Unsupervised multi-subepoch feature learning and hierarchical classification for EEG-based sleep staging
As the medium of developing brain–computer interface system, the recognition of EEG signals is complicated and difficult due to the complex nonstationary characteristics and the individual difference between subjects. In this paper, we investigate the EEG signal classification problem and propose a...
Saved in:
Published in | Expert systems with applications Vol. 186; p. 115759 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
30.12.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 1873-6793 |
DOI | 10.1016/j.eswa.2021.115759 |
Cover
Abstract | As the medium of developing brain–computer interface system, the recognition of EEG signals is complicated and difficult due to the complex nonstationary characteristics and the individual difference between subjects. In this paper, we investigate the EEG signal classification problem and propose a novel unsupervised multi-subepoch feature learning and hierarchical classification method for automatic sleep staging. First, we divide the EEG epoch into multiple signal subepochs, and each subepoch is mapped to amplitude axis and time axis respectively to obtain two kinds of feature information with amplitude–time dynamic characteristics. Then, the statistical classification features are extracted from the mapped feature information. Furthermore, we conduct unsupervised feature learning for consistent and specific classification features from the perspective of time series. Finally, according to the differences and similarities of EEG signals in different sleep stages, a hierarchical weighted support vector machine-based classification model (H-WSVM) is established, which can use different feature subsets at each classification level and different weighting parameters for unbalanced data samples. To select the optimal feature subset for detecting each sleep stage, we propose a novel evaluation criterion for feature classification ability based on rough set theory. Experimental results on the most commonly used dataset show that the proposed method has better sleep staging performance and can effectively promote the development and application of EEG sleep staging system.
•An unsupervised feature learning method is proposed to extract EEG features.•A hierarchical classification model is established for EEG-based sleep staging.•A novel feature evaluation criterion is presented for feature subset selecting.•Extensive experiments are conducted to evaluate the proposed method. |
---|---|
AbstractList | As the medium of developing brain–computer interface system, the recognition of EEG signals is complicated and difficult due to the complex nonstationary characteristics and the individual difference between subjects. In this paper, we investigate the EEG signal classification problem and propose a novel unsupervised multi-subepoch feature learning and hierarchical classification method for automatic sleep staging. First, we divide the EEG epoch into multiple signal subepochs, and each subepoch is mapped to amplitude axis and time axis respectively to obtain two kinds of feature information with amplitude–time dynamic characteristics. Then, the statistical classification features are extracted from the mapped feature information. Furthermore, we conduct unsupervised feature learning for consistent and specific classification features from the perspective of time series. Finally, according to the differences and similarities of EEG signals in different sleep stages, a hierarchical weighted support vector machine-based classification model (H-WSVM) is established, which can use different feature subsets at each classification level and different weighting parameters for unbalanced data samples. To select the optimal feature subset for detecting each sleep stage, we propose a novel evaluation criterion for feature classification ability based on rough set theory. Experimental results on the most commonly used dataset show that the proposed method has better sleep staging performance and can effectively promote the development and application of EEG sleep staging system.
•An unsupervised feature learning method is proposed to extract EEG features.•A hierarchical classification model is established for EEG-based sleep staging.•A novel feature evaluation criterion is presented for feature subset selecting.•Extensive experiments are conducted to evaluate the proposed method. As the medium of developing brain–computer interface system, the recognition of EEG signals is complicated and difficult due to the complex nonstationary characteristics and the individual difference between subjects. In this paper, we investigate the EEG signal classification problem and propose a novel unsupervised multi-subepoch feature learning and hierarchical classification method for automatic sleep staging. First, we divide the EEG epoch into multiple signal subepochs, and each subepoch is mapped to amplitude axis and time axis respectively to obtain two kinds of feature information with amplitude–time dynamic characteristics. Then, the statistical classification features are extracted from the mapped feature information. Furthermore, we conduct unsupervised feature learning for consistent and specific classification features from the perspective of time series. Finally, according to the differences and similarities of EEG signals in different sleep stages, a hierarchical weighted support vector machine-based classification model (H-WSVM) is established, which can use different feature subsets at each classification level and different weighting parameters for unbalanced data samples. To select the optimal feature subset for detecting each sleep stage, we propose a novel evaluation criterion for feature classification ability based on rough set theory. Experimental results on the most commonly used dataset show that the proposed method has better sleep staging performance and can effectively promote the development and application of EEG sleep staging system. |
ArticleNumber | 115759 |
Author | Zhao, Jianhui An, Panfeng Yuan, Zhiyong |
Author_xml | – sequence: 1 givenname: Panfeng surname: An fullname: An, Panfeng email: panfengan@whu.edu.cn – sequence: 2 givenname: Zhiyong orcidid: 0000-0001-9608-6037 surname: Yuan fullname: Yuan, Zhiyong email: zhiyongyuan@whu.edu.cn – sequence: 3 givenname: Jianhui surname: Zhao fullname: Zhao, Jianhui email: jianhuizhao@whu.edu.cn |
BookMark | eNp9kE1LJDEQhoMoOLr-AU8Bzz2b6q90wIvI6C4Ie1nPIV2pdjK06TZJK_57M44nDx6KqkM9b1HPGTv2kyfGLkGsQUD7e7em-GbWpShhDdDIRh2xFXSyKlqpqmO2EqqRRQ2yPmVnMe6EACmEXLHto4_LTOHVRbL8eRmTK-LS0zzhlg9k0hKIj2SCd_6JG2_51lEwAbcOzchxNDG6Ic_JTZ4PU-CbzX3Rm31aHIlmHpN5yuwvdjKYMdLFVz9nj3eb_7d_iod_939vbx4KrMouFcpatBX2bd10DUAFrbQwVK2qLVEuVXZDWXdoGolCGlQ99mSrtgcUnQBVnbOrQ-4cppeFYtK7aQk-n9RloxRAm1PzVnnYwjDFGGjQc3DPJrxrEHpvVO_03qjeG9UHoxnqvkHo0ufjKRg3_oxeH1DKr79mgzqiI49kXSBM2k7uJ_wD4jCVcg |
CitedBy_id | crossref_primary_10_3390_info16030208 crossref_primary_10_1109_JSEN_2022_3155345 crossref_primary_10_1016_j_eswa_2023_122549 crossref_primary_10_32604_csse_2023_026482 crossref_primary_10_3389_fnins_2021_780373 crossref_primary_10_1109_JBHI_2024_3357168 crossref_primary_10_3389_fnins_2022_1088116 crossref_primary_10_1016_j_knosys_2022_110179 crossref_primary_10_1109_TNNLS_2022_3210384 crossref_primary_10_1109_TNSRE_2022_3173994 crossref_primary_10_3390_bioengineering10050573 crossref_primary_10_3390_electronics12224697 |
Cites_doi | 10.1016/j.eswa.2011.08.022 10.1016/j.bspc.2021.102581 10.1109/JBHI.2020.2978004 10.1016/j.jneumeth.2019.108320 10.1109/TNSRE.2017.2776149 10.1016/j.bspc.2015.09.002 10.1016/j.neucom.2016.09.011 10.1016/j.ijpsycho.2005.05.004 10.1016/j.medengphy.2013.07.011 10.1016/j.cmpb.2021.106091 10.1016/j.eswa.2018.12.023 10.1016/j.physa.2020.125685 10.1109/TCDS.2016.2555952 10.1109/JBHI.2014.2303991 10.1016/j.bspc.2018.10.001 10.1161/01.CIR.101.23.e215 10.3390/app10248963 10.1016/j.jneumeth.2019.108312 10.1007/s10916-014-0018-0 10.1016/j.cmpb.2021.106063 10.1016/j.cmpb.2016.12.004 10.1016/j.knosys.2020.106020 10.1016/j.eswa.2016.07.004 10.1016/j.bspc.2017.06.017 10.1016/j.bspc.2013.12.003 10.1016/j.compbiomed.2019.01.013 10.1016/j.neucom.2016.04.049 10.1109/TIM.2017.2775358 10.1016/j.bspc.2020.102037 10.1109/TIM.2012.2187242 10.1109/TBME.2018.2872652 10.1109/JBHI.2017.2668993 10.1007/s11042-017-4458-7 10.1016/j.eswa.2017.09.062 10.1109/TNSRE.2017.2721116 10.1109/TBME.2017.2702123 10.1109/TCDS.2017.2777180 10.1016/j.smrv.2011.06.003 10.1016/j.bspc.2016.06.006 10.1007/s11517-016-1519-4 10.3390/s20226592 10.1109/TBCAS.2017.2719631 10.1007/s13534-018-00093-6 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Dec 30, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Dec 30, 2021 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2021.115759 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
ExternalDocumentID | 10_1016_j_eswa_2021_115759 S0957417421011337 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ XPP ZMT 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c328t-9ddcd3cb64585113167d1f3694dee4de928f248ca57c07ac9bcbed36b1c080193 |
IEDL.DBID | AIKHN |
ISSN | 0957-4174 |
IngestDate | Fri Jul 25 01:35:31 EDT 2025 Tue Jul 01 04:05:55 EDT 2025 Thu Apr 24 23:07:42 EDT 2025 Fri Feb 23 02:40:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Unsupervised feature learning Hierarchical classification EEG H-WSVM Sleep staging |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-9ddcd3cb64585113167d1f3694dee4de928f248ca57c07ac9bcbed36b1c080193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9608-6037 |
PQID | 2599116113 |
PQPubID | 2045477 |
ParticipantIDs | proquest_journals_2599116113 crossref_primary_10_1016_j_eswa_2021_115759 crossref_citationtrail_10_1016_j_eswa_2021_115759 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115759 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-30 |
PublicationDateYYYYMMDD | 2021-12-30 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Expert systems with applications |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Wang, Zhang, Ma, Huang, Hong (b46) 2019 Yang, Zhu, Liu, Liu (b48) 2021; 68 Corsi-Cabrera, Munoz-Torres, del Río-Portilla, Guevara (b8) 2006; 60 Liu, Tan, Fu, Li, Wang, Hou (b27) 2021; 567 Motamedi-Fakhr, Moshrefi-Torbati, Hill, Hill, White (b33) 2014; 10 Yan, Zhang, Spruyt, Wei, Wang, Tian (b47) 2019; 49 Memar, Faradji (b31) 2018; 26 Cai, Gao, An, Gao, Grebogi (b4) 2020 Kang, DeYoung, Malhotra, Owens, Coleman (b19) 2017; 65 Peker (b36) 2016; 207 Sokolovsky, Guerrero, Paisarnsrisomsuk, Ruiz, Alvarez (b42) 2019 Zhu, Li, Wen (b50) 2014; 18 Adnane, Jiang, Yan (b1) 2012; 39 Qu, Wang, Hong, Chi, Feng, Grunstein (b38) 2020; 24 Li, Cui, Tao, Chen, Zhang, Zhang (b21) 2017; 22 Phan, Andreotti, Cooray, Chén, De Vos (b37) 2018; 66 Tabar, Mikkelsen, Rank, Hemmsen, Kidmose (b45) 2021; 205 Liu, Sun (b25) 2017; 45 Boostani, Karimzadeh, Nami (b2) 2017; 140 Liang, Kuo, Hu, Pan, Wang (b23) 2012; 61 Correa, Orosco, Laciar (b7) 2014; 36 Michielli, Acharya, Molinari (b32) 2019; 106 Hassan, Bhuiyan (b16) 2016; 24 Ronzhina, Janoušek, Kolářová, Nováková, Honzík, Provazník (b39) 2012; 16 Memar, Faradji (b30) 2017; 26 Fernandez-Blanco, Rivero, Pazos (b12) 2019 Du, Zhang, Luo, Ma, Ma, Li (b11) 2020; 200 Bose, Wang, Dragomir, Thakor, Bezerianos, Li (b3) 2019 Szczuko (b44) 2017; 76 Casson (b5) 2019; 9 Gaxiola-Tirado, Salazar-Varas, Gutiérrez (b13) 2017; 10 Zhang, Wu (b49) 2017; 11 da Silveira, Kozakevicius, Rodrigues (b41) 2017; 55 Maddirala, Shaik (b29) 2017; 67 Diykh, Li (b10) 2016; 63 Lim, Nisar, Thee, Yap (b24) 2018; 40 Liu, Sun, Zhang, Rolfe (b26) 2016; 30 Li, Wang, Zhang, Cichocki, Jung (b22) 2016; 8 Şen, Peker, Çavuşoğlu, Çelebi (b9) 2014; 38 Khalili, Asl (b20) 2021; 204 Hassan, Bhuiyan (b17) 2017; 219 Jiang, Lu, Yu, Yuanyuan (b18) 2019; 121 Nakisa, Rastgoo, Tjondronegoro, Chandran (b35) 2018; 93 Supratak, Dong, Wu, Guo (b43) 2017; 25 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark (b15) 2000; 101 Chriskos, Frantzidis, Gkivogkli, Bamidis, Kourtidou-Papadeli (b6) 2019 Ghimatgar, Kazemi, Helfroush, Aarabi (b14) 2019 Loh, Ooi, Vicnesh, Oh, Faust, Gertych (b28) 2020; 10 Mousavi, Rezaii, Sheykhivand, Farzamnia, Razavi (b34) 2019; 324 Seo, Back, Lee, Park, Kim, Lee (b40) 2020; 61 Zhu, Luo, Yu (b51) 2020; 20 Fernandez-Blanco (10.1016/j.eswa.2021.115759_b12) 2019 Hassan (10.1016/j.eswa.2021.115759_b17) 2017; 219 Maddirala (10.1016/j.eswa.2021.115759_b29) 2017; 67 Szczuko (10.1016/j.eswa.2021.115759_b44) 2017; 76 Peker (10.1016/j.eswa.2021.115759_b36) 2016; 207 da Silveira (10.1016/j.eswa.2021.115759_b41) 2017; 55 Hassan (10.1016/j.eswa.2021.115759_b16) 2016; 24 Goldberger (10.1016/j.eswa.2021.115759_b15) 2000; 101 Liu (10.1016/j.eswa.2021.115759_b26) 2016; 30 Yang (10.1016/j.eswa.2021.115759_b48) 2021; 68 Memar (10.1016/j.eswa.2021.115759_b30) 2017; 26 Motamedi-Fakhr (10.1016/j.eswa.2021.115759_b33) 2014; 10 Seo (10.1016/j.eswa.2021.115759_b40) 2020; 61 Li (10.1016/j.eswa.2021.115759_b21) 2017; 22 Du (10.1016/j.eswa.2021.115759_b11) 2020; 200 Phan (10.1016/j.eswa.2021.115759_b37) 2018; 66 Zhu (10.1016/j.eswa.2021.115759_b50) 2014; 18 Bose (10.1016/j.eswa.2021.115759_b3) 2019 Kang (10.1016/j.eswa.2021.115759_b19) 2017; 65 Şen (10.1016/j.eswa.2021.115759_b9) 2014; 38 Nakisa (10.1016/j.eswa.2021.115759_b35) 2018; 93 Sokolovsky (10.1016/j.eswa.2021.115759_b42) 2019 Zhu (10.1016/j.eswa.2021.115759_b51) 2020; 20 Mousavi (10.1016/j.eswa.2021.115759_b34) 2019; 324 Khalili (10.1016/j.eswa.2021.115759_b20) 2021; 204 Michielli (10.1016/j.eswa.2021.115759_b32) 2019; 106 Supratak (10.1016/j.eswa.2021.115759_b43) 2017; 25 Wang (10.1016/j.eswa.2021.115759_b46) 2019 Zhang (10.1016/j.eswa.2021.115759_b49) 2017; 11 Boostani (10.1016/j.eswa.2021.115759_b2) 2017; 140 Yan (10.1016/j.eswa.2021.115759_b47) 2019; 49 Lim (10.1016/j.eswa.2021.115759_b24) 2018; 40 Ronzhina (10.1016/j.eswa.2021.115759_b39) 2012; 16 Adnane (10.1016/j.eswa.2021.115759_b1) 2012; 39 Liu (10.1016/j.eswa.2021.115759_b27) 2021; 567 Liu (10.1016/j.eswa.2021.115759_b25) 2017; 45 Memar (10.1016/j.eswa.2021.115759_b31) 2018; 26 Li (10.1016/j.eswa.2021.115759_b22) 2016; 8 Gaxiola-Tirado (10.1016/j.eswa.2021.115759_b13) 2017; 10 Diykh (10.1016/j.eswa.2021.115759_b10) 2016; 63 Jiang (10.1016/j.eswa.2021.115759_b18) 2019; 121 Qu (10.1016/j.eswa.2021.115759_b38) 2020; 24 Corsi-Cabrera (10.1016/j.eswa.2021.115759_b8) 2006; 60 Tabar (10.1016/j.eswa.2021.115759_b45) 2021; 205 Chriskos (10.1016/j.eswa.2021.115759_b6) 2019 Ghimatgar (10.1016/j.eswa.2021.115759_b14) 2019 Liang (10.1016/j.eswa.2021.115759_b23) 2012; 61 Correa (10.1016/j.eswa.2021.115759_b7) 2014; 36 Cai (10.1016/j.eswa.2021.115759_b4) 2020 Loh (10.1016/j.eswa.2021.115759_b28) 2020; 10 Casson (10.1016/j.eswa.2021.115759_b5) 2019; 9 |
References_xml | – volume: 10 start-page: 8963 year: 2020 ident: b28 article-title: Automated detection of sleep stages using deep learning techniques: A systematic review of the last decade (2010–2020) publication-title: Applied Sciences – volume: 38 start-page: 18 year: 2014 ident: b9 article-title: A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms publication-title: Journal of Medical Systems – volume: 63 start-page: 241 year: 2016 end-page: 248 ident: b10 article-title: Complex networks approach for EEG signal sleep stages classification publication-title: Expert Systems with Applications – volume: 65 start-page: 1201 year: 2017 end-page: 1212 ident: b19 article-title: A state space and density estimation framework for sleep staging in obstructive sleep apnea publication-title: IEEE Transactions on Biomedical Engineering – volume: 200 year: 2020 ident: b11 article-title: Joint imbalanced classification and feature selection for hospital readmissions publication-title: Knowledge-Based Systems – volume: 76 start-page: 25697 year: 2017 end-page: 25711 ident: b44 article-title: Real and imaginary motion classification based on rough set analysis of EEG signals for multimedia applications publication-title: Multimedia Tools and Applications – volume: 205 year: 2021 ident: b45 article-title: Investigation of low dimensional feature spaces for automatic sleep staging publication-title: Computer Methods and Programs in Biomedicine – volume: 204 year: 2021 ident: b20 article-title: Automatic sleep stage classification using temporal convolutional neural network and new data augmentation technique from raw single-channel EEG publication-title: Computer Methods and Programs in Biomedicine – volume: 40 start-page: 488 year: 2018 end-page: 504 ident: b24 article-title: A novel method for tracking and analysis of EEG activation across brain lobes publication-title: Biomedical Signal Processing and Control – year: 2020 ident: b4 article-title: A graph-temporal fused dual-input convolutional neural network for detecting sleep stages from EEG signals publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs – volume: 567 year: 2021 ident: b27 article-title: Automatic sleep staging with a single-channel EEG based on ensemble empirical mode decomposition publication-title: Physica A: Statistical Mechanics and its Applications – volume: 55 start-page: 343 year: 2017 end-page: 352 ident: b41 article-title: Single-channel EEG sleep stage classification based on a streamlined set of statistical features in wavelet domain publication-title: Medical & Biological Engineering & Computing – volume: 106 start-page: 71 year: 2019 end-page: 81 ident: b32 article-title: Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals publication-title: Computers in Biology and Medicine – volume: 93 start-page: 143 year: 2018 end-page: 155 ident: b35 article-title: Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors publication-title: Expert Systems with Applications – start-page: 121 year: 2019 end-page: 133 ident: b46 article-title: Deep learning for single-channel EEG signals sleep stage scoring based on frequency domain representation publication-title: International conference on health information science – volume: 26 start-page: 84 year: 2018 end-page: 95 ident: b31 article-title: A novel multi-class EEG-based sleep stage classification system publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 36 start-page: 244 year: 2014 end-page: 249 ident: b7 article-title: Automatic detection of drowsiness in EEG records based on multimodal analysis publication-title: Medical Engineering & Physics – volume: 24 start-page: 2833 year: 2020 end-page: 2843 ident: b38 article-title: A residual based attention model for eeg based sleep staging publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 61 year: 2020 ident: b40 article-title: Intra-and inter-epoch temporal context network (IITNet) using sub-epoch features for automatic sleep scoring on raw single-channel EEG publication-title: Biomedical Signal Processing and Control – year: 2019 ident: b14 article-title: An automatic single-channel EEG-based sleep stage scoring method based on hidden Markov model publication-title: Journal of Neuroscience Methods – year: 2019 ident: b3 article-title: Regression based continuous driving fatigue estimation: Towards practical implementation publication-title: IEEE Transactions on Cognitive and Developmental Systems – volume: 60 start-page: 59 year: 2006 end-page: 66 ident: b8 article-title: Power and coherent oscillations distinguish REM sleep, stage 1 and wakefulness publication-title: International Journal of Psychophysiology – volume: 22 start-page: 375 year: 2017 end-page: 385 ident: b21 article-title: Hyclasss: A hybrid classifier for automatic sleep stage scoring publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 9 start-page: 53 year: 2019 end-page: 71 ident: b5 article-title: Wearable EEG and beyond publication-title: Biomedical Engineering Letters – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: b15 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation – volume: 24 start-page: 1 year: 2016 end-page: 10 ident: b16 article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating publication-title: Biomedical Signal Processing and Control – volume: 10 start-page: 776 year: 2017 end-page: 783 ident: b13 article-title: Using the partial directed coherence to assess functional connectivity in electroencephalography data for brain–computer interfaces publication-title: IEEE Transactions on Cognitive and Developmental Systems – volume: 66 start-page: 1285 year: 2018 end-page: 1296 ident: b37 article-title: Joint classification and prediction CNN framework for automatic sleep stage classification publication-title: IEEE Transactions on Biomedical Engineering – volume: 61 start-page: 1649 year: 2012 end-page: 1657 ident: b23 article-title: Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 324 year: 2019 ident: b34 article-title: Deep convolutional neural network for classification of sleep stages from single-channel EEG signals publication-title: Journal of Neuroscience Methods – volume: 68 year: 2021 ident: b48 article-title: A single-channel EEG based automatic sleep stage classification method leveraging deep one-dimensional convolutional neural network and hidden Markov model publication-title: Biomedical Signal Processing and Control – volume: 20 start-page: 6592 year: 2020 ident: b51 article-title: Multi-branch convolutional neural network for automatic sleep stage classification with embedded stage refinement and residual attention channel fusion publication-title: Sensors – volume: 30 start-page: 86 year: 2016 end-page: 97 ident: b26 article-title: Sleep staging from the EEG signal using multi-domain feature extraction publication-title: Biomedical Signal Processing and Control – volume: 16 start-page: 251 year: 2012 end-page: 263 ident: b39 article-title: Sleep scoring using artificial neural networks publication-title: Sleep Medicine Reviews – start-page: 1 year: 2019 end-page: 13 ident: b12 article-title: Convolutional neural networks for sleep stage scoring on a two-channel EEG signal publication-title: Soft Computing – volume: 49 start-page: 14 year: 2019 end-page: 23 ident: b47 article-title: Multi-modality of polysomnography signals’ fusion for automatic sleep scoring publication-title: Biomedical Signal Processing and Control – year: 2019 ident: b6 article-title: Automatic sleep staging employing convolutional neural networks and cortical connectivity images publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 11 start-page: 1097 year: 2017 end-page: 1110 ident: b49 article-title: A new method for automatic sleep stage classification publication-title: IEEE Transactions on Biomedical Circuits and Systems – volume: 207 start-page: 165 year: 2016 end-page: 177 ident: b36 article-title: An efficient sleep scoring system based on EEG signal using complex-valued machine learning algorithms publication-title: Neurocomputing – volume: 121 start-page: 188 year: 2019 end-page: 203 ident: b18 article-title: Robust sleep stage classification with single-channel EEG signals using multimodal decomposition and HMM-based refinement publication-title: Expert Systems with Applications – volume: 45 start-page: 225 year: 2017 end-page: 231 ident: b25 article-title: Sleep staging from the visibility graph algorithm of series publication-title: Acta Electronica Sinica – volume: 25 start-page: 1998 year: 2017 end-page: 2008 ident: b43 article-title: DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – year: 2019 ident: b42 article-title: Deep learning for automated feature discovery and classification of sleep stages publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – volume: 26 start-page: 84 year: 2017 end-page: 95 ident: b30 article-title: A novel multi-class EEG-based sleep stage classification system publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 8 start-page: 298 year: 2016 end-page: 308 ident: b22 article-title: Decoding EEG in cognitive tasks with time-frequency and connectivity masks publication-title: IEEE Transactions on Cognitive and Developmental Systems – volume: 18 start-page: 1813 year: 2014 end-page: 1821 ident: b50 article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 10 start-page: 21 year: 2014 end-page: 33 ident: b33 article-title: Signal processing techniques applied to human sleep EEG signals—A review publication-title: Biomedical Signal Processing and Control – volume: 140 start-page: 77 year: 2017 end-page: 91 ident: b2 article-title: A comparative review on sleep stage classification methods in patients and healthy individuals publication-title: Computer Methods and Programs in Biomedicine – volume: 67 start-page: 382 year: 2017 end-page: 393 ident: b29 article-title: Separation of sources from single-channel EEG signals using independent component analysis publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 39 start-page: 1401 year: 2012 end-page: 1413 ident: b1 article-title: Sleep–wake stages classification and sleep efficiency estimation using single-lead electrocardiogram publication-title: Expert Systems with Applications – volume: 219 start-page: 76 year: 2017 end-page: 87 ident: b17 article-title: An automated method for sleep staging from EEG signals using normal inverse Gaussian parameters and adaptive boosting publication-title: Neurocomputing – volume: 39 start-page: 1401 issue: 1 year: 2012 ident: 10.1016/j.eswa.2021.115759_b1 article-title: Sleep–wake stages classification and sleep efficiency estimation using single-lead electrocardiogram publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.08.022 – volume: 68 year: 2021 ident: 10.1016/j.eswa.2021.115759_b48 article-title: A single-channel EEG based automatic sleep stage classification method leveraging deep one-dimensional convolutional neural network and hidden Markov model publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2021.102581 – volume: 24 start-page: 2833 issue: 10 year: 2020 ident: 10.1016/j.eswa.2021.115759_b38 article-title: A residual based attention model for eeg based sleep staging publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2020.2978004 – year: 2019 ident: 10.1016/j.eswa.2021.115759_b14 article-title: An automatic single-channel EEG-based sleep stage scoring method based on hidden Markov model publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2019.108320 – volume: 26 start-page: 84 issue: 1 year: 2017 ident: 10.1016/j.eswa.2021.115759_b30 article-title: A novel multi-class EEG-based sleep stage classification system publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2017.2776149 – volume: 24 start-page: 1 year: 2016 ident: 10.1016/j.eswa.2021.115759_b16 article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2015.09.002 – volume: 219 start-page: 76 year: 2017 ident: 10.1016/j.eswa.2021.115759_b17 article-title: An automated method for sleep staging from EEG signals using normal inverse Gaussian parameters and adaptive boosting publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.011 – volume: 60 start-page: 59 issue: 1 year: 2006 ident: 10.1016/j.eswa.2021.115759_b8 article-title: Power and coherent oscillations distinguish REM sleep, stage 1 and wakefulness publication-title: International Journal of Psychophysiology doi: 10.1016/j.ijpsycho.2005.05.004 – volume: 36 start-page: 244 issue: 2 year: 2014 ident: 10.1016/j.eswa.2021.115759_b7 article-title: Automatic detection of drowsiness in EEG records based on multimodal analysis publication-title: Medical Engineering & Physics doi: 10.1016/j.medengphy.2013.07.011 – volume: 205 year: 2021 ident: 10.1016/j.eswa.2021.115759_b45 article-title: Investigation of low dimensional feature spaces for automatic sleep staging publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2021.106091 – volume: 121 start-page: 188 year: 2019 ident: 10.1016/j.eswa.2021.115759_b18 article-title: Robust sleep stage classification with single-channel EEG signals using multimodal decomposition and HMM-based refinement publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.12.023 – volume: 567 year: 2021 ident: 10.1016/j.eswa.2021.115759_b27 article-title: Automatic sleep staging with a single-channel EEG based on ensemble empirical mode decomposition publication-title: Physica A: Statistical Mechanics and its Applications doi: 10.1016/j.physa.2020.125685 – year: 2019 ident: 10.1016/j.eswa.2021.115759_b42 article-title: Deep learning for automated feature discovery and classification of sleep stages publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics – volume: 8 start-page: 298 issue: 4 year: 2016 ident: 10.1016/j.eswa.2021.115759_b22 article-title: Decoding EEG in cognitive tasks with time-frequency and connectivity masks publication-title: IEEE Transactions on Cognitive and Developmental Systems doi: 10.1109/TCDS.2016.2555952 – volume: 18 start-page: 1813 issue: 6 year: 2014 ident: 10.1016/j.eswa.2021.115759_b50 article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2014.2303991 – start-page: 121 year: 2019 ident: 10.1016/j.eswa.2021.115759_b46 article-title: Deep learning for single-channel EEG signals sleep stage scoring based on frequency domain representation – volume: 49 start-page: 14 year: 2019 ident: 10.1016/j.eswa.2021.115759_b47 article-title: Multi-modality of polysomnography signals’ fusion for automatic sleep scoring publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2018.10.001 – volume: 101 start-page: e215 issue: 23 year: 2000 ident: 10.1016/j.eswa.2021.115759_b15 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 10 start-page: 8963 issue: 24 year: 2020 ident: 10.1016/j.eswa.2021.115759_b28 article-title: Automated detection of sleep stages using deep learning techniques: A systematic review of the last decade (2010–2020) publication-title: Applied Sciences doi: 10.3390/app10248963 – volume: 324 year: 2019 ident: 10.1016/j.eswa.2021.115759_b34 article-title: Deep convolutional neural network for classification of sleep stages from single-channel EEG signals publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2019.108312 – volume: 38 start-page: 18 issue: 3 year: 2014 ident: 10.1016/j.eswa.2021.115759_b9 article-title: A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms publication-title: Journal of Medical Systems doi: 10.1007/s10916-014-0018-0 – volume: 204 year: 2021 ident: 10.1016/j.eswa.2021.115759_b20 article-title: Automatic sleep stage classification using temporal convolutional neural network and new data augmentation technique from raw single-channel EEG publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2021.106063 – volume: 140 start-page: 77 year: 2017 ident: 10.1016/j.eswa.2021.115759_b2 article-title: A comparative review on sleep stage classification methods in patients and healthy individuals publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2016.12.004 – year: 2020 ident: 10.1016/j.eswa.2021.115759_b4 article-title: A graph-temporal fused dual-input convolutional neural network for detecting sleep stages from EEG signals publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs – volume: 200 year: 2020 ident: 10.1016/j.eswa.2021.115759_b11 article-title: Joint imbalanced classification and feature selection for hospital readmissions publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106020 – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2021.115759_b12 article-title: Convolutional neural networks for sleep stage scoring on a two-channel EEG signal publication-title: Soft Computing – volume: 63 start-page: 241 year: 2016 ident: 10.1016/j.eswa.2021.115759_b10 article-title: Complex networks approach for EEG signal sleep stages classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.07.004 – volume: 40 start-page: 488 year: 2018 ident: 10.1016/j.eswa.2021.115759_b24 article-title: A novel method for tracking and analysis of EEG activation across brain lobes publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2017.06.017 – volume: 10 start-page: 21 year: 2014 ident: 10.1016/j.eswa.2021.115759_b33 article-title: Signal processing techniques applied to human sleep EEG signals—A review publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2013.12.003 – volume: 106 start-page: 71 year: 2019 ident: 10.1016/j.eswa.2021.115759_b32 article-title: Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2019.01.013 – volume: 207 start-page: 165 year: 2016 ident: 10.1016/j.eswa.2021.115759_b36 article-title: An efficient sleep scoring system based on EEG signal using complex-valued machine learning algorithms publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.04.049 – volume: 67 start-page: 382 issue: 2 year: 2017 ident: 10.1016/j.eswa.2021.115759_b29 article-title: Separation of sources from single-channel EEG signals using independent component analysis publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2017.2775358 – volume: 61 year: 2020 ident: 10.1016/j.eswa.2021.115759_b40 article-title: Intra-and inter-epoch temporal context network (IITNet) using sub-epoch features for automatic sleep scoring on raw single-channel EEG publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2020.102037 – year: 2019 ident: 10.1016/j.eswa.2021.115759_b3 article-title: Regression based continuous driving fatigue estimation: Towards practical implementation publication-title: IEEE Transactions on Cognitive and Developmental Systems – volume: 61 start-page: 1649 issue: 6 year: 2012 ident: 10.1016/j.eswa.2021.115759_b23 article-title: Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2012.2187242 – volume: 66 start-page: 1285 issue: 5 year: 2018 ident: 10.1016/j.eswa.2021.115759_b37 article-title: Joint classification and prediction CNN framework for automatic sleep stage classification publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2018.2872652 – volume: 22 start-page: 375 issue: 2 year: 2017 ident: 10.1016/j.eswa.2021.115759_b21 article-title: Hyclasss: A hybrid classifier for automatic sleep stage scoring publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2017.2668993 – volume: 76 start-page: 25697 issue: 24 year: 2017 ident: 10.1016/j.eswa.2021.115759_b44 article-title: Real and imaginary motion classification based on rough set analysis of EEG signals for multimedia applications publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-017-4458-7 – volume: 93 start-page: 143 year: 2018 ident: 10.1016/j.eswa.2021.115759_b35 article-title: Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.09.062 – volume: 25 start-page: 1998 issue: 11 year: 2017 ident: 10.1016/j.eswa.2021.115759_b43 article-title: DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2017.2721116 – volume: 65 start-page: 1201 issue: 6 year: 2017 ident: 10.1016/j.eswa.2021.115759_b19 article-title: A state space and density estimation framework for sleep staging in obstructive sleep apnea publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2017.2702123 – volume: 10 start-page: 776 issue: 3 year: 2017 ident: 10.1016/j.eswa.2021.115759_b13 article-title: Using the partial directed coherence to assess functional connectivity in electroencephalography data for brain–computer interfaces publication-title: IEEE Transactions on Cognitive and Developmental Systems doi: 10.1109/TCDS.2017.2777180 – volume: 16 start-page: 251 issue: 3 year: 2012 ident: 10.1016/j.eswa.2021.115759_b39 article-title: Sleep scoring using artificial neural networks publication-title: Sleep Medicine Reviews doi: 10.1016/j.smrv.2011.06.003 – volume: 26 start-page: 84 issue: 1 year: 2018 ident: 10.1016/j.eswa.2021.115759_b31 article-title: A novel multi-class EEG-based sleep stage classification system publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2017.2776149 – year: 2019 ident: 10.1016/j.eswa.2021.115759_b6 article-title: Automatic sleep staging employing convolutional neural networks and cortical connectivity images publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 30 start-page: 86 year: 2016 ident: 10.1016/j.eswa.2021.115759_b26 article-title: Sleep staging from the EEG signal using multi-domain feature extraction publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2016.06.006 – volume: 55 start-page: 343 issue: 2 year: 2017 ident: 10.1016/j.eswa.2021.115759_b41 article-title: Single-channel EEG sleep stage classification based on a streamlined set of statistical features in wavelet domain publication-title: Medical & Biological Engineering & Computing doi: 10.1007/s11517-016-1519-4 – volume: 20 start-page: 6592 issue: 22 year: 2020 ident: 10.1016/j.eswa.2021.115759_b51 article-title: Multi-branch convolutional neural network for automatic sleep stage classification with embedded stage refinement and residual attention channel fusion publication-title: Sensors doi: 10.3390/s20226592 – volume: 11 start-page: 1097 issue: 5 year: 2017 ident: 10.1016/j.eswa.2021.115759_b49 article-title: A new method for automatic sleep stage classification publication-title: IEEE Transactions on Biomedical Circuits and Systems doi: 10.1109/TBCAS.2017.2719631 – volume: 45 start-page: 225 issue: 1 year: 2017 ident: 10.1016/j.eswa.2021.115759_b25 article-title: Sleep staging from the visibility graph algorithm of series publication-title: Acta Electronica Sinica – volume: 9 start-page: 53 issue: 1 year: 2019 ident: 10.1016/j.eswa.2021.115759_b5 article-title: Wearable EEG and beyond publication-title: Biomedical Engineering Letters doi: 10.1007/s13534-018-00093-6 |
SSID | ssj0017007 |
Score | 2.42969 |
Snippet | As the medium of developing brain–computer interface system, the recognition of EEG signals is complicated and difficult due to the complex nonstationary... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115759 |
SubjectTerms | Amplitudes Classification Dynamic characteristics EEG Electroencephalography Feature extraction H-WSVM Hierarchical classification Machine learning Set theory Signal classification Sleep Sleep staging Statistical methods Support vector machines Unsupervised feature learning |
Title | Unsupervised multi-subepoch feature learning and hierarchical classification for EEG-based sleep staging |
URI | https://dx.doi.org/10.1016/j.eswa.2021.115759 https://www.proquest.com/docview/2599116113 |
Volume | 186 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8QwDLbgWFh4I97KwIbCXR9JmxGhgwMEC5zEFrVJykOonOid2Pjt2GmKBEIMDB0aJVVlJ_YX2f4McBiJvIqly7jNy4qjh1AcB6hWJkuNkKbMfPL49Y0cjdPLe3E_B6ddLQylVQbb39p0b63DSD9Isz95eurfIjhAd4hXO9xVeNPK5mEhTpQUPVg4ubga3XwFE7JBWzWN8zktCLUzbZqXa96JfiiOjol2hihLf_dPPyy1dz9nK7AUcCM7aX9tFeZcvQbLXU8GFo7oOjyO62Y2IQPQOMt8uiBvZiXCbPPIKudpPFloFfHAitoyaobtwwmoLWYITFP2kFcYQ0TLhsNzTr7OsubFuQlDOEmNjTZgfDa8Ox3x0E2BmyTOp1xZa2xiSplSJDCiCngbVYlUqXUOHxWjktLcFCIzg6wwqjSls4ksIyIjR5y3Cb36tXZbwERufPgmixOTpsYVStgiTqVUIpZVpLYh6mSoTaAap44XL7rLKXvWJHdNctet3Lfh6GvNpCXa-HO26FSjv20XjZ7gz3V7nR51OKyNxhsgmnyJMtn552d3YZHePAHkYA9607eZ20ewMi0PYP74IzoIW_IT_hTorA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DLDwRjwKeGBDpiTxIxlRVSjPBSqxWYntUBAKFWnFxm_nznGQQIiBIYtjR9GdffdZ_vwdIYeRSMtYOsVsWpQMMkTGoAHvyihuhDSF8uTxm1s5GPLLB_EwQ3rtXRikVYbY38R0H61DSzdYszt-eureATiAdAhbO5hVsNNSs2Sei0Qhr-_444vngfpzqhHcUwy7h5szDcnL1e8oPhRHxyg6g4Klv2enH3HaJ5-zFbIUUCM9bX5slcy4ao0stxUZaFig62Q0rOrpGJd_7Sz1ZEFWTwsA2WZES-dFPGkoFPFI88pSLIXtDxPAV9QglEbukHcXBTxL-_1zhpnO0vrFuTEFMIlljTbI8Kx_3xuwUEuBmSROJyyz1tjEFJLjOWCE999tVCYy49Y5eLIYXMRTkwtlTlRussIUziayiFCKHFDeJpmrXiu3RahIjT-8UXFiODcuz4TNYy5lJmJZRtk2iVobahOExrHexYtuGWXPGu2u0e66sfs2OfoaM25kNv7sLVrX6G-TRUMe-HNcp_WjDku11rD_g4AvwSY7__zsAVkY3N9c6-uL26tdsohvvBTkSYfMTd6mbg9gy6TY99PyE_Ts6Xc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+multi-subepoch+feature+learning+and+hierarchical+classification+for+EEG-based+sleep+staging&rft.jtitle=Expert+systems+with+applications&rft.au=An%2C+Panfeng&rft.au=Yuan%2C+Zhiyong&rft.au=Zhao%2C+Jianhui&rft.date=2021-12-30&rft.issn=0957-4174&rft.volume=186&rft.spage=115759&rft_id=info:doi/10.1016%2Fj.eswa.2021.115759&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2021_115759 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |