Unsupervised multi-subepoch feature learning and hierarchical classification for EEG-based sleep staging

As the medium of developing brain–computer interface system, the recognition of EEG signals is complicated and difficult due to the complex nonstationary characteristics and the individual difference between subjects. In this paper, we investigate the EEG signal classification problem and propose a...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 186; p. 115759
Main Authors An, Panfeng, Yuan, Zhiyong, Zhao, Jianhui
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 30.12.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2021.115759

Cover

Abstract As the medium of developing brain–computer interface system, the recognition of EEG signals is complicated and difficult due to the complex nonstationary characteristics and the individual difference between subjects. In this paper, we investigate the EEG signal classification problem and propose a novel unsupervised multi-subepoch feature learning and hierarchical classification method for automatic sleep staging. First, we divide the EEG epoch into multiple signal subepochs, and each subepoch is mapped to amplitude axis and time axis respectively to obtain two kinds of feature information with amplitude–time dynamic characteristics. Then, the statistical classification features are extracted from the mapped feature information. Furthermore, we conduct unsupervised feature learning for consistent and specific classification features from the perspective of time series. Finally, according to the differences and similarities of EEG signals in different sleep stages, a hierarchical weighted support vector machine-based classification model (H-WSVM) is established, which can use different feature subsets at each classification level and different weighting parameters for unbalanced data samples. To select the optimal feature subset for detecting each sleep stage, we propose a novel evaluation criterion for feature classification ability based on rough set theory. Experimental results on the most commonly used dataset show that the proposed method has better sleep staging performance and can effectively promote the development and application of EEG sleep staging system. •An unsupervised feature learning method is proposed to extract EEG features.•A hierarchical classification model is established for EEG-based sleep staging.•A novel feature evaluation criterion is presented for feature subset selecting.•Extensive experiments are conducted to evaluate the proposed method.
AbstractList As the medium of developing brain–computer interface system, the recognition of EEG signals is complicated and difficult due to the complex nonstationary characteristics and the individual difference between subjects. In this paper, we investigate the EEG signal classification problem and propose a novel unsupervised multi-subepoch feature learning and hierarchical classification method for automatic sleep staging. First, we divide the EEG epoch into multiple signal subepochs, and each subepoch is mapped to amplitude axis and time axis respectively to obtain two kinds of feature information with amplitude–time dynamic characteristics. Then, the statistical classification features are extracted from the mapped feature information. Furthermore, we conduct unsupervised feature learning for consistent and specific classification features from the perspective of time series. Finally, according to the differences and similarities of EEG signals in different sleep stages, a hierarchical weighted support vector machine-based classification model (H-WSVM) is established, which can use different feature subsets at each classification level and different weighting parameters for unbalanced data samples. To select the optimal feature subset for detecting each sleep stage, we propose a novel evaluation criterion for feature classification ability based on rough set theory. Experimental results on the most commonly used dataset show that the proposed method has better sleep staging performance and can effectively promote the development and application of EEG sleep staging system. •An unsupervised feature learning method is proposed to extract EEG features.•A hierarchical classification model is established for EEG-based sleep staging.•A novel feature evaluation criterion is presented for feature subset selecting.•Extensive experiments are conducted to evaluate the proposed method.
As the medium of developing brain–computer interface system, the recognition of EEG signals is complicated and difficult due to the complex nonstationary characteristics and the individual difference between subjects. In this paper, we investigate the EEG signal classification problem and propose a novel unsupervised multi-subepoch feature learning and hierarchical classification method for automatic sleep staging. First, we divide the EEG epoch into multiple signal subepochs, and each subepoch is mapped to amplitude axis and time axis respectively to obtain two kinds of feature information with amplitude–time dynamic characteristics. Then, the statistical classification features are extracted from the mapped feature information. Furthermore, we conduct unsupervised feature learning for consistent and specific classification features from the perspective of time series. Finally, according to the differences and similarities of EEG signals in different sleep stages, a hierarchical weighted support vector machine-based classification model (H-WSVM) is established, which can use different feature subsets at each classification level and different weighting parameters for unbalanced data samples. To select the optimal feature subset for detecting each sleep stage, we propose a novel evaluation criterion for feature classification ability based on rough set theory. Experimental results on the most commonly used dataset show that the proposed method has better sleep staging performance and can effectively promote the development and application of EEG sleep staging system.
ArticleNumber 115759
Author Zhao, Jianhui
An, Panfeng
Yuan, Zhiyong
Author_xml – sequence: 1
  givenname: Panfeng
  surname: An
  fullname: An, Panfeng
  email: panfengan@whu.edu.cn
– sequence: 2
  givenname: Zhiyong
  orcidid: 0000-0001-9608-6037
  surname: Yuan
  fullname: Yuan, Zhiyong
  email: zhiyongyuan@whu.edu.cn
– sequence: 3
  givenname: Jianhui
  surname: Zhao
  fullname: Zhao, Jianhui
  email: jianhuizhao@whu.edu.cn
BookMark eNp9kE1LJDEQhoMoOLr-AU8Bzz2b6q90wIvI6C4Ie1nPIV2pdjK06TZJK_57M44nDx6KqkM9b1HPGTv2kyfGLkGsQUD7e7em-GbWpShhDdDIRh2xFXSyKlqpqmO2EqqRRQ2yPmVnMe6EACmEXLHto4_LTOHVRbL8eRmTK-LS0zzhlg9k0hKIj2SCd_6JG2_51lEwAbcOzchxNDG6Ic_JTZ4PU-CbzX3Rm31aHIlmHpN5yuwvdjKYMdLFVz9nj3eb_7d_iod_939vbx4KrMouFcpatBX2bd10DUAFrbQwVK2qLVEuVXZDWXdoGolCGlQ99mSrtgcUnQBVnbOrQ-4cppeFYtK7aQk-n9RloxRAm1PzVnnYwjDFGGjQc3DPJrxrEHpvVO_03qjeG9UHoxnqvkHo0ufjKRg3_oxeH1DKr79mgzqiI49kXSBM2k7uJ_wD4jCVcg
CitedBy_id crossref_primary_10_3390_info16030208
crossref_primary_10_1109_JSEN_2022_3155345
crossref_primary_10_1016_j_eswa_2023_122549
crossref_primary_10_32604_csse_2023_026482
crossref_primary_10_3389_fnins_2021_780373
crossref_primary_10_1109_JBHI_2024_3357168
crossref_primary_10_3389_fnins_2022_1088116
crossref_primary_10_1016_j_knosys_2022_110179
crossref_primary_10_1109_TNNLS_2022_3210384
crossref_primary_10_1109_TNSRE_2022_3173994
crossref_primary_10_3390_bioengineering10050573
crossref_primary_10_3390_electronics12224697
Cites_doi 10.1016/j.eswa.2011.08.022
10.1016/j.bspc.2021.102581
10.1109/JBHI.2020.2978004
10.1016/j.jneumeth.2019.108320
10.1109/TNSRE.2017.2776149
10.1016/j.bspc.2015.09.002
10.1016/j.neucom.2016.09.011
10.1016/j.ijpsycho.2005.05.004
10.1016/j.medengphy.2013.07.011
10.1016/j.cmpb.2021.106091
10.1016/j.eswa.2018.12.023
10.1016/j.physa.2020.125685
10.1109/TCDS.2016.2555952
10.1109/JBHI.2014.2303991
10.1016/j.bspc.2018.10.001
10.1161/01.CIR.101.23.e215
10.3390/app10248963
10.1016/j.jneumeth.2019.108312
10.1007/s10916-014-0018-0
10.1016/j.cmpb.2021.106063
10.1016/j.cmpb.2016.12.004
10.1016/j.knosys.2020.106020
10.1016/j.eswa.2016.07.004
10.1016/j.bspc.2017.06.017
10.1016/j.bspc.2013.12.003
10.1016/j.compbiomed.2019.01.013
10.1016/j.neucom.2016.04.049
10.1109/TIM.2017.2775358
10.1016/j.bspc.2020.102037
10.1109/TIM.2012.2187242
10.1109/TBME.2018.2872652
10.1109/JBHI.2017.2668993
10.1007/s11042-017-4458-7
10.1016/j.eswa.2017.09.062
10.1109/TNSRE.2017.2721116
10.1109/TBME.2017.2702123
10.1109/TCDS.2017.2777180
10.1016/j.smrv.2011.06.003
10.1016/j.bspc.2016.06.006
10.1007/s11517-016-1519-4
10.3390/s20226592
10.1109/TBCAS.2017.2719631
10.1007/s13534-018-00093-6
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Dec 30, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 30, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.115759
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_115759
S0957417421011337
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-9ddcd3cb64585113167d1f3694dee4de928f248ca57c07ac9bcbed36b1c080193
IEDL.DBID AIKHN
ISSN 0957-4174
IngestDate Fri Jul 25 01:35:31 EDT 2025
Tue Jul 01 04:05:55 EDT 2025
Thu Apr 24 23:07:42 EDT 2025
Fri Feb 23 02:40:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Unsupervised feature learning
Hierarchical classification
EEG
H-WSVM
Sleep staging
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-9ddcd3cb64585113167d1f3694dee4de928f248ca57c07ac9bcbed36b1c080193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9608-6037
PQID 2599116113
PQPubID 2045477
ParticipantIDs proquest_journals_2599116113
crossref_primary_10_1016_j_eswa_2021_115759
crossref_citationtrail_10_1016_j_eswa_2021_115759
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115759
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-30
PublicationDateYYYYMMDD 2021-12-30
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-30
  day: 30
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Wang, Zhang, Ma, Huang, Hong (b46) 2019
Yang, Zhu, Liu, Liu (b48) 2021; 68
Corsi-Cabrera, Munoz-Torres, del Río-Portilla, Guevara (b8) 2006; 60
Liu, Tan, Fu, Li, Wang, Hou (b27) 2021; 567
Motamedi-Fakhr, Moshrefi-Torbati, Hill, Hill, White (b33) 2014; 10
Yan, Zhang, Spruyt, Wei, Wang, Tian (b47) 2019; 49
Memar, Faradji (b31) 2018; 26
Cai, Gao, An, Gao, Grebogi (b4) 2020
Kang, DeYoung, Malhotra, Owens, Coleman (b19) 2017; 65
Peker (b36) 2016; 207
Sokolovsky, Guerrero, Paisarnsrisomsuk, Ruiz, Alvarez (b42) 2019
Zhu, Li, Wen (b50) 2014; 18
Adnane, Jiang, Yan (b1) 2012; 39
Qu, Wang, Hong, Chi, Feng, Grunstein (b38) 2020; 24
Li, Cui, Tao, Chen, Zhang, Zhang (b21) 2017; 22
Phan, Andreotti, Cooray, Chén, De Vos (b37) 2018; 66
Tabar, Mikkelsen, Rank, Hemmsen, Kidmose (b45) 2021; 205
Liu, Sun (b25) 2017; 45
Boostani, Karimzadeh, Nami (b2) 2017; 140
Liang, Kuo, Hu, Pan, Wang (b23) 2012; 61
Correa, Orosco, Laciar (b7) 2014; 36
Michielli, Acharya, Molinari (b32) 2019; 106
Hassan, Bhuiyan (b16) 2016; 24
Ronzhina, Janoušek, Kolářová, Nováková, Honzík, Provazník (b39) 2012; 16
Memar, Faradji (b30) 2017; 26
Fernandez-Blanco, Rivero, Pazos (b12) 2019
Du, Zhang, Luo, Ma, Ma, Li (b11) 2020; 200
Bose, Wang, Dragomir, Thakor, Bezerianos, Li (b3) 2019
Szczuko (b44) 2017; 76
Casson (b5) 2019; 9
Gaxiola-Tirado, Salazar-Varas, Gutiérrez (b13) 2017; 10
Zhang, Wu (b49) 2017; 11
da Silveira, Kozakevicius, Rodrigues (b41) 2017; 55
Maddirala, Shaik (b29) 2017; 67
Diykh, Li (b10) 2016; 63
Lim, Nisar, Thee, Yap (b24) 2018; 40
Liu, Sun, Zhang, Rolfe (b26) 2016; 30
Li, Wang, Zhang, Cichocki, Jung (b22) 2016; 8
Şen, Peker, Çavuşoğlu, Çelebi (b9) 2014; 38
Khalili, Asl (b20) 2021; 204
Hassan, Bhuiyan (b17) 2017; 219
Jiang, Lu, Yu, Yuanyuan (b18) 2019; 121
Nakisa, Rastgoo, Tjondronegoro, Chandran (b35) 2018; 93
Supratak, Dong, Wu, Guo (b43) 2017; 25
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark (b15) 2000; 101
Chriskos, Frantzidis, Gkivogkli, Bamidis, Kourtidou-Papadeli (b6) 2019
Ghimatgar, Kazemi, Helfroush, Aarabi (b14) 2019
Loh, Ooi, Vicnesh, Oh, Faust, Gertych (b28) 2020; 10
Mousavi, Rezaii, Sheykhivand, Farzamnia, Razavi (b34) 2019; 324
Seo, Back, Lee, Park, Kim, Lee (b40) 2020; 61
Zhu, Luo, Yu (b51) 2020; 20
Fernandez-Blanco (10.1016/j.eswa.2021.115759_b12) 2019
Hassan (10.1016/j.eswa.2021.115759_b17) 2017; 219
Maddirala (10.1016/j.eswa.2021.115759_b29) 2017; 67
Szczuko (10.1016/j.eswa.2021.115759_b44) 2017; 76
Peker (10.1016/j.eswa.2021.115759_b36) 2016; 207
da Silveira (10.1016/j.eswa.2021.115759_b41) 2017; 55
Hassan (10.1016/j.eswa.2021.115759_b16) 2016; 24
Goldberger (10.1016/j.eswa.2021.115759_b15) 2000; 101
Liu (10.1016/j.eswa.2021.115759_b26) 2016; 30
Yang (10.1016/j.eswa.2021.115759_b48) 2021; 68
Memar (10.1016/j.eswa.2021.115759_b30) 2017; 26
Motamedi-Fakhr (10.1016/j.eswa.2021.115759_b33) 2014; 10
Seo (10.1016/j.eswa.2021.115759_b40) 2020; 61
Li (10.1016/j.eswa.2021.115759_b21) 2017; 22
Du (10.1016/j.eswa.2021.115759_b11) 2020; 200
Phan (10.1016/j.eswa.2021.115759_b37) 2018; 66
Zhu (10.1016/j.eswa.2021.115759_b50) 2014; 18
Bose (10.1016/j.eswa.2021.115759_b3) 2019
Kang (10.1016/j.eswa.2021.115759_b19) 2017; 65
Şen (10.1016/j.eswa.2021.115759_b9) 2014; 38
Nakisa (10.1016/j.eswa.2021.115759_b35) 2018; 93
Sokolovsky (10.1016/j.eswa.2021.115759_b42) 2019
Zhu (10.1016/j.eswa.2021.115759_b51) 2020; 20
Mousavi (10.1016/j.eswa.2021.115759_b34) 2019; 324
Khalili (10.1016/j.eswa.2021.115759_b20) 2021; 204
Michielli (10.1016/j.eswa.2021.115759_b32) 2019; 106
Supratak (10.1016/j.eswa.2021.115759_b43) 2017; 25
Wang (10.1016/j.eswa.2021.115759_b46) 2019
Zhang (10.1016/j.eswa.2021.115759_b49) 2017; 11
Boostani (10.1016/j.eswa.2021.115759_b2) 2017; 140
Yan (10.1016/j.eswa.2021.115759_b47) 2019; 49
Lim (10.1016/j.eswa.2021.115759_b24) 2018; 40
Ronzhina (10.1016/j.eswa.2021.115759_b39) 2012; 16
Adnane (10.1016/j.eswa.2021.115759_b1) 2012; 39
Liu (10.1016/j.eswa.2021.115759_b27) 2021; 567
Liu (10.1016/j.eswa.2021.115759_b25) 2017; 45
Memar (10.1016/j.eswa.2021.115759_b31) 2018; 26
Li (10.1016/j.eswa.2021.115759_b22) 2016; 8
Gaxiola-Tirado (10.1016/j.eswa.2021.115759_b13) 2017; 10
Diykh (10.1016/j.eswa.2021.115759_b10) 2016; 63
Jiang (10.1016/j.eswa.2021.115759_b18) 2019; 121
Qu (10.1016/j.eswa.2021.115759_b38) 2020; 24
Corsi-Cabrera (10.1016/j.eswa.2021.115759_b8) 2006; 60
Tabar (10.1016/j.eswa.2021.115759_b45) 2021; 205
Chriskos (10.1016/j.eswa.2021.115759_b6) 2019
Ghimatgar (10.1016/j.eswa.2021.115759_b14) 2019
Liang (10.1016/j.eswa.2021.115759_b23) 2012; 61
Correa (10.1016/j.eswa.2021.115759_b7) 2014; 36
Cai (10.1016/j.eswa.2021.115759_b4) 2020
Loh (10.1016/j.eswa.2021.115759_b28) 2020; 10
Casson (10.1016/j.eswa.2021.115759_b5) 2019; 9
References_xml – volume: 10
  start-page: 8963
  year: 2020
  ident: b28
  article-title: Automated detection of sleep stages using deep learning techniques: A systematic review of the last decade (2010–2020)
  publication-title: Applied Sciences
– volume: 38
  start-page: 18
  year: 2014
  ident: b9
  article-title: A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms
  publication-title: Journal of Medical Systems
– volume: 63
  start-page: 241
  year: 2016
  end-page: 248
  ident: b10
  article-title: Complex networks approach for EEG signal sleep stages classification
  publication-title: Expert Systems with Applications
– volume: 65
  start-page: 1201
  year: 2017
  end-page: 1212
  ident: b19
  article-title: A state space and density estimation framework for sleep staging in obstructive sleep apnea
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 200
  year: 2020
  ident: b11
  article-title: Joint imbalanced classification and feature selection for hospital readmissions
  publication-title: Knowledge-Based Systems
– volume: 76
  start-page: 25697
  year: 2017
  end-page: 25711
  ident: b44
  article-title: Real and imaginary motion classification based on rough set analysis of EEG signals for multimedia applications
  publication-title: Multimedia Tools and Applications
– volume: 205
  year: 2021
  ident: b45
  article-title: Investigation of low dimensional feature spaces for automatic sleep staging
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 204
  year: 2021
  ident: b20
  article-title: Automatic sleep stage classification using temporal convolutional neural network and new data augmentation technique from raw single-channel EEG
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 40
  start-page: 488
  year: 2018
  end-page: 504
  ident: b24
  article-title: A novel method for tracking and analysis of EEG activation across brain lobes
  publication-title: Biomedical Signal Processing and Control
– year: 2020
  ident: b4
  article-title: A graph-temporal fused dual-input convolutional neural network for detecting sleep stages from EEG signals
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 567
  year: 2021
  ident: b27
  article-title: Automatic sleep staging with a single-channel EEG based on ensemble empirical mode decomposition
  publication-title: Physica A: Statistical Mechanics and its Applications
– volume: 55
  start-page: 343
  year: 2017
  end-page: 352
  ident: b41
  article-title: Single-channel EEG sleep stage classification based on a streamlined set of statistical features in wavelet domain
  publication-title: Medical & Biological Engineering & Computing
– volume: 106
  start-page: 71
  year: 2019
  end-page: 81
  ident: b32
  article-title: Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals
  publication-title: Computers in Biology and Medicine
– volume: 93
  start-page: 143
  year: 2018
  end-page: 155
  ident: b35
  article-title: Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors
  publication-title: Expert Systems with Applications
– start-page: 121
  year: 2019
  end-page: 133
  ident: b46
  article-title: Deep learning for single-channel EEG signals sleep stage scoring based on frequency domain representation
  publication-title: International conference on health information science
– volume: 26
  start-page: 84
  year: 2018
  end-page: 95
  ident: b31
  article-title: A novel multi-class EEG-based sleep stage classification system
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 36
  start-page: 244
  year: 2014
  end-page: 249
  ident: b7
  article-title: Automatic detection of drowsiness in EEG records based on multimodal analysis
  publication-title: Medical Engineering & Physics
– volume: 24
  start-page: 2833
  year: 2020
  end-page: 2843
  ident: b38
  article-title: A residual based attention model for eeg based sleep staging
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 61
  year: 2020
  ident: b40
  article-title: Intra-and inter-epoch temporal context network (IITNet) using sub-epoch features for automatic sleep scoring on raw single-channel EEG
  publication-title: Biomedical Signal Processing and Control
– year: 2019
  ident: b14
  article-title: An automatic single-channel EEG-based sleep stage scoring method based on hidden Markov model
  publication-title: Journal of Neuroscience Methods
– year: 2019
  ident: b3
  article-title: Regression based continuous driving fatigue estimation: Towards practical implementation
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– volume: 60
  start-page: 59
  year: 2006
  end-page: 66
  ident: b8
  article-title: Power and coherent oscillations distinguish REM sleep, stage 1 and wakefulness
  publication-title: International Journal of Psychophysiology
– volume: 22
  start-page: 375
  year: 2017
  end-page: 385
  ident: b21
  article-title: Hyclasss: A hybrid classifier for automatic sleep stage scoring
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 9
  start-page: 53
  year: 2019
  end-page: 71
  ident: b5
  article-title: Wearable EEG and beyond
  publication-title: Biomedical Engineering Letters
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: b15
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 24
  start-page: 1
  year: 2016
  end-page: 10
  ident: b16
  article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating
  publication-title: Biomedical Signal Processing and Control
– volume: 10
  start-page: 776
  year: 2017
  end-page: 783
  ident: b13
  article-title: Using the partial directed coherence to assess functional connectivity in electroencephalography data for brain–computer interfaces
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– volume: 66
  start-page: 1285
  year: 2018
  end-page: 1296
  ident: b37
  article-title: Joint classification and prediction CNN framework for automatic sleep stage classification
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 61
  start-page: 1649
  year: 2012
  end-page: 1657
  ident: b23
  article-title: Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 324
  year: 2019
  ident: b34
  article-title: Deep convolutional neural network for classification of sleep stages from single-channel EEG signals
  publication-title: Journal of Neuroscience Methods
– volume: 68
  year: 2021
  ident: b48
  article-title: A single-channel EEG based automatic sleep stage classification method leveraging deep one-dimensional convolutional neural network and hidden Markov model
  publication-title: Biomedical Signal Processing and Control
– volume: 20
  start-page: 6592
  year: 2020
  ident: b51
  article-title: Multi-branch convolutional neural network for automatic sleep stage classification with embedded stage refinement and residual attention channel fusion
  publication-title: Sensors
– volume: 30
  start-page: 86
  year: 2016
  end-page: 97
  ident: b26
  article-title: Sleep staging from the EEG signal using multi-domain feature extraction
  publication-title: Biomedical Signal Processing and Control
– volume: 16
  start-page: 251
  year: 2012
  end-page: 263
  ident: b39
  article-title: Sleep scoring using artificial neural networks
  publication-title: Sleep Medicine Reviews
– start-page: 1
  year: 2019
  end-page: 13
  ident: b12
  article-title: Convolutional neural networks for sleep stage scoring on a two-channel EEG signal
  publication-title: Soft Computing
– volume: 49
  start-page: 14
  year: 2019
  end-page: 23
  ident: b47
  article-title: Multi-modality of polysomnography signals’ fusion for automatic sleep scoring
  publication-title: Biomedical Signal Processing and Control
– year: 2019
  ident: b6
  article-title: Automatic sleep staging employing convolutional neural networks and cortical connectivity images
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 11
  start-page: 1097
  year: 2017
  end-page: 1110
  ident: b49
  article-title: A new method for automatic sleep stage classification
  publication-title: IEEE Transactions on Biomedical Circuits and Systems
– volume: 207
  start-page: 165
  year: 2016
  end-page: 177
  ident: b36
  article-title: An efficient sleep scoring system based on EEG signal using complex-valued machine learning algorithms
  publication-title: Neurocomputing
– volume: 121
  start-page: 188
  year: 2019
  end-page: 203
  ident: b18
  article-title: Robust sleep stage classification with single-channel EEG signals using multimodal decomposition and HMM-based refinement
  publication-title: Expert Systems with Applications
– volume: 45
  start-page: 225
  year: 2017
  end-page: 231
  ident: b25
  article-title: Sleep staging from the visibility graph algorithm of series
  publication-title: Acta Electronica Sinica
– volume: 25
  start-page: 1998
  year: 2017
  end-page: 2008
  ident: b43
  article-title: DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– year: 2019
  ident: b42
  article-title: Deep learning for automated feature discovery and classification of sleep stages
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– volume: 26
  start-page: 84
  year: 2017
  end-page: 95
  ident: b30
  article-title: A novel multi-class EEG-based sleep stage classification system
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 8
  start-page: 298
  year: 2016
  end-page: 308
  ident: b22
  article-title: Decoding EEG in cognitive tasks with time-frequency and connectivity masks
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– volume: 18
  start-page: 1813
  year: 2014
  end-page: 1821
  ident: b50
  article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 10
  start-page: 21
  year: 2014
  end-page: 33
  ident: b33
  article-title: Signal processing techniques applied to human sleep EEG signals—A review
  publication-title: Biomedical Signal Processing and Control
– volume: 140
  start-page: 77
  year: 2017
  end-page: 91
  ident: b2
  article-title: A comparative review on sleep stage classification methods in patients and healthy individuals
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 67
  start-page: 382
  year: 2017
  end-page: 393
  ident: b29
  article-title: Separation of sources from single-channel EEG signals using independent component analysis
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 39
  start-page: 1401
  year: 2012
  end-page: 1413
  ident: b1
  article-title: Sleep–wake stages classification and sleep efficiency estimation using single-lead electrocardiogram
  publication-title: Expert Systems with Applications
– volume: 219
  start-page: 76
  year: 2017
  end-page: 87
  ident: b17
  article-title: An automated method for sleep staging from EEG signals using normal inverse Gaussian parameters and adaptive boosting
  publication-title: Neurocomputing
– volume: 39
  start-page: 1401
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2021.115759_b1
  article-title: Sleep–wake stages classification and sleep efficiency estimation using single-lead electrocardiogram
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.08.022
– volume: 68
  year: 2021
  ident: 10.1016/j.eswa.2021.115759_b48
  article-title: A single-channel EEG based automatic sleep stage classification method leveraging deep one-dimensional convolutional neural network and hidden Markov model
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2021.102581
– volume: 24
  start-page: 2833
  issue: 10
  year: 2020
  ident: 10.1016/j.eswa.2021.115759_b38
  article-title: A residual based attention model for eeg based sleep staging
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2020.2978004
– year: 2019
  ident: 10.1016/j.eswa.2021.115759_b14
  article-title: An automatic single-channel EEG-based sleep stage scoring method based on hidden Markov model
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2019.108320
– volume: 26
  start-page: 84
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2021.115759_b30
  article-title: A novel multi-class EEG-based sleep stage classification system
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2017.2776149
– volume: 24
  start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2021.115759_b16
  article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2015.09.002
– volume: 219
  start-page: 76
  year: 2017
  ident: 10.1016/j.eswa.2021.115759_b17
  article-title: An automated method for sleep staging from EEG signals using normal inverse Gaussian parameters and adaptive boosting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.011
– volume: 60
  start-page: 59
  issue: 1
  year: 2006
  ident: 10.1016/j.eswa.2021.115759_b8
  article-title: Power and coherent oscillations distinguish REM sleep, stage 1 and wakefulness
  publication-title: International Journal of Psychophysiology
  doi: 10.1016/j.ijpsycho.2005.05.004
– volume: 36
  start-page: 244
  issue: 2
  year: 2014
  ident: 10.1016/j.eswa.2021.115759_b7
  article-title: Automatic detection of drowsiness in EEG records based on multimodal analysis
  publication-title: Medical Engineering & Physics
  doi: 10.1016/j.medengphy.2013.07.011
– volume: 205
  year: 2021
  ident: 10.1016/j.eswa.2021.115759_b45
  article-title: Investigation of low dimensional feature spaces for automatic sleep staging
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2021.106091
– volume: 121
  start-page: 188
  year: 2019
  ident: 10.1016/j.eswa.2021.115759_b18
  article-title: Robust sleep stage classification with single-channel EEG signals using multimodal decomposition and HMM-based refinement
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.12.023
– volume: 567
  year: 2021
  ident: 10.1016/j.eswa.2021.115759_b27
  article-title: Automatic sleep staging with a single-channel EEG based on ensemble empirical mode decomposition
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2020.125685
– year: 2019
  ident: 10.1016/j.eswa.2021.115759_b42
  article-title: Deep learning for automated feature discovery and classification of sleep stages
  publication-title: IEEE/ACM Transactions on Computational Biology and Bioinformatics
– volume: 8
  start-page: 298
  issue: 4
  year: 2016
  ident: 10.1016/j.eswa.2021.115759_b22
  article-title: Decoding EEG in cognitive tasks with time-frequency and connectivity masks
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2016.2555952
– volume: 18
  start-page: 1813
  issue: 6
  year: 2014
  ident: 10.1016/j.eswa.2021.115759_b50
  article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel EEG signal
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2014.2303991
– start-page: 121
  year: 2019
  ident: 10.1016/j.eswa.2021.115759_b46
  article-title: Deep learning for single-channel EEG signals sleep stage scoring based on frequency domain representation
– volume: 49
  start-page: 14
  year: 2019
  ident: 10.1016/j.eswa.2021.115759_b47
  article-title: Multi-modality of polysomnography signals’ fusion for automatic sleep scoring
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2018.10.001
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  ident: 10.1016/j.eswa.2021.115759_b15
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 10
  start-page: 8963
  issue: 24
  year: 2020
  ident: 10.1016/j.eswa.2021.115759_b28
  article-title: Automated detection of sleep stages using deep learning techniques: A systematic review of the last decade (2010–2020)
  publication-title: Applied Sciences
  doi: 10.3390/app10248963
– volume: 324
  year: 2019
  ident: 10.1016/j.eswa.2021.115759_b34
  article-title: Deep convolutional neural network for classification of sleep stages from single-channel EEG signals
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2019.108312
– volume: 38
  start-page: 18
  issue: 3
  year: 2014
  ident: 10.1016/j.eswa.2021.115759_b9
  article-title: A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-014-0018-0
– volume: 204
  year: 2021
  ident: 10.1016/j.eswa.2021.115759_b20
  article-title: Automatic sleep stage classification using temporal convolutional neural network and new data augmentation technique from raw single-channel EEG
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2021.106063
– volume: 140
  start-page: 77
  year: 2017
  ident: 10.1016/j.eswa.2021.115759_b2
  article-title: A comparative review on sleep stage classification methods in patients and healthy individuals
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2016.12.004
– year: 2020
  ident: 10.1016/j.eswa.2021.115759_b4
  article-title: A graph-temporal fused dual-input convolutional neural network for detecting sleep stages from EEG signals
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 200
  year: 2020
  ident: 10.1016/j.eswa.2021.115759_b11
  article-title: Joint imbalanced classification and feature selection for hospital readmissions
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106020
– start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.115759_b12
  article-title: Convolutional neural networks for sleep stage scoring on a two-channel EEG signal
  publication-title: Soft Computing
– volume: 63
  start-page: 241
  year: 2016
  ident: 10.1016/j.eswa.2021.115759_b10
  article-title: Complex networks approach for EEG signal sleep stages classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.07.004
– volume: 40
  start-page: 488
  year: 2018
  ident: 10.1016/j.eswa.2021.115759_b24
  article-title: A novel method for tracking and analysis of EEG activation across brain lobes
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2017.06.017
– volume: 10
  start-page: 21
  year: 2014
  ident: 10.1016/j.eswa.2021.115759_b33
  article-title: Signal processing techniques applied to human sleep EEG signals—A review
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2013.12.003
– volume: 106
  start-page: 71
  year: 2019
  ident: 10.1016/j.eswa.2021.115759_b32
  article-title: Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2019.01.013
– volume: 207
  start-page: 165
  year: 2016
  ident: 10.1016/j.eswa.2021.115759_b36
  article-title: An efficient sleep scoring system based on EEG signal using complex-valued machine learning algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.04.049
– volume: 67
  start-page: 382
  issue: 2
  year: 2017
  ident: 10.1016/j.eswa.2021.115759_b29
  article-title: Separation of sources from single-channel EEG signals using independent component analysis
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2017.2775358
– volume: 61
  year: 2020
  ident: 10.1016/j.eswa.2021.115759_b40
  article-title: Intra-and inter-epoch temporal context network (IITNet) using sub-epoch features for automatic sleep scoring on raw single-channel EEG
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2020.102037
– year: 2019
  ident: 10.1016/j.eswa.2021.115759_b3
  article-title: Regression based continuous driving fatigue estimation: Towards practical implementation
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– volume: 61
  start-page: 1649
  issue: 6
  year: 2012
  ident: 10.1016/j.eswa.2021.115759_b23
  article-title: Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2012.2187242
– volume: 66
  start-page: 1285
  issue: 5
  year: 2018
  ident: 10.1016/j.eswa.2021.115759_b37
  article-title: Joint classification and prediction CNN framework for automatic sleep stage classification
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2018.2872652
– volume: 22
  start-page: 375
  issue: 2
  year: 2017
  ident: 10.1016/j.eswa.2021.115759_b21
  article-title: Hyclasss: A hybrid classifier for automatic sleep stage scoring
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2017.2668993
– volume: 76
  start-page: 25697
  issue: 24
  year: 2017
  ident: 10.1016/j.eswa.2021.115759_b44
  article-title: Real and imaginary motion classification based on rough set analysis of EEG signals for multimedia applications
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-017-4458-7
– volume: 93
  start-page: 143
  year: 2018
  ident: 10.1016/j.eswa.2021.115759_b35
  article-title: Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.09.062
– volume: 25
  start-page: 1998
  issue: 11
  year: 2017
  ident: 10.1016/j.eswa.2021.115759_b43
  article-title: DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2017.2721116
– volume: 65
  start-page: 1201
  issue: 6
  year: 2017
  ident: 10.1016/j.eswa.2021.115759_b19
  article-title: A state space and density estimation framework for sleep staging in obstructive sleep apnea
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2017.2702123
– volume: 10
  start-page: 776
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2021.115759_b13
  article-title: Using the partial directed coherence to assess functional connectivity in electroencephalography data for brain–computer interfaces
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2017.2777180
– volume: 16
  start-page: 251
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2021.115759_b39
  article-title: Sleep scoring using artificial neural networks
  publication-title: Sleep Medicine Reviews
  doi: 10.1016/j.smrv.2011.06.003
– volume: 26
  start-page: 84
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2021.115759_b31
  article-title: A novel multi-class EEG-based sleep stage classification system
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2017.2776149
– year: 2019
  ident: 10.1016/j.eswa.2021.115759_b6
  article-title: Automatic sleep staging employing convolutional neural networks and cortical connectivity images
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 30
  start-page: 86
  year: 2016
  ident: 10.1016/j.eswa.2021.115759_b26
  article-title: Sleep staging from the EEG signal using multi-domain feature extraction
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2016.06.006
– volume: 55
  start-page: 343
  issue: 2
  year: 2017
  ident: 10.1016/j.eswa.2021.115759_b41
  article-title: Single-channel EEG sleep stage classification based on a streamlined set of statistical features in wavelet domain
  publication-title: Medical & Biological Engineering & Computing
  doi: 10.1007/s11517-016-1519-4
– volume: 20
  start-page: 6592
  issue: 22
  year: 2020
  ident: 10.1016/j.eswa.2021.115759_b51
  article-title: Multi-branch convolutional neural network for automatic sleep stage classification with embedded stage refinement and residual attention channel fusion
  publication-title: Sensors
  doi: 10.3390/s20226592
– volume: 11
  start-page: 1097
  issue: 5
  year: 2017
  ident: 10.1016/j.eswa.2021.115759_b49
  article-title: A new method for automatic sleep stage classification
  publication-title: IEEE Transactions on Biomedical Circuits and Systems
  doi: 10.1109/TBCAS.2017.2719631
– volume: 45
  start-page: 225
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2021.115759_b25
  article-title: Sleep staging from the visibility graph algorithm of series
  publication-title: Acta Electronica Sinica
– volume: 9
  start-page: 53
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.115759_b5
  article-title: Wearable EEG and beyond
  publication-title: Biomedical Engineering Letters
  doi: 10.1007/s13534-018-00093-6
SSID ssj0017007
Score 2.42969
Snippet As the medium of developing brain–computer interface system, the recognition of EEG signals is complicated and difficult due to the complex nonstationary...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115759
SubjectTerms Amplitudes
Classification
Dynamic characteristics
EEG
Electroencephalography
Feature extraction
H-WSVM
Hierarchical classification
Machine learning
Set theory
Signal classification
Sleep
Sleep staging
Statistical methods
Support vector machines
Unsupervised feature learning
Title Unsupervised multi-subepoch feature learning and hierarchical classification for EEG-based sleep staging
URI https://dx.doi.org/10.1016/j.eswa.2021.115759
https://www.proquest.com/docview/2599116113
Volume 186
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8QwDLbgWFh4I97KwIbCXR9JmxGhgwMEC5zEFrVJykOonOid2Pjt2GmKBEIMDB0aJVVlJ_YX2f4McBiJvIqly7jNy4qjh1AcB6hWJkuNkKbMfPL49Y0cjdPLe3E_B6ddLQylVQbb39p0b63DSD9Isz95eurfIjhAd4hXO9xVeNPK5mEhTpQUPVg4ubga3XwFE7JBWzWN8zktCLUzbZqXa96JfiiOjol2hihLf_dPPyy1dz9nK7AUcCM7aX9tFeZcvQbLXU8GFo7oOjyO62Y2IQPQOMt8uiBvZiXCbPPIKudpPFloFfHAitoyaobtwwmoLWYITFP2kFcYQ0TLhsNzTr7OsubFuQlDOEmNjTZgfDa8Ox3x0E2BmyTOp1xZa2xiSplSJDCiCngbVYlUqXUOHxWjktLcFCIzg6wwqjSls4ksIyIjR5y3Cb36tXZbwERufPgmixOTpsYVStgiTqVUIpZVpLYh6mSoTaAap44XL7rLKXvWJHdNctet3Lfh6GvNpCXa-HO26FSjv20XjZ7gz3V7nR51OKyNxhsgmnyJMtn552d3YZHePAHkYA9607eZ20ewMi0PYP74IzoIW_IT_hTorA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DLDwRjwKeGBDpiTxIxlRVSjPBSqxWYntUBAKFWnFxm_nznGQQIiBIYtjR9GdffdZ_vwdIYeRSMtYOsVsWpQMMkTGoAHvyihuhDSF8uTxm1s5GPLLB_EwQ3rtXRikVYbY38R0H61DSzdYszt-eureATiAdAhbO5hVsNNSs2Sei0Qhr-_444vngfpzqhHcUwy7h5szDcnL1e8oPhRHxyg6g4Klv2enH3HaJ5-zFbIUUCM9bX5slcy4ao0stxUZaFig62Q0rOrpGJd_7Sz1ZEFWTwsA2WZES-dFPGkoFPFI88pSLIXtDxPAV9QglEbukHcXBTxL-_1zhpnO0vrFuTEFMIlljTbI8Kx_3xuwUEuBmSROJyyz1tjEFJLjOWCE999tVCYy49Y5eLIYXMRTkwtlTlRussIUziayiFCKHFDeJpmrXiu3RahIjT-8UXFiODcuz4TNYy5lJmJZRtk2iVobahOExrHexYtuGWXPGu2u0e66sfs2OfoaM25kNv7sLVrX6G-TRUMe-HNcp_WjDku11rD_g4AvwSY7__zsAVkY3N9c6-uL26tdsohvvBTkSYfMTd6mbg9gy6TY99PyE_Ts6Xc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+multi-subepoch+feature+learning+and+hierarchical+classification+for+EEG-based+sleep+staging&rft.jtitle=Expert+systems+with+applications&rft.au=An%2C+Panfeng&rft.au=Yuan%2C+Zhiyong&rft.au=Zhao%2C+Jianhui&rft.date=2021-12-30&rft.issn=0957-4174&rft.volume=186&rft.spage=115759&rft_id=info:doi/10.1016%2Fj.eswa.2021.115759&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2021_115759
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon