Achieving heterogeneous structure in hcp Zr via electroplastic rolling

Heterogeneous structure has been widely used to enhance the poor ductility of high-strength nanostructured materials. However, it is still a challenge to form heterogeneous structures in hard-deformed materials. Here, by using electroplastic rolling and subsequent low-temperature annealing, a hetero...

Full description

Saved in:
Bibliographic Details
Published inMaterials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 722; pp. 93 - 98
Main Authors Li, Ming, Guo, Defeng, Li, Jingtao, Zhu, Shimin, Xu, Chao, Li, Kaifang, Zhao, Yadan, Wei, Bingning, Zhang, Qian, Zhang, Xiangyi
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 11.04.2018
Elsevier BV
Subjects
Online AccessGet full text
ISSN0921-5093
1873-4936
DOI10.1016/j.msea.2018.02.106

Cover

Loading…
Abstract Heterogeneous structure has been widely used to enhance the poor ductility of high-strength nanostructured materials. However, it is still a challenge to form heterogeneous structures in hard-deformed materials. Here, by using electroplastic rolling and subsequent low-temperature annealing, a heterogeneous structure was formed in the hard-deformed hcp Zr and exhibited a good combination of high strength and good ductility. Its formation can be attributed to the effective microstructure refinement and high deformation energy storage during the electroplastic deformation process. The present study is important for the design and fabrication of heterogeneous structured metals and alloys.
AbstractList Heterogeneous structure has been widely used to enhance the poor ductility of high-strength nanostructured materials. However, it is still a challenge to form heterogeneous structures in hard-deformed materials. Here, by using electroplastic rolling and subsequent low-temperature annealing, a heterogeneous structure was formed in the hard-deformed hcp Zr and exhibited a good combination of high strength and good ductility. Its formation can be attributed to the effective microstructure refinement and high deformation energy storage during the electroplastic deformation process. The present study is important for the design and fabrication of heterogeneous structured metals and alloys.
Author Guo, Defeng
Zhang, Xiangyi
Li, Ming
Zhu, Shimin
Zhao, Yadan
Li, Kaifang
Zhang, Qian
Wei, Bingning
Li, Jingtao
Xu, Chao
Author_xml – sequence: 1
  givenname: Ming
  surname: Li
  fullname: Li, Ming
  organization: State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
– sequence: 2
  givenname: Defeng
  surname: Guo
  fullname: Guo, Defeng
  email: guodf@ysu.edu.cn
  organization: State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
– sequence: 3
  givenname: Jingtao
  surname: Li
  fullname: Li, Jingtao
  organization: State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
– sequence: 4
  givenname: Shimin
  surname: Zhu
  fullname: Zhu, Shimin
  organization: State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
– sequence: 5
  givenname: Chao
  surname: Xu
  fullname: Xu, Chao
  organization: State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
– sequence: 6
  givenname: Kaifang
  surname: Li
  fullname: Li, Kaifang
  organization: State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
– sequence: 7
  givenname: Yadan
  surname: Zhao
  fullname: Zhao, Yadan
  organization: State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
– sequence: 8
  givenname: Bingning
  surname: Wei
  fullname: Wei, Bingning
  organization: State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
– sequence: 9
  givenname: Qian
  surname: Zhang
  fullname: Zhang, Qian
  organization: State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
– sequence: 10
  givenname: Xiangyi
  surname: Zhang
  fullname: Zhang, Xiangyi
  email: xyzh66@ysu.edu.cn
  organization: State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz7vmY7u7AS-lWBUKXvTiJWSzs22WbVKTbMF_b0o9eehp4OV9ZphnhibWWUDonpKcElo-9vk-gMoZoXVOWMrKKzSldcWzQvBygqZEMJotiOA3aBZCTwihBVlM0XqpdwaOxm7xDiJ4twULbgw4RD_qOHrAxuKdPuAvj49GYRhAR-8OgwrRaOzdMCT4Fl13aghw9zfn6HP9_LF6zTbvL2-r5SbTnNUxU5VgDdddC2UDUHcFr1UFTBDaFqpqyq5qaFfUha4Y54SVVDMQVUFb1hABjPI5ejjvPXj3PUKIsnejt-mkZKQUCRGLIrXqc0t7F4KHTmoTVTTORq_MICmRJ2uylydr8mRNEpayMqHsH3rwZq_8z2Xo6QxBev1owMugDVgNrfHJlmyduYT_AnHtiJo
CitedBy_id crossref_primary_10_1088_1757_899X_1307_1_012050
crossref_primary_10_1016_j_matchar_2019_110095
crossref_primary_10_1016_j_scriptamat_2022_114933
crossref_primary_10_1177_02670836241273474
crossref_primary_10_1002_adem_202001039
crossref_primary_10_2139_ssrn_4188678
crossref_primary_10_1016_j_msea_2021_141506
crossref_primary_10_3390_ma16186270
crossref_primary_10_1016_j_msea_2019_138582
crossref_primary_10_1016_j_msea_2024_146678
crossref_primary_10_1002_adem_202101366
crossref_primary_10_1016_j_msea_2022_144573
crossref_primary_10_1007_s42243_023_01132_y
crossref_primary_10_1016_j_msea_2018_09_041
crossref_primary_10_1016_j_jallcom_2019_152955
crossref_primary_10_1016_j_msea_2019_138574
crossref_primary_10_1007_s11661_024_07320_z
crossref_primary_10_15407_techned2021_06_003
crossref_primary_10_3390_ma12244144
crossref_primary_10_3390_alloys2040018
crossref_primary_10_1016_j_apmt_2020_100874
crossref_primary_10_1016_j_jmapro_2024_12_051
crossref_primary_10_1080_02670836_2020_1765095
crossref_primary_10_1016_j_actamat_2022_118612
crossref_primary_10_1016_j_jmst_2019_07_025
crossref_primary_10_1016_j_msea_2021_142301
crossref_primary_10_1016_j_matchar_2022_112437
crossref_primary_10_1016_j_msea_2023_144584
Cites_doi 10.1073/pnas.1517193112
10.1016/j.matlet.2011.08.100
10.1016/j.msea.2012.08.061
10.1016/j.scriptamat.2004.11.034
10.1016/j.msea.2008.01.094
10.1038/ncomms4580
10.1016/j.matdes.2011.08.002
10.1038/natrevmats.2016.19
10.1038/nature01133
10.1016/j.ijplas.2011.10.003
10.1126/science.aan0177
10.1016/j.actamat.2017.04.062
10.1007/s11837-007-0077-5
10.1016/0036-9748(89)90342-6
10.1016/j.scriptamat.2010.07.010
10.1016/j.actamat.2007.11.017
10.1080/21663831.2016.1153004
10.1016/S0263-8223(98)00033-6
10.1016/j.jmatprotec.2006.07.019
10.2320/matertrans1989.33.596
10.1016/S1359-6454(99)00222-0
10.1080/14786435608238074
10.1126/science.1255940
10.1016/j.msea.2014.03.115
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Apr 11, 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 11, 2018
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.msea.2018.02.106
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4936
EndPage 98
ExternalDocumentID 10_1016_j_msea_2018_02_106
S0921509318303241
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SSM
SSZ
T5K
~02
~G-
29M
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SSH
WUQ
7SR
8BQ
8FD
AFXIZ
EFKBS
JG9
ID FETCH-LOGICAL-c328t-a792b3cfde6bee8f438a7e2901d4a7b6f7b1f484c72330261c2e9741d2b09e213
IEDL.DBID .~1
ISSN 0921-5093
IngestDate Fri Jul 25 02:46:48 EDT 2025
Thu Apr 24 22:57:46 EDT 2025
Tue Jul 01 03:29:40 EDT 2025
Fri Feb 23 02:28:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electroplastic rolling
Heterogeneous structure
Ductility
Back stress
Strain hardening
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-a792b3cfde6bee8f438a7e2901d4a7b6f7b1f484c72330261c2e9741d2b09e213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2069026954
PQPubID 2045432
PageCount 6
ParticipantIDs proquest_journals_2069026954
crossref_citationtrail_10_1016_j_msea_2018_02_106
crossref_primary_10_1016_j_msea_2018_02_106
elsevier_sciencedirect_doi_10_1016_j_msea_2018_02_106
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-11
PublicationDateYYYYMMDD 2018-04-11
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-11
  day: 11
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Materials science & engineering. A, Structural materials : properties, microstructure and processing
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Zhu, Lu (bib24) 2012; 30–31
Stolyarov (bib10) 2009; 503
Sarma, Al-Otaibi, Murty (bib17) 1992; 33
Li, Guo, Ma, Shi, Zhang, Zhang (bib6) 2014; 606
Yang, Pan, Yuan, Zhu, Wu (bib25) 2016; 4
Chokshi, Rosen, Karch, Gleiter (bib22) 1989; 23
Yang, Hodgson, Wen (bib7) 2010; 63
Liu (bib23) 1997; 40
Dinda, Rösner, Wilde (bib12) 2005; 52
Yang, Kang, Li, Zhang, Zhang, Fu (bib9) 2017; 132
Jiang, Perez-Prado, Gruber, Arzt, Ruano, Kassner (bib16) 2008; 56
Wu, Yang, Yuan, Wu, Wei, Huang, Zhu (bib8) 2015; 112
Guo, Li, Shi, Zhang, Zhang, Liu, Zhang (bib19) 2012; 66
Care, Bretheau (bib14) 1993; 3
Guo, Li, Shi, Zhang, Zhang, Liu, Wei, Zhang (bib4) 2012; 34
Wang, Chen, Zhou, Ma (bib2) 2002; 419
Guo, Li, Shi, Zhang, Ma, Zhang (bib20) 2012; 558
Brunstetter, Kling, Alexander (bib18) 1950
Jiang, Ruano, Kassner, Perez-Prado (bib15) 2007; 59
Lu (bib3) 2014; 345
Xu, Tang, Tian, Ding, Tian (bib11) 2007; 182
Wei, Li, Zhu, Liu, Lei, Wang (bib5) 2014; 5
Williamson, Smallman (bib13) 1956; 1
He, Hu, Yen, Cheng, Wang, Luo (bib21) 2017; 357
Feaugas (bib26) 1999; 47
Lu (bib1) 2016; 1
Williamson (10.1016/j.msea.2018.02.106_bib13) 1956; 1
Jiang (10.1016/j.msea.2018.02.106_bib15) 2007; 59
Guo (10.1016/j.msea.2018.02.106_bib19) 2012; 66
Jiang (10.1016/j.msea.2018.02.106_bib16) 2008; 56
Wu (10.1016/j.msea.2018.02.106_bib8) 2015; 112
Sarma (10.1016/j.msea.2018.02.106_bib17) 1992; 33
Guo (10.1016/j.msea.2018.02.106_bib20) 2012; 558
Xu (10.1016/j.msea.2018.02.106_bib11) 2007; 182
Yang (10.1016/j.msea.2018.02.106_bib9) 2017; 132
Care (10.1016/j.msea.2018.02.106_bib14) 1993; 3
Wei (10.1016/j.msea.2018.02.106_bib5) 2014; 5
Dinda (10.1016/j.msea.2018.02.106_bib12) 2005; 52
Feaugas (10.1016/j.msea.2018.02.106_bib26) 1999; 47
Yang (10.1016/j.msea.2018.02.106_bib25) 2016; 4
Lu (10.1016/j.msea.2018.02.106_bib3) 2014; 345
Zhu (10.1016/j.msea.2018.02.106_bib24) 2012; 30–31
Wang (10.1016/j.msea.2018.02.106_bib2) 2002; 419
Brunstetter (10.1016/j.msea.2018.02.106_bib18) 1950
Chokshi (10.1016/j.msea.2018.02.106_bib22) 1989; 23
He (10.1016/j.msea.2018.02.106_bib21) 2017; 357
Lu (10.1016/j.msea.2018.02.106_bib1) 2016; 1
Guo (10.1016/j.msea.2018.02.106_bib4) 2012; 34
Stolyarov (10.1016/j.msea.2018.02.106_bib10) 2009; 503
Yang (10.1016/j.msea.2018.02.106_bib7) 2010; 63
Li (10.1016/j.msea.2018.02.106_bib6) 2014; 606
Liu (10.1016/j.msea.2018.02.106_bib23) 1997; 40
References_xml – volume: 4
  start-page: 145
  year: 2016
  end-page: 151
  ident: bib25
  article-title: Back stress strengthening and strain hardening in gradient structure
  publication-title: Mater. Res. Lett.
– volume: 3
  start-page: 533
  year: 1993
  end-page: 536
  ident: bib14
  article-title: Plastic flow and damage of α-Zirconium polycrystals
  publication-title: J. Phys. IV
– volume: 47
  start-page: 3617
  year: 1999
  end-page: 3632
  ident: bib26
  article-title: On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: back stress and effective stress
  publication-title: Acta Mater.
– volume: 112
  start-page: 14501
  year: 2015
  end-page: 14505
  ident: bib8
  article-title: Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility
  publication-title: PNAS
– volume: 56
  start-page: 1228
  year: 2008
  end-page: 1242
  ident: bib16
  article-title: Texture, microstructure and mechanical properties of equiaxed ultrafine-grained Zr fabricated by accumulative roll bonding
  publication-title: Acta Mater.
– volume: 182
  start-page: 128
  year: 2007
  end-page: 133
  ident: bib11
  article-title: Research of electroplastic rolling of AZ31 Mg alloy strip
  publication-title: J. Mater. Proc. Technol.
– volume: 40
  start-page: 313
  year: 1997
  end-page: 322
  ident: bib23
  article-title: A step-by-step method of rule-of-mixture of fiber- and particle-reinforced composite materials
  publication-title: Compos. Struct.
– volume: 23
  start-page: 1679
  year: 1989
  end-page: 1683
  ident: bib22
  article-title: On the validity of the hall-petch relationship in nanocrystalline materials
  publication-title: Scr. Met.
– volume: 606
  start-page: 396
  year: 2014
  end-page: 400
  ident: bib6
  article-title: A hierarchical nanolamella-structured alloy with excellent combinations of tensile properties
  publication-title: Mater. Sci. Eng. A
– volume: 503
  start-page: 18
  year: 2009
  end-page: 20
  ident: bib10
  article-title: Deformability and nanostructuring of TiNi shape-memory alloys during electroplastic rolling
  publication-title: Mater. Sci. Eng. A
– volume: 66
  start-page: 305
  year: 2012
  end-page: 307
  ident: bib19
  article-title: Effect of strain rate on microstructure evolutions and mechanical properties of cryorolled Zr upon annealing
  publication-title: Mater. Lett.
– volume: 52
  start-page: 577
  year: 2005
  end-page: 582
  ident: bib12
  article-title: Synthesis of bulk nanostructured Ni, Ti and Zr by repeated cold-rolling
  publication-title: Scr. Mater.
– volume: 558
  start-page: 611
  year: 2012
  end-page: 615
  ident: bib20
  article-title: Simultaneously enhancing the ductility and strength of cryorolled Zr via tailoring dislocation configurations
  publication-title: Mater. Sci. Eng. A
– volume: 357
  start-page: 1029
  year: 2017
  end-page: 1032
  ident: bib21
  article-title: High dislocation density-induced large ductility in deformed and partitioned steels
  publication-title: Science
– volume: 1
  start-page: 34
  year: 1956
  end-page: 46
  ident: bib13
  article-title: Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum
  publication-title: Philos. Mag.
– volume: 59
  start-page: 42
  year: 2007
  end-page: 45
  ident: bib15
  article-title: The fabrication of bulk ultrafine-grained Zirconium by accumulative roll bonding
  publication-title: JOM
– volume: 5
  start-page: 3580
  year: 2014
  end-page: 3587
  ident: bib5
  article-title: Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins
  publication-title: Nat. Comm.
– volume: 419
  start-page: 912
  year: 2002
  end-page: 915
  ident: bib2
  article-title: High tensile ductility in a nanostructured metal
  publication-title: Nature
– volume: 63
  start-page: 941
  year: 2010
  end-page: 944
  ident: bib7
  article-title: Simultaneously enhanced strength and ductility of titanium via multimodal grain structure
  publication-title: Scr. Mater.
– volume: 30–31
  start-page: 166
  year: 2012
  end-page: 184
  ident: bib24
  article-title: Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution
  publication-title: Int. J. Plast.
– volume: 132
  start-page: 491
  year: 2017
  end-page: 502
  ident: bib9
  article-title: Bimodal titanium alloys with ultrafine lamellar eutectic structure fabricated by semi-solid sintering
  publication-title: Acta Mater.
– volume: 1
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib1
  article-title: Stabilizing nanostructures in metals using grain and twin boundary architectures
  publication-title: Nat. Rev. Mater.
– volume: 34
  start-page: 275
  year: 2012
  end-page: 278
  ident: bib4
  article-title: High strength and ductility in multimodal-structured Zr
  publication-title: Mater. Des.
– volume: 33
  start-page: 596
  year: 1992
  end-page: 603
  ident: bib17
  article-title: Tensile properties and deformation mechanisms in zirconium
  publication-title: Mater. Trans. JIM
– volume: 345
  start-page: 1455
  year: 2014
  end-page: 1456
  ident: bib3
  article-title: Nanomaterials. Making strong nanomaterials ductile with gradients
  publication-title: Science
– start-page: 7
  year: 1950
  ident: bib18
  article-title: The Tensile Properties of Zirconium at Elevated Temperatures
– volume: 112
  start-page: 14501
  year: 2015
  ident: 10.1016/j.msea.2018.02.106_bib8
  article-title: Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility
  publication-title: PNAS
  doi: 10.1073/pnas.1517193112
– volume: 66
  start-page: 305
  year: 2012
  ident: 10.1016/j.msea.2018.02.106_bib19
  article-title: Effect of strain rate on microstructure evolutions and mechanical properties of cryorolled Zr upon annealing
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2011.08.100
– volume: 558
  start-page: 611
  year: 2012
  ident: 10.1016/j.msea.2018.02.106_bib20
  article-title: Simultaneously enhancing the ductility and strength of cryorolled Zr via tailoring dislocation configurations
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2012.08.061
– volume: 52
  start-page: 577
  year: 2005
  ident: 10.1016/j.msea.2018.02.106_bib12
  article-title: Synthesis of bulk nanostructured Ni, Ti and Zr by repeated cold-rolling
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2004.11.034
– volume: 503
  start-page: 18
  year: 2009
  ident: 10.1016/j.msea.2018.02.106_bib10
  article-title: Deformability and nanostructuring of TiNi shape-memory alloys during electroplastic rolling
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2008.01.094
– volume: 5
  start-page: 3580
  year: 2014
  ident: 10.1016/j.msea.2018.02.106_bib5
  article-title: Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins
  publication-title: Nat. Comm.
  doi: 10.1038/ncomms4580
– volume: 34
  start-page: 275
  year: 2012
  ident: 10.1016/j.msea.2018.02.106_bib4
  article-title: High strength and ductility in multimodal-structured Zr
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2011.08.002
– volume: 1
  start-page: 1
  year: 2016
  ident: 10.1016/j.msea.2018.02.106_bib1
  article-title: Stabilizing nanostructures in metals using grain and twin boundary architectures
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.19
– volume: 419
  start-page: 912
  year: 2002
  ident: 10.1016/j.msea.2018.02.106_bib2
  article-title: High tensile ductility in a nanostructured metal
  publication-title: Nature
  doi: 10.1038/nature01133
– volume: 30–31
  start-page: 166
  year: 2012
  ident: 10.1016/j.msea.2018.02.106_bib24
  article-title: Modelling the plastic deformation of nanostructured metals with bimodal grain size distribution
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2011.10.003
– volume: 357
  start-page: 1029
  year: 2017
  ident: 10.1016/j.msea.2018.02.106_bib21
  article-title: High dislocation density-induced large ductility in deformed and partitioned steels
  publication-title: Science
  doi: 10.1126/science.aan0177
– volume: 132
  start-page: 491
  year: 2017
  ident: 10.1016/j.msea.2018.02.106_bib9
  article-title: Bimodal titanium alloys with ultrafine lamellar eutectic structure fabricated by semi-solid sintering
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2017.04.062
– volume: 59
  start-page: 42
  year: 2007
  ident: 10.1016/j.msea.2018.02.106_bib15
  article-title: The fabrication of bulk ultrafine-grained Zirconium by accumulative roll bonding
  publication-title: JOM
  doi: 10.1007/s11837-007-0077-5
– start-page: 7
  year: 1950
  ident: 10.1016/j.msea.2018.02.106_bib18
– volume: 23
  start-page: 1679
  year: 1989
  ident: 10.1016/j.msea.2018.02.106_bib22
  article-title: On the validity of the hall-petch relationship in nanocrystalline materials
  publication-title: Scr. Met.
  doi: 10.1016/0036-9748(89)90342-6
– volume: 63
  start-page: 941
  year: 2010
  ident: 10.1016/j.msea.2018.02.106_bib7
  article-title: Simultaneously enhanced strength and ductility of titanium via multimodal grain structure
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2010.07.010
– volume: 56
  start-page: 1228
  year: 2008
  ident: 10.1016/j.msea.2018.02.106_bib16
  article-title: Texture, microstructure and mechanical properties of equiaxed ultrafine-grained Zr fabricated by accumulative roll bonding
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2007.11.017
– volume: 4
  start-page: 145
  year: 2016
  ident: 10.1016/j.msea.2018.02.106_bib25
  article-title: Back stress strengthening and strain hardening in gradient structure
  publication-title: Mater. Res. Lett.
  doi: 10.1080/21663831.2016.1153004
– volume: 3
  start-page: 533
  year: 1993
  ident: 10.1016/j.msea.2018.02.106_bib14
  article-title: Plastic flow and damage of α-Zirconium polycrystals
  publication-title: J. Phys. IV
– volume: 40
  start-page: 313
  year: 1997
  ident: 10.1016/j.msea.2018.02.106_bib23
  article-title: A step-by-step method of rule-of-mixture of fiber- and particle-reinforced composite materials
  publication-title: Compos. Struct.
  doi: 10.1016/S0263-8223(98)00033-6
– volume: 182
  start-page: 128
  year: 2007
  ident: 10.1016/j.msea.2018.02.106_bib11
  article-title: Research of electroplastic rolling of AZ31 Mg alloy strip
  publication-title: J. Mater. Proc. Technol.
  doi: 10.1016/j.jmatprotec.2006.07.019
– volume: 33
  start-page: 596
  year: 1992
  ident: 10.1016/j.msea.2018.02.106_bib17
  article-title: Tensile properties and deformation mechanisms in zirconium
  publication-title: Mater. Trans. JIM
  doi: 10.2320/matertrans1989.33.596
– volume: 47
  start-page: 3617
  year: 1999
  ident: 10.1016/j.msea.2018.02.106_bib26
  article-title: On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: back stress and effective stress
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(99)00222-0
– volume: 1
  start-page: 34
  year: 1956
  ident: 10.1016/j.msea.2018.02.106_bib13
  article-title: Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum
  publication-title: Philos. Mag.
  doi: 10.1080/14786435608238074
– volume: 345
  start-page: 1455
  year: 2014
  ident: 10.1016/j.msea.2018.02.106_bib3
  article-title: Nanomaterials. Making strong nanomaterials ductile with gradients
  publication-title: Science
  doi: 10.1126/science.1255940
– volume: 606
  start-page: 396
  year: 2014
  ident: 10.1016/j.msea.2018.02.106_bib6
  article-title: A hierarchical nanolamella-structured alloy with excellent combinations of tensile properties
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2014.03.115
SSID ssj0001405
Score 2.3890932
Snippet Heterogeneous structure has been widely used to enhance the poor ductility of high-strength nanostructured materials. However, it is still a challenge to form...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 93
SubjectTerms Annealing
Back stress
Deformation
Deformation effects
Ductility
Electroplastic rolling
Energy storage
Heterogeneous structure
High strength
Microstructure
Nanostructured materials
Strain hardening
Zirconium
Title Achieving heterogeneous structure in hcp Zr via electroplastic rolling
URI https://dx.doi.org/10.1016/j.msea.2018.02.106
https://www.proquest.com/docview/2069026954
Volume 722
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTywodDYcRJ7rCqqAqILVKpYosRx1CBIo1IY-e3cJQ4voQ6McWwrOp_P38Xf3RFylrGYZ4DaYKcpcFA0Uw7AEOMgB1BKL_VZFeV6OwnGU3E982ctMmxiYZBWaW1_bdMra21b-laa_TLP-3euguMKHHJQShdgQRXBLkLMn3_x_kXzAAeiojFCZwd728CZmuP1DOqE9C6JeTsZVj36-3D6Zaars2e0Q7YtaKSD-rt2ScsUe2TrWyrBfTIa6Hlu8O8AnSPDZQGKYcCrp3WC2NeloXlB57qkD0v6lsfU1r8pAT3DrHRZJ-c-INPR5f1w7NgaCY72uFw5cah44uksNUFijMyEJ-PQ4OVoKuIwCbIwYZmQQofc89Df0tyAC8FSnrjKcOYdknaxKMwRoS7XzDChDQuU0EIn0k0zBXAKpmJurDuENcKJtE0gjnUsnqKGKfYYoUAjFGjkcmgLOuT8c0xZp89Y29tvZB79UIII7Pvacd1mgSK7BV_gPTj-PFC-OP7ntCdkE5_w7oixLmnDeplTgCCrpFfpWI9sDK5uxpMPBCDZcg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIAB8RSFAh7YUGj8yMNjVVEVaLvQShWLlTiOGgRpVAojv51z4vAS6sDql6Lz-Xxf_N0dQhcpiWgKXhucNAEARRHhgBuiHcMBDEOWeKSMch2O_P6E3069aQN161gYQ6u0tr-y6aW1ti1tK812kWXte1fAdQWAHJTSBbcAINA691hgVPvq_YvnAQii5DHCaMcMt5EzFcnrGfTJ8LtCk7iTmLJHf99Ov-x0efn0dtC29Rpxp_qwXdTQ-R7a-pZLcB_1OmqWafN7AM8MxWUOmqEB1uMqQ-zrQuMsxzNV4IcFfssibAvgFOA-w6p4UWXnPkCT3vW423dskQRHMRounSgQNGYqTbQfax2mnIVRoM3raMKjIPbTICYpD7kKKGMGcCmqAUOQhMau0JSwQ7SWz3N9hLBLFdGEK018wRVXcegmqQB_CpYibqSaiNTCkcpmEDeFLJ5kTRV7lEag0ghUuhTa_Ca6_JxTVPkzVo72apnLH1ogwcCvnNeqN0jaM_gC_YD8qS88fvzPZc_RRn88HMjBzejuBG2aHvOQREgLrcHe6VPwR5bxWalvHzFZ2wg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+heterogeneous+structure+in+hcp+Zr+via+electroplastic+rolling&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=Li%2C+Ming&rft.au=Guo%2C+Defeng&rft.au=Li%2C+Jingtao&rft.au=Zhu%2C+Shimin&rft.date=2018-04-11&rft.pub=Elsevier+BV&rft.issn=0921-5093&rft.eissn=1873-4936&rft.volume=722&rft.spage=93&rft_id=info:doi/10.1016%2Fj.msea.2018.02.106&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon