A dynamic cooperative lane-changing model for connected and autonomous vehicles with possible accelerations of a preceding vehicle
•A cooperative lane-changing strategy allowing accelerations of a preceding vehicle.•A dynamic cooperative lane-changing model for connected and autonomous vehicles.•Numerical simulations revealing the effectiveness and robustness of the model. The emerging connected and autonomous vehicle (CAV) tec...
Saved in:
Published in | Expert systems with applications Vol. 173; p. 114675 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.07.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 1873-6793 |
DOI | 10.1016/j.eswa.2021.114675 |
Cover
Loading…
Abstract | •A cooperative lane-changing strategy allowing accelerations of a preceding vehicle.•A dynamic cooperative lane-changing model for connected and autonomous vehicles.•Numerical simulations revealing the effectiveness and robustness of the model.
The emerging connected and autonomous vehicle (CAV) technologies offer a promising solution to design better lane-changing maneuvers that can reduce the negative impacts of vehicle lane-changing behavior on traffic operations. Existing studies on this topic have predominantly focused on designing lane-changing maneuvers for a subject vehicle (SV) and typically assumed that a vehicle in the target lane must decelerate to make space for the SV due to safety considerations. Nevertheless, jointly designing the trajectories of the SV and surrounding vehicles and allowing possible accelerations of a preceding vehicle may further alleviate the negative impacts of CAV’s lane-changing maneuvers. To investigate this possibility, this paper proposes a dynamic cooperative lane-changing model for CAVs with possible accelerations of a preceding vehicle. This model collects information of the surrounding vehicles and updates the lane-changing decisions for the SV in real time via three steps, namely lane-changing decision making, cooperative trajectory planning, and trajectory tracking. This model applies a linearized vehicle kinematic model to make lane-changing decisions for the SV given the states of the SV and surrounding vehicles, the minimum safety distance, and requirements on the comfort level for passengers. Furthermore, it dynamically designs the longitudinal and lateral trajectories for the SV and surrounding vehicles. Extensive numerical simulation experiments are conducted to evaluate the effectiveness of the proposed model. Results show that the proposed model increases the success rate of the SV’s lane-changing maneuvers, smoothens the trajectories of the SV and vehicles in the upstream direction at the cost of a slightly more significant oscillation of the last vehicle in the downstream direction. Overall, the proposed model reduces the negative impacts of lane-changing maneuvers on the surrounding traffic. The results also reveal the robustness of the model performance by varying several key input parameters in the experiments. |
---|---|
AbstractList | The emerging connected and autonomous vehicle (CAV) technologies offer a promising solution to design better lane-changing maneuvers that can reduce the negative impacts of vehicle lane-changing behavior on traffic operations. Existing studies on this topic have predominantly focused on designing lane-changing maneuvers for a subject vehicle (SV) and typically assumed that a vehicle in the target lane must decelerate to make space for the SV due to safety considerations. Nevertheless, jointly designing the trajectories of the SV and surrounding vehicles and allowing possible accelerations of a preceding vehicle may further alleviate the negative impacts of CAV's lane-changing maneuvers. To investigate this possibility, this paper proposes a dynamic cooperative lane-changing model for CAVs with possible accelerations of a preceding vehicle. This model collects information of the surrounding vehicles and updates the lane-changing decisions for the SV in real time via three steps, namely lane-changing decision making, cooperative trajectory planning, and trajectory tracking. This model applies a linearized vehicle kinematic model to make lane-changing decisions for the SV given the states of the SV and surrounding vehicles, the minimum safety distance, and requirements on the comfort level for passengers. Furthermore, it dynamically designs the longitudinal and lateral trajectories for the SV and surrounding vehicles. Extensive numerical simulation experiments are conducted to evaluate the effectiveness of the proposed model. Results show that the proposed model increases the success rate of the SV's lane-changing maneuvers, smoothens the trajectories of the SV and vehicles in the upstream direction at the cost of a slightly more significant oscillation of the last vehicle in the downstream direction. Overall, the proposed model reduces the negative impacts of lane-changing maneuvers on the surrounding traffic. The results also reveal the robustness of the model performance by varying several key input parameters in the experiments. •A cooperative lane-changing strategy allowing accelerations of a preceding vehicle.•A dynamic cooperative lane-changing model for connected and autonomous vehicles.•Numerical simulations revealing the effectiveness and robustness of the model. The emerging connected and autonomous vehicle (CAV) technologies offer a promising solution to design better lane-changing maneuvers that can reduce the negative impacts of vehicle lane-changing behavior on traffic operations. Existing studies on this topic have predominantly focused on designing lane-changing maneuvers for a subject vehicle (SV) and typically assumed that a vehicle in the target lane must decelerate to make space for the SV due to safety considerations. Nevertheless, jointly designing the trajectories of the SV and surrounding vehicles and allowing possible accelerations of a preceding vehicle may further alleviate the negative impacts of CAV’s lane-changing maneuvers. To investigate this possibility, this paper proposes a dynamic cooperative lane-changing model for CAVs with possible accelerations of a preceding vehicle. This model collects information of the surrounding vehicles and updates the lane-changing decisions for the SV in real time via three steps, namely lane-changing decision making, cooperative trajectory planning, and trajectory tracking. This model applies a linearized vehicle kinematic model to make lane-changing decisions for the SV given the states of the SV and surrounding vehicles, the minimum safety distance, and requirements on the comfort level for passengers. Furthermore, it dynamically designs the longitudinal and lateral trajectories for the SV and surrounding vehicles. Extensive numerical simulation experiments are conducted to evaluate the effectiveness of the proposed model. Results show that the proposed model increases the success rate of the SV’s lane-changing maneuvers, smoothens the trajectories of the SV and vehicles in the upstream direction at the cost of a slightly more significant oscillation of the last vehicle in the downstream direction. Overall, the proposed model reduces the negative impacts of lane-changing maneuvers on the surrounding traffic. The results also reveal the robustness of the model performance by varying several key input parameters in the experiments. |
ArticleNumber | 114675 |
Author | Chen, Zhiwei Li, Xiaopeng Zhao, Xiangmo Wang, Zhen |
Author_xml | – sequence: 1 givenname: Zhen surname: Wang fullname: Wang, Zhen email: zhenwang@chd.edu.cn organization: School of Information Engineering, Chang’an University, Xian, Shaanxi 710064, PR China – sequence: 2 givenname: Xiangmo surname: Zhao fullname: Zhao, Xiangmo email: xmzhao@chd.edu.cn organization: School of Information Engineering, Chang’an University, Xian, Shaanxi 710064, PR China – sequence: 3 givenname: Zhiwei surname: Chen fullname: Chen, Zhiwei email: zhiweic@mail.usf.edu organization: Department of Civil and Environmental Engineering, University of South Florida, Florida 33620, USA – sequence: 4 givenname: Xiaopeng surname: Li fullname: Li, Xiaopeng email: xiaopengli@usf.edu organization: Department of Civil and Environmental Engineering, University of South Florida, Florida 33620, USA |
BookMark | eNp9kLFu2zAQhokiBeqkfYFOBDrLvaMoUQK6BEGbFgiQpZ0JijrFNGRSJWkHWfvkoeJMHTIQt_zff7zvkl344ImxzwhbBGy_7reUHs1WgMAtomxV845tsFN11aq-vmAb6BtVSVTyA7tMaQ-ACkBt2L9rPj55c3CW2xAWiia7E_HZeKrszvgH5x_4IYw08ynEkvGebKaRG1_eMQcfDuGY-Il2zs6U-KPLO76ElNwwEzfW0vxSGnziYeKGL5EsjWvtK_ORvZ_MnOjT67xif358_33zs7q7v_11c31X2Vp0uTLKAPSj7ZUAMK0ckIYGZd2DtJLEMPTT1GAHtjWIQiEobNTYdWCAGhr7-op9OfcuMfw9Usp6H47Rl5VaNAILJDtZUt05ZWM5ItKkrcsv_8_RuFkj6NW43uvVuF6N67Pxgor_0CW6g4lPb0PfzhCV00-Ook7WkV8VFVFZj8G9hT8DzHieAQ |
CitedBy_id | crossref_primary_10_1093_tse_tdac062 crossref_primary_10_1016_j_physa_2024_129976 crossref_primary_10_1016_j_eswa_2025_126802 crossref_primary_10_1016_j_eswa_2025_126724 crossref_primary_10_1109_ACCESS_2022_3217213 crossref_primary_10_29048_makufebed_1353922 crossref_primary_10_1177_03611981221094001 crossref_primary_10_1093_iti_liac020 crossref_primary_10_3390_su17031077 crossref_primary_10_1177_03611981231170187 crossref_primary_10_1016_j_eswa_2025_127274 crossref_primary_10_1145_3716631 crossref_primary_10_3390_math13061014 crossref_primary_10_3390_sym15122164 crossref_primary_10_1155_2022_4357954 crossref_primary_10_1016_j_eswa_2024_124163 crossref_primary_10_1080_19427867_2024_2329469 crossref_primary_10_1016_j_eswa_2025_126437 crossref_primary_10_1109_TIV_2023_3317957 crossref_primary_10_3390_s23094537 crossref_primary_10_1016_j_physa_2024_129689 crossref_primary_10_1016_j_trc_2022_103985 crossref_primary_10_1016_j_eswa_2024_124814 crossref_primary_10_1016_j_tre_2025_104007 crossref_primary_10_1109_TIV_2023_3324305 crossref_primary_10_1016_j_eswa_2023_120133 crossref_primary_10_1016_j_trc_2021_103441 crossref_primary_10_1016_j_eswa_2023_122158 crossref_primary_10_1016_j_trb_2024_103026 crossref_primary_10_3390_futuretransp2030032 crossref_primary_10_1016_j_trb_2024_103146 |
Cites_doi | 10.1016/j.eswa.2017.09.025 10.1109/TVT.2013.2253500 10.1016/j.trc.2013.11.023 10.1016/j.ymssp.2015.10.021 10.1016/j.eswa.2013.07.085 10.1016/j.eswa.2019.04.032 10.1016/j.physa.2016.09.022 10.1007/s41745-019-00127-7 10.1109/IVS.2007.4290263 10.1016/j.eswa.2015.12.049 10.1109/TITS.2013.2272074 10.1016/j.trc.2016.05.002 10.1016/j.eswa.2016.11.023 10.1016/j.trc.2018.06.007 10.1109/IROS.2017.8206215 10.1016/j.trb.2017.09.020 10.1016/j.trc.2015.11.011 10.1016/j.trb.2018.11.006 10.1177/1687814016632992 10.1016/j.cnsns.2014.12.007 10.1016/j.eswa.2015.01.029 10.1109/87.865854 10.1109/TITS.2011.2143407 10.1016/j.trc.2013.11.024 10.1016/j.eswa.2015.03.022 10.1109/TIV.2018.2843159 10.1016/j.trc.2014.09.001 10.1016/j.trc.2015.07.009 10.1016/j.eswa.2019.112953 10.1016/j.eswa.2018.12.005 10.1109/ACCESS.2017.2649567 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jul 1, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jul 1, 2021 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2021.114675 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2021_114675 S0957417421001160 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ XPP ZMT 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c328t-a7a009dc97200a64b1eb5143904c4e2bb9ff5180c6a1127107157d880a0e5ed93 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Mon Jul 14 07:04:32 EDT 2025 Thu Apr 24 22:53:35 EDT 2025 Tue Jul 01 04:05:51 EDT 2025 Fri Feb 23 02:43:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Connected and autonomous vehicles Lane changing Cooperative control Dynamic planning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-a7a009dc97200a64b1eb5143904c4e2bb9ff5180c6a1127107157d880a0e5ed93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2521112484 |
PQPubID | 2045477 |
ParticipantIDs | proquest_journals_2521112484 crossref_citationtrail_10_1016_j_eswa_2021_114675 crossref_primary_10_1016_j_eswa_2021_114675 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_114675 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Expert systems with applications |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Li, Peng (b0060) 2012; 226 Tang, Liu, Zhang, Ke, Zou (b0115) 2018; 91 Pan, Lam, Sumalee, Zhong (b0095) 2016; 68 Peng, Su, Zhang, Guan, Zhao, Qiu, Xu (b0100) 2020; 141 Tang, Yu, Liu, Chen, Huang (b0120) 2019; 130 Rahman, Chowdhury, Xie, He (b0105) 2013; 14 Li, Sun, Cao, Liu, He (b0065) 2017; 87 Yang, Zheng, Wen, Jin, Ran (b0160) 2018; 95 González, Pérez, Milanés (b0025) 2017; 71 Li, Li (b0045) 2019; 119 Martín, Romana, Santos (b0080) 2016; 54 Ghasemi, Kazemi, Azadi (b0020) 2013; 62 You, Zhang, Lie, Wang, Wen, Xu (b0165) 2015; 42 Zhang, Zhu (b0170) 2019; 121 Wang, Hu, Wang, Wang, Qin, Bian (b0125) 2016; 8 Nie, Zhang, Ding, Wan, Chen, Ran (b0090) 2016; 4 Fagnant, Kockelman (b0010) 2015; 77 Wang, Daamen, Hoogendoorn, van Arem (b0130) 2014; 40 Ammoun, S., Nashashibi, F., & Laurgeau, C. (2007). An analysis of the lane changing manoeuvre on roads: the contribution of inter-vehicle cooperation via communication. 1095–1100. Wang, Zhao, Xu, Li, Qu (b0150) 2020 Luo, Xiang, Cao, Li (b0075) 2016; 62 Stanković, Stanojević, Šiljak (b0110) 2000; 8 Ganji, Kouzani, Khoo, Shams-Zahraei (b0015) 2014; 41 Li, Sun (b0055) 2017; 467 Xiao, Gao (b0155) 2011; 12 Li, B., Zhang, Y., Ge, Y., Shao, Z., & Li, P. (2017). Optimal control-based online motion planning for cooperative lane changes of connected and automated vehicles. IEEE International Conference on Intelligent Robots and Systems, 2017-Septe, 3689–3694. 10.1109/IROS.2017.8206215. Li, Zhang, Xu, Qian (b0070) 2015; 24 Wang, Daamen, Hoogendoorn, van Arem (b0135) 2014; 40 Hou, Edara, Sun (b0030) 2015; 42 Milanés, Shladover (b0085) 2014; 48 Wang, Shi, Li (b0145) 2019; 99 Wang, Hoogendoorn, Daamen, van Arem, Happee (b0140) 2015; 58 Li, P. (Taylor), & Zhou, X. (2017). Recasting and optimizing intersection automation as a connected-and-automated-vehicle (CAV) scheduling problem: A sequential branch-and-bound search approach in phase-time-traffic hypernetwork. Transportation Research Part B: Methodological, 105, 479–506. 10.1016/j.trb.2017.09.020. Li, Zhang, Feng, Zhang, Ge, Shao (b0035) 2018; 3 Fagnant (10.1016/j.eswa.2021.114675_b0010) 2015; 77 Li (10.1016/j.eswa.2021.114675_b0035) 2018; 3 Li (10.1016/j.eswa.2021.114675_b0065) 2017; 87 Wang (10.1016/j.eswa.2021.114675_b0125) 2016; 8 Stanković (10.1016/j.eswa.2021.114675_b0110) 2000; 8 Tang (10.1016/j.eswa.2021.114675_b0120) 2019; 130 10.1016/j.eswa.2021.114675_b0040 Peng (10.1016/j.eswa.2021.114675_b0100) 2020; 141 Ghasemi (10.1016/j.eswa.2021.114675_b0020) 2013; 62 Wang (10.1016/j.eswa.2021.114675_b0150) 2020 González (10.1016/j.eswa.2021.114675_b0025) 2017; 71 Zhang (10.1016/j.eswa.2021.114675_b0170) 2019; 121 Ganji (10.1016/j.eswa.2021.114675_b0015) 2014; 41 Li (10.1016/j.eswa.2021.114675_b0045) 2019; 119 Martín (10.1016/j.eswa.2021.114675_b0080) 2016; 54 You (10.1016/j.eswa.2021.114675_b0165) 2015; 42 Yang (10.1016/j.eswa.2021.114675_b0160) 2018; 95 10.1016/j.eswa.2021.114675_b0005 Tang (10.1016/j.eswa.2021.114675_b0115) 2018; 91 Wang (10.1016/j.eswa.2021.114675_b0135) 2014; 40 Wang (10.1016/j.eswa.2021.114675_b0145) 2019; 99 Pan (10.1016/j.eswa.2021.114675_b0095) 2016; 68 Rahman (10.1016/j.eswa.2021.114675_b0105) 2013; 14 Nie (10.1016/j.eswa.2021.114675_b0090) 2016; 4 Li (10.1016/j.eswa.2021.114675_b0060) 2012; 226 Luo (10.1016/j.eswa.2021.114675_b0075) 2016; 62 10.1016/j.eswa.2021.114675_b0050 Wang (10.1016/j.eswa.2021.114675_b0140) 2015; 58 Hou (10.1016/j.eswa.2021.114675_b0030) 2015; 42 Wang (10.1016/j.eswa.2021.114675_b0130) 2014; 40 Xiao (10.1016/j.eswa.2021.114675_b0155) 2011; 12 Li (10.1016/j.eswa.2021.114675_b0055) 2017; 467 Li (10.1016/j.eswa.2021.114675_b0070) 2015; 24 Milanés (10.1016/j.eswa.2021.114675_b0085) 2014; 48 |
References_xml | – volume: 71 start-page: 332 year: 2017 end-page: 341 ident: b0025 article-title: Parametric-based path generation for automated vehicles at roundabouts publication-title: Expert Systems with Applications – reference: Li, B., Zhang, Y., Ge, Y., Shao, Z., & Li, P. (2017). Optimal control-based online motion planning for cooperative lane changes of connected and automated vehicles. IEEE International Conference on Intelligent Robots and Systems, 2017-Septe, 3689–3694. 10.1109/IROS.2017.8206215. – volume: 119 start-page: 1 year: 2019 end-page: 21 ident: b0045 article-title: Parsimonious trajectory design of connected automated traffic publication-title: Transportation Research Part B: Methodological – volume: 42 start-page: 3875 year: 2015 end-page: 3882 ident: b0030 article-title: Situation assessment and decision making for lane change assistance using ensemble learning methods publication-title: Expert Systems with Applications – volume: 24 start-page: 52 year: 2015 end-page: 63 ident: b0070 article-title: Study on the effects of driver’s lane-changing aggressiveness on traffic stability from an extended two-lane lattice model publication-title: Communications in Nonlinear Science and Numerical Simulation – volume: 12 start-page: 1184 year: 2011 end-page: 1194 ident: b0155 article-title: Practical string stability of platoon of adaptive cruise control vehicles publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 141 start-page: 112953 year: 2020 ident: b0100 article-title: A new safe lane-change trajectory model and collision avoidance control method for automatic driving vehicles publication-title: Expert Systems with Applications – year: 2020 ident: b0150 article-title: Modeling and Field Experiments on Lane Changing of an Autonomous Vehicle in Mixed Traffic publication-title: Computer-aided Civil and Infrastructure Engineering – volume: 77 start-page: 167 year: 2015 end-page: 181 ident: b0010 article-title: Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations publication-title: Transportation Research Part A – volume: 8 start-page: 1 year: 2016 end-page: 17 ident: b0125 article-title: Model predictive control-based cooperative lane change strategy for improving traffic flow publication-title: Advances in Mechanical Engineering – volume: 40 start-page: 290 year: 2014 end-page: 311 ident: b0135 article-title: Rolling horizon control framework for driver assistance systems. Part II: Cooperative sensing and cooperative control publication-title: Transportation Research Part C: Emerging Technologies – reference: Ammoun, S., Nashashibi, F., & Laurgeau, C. (2007). An analysis of the lane changing manoeuvre on roads: the contribution of inter-vehicle cooperation via communication. 1095–1100. – volume: 91 start-page: 452 year: 2018 end-page: 463 ident: b0115 article-title: Lane-changes prediction based on adaptive fuzzy neural network publication-title: Expert Systems with Applications – volume: 62 start-page: 4299 year: 2013 end-page: 4308 ident: b0020 article-title: Stable Decentralized Control of a Platoon of Vehicles With Heterogeneous Information Feedback publication-title: IEEE Transactions on Vehicular Technology – volume: 4 start-page: 9413 year: 2016 end-page: 9420 ident: b0090 article-title: Decentralized Cooperative Lane-Changing Decision-Making for Connected Autonomous Vehicles publication-title: IEEE Access – volume: 95 start-page: 228 year: 2018 end-page: 247 ident: b0160 article-title: A dynamic lane-changing trajectory planning model for automated vehicles publication-title: Transportation Research Part C: Emerging Technologies – volume: 41 start-page: 607 year: 2014 end-page: 615 ident: b0015 article-title: Adaptive cruise control of a HEV using sliding mode control publication-title: Expert Systems with Applications – volume: 62 start-page: 87 year: 2016 end-page: 102 ident: b0075 article-title: A dynamic automated lane change maneuver based on vehicle-to-vehicle communication publication-title: Transportation Research Part C: Emerging Technologies – volume: 14 start-page: 1942 year: 2013 end-page: 1956 ident: b0105 article-title: Review of Microscopic Lane-Changing Models and Future Research Opportunities publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 48 start-page: 285 year: 2014 end-page: 300 ident: b0085 article-title: Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data publication-title: Transportation Research Part C: Emerging Technologies – reference: Li, P. (Taylor), & Zhou, X. (2017). Recasting and optimizing intersection automation as a connected-and-automated-vehicle (CAV) scheduling problem: A sequential branch-and-bound search approach in phase-time-traffic hypernetwork. Transportation Research Part B: Methodological, 105, 479–506. 10.1016/j.trb.2017.09.020. – volume: 54 start-page: 48 year: 2016 end-page: 60 ident: b0080 article-title: Fuzzy model of vehicle delay to determine the level of service of two-lane roads publication-title: Expert Systems with Applications – volume: 58 start-page: 73 year: 2015 end-page: 92 ident: b0140 article-title: Game theoretic approach for predictive lane-changing and car-following control publication-title: Transportation Research Part C: Emerging Technologies – volume: 42 start-page: 5932 year: 2015 end-page: 5946 ident: b0165 article-title: Expert Systems with Applications Trajectory planning and tracking control for autonomous lane change maneuver based on the cooperative vehicle infrastructure system publication-title: Expert Systems with Applications – volume: 121 start-page: 38 year: 2019 end-page: 48 ident: b0170 article-title: Autonomous path tracking control of intelligent electric vehicles based on lane detection and optimal preview method publication-title: Expert Systems with Applications – volume: 99 start-page: 589 year: 2019 end-page: 599 ident: b0145 article-title: Review of Lane-Changing Maneuvers of Connected and Automated Vehicles: Models, Algorithms and Traffic Impact Analyses publication-title: Journal of the Indian Institute of Science. – volume: 226 start-page: 419 year: 2012 end-page: 429 ident: b0060 article-title: Strategies to minimize the fuel consumption of passenger cars during car-following scenarios publication-title: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering – volume: 467 start-page: 41 year: 2017 end-page: 58 ident: b0055 article-title: Studies of vehicle lane-changing dynamics and its effect on traffic efficiency, safety and environmental impact publication-title: Physica A: Statistical Mechanics and Its Applications – volume: 3 start-page: 340 year: 2018 end-page: 350 ident: b0035 article-title: Balancing Computation Speed and Quality: A Decentralized Motion Planning Method for Cooperative Lane Changes of Connected and Automated Vehicles publication-title: IEEE Transactions on Intelligent Vehicles – volume: 87 start-page: 118 year: 2017 end-page: 137 ident: b0065 article-title: Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles publication-title: Mechanical Systems and Signal Processing – volume: 8 start-page: 816 year: 2000 end-page: 832 ident: b0110 article-title: Decentralized overlapping control of a platoon of vehicles publication-title: IEEE Transactions on Control Systems Technology – volume: 68 start-page: 403 year: 2016 end-page: 424 ident: b0095 article-title: Modeling the impacts of mandatory and discretionary lane-changing maneuvers publication-title: Transportation Research Part C: Emerging Technologies – volume: 130 start-page: 265 year: 2019 end-page: 275 ident: b0120 article-title: A hierarchical prediction model for lane-changes based on combination of fuzzy C-means and adaptive neural network publication-title: Expert Systems with Applications – volume: 40 start-page: 271 year: 2014 end-page: 289 ident: b0130 article-title: Rolling horizon control framework for driver assistance systems. Part I: Mathematical formulation and non-cooperative systems publication-title: Transportation Research Part C: Emerging Technologies – volume: 91 start-page: 452 year: 2018 ident: 10.1016/j.eswa.2021.114675_b0115 article-title: Lane-changes prediction based on adaptive fuzzy neural network publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.09.025 – volume: 62 start-page: 4299 issue: 9 year: 2013 ident: 10.1016/j.eswa.2021.114675_b0020 article-title: Stable Decentralized Control of a Platoon of Vehicles With Heterogeneous Information Feedback publication-title: IEEE Transactions on Vehicular Technology doi: 10.1109/TVT.2013.2253500 – volume: 40 start-page: 271 year: 2014 ident: 10.1016/j.eswa.2021.114675_b0130 article-title: Rolling horizon control framework for driver assistance systems. Part I: Mathematical formulation and non-cooperative systems publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2013.11.023 – volume: 87 start-page: 118 year: 2017 ident: 10.1016/j.eswa.2021.114675_b0065 article-title: Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2015.10.021 – volume: 41 start-page: 607 issue: 2 year: 2014 ident: 10.1016/j.eswa.2021.114675_b0015 article-title: Adaptive cruise control of a HEV using sliding mode control publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.07.085 – volume: 130 start-page: 265 year: 2019 ident: 10.1016/j.eswa.2021.114675_b0120 article-title: A hierarchical prediction model for lane-changes based on combination of fuzzy C-means and adaptive neural network publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.04.032 – volume: 467 start-page: 41 year: 2017 ident: 10.1016/j.eswa.2021.114675_b0055 article-title: Studies of vehicle lane-changing dynamics and its effect on traffic efficiency, safety and environmental impact publication-title: Physica A: Statistical Mechanics and Its Applications doi: 10.1016/j.physa.2016.09.022 – volume: 99 start-page: 589 issue: 4 year: 2019 ident: 10.1016/j.eswa.2021.114675_b0145 article-title: Review of Lane-Changing Maneuvers of Connected and Automated Vehicles: Models, Algorithms and Traffic Impact Analyses publication-title: Journal of the Indian Institute of Science. doi: 10.1007/s41745-019-00127-7 – ident: 10.1016/j.eswa.2021.114675_b0005 doi: 10.1109/IVS.2007.4290263 – volume: 54 start-page: 48 year: 2016 ident: 10.1016/j.eswa.2021.114675_b0080 article-title: Fuzzy model of vehicle delay to determine the level of service of two-lane roads publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.12.049 – volume: 14 start-page: 1942 issue: 4 year: 2013 ident: 10.1016/j.eswa.2021.114675_b0105 article-title: Review of Microscopic Lane-Changing Models and Future Research Opportunities publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2013.2272074 – volume: 68 start-page: 403 year: 2016 ident: 10.1016/j.eswa.2021.114675_b0095 article-title: Modeling the impacts of mandatory and discretionary lane-changing maneuvers publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2016.05.002 – volume: 71 start-page: 332 year: 2017 ident: 10.1016/j.eswa.2021.114675_b0025 article-title: Parametric-based path generation for automated vehicles at roundabouts publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.11.023 – volume: 95 start-page: 228 issue: June year: 2018 ident: 10.1016/j.eswa.2021.114675_b0160 article-title: A dynamic lane-changing trajectory planning model for automated vehicles publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2018.06.007 – ident: 10.1016/j.eswa.2021.114675_b0040 doi: 10.1109/IROS.2017.8206215 – ident: 10.1016/j.eswa.2021.114675_b0050 doi: 10.1016/j.trb.2017.09.020 – volume: 62 start-page: 87 year: 2016 ident: 10.1016/j.eswa.2021.114675_b0075 article-title: A dynamic automated lane change maneuver based on vehicle-to-vehicle communication publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2015.11.011 – volume: 119 start-page: 1 year: 2019 ident: 10.1016/j.eswa.2021.114675_b0045 article-title: Parsimonious trajectory design of connected automated traffic publication-title: Transportation Research Part B: Methodological doi: 10.1016/j.trb.2018.11.006 – volume: 8 start-page: 1 issue: 2 year: 2016 ident: 10.1016/j.eswa.2021.114675_b0125 article-title: Model predictive control-based cooperative lane change strategy for improving traffic flow publication-title: Advances in Mechanical Engineering doi: 10.1177/1687814016632992 – year: 2020 ident: 10.1016/j.eswa.2021.114675_b0150 article-title: Modeling and Field Experiments on Lane Changing of an Autonomous Vehicle in Mixed Traffic publication-title: Computer-aided Civil and Infrastructure Engineering – volume: 24 start-page: 52 issue: 1–3 year: 2015 ident: 10.1016/j.eswa.2021.114675_b0070 article-title: Study on the effects of driver’s lane-changing aggressiveness on traffic stability from an extended two-lane lattice model publication-title: Communications in Nonlinear Science and Numerical Simulation doi: 10.1016/j.cnsns.2014.12.007 – volume: 42 start-page: 3875 issue: 8 year: 2015 ident: 10.1016/j.eswa.2021.114675_b0030 article-title: Situation assessment and decision making for lane change assistance using ensemble learning methods publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.01.029 – volume: 8 start-page: 816 issue: 5 year: 2000 ident: 10.1016/j.eswa.2021.114675_b0110 article-title: Decentralized overlapping control of a platoon of vehicles publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/87.865854 – volume: 12 start-page: 1184 issue: 4 year: 2011 ident: 10.1016/j.eswa.2021.114675_b0155 article-title: Practical string stability of platoon of adaptive cruise control vehicles publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2011.2143407 – volume: 40 start-page: 290 year: 2014 ident: 10.1016/j.eswa.2021.114675_b0135 article-title: Rolling horizon control framework for driver assistance systems. Part II: Cooperative sensing and cooperative control publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2013.11.024 – volume: 42 start-page: 5932 issue: 14 year: 2015 ident: 10.1016/j.eswa.2021.114675_b0165 article-title: Expert Systems with Applications Trajectory planning and tracking control for autonomous lane change maneuver based on the cooperative vehicle infrastructure system publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.03.022 – volume: 77 start-page: 167 year: 2015 ident: 10.1016/j.eswa.2021.114675_b0010 article-title: Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations publication-title: Transportation Research Part A – volume: 3 start-page: 340 issue: 3 year: 2018 ident: 10.1016/j.eswa.2021.114675_b0035 article-title: Balancing Computation Speed and Quality: A Decentralized Motion Planning Method for Cooperative Lane Changes of Connected and Automated Vehicles publication-title: IEEE Transactions on Intelligent Vehicles doi: 10.1109/TIV.2018.2843159 – volume: 48 start-page: 285 year: 2014 ident: 10.1016/j.eswa.2021.114675_b0085 article-title: Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2014.09.001 – volume: 58 start-page: 73 year: 2015 ident: 10.1016/j.eswa.2021.114675_b0140 article-title: Game theoretic approach for predictive lane-changing and car-following control publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/j.trc.2015.07.009 – volume: 141 start-page: 112953 year: 2020 ident: 10.1016/j.eswa.2021.114675_b0100 article-title: A new safe lane-change trajectory model and collision avoidance control method for automatic driving vehicles publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.112953 – volume: 121 start-page: 38 year: 2019 ident: 10.1016/j.eswa.2021.114675_b0170 article-title: Autonomous path tracking control of intelligent electric vehicles based on lane detection and optimal preview method publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.12.005 – volume: 226 start-page: 419 issue: 3 year: 2012 ident: 10.1016/j.eswa.2021.114675_b0060 article-title: Strategies to minimize the fuel consumption of passenger cars during car-following scenarios publication-title: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering – volume: 4 start-page: 9413 year: 2016 ident: 10.1016/j.eswa.2021.114675_b0090 article-title: Decentralized Cooperative Lane-Changing Decision-Making for Connected Autonomous Vehicles publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2649567 |
SSID | ssj0017007 |
Score | 2.5195172 |
Snippet | •A cooperative lane-changing strategy allowing accelerations of a preceding vehicle.•A dynamic cooperative lane-changing model for connected and autonomous... The emerging connected and autonomous vehicle (CAV) technologies offer a promising solution to design better lane-changing maneuvers that can reduce the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114675 |
SubjectTerms | Connected and autonomous vehicles Cooperative control Deceleration Decision making Design Dynamic planning Lane changing Maneuvers Mathematical models Passenger comfort Robustness (mathematics) Safety Trajectory planning Vehicles |
Title | A dynamic cooperative lane-changing model for connected and autonomous vehicles with possible accelerations of a preceding vehicle |
URI | https://dx.doi.org/10.1016/j.eswa.2021.114675 https://www.proquest.com/docview/2521112484 |
Volume | 173 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLcQXHYZbAPxNeTDbpPXJrUT-1ghqm7TuGxI3CzbsbWiqoloCzcO_OW8ZztIINQDhxwS2VHi9_Vz8nvvEfJt2BgpuFUsWOsY57xhBlAFq6QNxo-UFw4_6P-5rKZX_Ne1uN4i530uDNIqs-9PPj1663xlkFdz0M1mg78ADiAcwtauiH8TcN-O1etAp388PNM8sPxcnert1QxH58SZxPHyy3usPVQWsWQucg3fDk6v3HSMPZM98jGDRjpOz_WJbPnFZ7LbN2Sg2T6_kMcxbVKHeeratvOpqjdFPiuLGb4Qp2jsfUMBq8IYcLIOICc1CzjWK0xwaNdLeuf_R7Ycxa-0tGvRbuaeGucgSCWVWdI2UEM7WLwY_vo5--RqcvHvfMpykwXmRqVcMVMbgFmNUzXYi6m4LbxFEKWG3HFfWqtCEIUcusoANAM8UheibsDqzdAL36jRAdletAt_SGhV1j4AIJCYnBsaoYLzIxlUKWWonBJHpOhXV7tcgRwbYcx1TzW70SgRjRLRSSJH5PvznC7V39g4WvRC0y-0SEOA2DjvtJewzja81CUgG3hlLvnxO297Qj7gWWL3npLt1e3afwUMs7JnUUnPyM745-_p5RPsePHq |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsDCG1Eo4IENWU1SO7HHCoHKqwsgsVm2YwsQaiLaws4v5xw7SCDEwJAluYsSn-_us30PhI6TUnFGtSBOa0MopSVRgCpIzrVTdigsM35D_2aSj-_p5QN76KDTNhfGh1VG2x9semOt451BHM1B_fQ0uAVwAO4QlnZpc5oA6_YlX52KdtHS6OJqPPk6TCiSkDUN9MQzxNyZEOZlZ---_FCWNlVzfbjh7_7ph6Vu3M_5OlqNuBGPwqdtoI6dbqK1ticDjiq6hT5GuAxN5rGpqtqGwt7Yh7SSJskXXBVu2t9ggKtAA3bWAOrEagrXYu5zHKrFDL_ZxyZgDvuNWlxXXnVeLFbGgJ8Ks2aGK4cVrmH8Gg_Y8myj-_Ozu9MxiX0WiBlmfE5UoQBplUYUoDIqpzq12uMokVBDbaa1cI6lPDG5AnQGkKRIWVGC4qvEMluK4Q7qTqup3UU4zwrrABNwn5_rSiacsUPuRMa5y41gPZS2oytNLELue2G8yDba7Fl6iUgvERkk0kMnXzx1KMHxJzVrhSa_TSQJPuJPvn4rYRnVeCYzADfwy5TTvX--9ggtj-9uruX1xeRqH634JyHYt4-689eFPQBIM9eHccp-Ajcs9Js |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+cooperative+lane-changing+model+for+connected+and+autonomous+vehicles+with+possible+accelerations+of+a+preceding+vehicle&rft.jtitle=Expert+systems+with+applications&rft.au=Wang%2C+Zhen&rft.au=Zhao%2C+Xiangmo&rft.au=Chen%2C+Zhiwei&rft.au=Li%2C+Xiaopeng&rft.date=2021-07-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=173&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2021.114675&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |