Auto-detection of sophisticated malware using lazy-binding control flow graph and deep learning
To date, industrial antivirus tools are mostly using signature-based methods to detect malware occurrences. However, sophisticated malware, such as metamorphic or polymorphic virus, can effectively evade those tools by using some advanced obfuscation techniques, including mutation and the dynamicall...
Saved in:
Published in | Computers & security Vol. 76; pp. 128 - 155 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.07.2018
Elsevier Sequoia S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To date, industrial antivirus tools are mostly using signature-based methods to detect malware occurrences. However, sophisticated malware, such as metamorphic or polymorphic virus, can effectively evade those tools by using some advanced obfuscation techniques, including mutation and the dynamically executed contents (DEC) methods, which dynamically produce new executable code in the run-time. Common DEC methods used by malware programs are packing or calling external code. In the research community, the approach of program analysis to detect suspicious behaviors has been emerging recently to handle this problem. Control flow graph (CFG) is a suitable representation to capture common behaviors from various mutated samples of virus. However, the current typical CFG forms generated by state-of-the-art binary analysis tools, such as IDA Pro, do not precisely reflect the behaviors of DEC methods. Moreover, this approach suffers from an extremely heavy cost to conduct and analyze the CFGs from binaries. This drawback causes the method of formal behavior analysis to be virtually not applicable with real-world applications.
In this paper, we propose an enhanced form of CFG, known as lazy-binding CFG to reflect the DEC behaviors. Then, with the recent advancement of the deep learning techniques, we present a method of producing image-based representation from the generated CFG. As deep learning is very popular to perform image classification on very large dataset, our proposed technique can be applied for malware detection on real-world computer programs and thus enjoying very high accuracy. We also illustrate our analysis results with some well-known malware samples, including WannaCry, Kasperagent and Sality, one of the most sophisticated polymorphic viruses. |
---|---|
AbstractList | To date, industrial antivirus tools are mostly using signature-based methods to detect malware occurrences. However, sophisticated malware, such as metamorphic or polymorphic virus, can effectively evade those tools by using some advanced obfuscation techniques, including mutation and the dynamically executed contents (DEC) methods, which dynamically produce new executable code in the run-time. Common DEC methods used by malware programs are packing or calling external code. In the research community, the approach of program analysis to detect suspicious behaviors has been emerging recently to handle this problem. Control flow graph (CFG) is a suitable representation to capture common behaviors from various mutated samples of virus. However, the current typical CFG forms generated by state-of-the-art binary analysis tools, such as IDA Pro, do not precisely reflect the behaviors of DEC methods. Moreover, this approach suffers from an extremely heavy cost to conduct and analyze the CFGs from binaries. This drawback causes the method of formal behavior analysis to be virtually not applicable with real-world applications.
In this paper, we propose an enhanced form of CFG, known as lazy-binding CFG to reflect the DEC behaviors. Then, with the recent advancement of the deep learning techniques, we present a method of producing image-based representation from the generated CFG. As deep learning is very popular to perform image classification on very large dataset, our proposed technique can be applied for malware detection on real-world computer programs and thus enjoying very high accuracy. We also illustrate our analysis results with some well-known malware samples, including WannaCry, Kasperagent and Sality, one of the most sophisticated polymorphic viruses. To date, industrial antivirus tools are mostly using signature-based methods to detect malware occurrences. However, sophisticated malware, such as metamorphic or polymorphic virus, can effectively evade those tools by using some advanced obfuscation techniques, including mutation and the dynamically executed contents (DEC) methods, which dynamically produce new executable code in the run-time. Common DEC methods used by malware programs are packing or calling external code. In the research community, the approach of program analysis to detect suspicious behaviors has been emerging recently to handle this problem. Control flow graph (CFG) is a suitable representation to capture common behaviors from various mutated samples of virus. However, the current typical CFG forms generated by state-of-the-art binary analysis tools, such as IDA Pro, do not precisely reflect the behaviors of DEC methods. Moreover, this approach suffers from an extremely heavy cost to conduct and analyze the CFGs from binaries. This drawback causes the method of formal behavior analysis to be virtually not applicable with real-world applications. In this paper, we propose an enhanced form of CFG, known as lazy-binding CFG to reflect the DEC behaviors. Then, with the recent advancement of the deep learning techniques, we present a method of producing image-based representation from the generated CFG. As deep learning is very popular to perform image classification on very large dataset, our proposed technique can be applied for malware detection on real-world computer programs and thus enjoying very high accuracy. We also illustrate our analysis results with some well-known malware samples, including WannaCry, Kasperagent and Sality, one of the most sophisticated polymorphic viruses. |
Author | Nguyen, Dung Le Quan, Tho Thanh Nguyen, Minh Hai Nguyen, Xuan Mao |
Author_xml | – sequence: 1 givenname: Minh Hai surname: Nguyen fullname: Nguyen, Minh Hai organization: Ho Chi Minh City University of Technology, Viet Nam – sequence: 2 givenname: Dung Le surname: Nguyen fullname: Nguyen, Dung Le organization: Ho Chi Minh City University of Technology, Viet Nam – sequence: 3 givenname: Xuan Mao surname: Nguyen fullname: Nguyen, Xuan Mao organization: YouNet Group, Viet Nam – sequence: 4 givenname: Tho Thanh surname: Quan fullname: Quan, Tho Thanh email: qttho@hcmut.edu.vn organization: Ho Chi Minh City University of Technology, Viet Nam |
BookMark | eNp9kE1LAzEQhoNUsH78AU8Bz7tOsl8peJHiFxS86Dlkk9k2ZZusSWrRX-8u9eTB0zDwPjO8zzmZOe-QkGsGOQNW325z7SPmHJjIgecA9QmZM9HwrOYgZmQ-hpqshFKckfMYtwCsqYWYE3m_Tz4zmFAn6x31HY1-2NiYrFYJDd2p_qAC0n20bk179f2VtdaZadHepeB72vX-QNdBDRuqnKEGcaA9quDG0CU57VQf8ep3XpD3x4e35XO2en16Wd6vMl1wkTJVFgaUEKVRYqHLBhemLQpW1F0rtDK6rlgLjHNo21oDdFBBy6uiMaxqVNuI4oLcHO8OwX_sMSa59fvgxpeSw6KsAIpySoljSgcfY8BOapvUVDwFZXvJQE465VZOOuWkUwKXo84R5X_QIdidCl__Q3dHCMfqnxaDjNqi02hsGIVL4-1_-A8riZGp |
CitedBy_id | crossref_primary_10_1016_j_fsidi_2019_200903 crossref_primary_10_1109_TETCI_2019_2923426 crossref_primary_10_3390_jpm11060515 crossref_primary_10_1371_journal_pone_0231626 crossref_primary_10_1016_j_phycom_2020_101157 crossref_primary_10_1109_ACCESS_2024_3445931 crossref_primary_10_1109_ACCESS_2020_3002842 crossref_primary_10_3390_s25041153 crossref_primary_10_1109_ACCESS_2019_2934012 crossref_primary_10_1109_JIOT_2021_3075694 crossref_primary_10_1155_2019_1043794 crossref_primary_10_1186_s42400_020_00055_5 crossref_primary_10_1109_TIFS_2021_3124725 crossref_primary_10_1109_TIFS_2023_3328431 crossref_primary_10_1155_2022_2959222 crossref_primary_10_1109_JIOT_2023_3312152 crossref_primary_10_1016_j_cose_2018_11_002 crossref_primary_10_1016_j_ins_2023_119598 crossref_primary_10_1145_3638552 crossref_primary_10_1016_j_comnet_2019_06_015 crossref_primary_10_1002_cpe_6004 crossref_primary_10_1016_j_cose_2021_102500 crossref_primary_10_1007_s11831_020_09478_2 crossref_primary_10_1016_j_cose_2021_102400 crossref_primary_10_1109_ACCESS_2021_3093366 crossref_primary_10_3390_e24070919 crossref_primary_10_1016_j_neucom_2023_126534 crossref_primary_10_1016_j_fsidi_2021_301189 crossref_primary_10_1155_2023_8227751 crossref_primary_10_1109_ACCESS_2019_2945787 |
Cites_doi | 10.1016/j.eswa.2016.11.027 10.1109/TC.2012.65 10.1016/j.asoc.2012.08.034 10.1109/TDSC.2013.40 10.1016/0196-6774(85)90023-9 10.1007/s10207-014-0248-7 10.1007/s11416-006-0009-x 10.1016/j.jss.2014.10.031 10.1007/s11416-013-0185-4 10.1145/2522968.2522972 10.1016/j.cose.2014.10.011 10.1145/362686.362692 10.1007/s11416-014-0215-x 10.1109/MSP.2008.126 10.1023/A:1011139631724 10.1016/0004-3702(90)90004-J |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier Sequoia S.A. Jul 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier Sequoia S.A. Jul 2018 |
DBID | AAYXX CITATION 7SC 8FD JQ2 K7. L7M L~C L~D |
DOI | 10.1016/j.cose.2018.02.006 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection ProQuest Criminal Justice (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef ProQuest Criminal Justice (Alumni) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | ProQuest Criminal Justice (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-6208 |
EndPage | 155 |
ExternalDocumentID | 10_1016_j_cose_2018_02_006 S0167404818300889 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFSI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADHUB ADJOM ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLX HLZ HVGLF HZ~ IHE J1W KOM LG8 LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SBM SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TAE TN5 TWZ WH7 WUQ XJE XPP XSW YK3 ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 8FD EFKBS JQ2 K7. L7M L~C L~D |
ID | FETCH-LOGICAL-c328t-a43d0a884da89c47e9db33136fb8cadc651b01220bb6c00f050b2537d157ab783 |
IEDL.DBID | .~1 |
ISSN | 0167-4048 |
IngestDate | Fri Jul 25 08:22:01 EDT 2025 Tue Jul 01 03:48:15 EDT 2025 Thu Apr 24 23:04:07 EDT 2025 Fri Feb 23 02:33:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Binary-based control Deep learning Packing techniques Lazy-binding CFG Polymorphic virus Dynamically executed contents Malware Metamorphic virus Mutation Flow graph |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-a43d0a884da89c47e9db33136fb8cadc651b01220bb6c00f050b2537d157ab783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2094500348 |
PQPubID | 46289 |
PageCount | 28 |
ParticipantIDs | proquest_journals_2094500348 crossref_citationtrail_10_1016_j_cose_2018_02_006 crossref_primary_10_1016_j_cose_2018_02_006 elsevier_sciencedirect_doi_10_1016_j_cose_2018_02_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2018 2018-07-00 20180701 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: July 2018 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computers & security |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier Sequoia S.A |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Sequoia S.A |
References | Kinder, Katzenbeisser, Schallhart, Veith (bib0220) 2005 Santos, Ugarte-Pedrero, Sanz, Laorden, Bringas (bib0345) 2011 Song, Touili (bib0385) 2012 Song, Touili (bib0395) 2014 Nguyen, Tho (bib0280) 2017 Filiol (bib0145) 2006; 2 Nappa, Rafique, Caballero (bib0265) 2015; 14 Szor (bib0415) 2005 Batista, Bazzan, Monard (bib0075) 2003 Oliva, Torralba (bib0300) 2001; 42 Roundy, Miller (bib0335) 2013; 46 Cesare, Xiang, Zhou (bib0115) 2014; 11 Izumida, Futatsugi, Mori (bib0190) 2010 Hinton (bib0165) 1990; 46 Royal, Halpin, Dagon, Edmonds, Lee (bib0340) 2006 Baysa, Low, Stamp (bib0080) 2013; 9 Chen, Narayanan, Pang, Tao (bib9005) 2012 Shah, Jani, Shetty, Bhowmick (bib0360) 2013; 84 Kinder, Zuleger, Veith (bib0225) 2009 IDA Pro (bib0180) 2017 Anderson, Storlie, Lane (bib0045) 2012 BitDefender (bib0085) 2007 Le Cun (bib0240) 1989 Redmon, Divvala, Girshick, Farhadi (bib0325) 2016 Yan, Zhang, Ansari (bib0470) 2008; 6 Cesare, Xiang, Zhou (bib0110) 2013; 62 Nguyen, Ogawa, Tho (bib0295) 2017 Afaneh, Zitar, Al-Hamami (bib0010) 2013; 13 Bardin, Herrmann, Leroux, Ly, Tabary, Vincent (bib0070) 2011; vol. 6806 Song, Brumley, Yin, Caballero, Jager, Kang (bib0380) 2008 Al-Enezi, Abbod, AI-Sharhan (bib0020) 2010; 3 Nguyen, Nguyen, Quan, Ogawa (bib0285) 2013; vol. 2 Trinius, Holz, Gobel, Freiling (bib0430) 2009 Nataraj, Karthikeyan, Jacob, Manjunath (bib0275) 2011 Holzmann (bib0170) 1991 Jenatton, Roux, Bordes, Obozinski (bib0195) 2012 Saxe, Mentis, Greamo (bib0355) 2012 Nguyen, Anh, Khang, Ngan, Thai, Quoc (bib9020) 2014; vol. 279 Alazab (bib0030) 2015; 100 Gheorghescu (bib0160) 2005 John, Alejandro, Richard, Victor, Biplab, Sravana (bib0205) 2014 Wojnowicz, Chisholm, Wallace, Wolff, Zhao, Luan (bib0455) 2017; 71 Rijsbergen (bib0330) 1979 Ugarte-Pedrero, Balzarotti, Santos, Bringas (bib0440) 2015 Alam, Horspool, Traore, Sogukpinar (bib0025) 2015; 48 Bloom (bib0090) 1970; 13 CERT (bib0120) 2017 Al-Anezi (bib0015) 2014; 5 Kang, Poosankam, Yin (bib0215) 2007 Torralba, Murphy, Freeman, Rubin (bib0425) 2003 Conti, Dean, Sinda, Sangster (bib0135) 2008 Osaghae (bib0310) 2016; 5 Rassam, Maarof (bib0320) 2012; 3 Annachhatre, Austin, Stamp (bib0050) 2015; 11 Balakrishnan, Reps, Kidd, Lai, Lim (bib0060) 2005 OllyBonE (bib0305) 2007 You, Yim (bib0480) 2010 Ukkonen (bib0445) 1985; 6 Kruegel, Kirda (bib0230) 2005 McAfee (bib0255) 2017 Nguyen, Ogawa, Tho (bib0290) 2015 Aycock (bib0055) 2006 Clarke, Grumberg, Long (bib0130) 1999 Santos (10.1016/j.cose.2018.02.006_bib0345) 2011 Kinder (10.1016/j.cose.2018.02.006_bib0220) 2005 Alazab (10.1016/j.cose.2018.02.006_bib0030) 2015; 100 Ugarte-Pedrero (10.1016/j.cose.2018.02.006_bib0440) 2015 Nataraj (10.1016/j.cose.2018.02.006_bib0275) 2011 Nguyen (10.1016/j.cose.2018.02.006_bib0295) 2017 Rassam (10.1016/j.cose.2018.02.006_bib0320) 2012; 3 Bardin (10.1016/j.cose.2018.02.006_bib0070) 2011; vol. 6806 Filiol (10.1016/j.cose.2018.02.006_bib0145) 2006; 2 Aycock (10.1016/j.cose.2018.02.006_bib0055) 2006 Song (10.1016/j.cose.2018.02.006_bib0385) 2012 Balakrishnan (10.1016/j.cose.2018.02.006_bib0060) 2005 Batista (10.1016/j.cose.2018.02.006_bib0075) 2003 Cesare (10.1016/j.cose.2018.02.006_bib0110) 2013; 62 John (10.1016/j.cose.2018.02.006_bib0205) Song (10.1016/j.cose.2018.02.006_bib0395) 2014 Annachhatre (10.1016/j.cose.2018.02.006_bib0050) 2015; 11 Gheorghescu (10.1016/j.cose.2018.02.006_bib0160) 2005 Redmon (10.1016/j.cose.2018.02.006_bib0325) 2016 Le Cun (10.1016/j.cose.2018.02.006_bib0240) 1989 Kruegel (10.1016/j.cose.2018.02.006_bib0230) 2005 Nguyen (10.1016/j.cose.2018.02.006_bib9020) 2014; vol. 279 Oliva (10.1016/j.cose.2018.02.006_bib0300) 2001; 42 Afaneh (10.1016/j.cose.2018.02.006_bib0010) 2013; 13 McAfee (10.1016/j.cose.2018.02.006_bib0255) Royal (10.1016/j.cose.2018.02.006_bib0340) 2006 Conti (10.1016/j.cose.2018.02.006_bib0135) 2008 Osaghae (10.1016/j.cose.2018.02.006_bib0310) 2016; 5 You (10.1016/j.cose.2018.02.006_bib0480) 2010 OllyBonE (10.1016/j.cose.2018.02.006_bib0305) Shah (10.1016/j.cose.2018.02.006_bib0360) 2013; 84 Song (10.1016/j.cose.2018.02.006_bib0380) 2008 Holzmann (10.1016/j.cose.2018.02.006_bib0170) 1991 Al-Anezi (10.1016/j.cose.2018.02.006_bib0015) 2014; 5 Cesare (10.1016/j.cose.2018.02.006_bib0115) 2014; 11 Jenatton (10.1016/j.cose.2018.02.006_bib0195) 2012 CERT (10.1016/j.cose.2018.02.006_bib0120) Hinton (10.1016/j.cose.2018.02.006_bib0165) 1990; 46 Wojnowicz (10.1016/j.cose.2018.02.006_bib0455) 2017; 71 Nguyen (10.1016/j.cose.2018.02.006_bib0285) 2013; vol. 2 Ukkonen (10.1016/j.cose.2018.02.006_bib0445) 1985; 6 Chen (10.1016/j.cose.2018.02.006_bib9005) 2012 BitDefender (10.1016/j.cose.2018.02.006_bib0085) 2007 Torralba (10.1016/j.cose.2018.02.006_bib0425) 2003 Trinius (10.1016/j.cose.2018.02.006_bib0430) 2009 Roundy (10.1016/j.cose.2018.02.006_bib0335) 2013; 46 Saxe (10.1016/j.cose.2018.02.006_bib0355) 2012 Alam (10.1016/j.cose.2018.02.006_bib0025) 2015; 48 Kang (10.1016/j.cose.2018.02.006_bib0215) 2007 Nguyen (10.1016/j.cose.2018.02.006_bib0280) 2017 Izumida (10.1016/j.cose.2018.02.006_bib0190) 2010 Kinder (10.1016/j.cose.2018.02.006_bib0225) 2009 Szor (10.1016/j.cose.2018.02.006_bib0415) 2005 Baysa (10.1016/j.cose.2018.02.006_bib0080) 2013; 9 Bloom (10.1016/j.cose.2018.02.006_bib0090) 1970; 13 IDA Pro (10.1016/j.cose.2018.02.006_bib0180) Nappa (10.1016/j.cose.2018.02.006_bib0265) 2015; 14 Yan (10.1016/j.cose.2018.02.006_bib0470) 2008; 6 Al-Enezi (10.1016/j.cose.2018.02.006_bib0020) 2010; 3 Clarke (10.1016/j.cose.2018.02.006_bib0130) 1999 Nguyen (10.1016/j.cose.2018.02.006_bib0290) 2015 Anderson (10.1016/j.cose.2018.02.006_bib0045) 2012 Rijsbergen (10.1016/j.cose.2018.02.006_bib0330) 1979 |
References_xml | – year: 2017 ident: bib0295 article-title: Packer identification based on metadata signature – volume: 84 start-page: 17 year: 2013 end-page: 23 ident: bib0360 article-title: Virus detection using artificial neural networks publication-title: Int J Comput Appl – start-page: 1 year: 2008 end-page: 25 ident: bib0380 article-title: BitBlaze: A New Approach to Computer Security via Binary Analysis – start-page: 33 year: 2012 end-page: 40 ident: bib0355 article-title: Visualization of shared system call sequence relationships in large malware corpora – volume: 71 start-page: 301 year: 2017 end-page: 318 ident: bib0455 article-title: SUSPEND: determining software suspiciousness by non-stationary time series modeling of entropy signals publication-title: Expert Syst Appl – start-page: 294 year: 2005 end-page: 300 ident: bib0160 article-title: An automated virus classification system – volume: vol. 279 year: 2014 ident: bib9020 article-title: A combination of clonal selection algorithm and artificial neural networks for virus detection publication-title: Advances in computer science and its applications – start-page: 273 year: 2003 end-page: 280 ident: bib0425 article-title: Context-based vision system for place and object recognition – start-page: 261 year: 2012 end-page: 265 ident: bib9005 article-title: Multiple sequence alignment and artificial neural networks for malicious software detection publication-title: Proceedings of the 2012 eight international conference on natural computation – start-page: 297 year: 2010 end-page: 300 ident: bib0480 article-title: Malware obfuscation techniques: a brief survey – volume: 13 start-page: 239 year: 2013 end-page: 246 ident: bib0010 article-title: Virus detection using clonal selection algorithm with genetic algorithm (VDC Algorithm) publication-title: Appl Soft Comput – volume: 42 start-page: 145 year: 2001 end-page: 175 ident: bib0300 article-title: Modeling the shape of the scene: a holistic representation of the spatial envelope publication-title: Int J Comput Vis – start-page: 207 year: 2005 end-page: 226 ident: bib0230 article-title: Polymorphic worm detection using structural information of executable – volume: vol. 2 start-page: 159 year: 2013 end-page: 164 ident: bib0285 publication-title: A hybrid approach for control flow graph construction from binary code – start-page: 174 year: 2005 end-page: 187 ident: bib0220 article-title: Detecting Malicious Code by Model Checking – year: 1979 ident: bib0330 article-title: Information Retrieval – year: 2014 ident: bib0205 article-title: The Link between Pirated Software and Cybersecurity Breaches – volume: vol. 6806 start-page: 165 year: 2011 end-page: 170 ident: bib0070 publication-title: The BINCOA Framework for Binary Code Analysis – start-page: 214 year: 2009 end-page: 228 ident: bib0225 article-title: An Abstract Interpretation-Based Framework for Control Flow Reconstruction from Binaries – year: 2005 ident: bib0415 article-title: The art of computer virus research and defense – year: 1991 ident: bib0170 article-title: Design and validation of computer protocols – volume: 3 start-page: 118 year: 2010 end-page: 131 ident: bib0020 article-title: Artificial immune systems – models, algorithms and applications publication-title: Int J Res Rev Appl Sci – volume: 3 start-page: 147 year: 2012 end-page: 154 ident: bib0320 article-title: Artificial immune network clustering approach for anomaly intrusion detection publication-title: J Adv Inf Technol – volume: 46 start-page: 1 year: 2013 end-page: 4 ident: bib0335 article-title: Binary-code obfuscations in prevalent packer tools publication-title: ACM Comput Surv – volume: 5 start-page: 22 year: 2016 end-page: 25 ident: bib0310 article-title: Classifying packed programs as malicious software detected publication-title: J Inf Technol Electr Eng – year: 2017 ident: bib0255 article-title: The Good, the Bad, and the Unknown – volume: 5 start-page: 7 year: 2014 end-page: 14 ident: bib0015 article-title: Generic packing detection using several complexity analysis for accurate malware detection publication-title: Int J Adv Comput Sci – year: 2017 ident: bib0180 article-title: IDA: About – volume: 62 start-page: 1193 year: 2013 end-page: 1206 ident: bib0110 article-title: Malwise – an effective and efficient classification system for packed and polymorphic malware publication-title: IEEE Trans Comput – start-page: 3 year: 2012 end-page: 14 ident: bib0045 article-title: Improving malware classification: bridging the static/dynamic gap – volume: 6 start-page: 65 year: 2008 end-page: 69 ident: bib0470 article-title: Revealing packed malware publication-title: IEEE Secur Priv – volume: 48 start-page: 212 year: 2015 end-page: 233 ident: bib0025 article-title: A framework for metamorphic malware analysis and real-time detection publication-title: Comput Secur – start-page: 46 year: 2007 end-page: 53 ident: bib0215 article-title: Renovo: A Hidden Code Extractor for Packed Executables – volume: 100 start-page: 91 year: 2015 end-page: 102 ident: bib0030 article-title: Profiling and classifying the behavior of malicious codes publication-title: J Syst Softw – start-page: 1 year: 2008 end-page: 17 ident: bib0135 article-title: Visual reverse engineering of binary and data files – year: 1999 ident: bib0130 article-title: Model checking – start-page: 199 year: 2010 end-page: 216 ident: bib0190 article-title: A generic binary analysis method for malware – volume: 11 start-page: 307 year: 2014 end-page: 317 ident: bib0115 article-title: Control flow-based malware variant detection publication-title: IEEE Trans Dependable Secure Comput – year: 2007 ident: bib0085 article-title: Anti-virus Technology Whitepaper publication-title: Technical report – year: 2017 ident: bib0120 article-title: THE WANNACRY RANSOMWARE”, Whitepaper – year: 1989 ident: bib0240 article-title: Generalization and network design strategies”. Technical Report CRG-TR-89-4, University of Toronto Connectionist Research Group, June 1989 publication-title: Connectionism in perspective – year: 2006 ident: bib0055 article-title: Computer Viruses and Malware – volume: 9 start-page: 179 year: 2013 end-page: 192 ident: bib0080 article-title: Structural entropy and metamorphic malware publication-title: J Comput Virol Hack Tech – start-page: 35 year: 2003 end-page: 43 ident: bib0075 article-title: Balancing Training Data for Automated Annotation of Keywords: A Case Study – start-page: 23 year: 2011 end-page: 30 ident: bib0345 article-title: Collective classification for packed executable identification – start-page: 418 year: 2012 end-page: 433 ident: bib0385 article-title: Efficient malware detection using model-checking – start-page: 4 year: 2011 ident: bib0275 article-title: Malware images: visualization and automatic classification – year: 2017 ident: bib0280 article-title: Packer identification using hidden Markov model – volume: 6 start-page: 132 year: 1985 end-page: 137 ident: bib0445 article-title: Finding approximate patterns in strings publication-title: J Algorithms – volume: 46 start-page: 47 year: 1990 end-page: 75 ident: bib0165 article-title: Mapping part-whole hierarchies into connectionist networks publication-title: Artif Intel – start-page: 229 year: 2015 end-page: 247 ident: bib0290 article-title: Obfuscation code localization based on CFG Generation of Malware – start-page: 147 year: 2014 end-page: 173 ident: bib0395 article-title: Pushdown Model Checking for Malware Detection – volume: 11 start-page: 59 year: 2015 end-page: 73 ident: bib0050 article-title: Hidden Markov models for malware classification publication-title: J Comput Virol Hacking Tech – year: 2007 ident: bib0305 article-title: OllyBonE v0.1 – volume: 2 start-page: 35 year: 2006 end-page: 50 ident: bib0145 article-title: Malware pattern scanning schemes secure against black-box analysis publication-title: J Comput Virol – start-page: 659 year: 2015 end-page: 673 ident: bib0440 article-title: SoK: Deep Packer Inspection: A Longitudinal Study of the Complexity of Run-Time Packers – volume: 14 start-page: 15 year: 2015 end-page: 33 ident: bib0265 article-title: The MALICIA dataset: identification and analysis of drive-by download operations publication-title: J Int J Inf Secur – start-page: 158 year: 2005 end-page: 163 ident: bib0060 article-title: Model checking x86 executables with CodeSurfer/x86 and WPDS++ publication-title: Edinburgh, Scotland, UK – start-page: 33 year: 2009 end-page: 38 ident: bib0430 article-title: Visual analysis of malware behavior using treemaps and thread graphs – start-page: 289 year: 2006 end-page: 300 ident: bib0340 article-title: PolyUnpack: automating the hidden-code extraction of unpack-executing malware – volume: 13 start-page: 422 year: 1970 end-page: 426 ident: bib0090 article-title: Space/time trade-offs in hash coding with allowable errors publication-title: Commun ACM – start-page: 3176 year: 2012 end-page: 3184 ident: bib0195 article-title: A latent factor model for highly multi-relational data – year: 2016 ident: bib0325 article-title: You only look once: unified, real-time object detection – ident: 10.1016/j.cose.2018.02.006_bib0305 – ident: 10.1016/j.cose.2018.02.006_bib0120 – volume: 84 start-page: 17 issue: Issue: 5 year: 2013 ident: 10.1016/j.cose.2018.02.006_bib0360 article-title: Virus detection using artificial neural networks publication-title: Int J Comput Appl – start-page: 294 year: 2005 ident: 10.1016/j.cose.2018.02.006_bib0160 – start-page: 207 year: 2005 ident: 10.1016/j.cose.2018.02.006_bib0230 – volume: vol. 2 start-page: 159 year: 2013 ident: 10.1016/j.cose.2018.02.006_bib0285 – start-page: 418 year: 2012 ident: 10.1016/j.cose.2018.02.006_bib0385 – start-page: 4 year: 2011 ident: 10.1016/j.cose.2018.02.006_bib0275 – volume: 71 start-page: 301 year: 2017 ident: 10.1016/j.cose.2018.02.006_bib0455 article-title: SUSPEND: determining software suspiciousness by non-stationary time series modeling of entropy signals publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.11.027 – volume: vol. 6806 start-page: 165 year: 2011 ident: 10.1016/j.cose.2018.02.006_bib0070 – volume: 62 start-page: 1193 issue: 6 year: 2013 ident: 10.1016/j.cose.2018.02.006_bib0110 article-title: Malwise – an effective and efficient classification system for packed and polymorphic malware publication-title: IEEE Trans Comput doi: 10.1109/TC.2012.65 – start-page: 214 year: 2009 ident: 10.1016/j.cose.2018.02.006_bib0225 – start-page: 158 year: 2005 ident: 10.1016/j.cose.2018.02.006_bib0060 article-title: Model checking x86 executables with CodeSurfer/x86 and WPDS++ – volume: 13 start-page: 239 issue: Issue: 1 year: 2013 ident: 10.1016/j.cose.2018.02.006_bib0010 article-title: Virus detection using clonal selection algorithm with genetic algorithm (VDC Algorithm) publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.08.034 – start-page: 147 year: 2014 ident: 10.1016/j.cose.2018.02.006_bib0395 – start-page: 659 year: 2015 ident: 10.1016/j.cose.2018.02.006_bib0440 – volume: 11 start-page: 307 year: 2014 ident: 10.1016/j.cose.2018.02.006_bib0115 article-title: Control flow-based malware variant detection publication-title: IEEE Trans Dependable Secure Comput doi: 10.1109/TDSC.2013.40 – volume: 5 start-page: 22 year: 2016 ident: 10.1016/j.cose.2018.02.006_bib0310 article-title: Classifying packed programs as malicious software detected publication-title: J Inf Technol Electr Eng – year: 2017 ident: 10.1016/j.cose.2018.02.006_bib0280 – volume: 3 start-page: 147 year: 2012 ident: 10.1016/j.cose.2018.02.006_bib0320 article-title: Artificial immune network clustering approach for anomaly intrusion detection publication-title: J Adv Inf Technol – volume: 6 start-page: 132 issue: 1 year: 1985 ident: 10.1016/j.cose.2018.02.006_bib0445 article-title: Finding approximate patterns in strings publication-title: J Algorithms doi: 10.1016/0196-6774(85)90023-9 – year: 1979 ident: 10.1016/j.cose.2018.02.006_bib0330 – ident: 10.1016/j.cose.2018.02.006_bib0255 – start-page: 229 year: 2015 ident: 10.1016/j.cose.2018.02.006_bib0290 – start-page: 33 year: 2009 ident: 10.1016/j.cose.2018.02.006_bib0430 – year: 2016 ident: 10.1016/j.cose.2018.02.006_bib0325 – start-page: 297 year: 2010 ident: 10.1016/j.cose.2018.02.006_bib0480 – year: 2017 ident: 10.1016/j.cose.2018.02.006_bib0295 – start-page: 199 year: 2010 ident: 10.1016/j.cose.2018.02.006_bib0190 – start-page: 3 year: 2012 ident: 10.1016/j.cose.2018.02.006_bib0045 – volume: 14 start-page: 15 year: 2015 ident: 10.1016/j.cose.2018.02.006_bib0265 article-title: The MALICIA dataset: identification and analysis of drive-by download operations publication-title: J Int J Inf Secur doi: 10.1007/s10207-014-0248-7 – volume: 2 start-page: 35 year: 2006 ident: 10.1016/j.cose.2018.02.006_bib0145 article-title: Malware pattern scanning schemes secure against black-box analysis publication-title: J Comput Virol doi: 10.1007/s11416-006-0009-x – ident: 10.1016/j.cose.2018.02.006_bib0205 – year: 2007 ident: 10.1016/j.cose.2018.02.006_bib0085 article-title: Anti-virus Technology Whitepaper – volume: 100 start-page: 91 year: 2015 ident: 10.1016/j.cose.2018.02.006_bib0030 article-title: Profiling and classifying the behavior of malicious codes publication-title: J Syst Softw doi: 10.1016/j.jss.2014.10.031 – volume: 9 start-page: 179 year: 2013 ident: 10.1016/j.cose.2018.02.006_bib0080 article-title: Structural entropy and metamorphic malware publication-title: J Comput Virol Hack Tech doi: 10.1007/s11416-013-0185-4 – start-page: 1 year: 2008 ident: 10.1016/j.cose.2018.02.006_bib0135 – start-page: 273 year: 2003 ident: 10.1016/j.cose.2018.02.006_bib0425 – volume: 5 start-page: 7 issue: 1 year: 2014 ident: 10.1016/j.cose.2018.02.006_bib0015 article-title: Generic packing detection using several complexity analysis for accurate malware detection publication-title: Int J Adv Comput Sci – volume: 3 start-page: 118 issue: Issue: 2 year: 2010 ident: 10.1016/j.cose.2018.02.006_bib0020 article-title: Artificial immune systems – models, algorithms and applications publication-title: Int J Res Rev Appl Sci – start-page: 174 year: 2005 ident: 10.1016/j.cose.2018.02.006_bib0220 – start-page: 261 year: 2012 ident: 10.1016/j.cose.2018.02.006_bib9005 article-title: Multiple sequence alignment and artificial neural networks for malicious software detection – volume: 46 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.cose.2018.02.006_bib0335 article-title: Binary-code obfuscations in prevalent packer tools publication-title: ACM Comput Surv doi: 10.1145/2522968.2522972 – start-page: 35 year: 2003 ident: 10.1016/j.cose.2018.02.006_bib0075 – year: 1991 ident: 10.1016/j.cose.2018.02.006_bib0170 – volume: vol. 279 year: 2014 ident: 10.1016/j.cose.2018.02.006_bib9020 article-title: A combination of clonal selection algorithm and artificial neural networks for virus detection – start-page: 33 year: 2012 ident: 10.1016/j.cose.2018.02.006_bib0355 – start-page: 23 year: 2011 ident: 10.1016/j.cose.2018.02.006_bib0345 – year: 2006 ident: 10.1016/j.cose.2018.02.006_bib0055 – year: 1989 ident: 10.1016/j.cose.2018.02.006_bib0240 article-title: Generalization and network design strategies”. Technical Report CRG-TR-89-4, University of Toronto Connectionist Research Group, June 1989 – start-page: 3176 year: 2012 ident: 10.1016/j.cose.2018.02.006_bib0195 – year: 1999 ident: 10.1016/j.cose.2018.02.006_bib0130 – start-page: 1 year: 2008 ident: 10.1016/j.cose.2018.02.006_bib0380 – volume: 48 start-page: 212 year: 2015 ident: 10.1016/j.cose.2018.02.006_bib0025 article-title: A framework for metamorphic malware analysis and real-time detection publication-title: Comput Secur doi: 10.1016/j.cose.2014.10.011 – volume: 13 start-page: 422 issue: 7 year: 1970 ident: 10.1016/j.cose.2018.02.006_bib0090 article-title: Space/time trade-offs in hash coding with allowable errors publication-title: Commun ACM doi: 10.1145/362686.362692 – volume: 11 start-page: 59 issue: 2 year: 2015 ident: 10.1016/j.cose.2018.02.006_bib0050 article-title: Hidden Markov models for malware classification publication-title: J Comput Virol Hacking Tech doi: 10.1007/s11416-014-0215-x – volume: 6 start-page: 65 issue: Issue: 5 year: 2008 ident: 10.1016/j.cose.2018.02.006_bib0470 article-title: Revealing packed malware publication-title: IEEE Secur Priv doi: 10.1109/MSP.2008.126 – ident: 10.1016/j.cose.2018.02.006_bib0180 – volume: 42 start-page: 145 issue: 3 year: 2001 ident: 10.1016/j.cose.2018.02.006_bib0300 article-title: Modeling the shape of the scene: a holistic representation of the spatial envelope publication-title: Int J Comput Vis doi: 10.1023/A:1011139631724 – start-page: 46 year: 2007 ident: 10.1016/j.cose.2018.02.006_bib0215 – volume: 46 start-page: 47 issue: 1–2 year: 1990 ident: 10.1016/j.cose.2018.02.006_bib0165 article-title: Mapping part-whole hierarchies into connectionist networks publication-title: Artif Intel doi: 10.1016/0004-3702(90)90004-J – year: 2005 ident: 10.1016/j.cose.2018.02.006_bib0415 – start-page: 289 year: 2006 ident: 10.1016/j.cose.2018.02.006_bib0340 |
SSID | ssj0017688 |
Score | 2.438509 |
Snippet | To date, industrial antivirus tools are mostly using signature-based methods to detect malware occurrences. However, sophisticated malware, such as metamorphic... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 128 |
SubjectTerms | Anti-virus software Binary-based control Computer programming Computer viruses Deep learning Dynamically executed contents Flow graph Graphical representations Image classification Lazy-binding CFG Learning Malware Metamorphic virus Mutation Packing techniques Polymorphic virus Program verification (computers) Software Studies |
Title | Auto-detection of sophisticated malware using lazy-binding control flow graph and deep learning |
URI | https://dx.doi.org/10.1016/j.cose.2018.02.006 https://www.proquest.com/docview/2094500348 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fh9V9uBNYjfJZrM5lmKpir1owduyr5RKTUtNKXrwt7uTbAoKevCYZCeEmdmZCfvNNwhd5oya3Og8MLnOAsosD6QJWaClIdZYzpiE5uSHIRuM6N1z8txCvaYXBmCVPvbXMb2K1v5Ox2uzM59MOo8VgB7oTnhMAKwDHew0BS-__lzDPEJXTvM1v7db7RtnaowXYMIB3sVr3k72W3L6Eaar3NPfRdu-aMTd-rv2UMsW-2inGciA_f48QKK7LGeBsWWFryrwLMcwpaDiYnY1pcGvcrqSC4sB7T7GU_nxDn_GkL6wx6zjfDpb4YrGGsvCYGPtHPvREuNDNOrfPPUGgZ-gEOg44mUgaWyI5JwayTNNU5sZFcdhzHLFnTU0S0IFZ2tEKaYJyUlCVJTEqQmTVKqUx0doo5gV9hjhCHI7iHCmqM5kFhmjiZQuIrBUS36CwkZ1Qnt6cZhyMRUNjuxFgLoFqFuQSDh1n6Crtcy8Jtf4c3XSWER8cxHhov-fcu3GfMJv0Df3PKMJkPPw03--9gxtwVUN3W2jjXKxtOeuQCnVReWBF2ize3s_GH4BlDbnNg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DLDwRpSnBzYU6iSO44wIgcqjXQCJzfIrFSikVQlCMPDb8SVOJZDowBr7rOjO94jy3XcIHeeMmtzoPDC5zgLKLA-kCVmgpSHWWM6YhObk_oD1Huj1Y_I4h87bXhiAVfrY38T0Olr7J12vze746al7VwPoge6ExwTAOvNokTr3hTEGp19TnEfo6mk-Jfh2233nTAPyAlA44Lt4Q9zJ_spOv-J0nXwu19CKrxrxWfNi62jOlhtotZ3IgL2DbiJx9laNAmOrGmBV4lGOYUxBTcbsikqDX2TxLicWA9x9iAv5-QGfxpC_sAet47wYveOaxxrL0mBj7Rj72RLDLfRweXF_3gv8CIVAxxGvAkljQyTn1EieaZrazKg4DmOWK-7MoVkSKvi5RpRimpCcJERFSZyaMEmlSnm8jRbKUWl3EI4guYMIZ4rqTGaRMZpI6UICS7XkHRS2qhPa84vDmItCtECyZwHqFqBuQSLh1N1BJ1OZccOuMXN30lpE_LgjwoX_mXL7rfmE99BXt57RBNh5-O4_jz1CS737_q24vRrc7KFlWGlwvPtooZq82QNXrVTqsL6N3-0w6MQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Auto-detection+of+sophisticated+malware+using+lazy-binding+control+flow+graph+and+deep+learning&rft.jtitle=Computers+%26+security&rft.au=Nguyen%2C+Minh+Hai&rft.au=Nguyen%2C+Dung+Le&rft.au=Nguyen%2C+Xuan+Mao&rft.au=Quan%2C+Tho+Thanh&rft.date=2018-07-01&rft.pub=Elsevier+Sequoia+S.A&rft.issn=0167-4048&rft.eissn=1872-6208&rft.volume=76&rft.spage=128&rft_id=info:doi/10.1016%2Fj.cose.2018.02.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4048&client=summon |