 77
  start-page: 167
  year: 2015
  end-page: 181
  ident: b0010
  article-title: Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations
  publication-title: Transportation Research Part A
– volume: 8
  start-page: 1
  year: 2016
  end-page: 17
  ident: b0125
  article-title: Model predictive control-based cooperative lane change strategy for improving traffic flow
  publication-title: Advances in Mechanical Engineering
– volume: 40
  start-page: 290
  year: 2014
  end-page: 311
  ident: b0135
  article-title: Rolling horizon control framework for driver assistance systems. Part II: Cooperative sensing and cooperative control
  publication-title: Transportation Research Part C: Emerging Technologies
– reference: Ammoun, S., Nashashibi, F., & Laurgeau, C. (2007). An analysis of the lane changing manoeuvre on roads: the contribution of inter-vehicle cooperation via communication. 1095–1100.
– volume: 91
  start-page: 452
  year: 2018
  end-page: 463
  ident: b0115
  article-title: Lane-changes prediction based on adaptive fuzzy neural network
  publication-title: Expert Systems with Applications
– volume: 62
  start-page: 4299
  year: 2013
  end-page: 4308
  ident: b0020
  article-title: Stable Decentralized Control of a Platoon of Vehicles With Heterogeneous Information Feedback
  publication-title: IEEE Transactions on Vehicular Technology
– volume: 4
  start-page: 9413
  year: 2016
  end-page: 9420
  ident: b0090
  article-title: Decentralized Cooperative Lane-Changing Decision-Making for Connected Autonomous Vehicles
  publication-title: IEEE Access
– volume: 95
  start-page: 228
  year: 2018
  end-page: 247
  ident: b0160
  article-title: A dynamic lane-changing trajectory planning model for automated vehicles
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 41
  start-page: 607
  year: 2014
  end-page: 615
  ident: b0015
  article-title: Adaptive cruise control of a HEV using sliding mode control
  publication-title: Expert Systems with Applications
– volume: 62
  start-page: 87
  year: 2016
  end-page: 102
  ident: b0075
  article-title: A dynamic automated lane change maneuver based on vehicle-to-vehicle communication
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 14
  start-page: 1942
  year: 2013
  end-page: 1956
  ident: b0105
  article-title: Review of Microscopic Lane-Changing Models and Future Research Opportunities
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 48
  start-page: 285
  year: 2014
  end-page: 300
  ident: b0085
  article-title: Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data
  publication-title: Transportation Research Part C: Emerging Technologies
– reference: Li, P. (Taylor), & Zhou, X. (2017). Recasting and optimizing intersection automation as a connected-and-automated-vehicle (CAV) scheduling problem: A sequential branch-and-bound search approach in phase-time-traffic hypernetwork. Transportation Research Part B: Methodological, 105, 479–506. 10.1016/j.trb.2017.09.020.
– volume: 54
  start-page: 48
  year: 2016
  end-page: 60
  ident: b0080
  article-title: Fuzzy model of vehicle delay to determine the level of service of two-lane roads
  publication-title: Expert Systems with Applications
– volume: 58
  start-page: 73
  year: 2015
  end-page: 92
  ident: b0140
  article-title: Game theoretic approach for predictive lane-changing and car-following control
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 42
  start-page: 5932
  year: 2015
  end-page: 5946
  ident: b0165
  article-title: Expert Systems with Applications Trajectory planning and tracking control for autonomous lane change maneuver based on the cooperative vehicle infrastructure system
  publication-title: Expert Systems with Applications
– volume: 121
  start-page: 38
  year: 2019
  end-page: 48
  ident: b0170
  article-title: Autonomous path tracking control of intelligent electric vehicles based on lane detection and optimal preview method
  publication-title: Expert Systems with Applications
– volume: 99
  start-page: 589
  year: 2019
  end-page: 599
  ident: b0145
  article-title: Review of Lane-Changing Maneuvers of Connected and Automated Vehicles: Models, Algorithms and Traffic Impact Analyses
  publication-title: Journal of the Indian Institute of Science.
– volume: 226
  start-page: 419
  year: 2012
  end-page: 429
  ident: b0060
  article-title: Strategies to minimize the fuel consumption of passenger cars during car-following scenarios
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
– volume: 467
  start-page: 41
  year: 2017
  end-page: 58
  ident: b0055
  article-title: Studies of vehicle lane-changing dynamics and its effect on traffic efficiency, safety and environmental impact
  publication-title: Physica A: Statistical Mechanics and Its Applications
– volume: 3
  start-page: 340
  year: 2018
  end-page: 350
  ident: b0035
  article-title: Balancing Computation Speed and Quality: A Decentralized Motion Planning Method for Cooperative Lane Changes of Connected and Automated Vehicles
  publication-title: IEEE Transactions on Intelligent Vehicles
– volume: 87
  start-page: 118
  year: 2017
  end-page: 137
  ident: b0065
  article-title: Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles
  publication-title: Mechanical Systems and Signal Processing
– volume: 8
  start-page: 816
  year: 2000
  end-page: 832
  ident: b0110
  article-title: Decentralized overlapping control of a platoon of vehicles
  publication-title: IEEE Transactions on Control Systems Technology
– volume: 68
  start-page: 403
  year: 2016
  end-page: 424
  ident: b0095
  article-title: Modeling the impacts of mandatory and discretionary lane-changing maneuvers
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 130
  start-page: 265
  year: 2019
  end-page: 275
  ident: b0120
  article-title: A hierarchical prediction model for lane-changes based on combination of fuzzy C-means and adaptive neural network
  publication-title: Expert Systems with Applications
– volume: 40
  start-page: 271
  year: 2014
  end-page: 289
  ident: b0130
  article-title: Rolling horizon control framework for driver assistance systems. Part I: Mathematical formulation and non-cooperative systems
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 91
  start-page: 452
  year: 2018
  ident: 10.1016/j.eswa.2021.114675_b0115
  article-title: Lane-changes prediction based on adaptive fuzzy neural network
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.09.025
– volume: 62
  start-page: 4299
  issue: 9
  year: 2013
  ident: 10.1016/j.eswa.2021.114675_b0020
  article-title: Stable Decentralized Control of a Platoon of Vehicles With Heterogeneous Information Feedback
  publication-title: IEEE Transactions on Vehicular Technology
  doi: 10.1109/TVT.2013.2253500
– volume: 40
  start-page: 271
  year: 2014
  ident: 10.1016/j.eswa.2021.114675_b0130
  article-title: Rolling horizon control framework for driver assistance systems. Part I: Mathematical formulation and non-cooperative systems
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2013.11.023
– volume: 87
  start-page: 118
  year: 2017
  ident: 10.1016/j.eswa.2021.114675_b0065
  article-title: Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2015.10.021
– volume: 41
  start-page: 607
  issue: 2
  year: 2014
  ident: 10.1016/j.eswa.2021.114675_b0015
  article-title: Adaptive cruise control of a HEV using sliding mode control
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.07.085
– volume: 130
  start-page: 265
  year: 2019
  ident: 10.1016/j.eswa.2021.114675_b0120
  article-title: A hierarchical prediction model for lane-changes based on combination of fuzzy C-means and adaptive neural network
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.04.032
– volume: 467
  start-page: 41
  year: 2017
  ident: 10.1016/j.eswa.2021.114675_b0055
  article-title: Studies of vehicle lane-changing dynamics and its effect on traffic efficiency, safety and environmental impact
  publication-title: Physica A: Statistical Mechanics and Its Applications
  doi: 10.1016/j.physa.2016.09.022
– volume: 99
  start-page: 589
  issue: 4
  year: 2019
  ident: 10.1016/j.eswa.2021.114675_b0145
  article-title: Review of Lane-Changing Maneuvers of Connected and Automated Vehicles: Models, Algorithms and Traffic Impact Analyses
  publication-title: Journal of the Indian Institute of Science.
  doi: 10.1007/s41745-019-00127-7
– ident: 10.1016/j.eswa.2021.114675_b0005
  doi: 10.1109/IVS.2007.4290263
– volume: 54
  start-page: 48
  year: 2016
  ident: 10.1016/j.eswa.2021.114675_b0080
  article-title: Fuzzy model of vehicle delay to determine the level of service of two-lane roads
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.12.049
– volume: 14
  start-page: 1942
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2021.114675_b0105
  article-title: Review of Microscopic Lane-Changing Models and Future Research Opportunities
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2013.2272074
– volume: 68
  start-page: 403
  year: 2016
  ident: 10.1016/j.eswa.2021.114675_b0095
  article-title: Modeling the impacts of mandatory and discretionary lane-changing maneuvers
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2016.05.002
– volume: 71
  start-page: 332
  year: 2017
  ident: 10.1016/j.eswa.2021.114675_b0025
  article-title: Parametric-based path generation for automated vehicles at roundabouts
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.11.023
– volume: 95
  start-page: 228
  issue: June
  year: 2018
  ident: 10.1016/j.eswa.2021.114675_b0160
  article-title: A dynamic lane-changing trajectory planning model for automated vehicles
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2018.06.007
– ident: 10.1016/j.eswa.2021.114675_b0040
  doi: 10.1109/IROS.2017.8206215
– ident: 10.1016/j.eswa.2021.114675_b0050
  doi: 10.1016/j.trb.2017.09.020
– volume: 62
  start-page: 87
  year: 2016
  ident: 10.1016/j.eswa.2021.114675_b0075
  article-title: A dynamic automated lane change maneuver based on vehicle-to-vehicle communication
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2015.11.011
– volume: 119
  start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.114675_b0045
  article-title: Parsimonious trajectory design of connected automated traffic
  publication-title: Transportation Research Part B: Methodological
  doi: 10.1016/j.trb.2018.11.006
– volume: 8
  start-page: 1
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2021.114675_b0125
  article-title: Model predictive control-based cooperative lane change strategy for improving traffic flow
  publication-title: Advances in Mechanical Engineering
  doi: 10.1177/1687814016632992
– year: 2020
  ident: 10.1016/j.eswa.2021.114675_b0150
  article-title: Modeling and Field Experiments on Lane Changing of an Autonomous Vehicle in Mixed Traffic
  publication-title: Computer-aided Civil and Infrastructure Engineering
– volume: 24
  start-page: 52
  issue: 1–3
  year: 2015
  ident: 10.1016/j.eswa.2021.114675_b0070
  article-title: Study on the effects of driver’s lane-changing aggressiveness on traffic stability from an extended two-lane lattice model
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2014.12.007
– volume: 42
  start-page: 3875
  issue: 8
  year: 2015
  ident: 10.1016/j.eswa.2021.114675_b0030
  article-title: Situation assessment and decision making for lane change assistance using ensemble learning methods
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.01.029
– volume: 8
  start-page: 816
  issue: 5
  year: 2000
  ident: 10.1016/j.eswa.2021.114675_b0110
  article-title: Decentralized overlapping control of a platoon of vehicles
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/87.865854
– volume: 12
  start-page: 1184
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2021.114675_b0155
  article-title: Practical string stability of platoon of adaptive cruise control vehicles
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2011.2143407
– volume: 40
  start-page: 290
  year: 2014
  ident: 10.1016/j.eswa.2021.114675_b0135
  article-title: Rolling horizon control framework for driver assistance systems. Part II: Cooperative sensing and cooperative control
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2013.11.024
– volume: 42
  start-page: 5932
  issue: 14
  year: 2015
  ident: 10.1016/j.eswa.2021.114675_b0165
  article-title: Expert Systems with Applications Trajectory planning and tracking control for autonomous lane change maneuver based on the cooperative vehicle infrastructure system
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.03.022
– volume: 77
  start-page: 167
  year: 2015
  ident: 10.1016/j.eswa.2021.114675_b0010
  article-title: Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations
  publication-title: Transportation Research Part A
– volume: 3
  start-page: 340
  issue: 3
  year: 2018
  ident: 10.1016/j.eswa.2021.114675_b0035
  article-title: Balancing Computation Speed and Quality: A Decentralized Motion Planning Method for Cooperative Lane Changes of Connected and Automated Vehicles
  publication-title: IEEE Transactions on Intelligent Vehicles
  doi: 10.1109/TIV.2018.2843159
– volume: 48
  start-page: 285
  year: 2014
  ident: 10.1016/j.eswa.2021.114675_b0085
  article-title: Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2014.09.001
– volume: 58
  start-page: 73
  year: 2015
  ident: 10.1016/j.eswa.2021.114675_b0140
  article-title: Game theoretic approach for predictive lane-changing and car-following control
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/j.trc.2015.07.009
– volume: 141
  start-page: 112953
  year: 2020
  ident: 10.1016/j.eswa.2021.114675_b0100
  article-title: A new safe lane-change trajectory model and collision avoidance control method for automatic driving vehicles
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.112953
– volume: 121
  start-page: 38
  year: 2019
  ident: 10.1016/j.eswa.2021.114675_b0170
  article-title: Autonomous path tracking control of intelligent electric vehicles based on lane detection and optimal preview method
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.12.005
– volume: 226
  start-page: 419
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2021.114675_b0060
  article-title: Strategies to minimize the fuel consumption of passenger cars during car-following scenarios
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
– volume: 4
  start-page: 9413
  year: 2016
  ident: 10.1016/j.eswa.2021.114675_b0090
  article-title: Decentralized Cooperative Lane-Changing Decision-Making for Connected Autonomous Vehicles
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2649567
SSID ssj0017007
Score 2.5195172
Snippet •A cooperative lane-changing strategy allowing accelerations of a preceding vehicle.•A dynamic cooperative lane-changing model for connected and autonomous...
The emerging connected and autonomous vehicle (CAV) technologies offer a promising solution to design better lane-changing maneuvers that can reduce the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114675
SubjectTerms Connected and autonomous vehicles
Cooperative control
Deceleration
Decision making
Design
Dynamic planning
Lane changing
Maneuvers
Mathematical models
Passenger comfort
Robustness (mathematics)
Safety
Trajectory planning
Vehicles
Title A dynamic cooperative lane-changing model for connected and autonomous vehicles with possible accelerations of a preceding vehicle
URI https://dx.doi.org/10.1016/j.eswa.2021.114675
https://www.proquest.com/docview/2521112484
Volume 173
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcQXHYZbAPxNeTDbpPXJrUT-1ghqm7TuGxI3CzbsbWiqoloCzcO_OW8ZztIINQDhxwS2VHi9_Vz8nvvEfJt2BgpuFUsWOsY57xhBlAFq6QNxo-UFw4_6P-5rKZX_Ne1uN4i530uDNIqs-9PPj1663xlkFdz0M1mg78ADiAcwtauiH8TcN-O1etAp388PNM8sPxcnert1QxH58SZxPHyy3usPVQWsWQucg3fDk6v3HSMPZM98jGDRjpOz_WJbPnFZ7LbN2Sg2T6_kMcxbVKHeeratvOpqjdFPiuLGb4Qp2jsfUMBq8IYcLIOICc1CzjWK0xwaNdLeuf_R7Ycxa-0tGvRbuaeGucgSCWVWdI2UEM7WLwY_vo5--RqcvHvfMpykwXmRqVcMVMbgFmNUzXYi6m4LbxFEKWG3HFfWqtCEIUcusoANAM8UheibsDqzdAL36jRAdletAt_SGhV1j4AIJCYnBsaoYLzIxlUKWWonBJHpOhXV7tcgRwbYcx1TzW70SgRjRLRSSJH5PvznC7V39g4WvRC0y-0SEOA2DjvtJewzja81CUgG3hlLvnxO297Qj7gWWL3npLt1e3afwUMs7JnUUnPyM745-_p5RPsePHq
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsDCG1Eo4IENWU1SO7HHCoHKqwsgsVm2YwsQaiLaws4v5xw7SCDEwJAluYsSn-_us30PhI6TUnFGtSBOa0MopSVRgCpIzrVTdigsM35D_2aSj-_p5QN76KDTNhfGh1VG2x9semOt451BHM1B_fQ0uAVwAO4QlnZpc5oA6_YlX52KdtHS6OJqPPk6TCiSkDUN9MQzxNyZEOZlZ---_FCWNlVzfbjh7_7ph6Vu3M_5OlqNuBGPwqdtoI6dbqK1ticDjiq6hT5GuAxN5rGpqtqGwt7Yh7SSJskXXBVu2t9ggKtAA3bWAOrEagrXYu5zHKrFDL_ZxyZgDvuNWlxXXnVeLFbGgJ8Ks2aGK4cVrmH8Gg_Y8myj-_Ozu9MxiX0WiBlmfE5UoQBplUYUoDIqpzq12uMokVBDbaa1cI6lPDG5AnQGkKRIWVGC4qvEMluK4Q7qTqup3UU4zwrrABNwn5_rSiacsUPuRMa5y41gPZS2oytNLELue2G8yDba7Fl6iUgvERkk0kMnXzx1KMHxJzVrhSa_TSQJPuJPvn4rYRnVeCYzADfwy5TTvX--9ggtj-9uruX1xeRqH634JyHYt4-689eFPQBIM9eHccp-Ajcs9Js
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+cooperative+lane-changing+model+for+connected+and+autonomous+vehicles+with+possible+accelerations+of+a+preceding+vehicle&rft.jtitle=Expert+systems+with+applications&rft.au=Wang%2C+Zhen&rft.au=Zhao%2C+Xiangmo&rft.au=Chen%2C+Zhiwei&rft.au=Li%2C+Xiaopeng&rft.date=2021-07-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=173&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2021.114675&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon