3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images

Optical tomography can demonstrate accurate three-dimensional (3D) imaging that recovers the 3D spatial distribution and concentration of the luminescent probes in biological tissues, compared with planar imaging. However, the tomographic approach is extremely difficult to implement due to the compl...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 18; no. 19; p. 19876
Main Authors Chen, Xueli, Gao, Xinbo, Chen, Duofang, Ma, Xiaopeng, Zhao, Xiaohui, Shen, Man, Li, Xiangsi, Qu, Xiaochao, Liang, Jimin, Ripoll, Jorge, Tian, Jie
Format Journal Article
LanguageEnglish
Published United States 13.09.2010
Subjects
Online AccessGet full text
ISSN1094-4087
1094-4087
DOI10.1364/OE.18.019876

Cover

Abstract Optical tomography can demonstrate accurate three-dimensional (3D) imaging that recovers the 3D spatial distribution and concentration of the luminescent probes in biological tissues, compared with planar imaging. However, the tomographic approach is extremely difficult to implement due to the complexity in the reconstruction of 3D surface flux distribution from multi-view two dimensional (2D) measurements on the subject surface. To handle this problem, a novel and effective method is proposed in this paper to determine the surface flux distribution from multi-view 2D photographic images acquired by a set of non-contact detectors. The method is validated with comparison experiments involving both regular and irregular surfaces. Reconstruction of the inside probes based on the reconstructed surface flux distribution further demonstrates the potential of the proposed method in its application in optical tomography.
AbstractList Optical tomography can demonstrate accurate three-dimensional (3D) imaging that recovers the 3D spatial distribution and concentration of the luminescent probes in biological tissues, compared with planar imaging. However, the tomographic approach is extremely difficult to implement due to the complexity in the reconstruction of 3D surface flux distribution from multi-view two dimensional (2D) measurements on the subject surface. To handle this problem, a novel and effective method is proposed in this paper to determine the surface flux distribution from multi-view 2D photographic images acquired by a set of non-contact detectors. The method is validated with comparison experiments involving both regular and irregular surfaces. Reconstruction of the inside probes based on the reconstructed surface flux distribution further demonstrates the potential of the proposed method in its application in optical tomography.Optical tomography can demonstrate accurate three-dimensional (3D) imaging that recovers the 3D spatial distribution and concentration of the luminescent probes in biological tissues, compared with planar imaging. However, the tomographic approach is extremely difficult to implement due to the complexity in the reconstruction of 3D surface flux distribution from multi-view two dimensional (2D) measurements on the subject surface. To handle this problem, a novel and effective method is proposed in this paper to determine the surface flux distribution from multi-view 2D photographic images acquired by a set of non-contact detectors. The method is validated with comparison experiments involving both regular and irregular surfaces. Reconstruction of the inside probes based on the reconstructed surface flux distribution further demonstrates the potential of the proposed method in its application in optical tomography.
Optical tomography can demonstrate accurate three-dimensional (3D) imaging that recovers the 3D spatial distribution and concentration of the luminescent probes in biological tissues, compared with planar imaging. However, the tomographic approach is extremely difficult to implement due to the complexity in the reconstruction of 3D surface flux distribution from multi-view two dimensional (2D) measurements on the subject surface. To handle this problem, a novel and effective method is proposed in this paper to determine the surface flux distribution from multi-view 2D photographic images acquired by a set of non-contact detectors. The method is validated with comparison experiments involving both regular and irregular surfaces. Reconstruction of the inside probes based on the reconstructed surface flux distribution further demonstrates the potential of the proposed method in its application in optical tomography.
Author Chen, Duofang
Liang, Jimin
Gao, Xinbo
Qu, Xiaochao
Ma, Xiaopeng
Li, Xiangsi
Shen, Man
Ripoll, Jorge
Zhao, Xiaohui
Tian, Jie
Chen, Xueli
Author_xml – sequence: 1
  givenname: Xueli
  surname: Chen
  fullname: Chen, Xueli
– sequence: 2
  givenname: Xinbo
  surname: Gao
  fullname: Gao, Xinbo
– sequence: 3
  givenname: Duofang
  surname: Chen
  fullname: Chen, Duofang
– sequence: 4
  givenname: Xiaopeng
  surname: Ma
  fullname: Ma, Xiaopeng
– sequence: 5
  givenname: Xiaohui
  surname: Zhao
  fullname: Zhao, Xiaohui
– sequence: 6
  givenname: Man
  surname: Shen
  fullname: Shen, Man
– sequence: 7
  givenname: Xiangsi
  surname: Li
  fullname: Li, Xiangsi
– sequence: 8
  givenname: Xiaochao
  surname: Qu
  fullname: Qu, Xiaochao
– sequence: 9
  givenname: Jimin
  surname: Liang
  fullname: Liang, Jimin
– sequence: 10
  givenname: Jorge
  surname: Ripoll
  fullname: Ripoll, Jorge
– sequence: 11
  givenname: Jie
  surname: Tian
  fullname: Tian, Jie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20940879$$D View this record in MEDLINE/PubMed
BookMark eNptkLtPwzAQhy1URB-wMSNvLKTYsevEI2rLQ6rUBebIsZ3WKImDHxL970mVghBiutP9vjudvikYtbbVAFxjNMeE0fvteo7zOcI8z9gZmGDEaUJRno1-9WMw9f4dIUwznl2AcdoH_ZhPgCIr6LS0rQ8uymBsC20Fa7PbB1jV8RMq0yemjEPUQuFKE5xwB-ijq4TUHlbONjBdwSbWwSTd3ga7c6LbGwlNI3baX4LzStReX53qDLw9rl-Xz8lm-_SyfNgkkqR5SLhaoIwprfIMcZxyynRVlogvCBGIlVyWNCdKoJJrjRjLJGKUS5ZSoYVSEpEZuB3uds5-RO1D0RgvdV2LVtvoi2yRY0IQP5I3JzKWjVZF5_pP3aH4FtMDdwMgnfXe6eoHwag4ei-26wLnxeC9x9M_uDRBHJ31rkz9_9IX_OuGRg
CitedBy_id crossref_primary_10_1364_BOE_5_000387
crossref_primary_10_1117_1_JBO_20_9_090502
crossref_primary_10_1063_1_4739266
crossref_primary_10_1088_0031_9155_59_8_2089
crossref_primary_10_1109_TMI_2021_3120011
crossref_primary_10_1364_OPTICA_5_001451
crossref_primary_10_1371_journal_pone_0037623
crossref_primary_10_1364_OE_18_024825
crossref_primary_10_1364_BOE_3_002794
crossref_primary_10_1364_OE_490139
crossref_primary_10_1117_1_JBO_20_5_055004
crossref_primary_10_1007_s11633_012_0618_4
crossref_primary_10_1109_TBME_2019_2937354
crossref_primary_10_1117_1_JBO_19_12_126013
crossref_primary_10_1088_2057_1976_1_4_045207
crossref_primary_10_1364_JOSAA_30_002572
crossref_primary_10_1016_j_optcom_2011_07_071
crossref_primary_10_1364_BOE_434679
crossref_primary_10_1007_s11517_018_1842_z
crossref_primary_10_1109_TBME_2015_2510369
crossref_primary_10_1016_j_optcom_2018_06_052
crossref_primary_10_1080_09500340_2018_1502825
crossref_primary_10_1088_2057_1976_2_1_015015
crossref_primary_10_1109_TBME_2015_2404915
crossref_primary_10_1016_j_optcom_2012_08_047
crossref_primary_10_1109_TMI_2016_2601311
crossref_primary_10_1364_BOE_7_002342
crossref_primary_10_1109_ACCESS_2019_2950265
crossref_primary_10_1117_1_JBO_23_8_085002
crossref_primary_10_1186_s42492_018_0001_6
crossref_primary_10_35711_aimi_v1_i2_78
crossref_primary_10_1117_1_JBO_17_6_066015
crossref_primary_10_1007_s00330_014_3574_2
crossref_primary_10_1109_TMI_2017_2737661
crossref_primary_10_1155_2013_548491
crossref_primary_10_1364_BOE_5_004039
crossref_primary_10_1364_OE_18_024441
crossref_primary_10_1088_1361_6560_ab1f33
crossref_primary_10_1063_1_4862166
crossref_primary_10_1063_1_4901436
crossref_primary_10_1002_lpor_201280011
crossref_primary_10_3389_fonc_2021_749889
crossref_primary_10_1109_TBME_2018_2872913
crossref_primary_10_1007_s11633_012_0638_0
crossref_primary_10_1364_AO_52_002374
crossref_primary_10_1117_1_JBO_20_10_105003
crossref_primary_10_1109_TBME_2018_2874699
crossref_primary_10_1364_OL_454672
crossref_primary_10_1088_0957_0233_24_10_105405
Cites_doi 10.1117/12.632855
10.1103/PhysRevLett.91.103901
10.1364/OE.17.014481
10.1364/OE.16.001481
10.1038/nm729
10.1364/OE.17.016266
10.1016/j.acra.2004.05.021
10.1117/1.3120495
10.1088/0031-9155/50/4/R01
10.1364/JOSAA.1.000612
10.1088/0031-9155/50/17/021
10.1038/nm0103-123
10.1364/OPEX.12.005402
10.1364/OE.14.008211
10.1088/0031-9155/41/4/012
10.1109/MEMB.2008.923962
10.1118/1.2982138
10.1088/0266-5611/15/2/022
10.1364/OE.14.007801
10.1364/OL.28.001701
10.1023/A:1016324132583
10.1038/nbt1074
10.1364/OE.16.015640
10.1118/1.3273034
10.1364/OPEX.13.006756
10.1364/OE.15.018300
10.1364/OL.31.000365
10.1364/AO.46.003617
10.1117/12.697860
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1364/OE.18.019876
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 20940879
10_1364_OE_18_019876
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
C1A
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c328t-9d5076ded870912946efbb09533a06b9cb483da0b9ee0667c0649c624aeaddc03
ISSN 1094-4087
IngestDate Fri Jul 11 05:24:05 EDT 2025
Thu Apr 03 07:09:21 EDT 2025
Tue Jul 01 03:20:05 EDT 2025
Thu Apr 24 22:55:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://opg.optica.org/policies/opg-tdm-policy.json
https://doi.org/10.1364/OA_License_v1#VOR-OA
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-9d5076ded870912946efbb09533a06b9cb483da0b9ee0667c0649c624aeaddc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1364/oe.18.019876
PMID 20940879
PQID 758133090
PQPubID 23479
ParticipantIDs proquest_miscellaneous_758133090
pubmed_primary_20940879
crossref_primary_10_1364_OE_18_019876
crossref_citationtrail_10_1364_OE_18_019876
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-09-13
2010-Sep-13
20100913
PublicationDateYYYYMMDD 2010-09-13
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optics express
PublicationTitleAlternate Opt Express
PublicationYear 2010
References Aggarwal (oe-18-19-19876-R24) 2002; 48
Firbank (oe-18-19-19876-R22) 1996; 41
Dehghani (oe-18-19-19876-R14) 2008; 35
Feng (oe-18-19-19876-R12) 2008; 16
Cong (oe-18-19-19876-R10) 2005; 13
Qin (oe-18-19-19876-R26) 2007; 6434
Ntziachristos (oe-18-19-19876-R2) 2005; 23
Feldkamp (oe-18-19-19876-R23) 1984; 1
Wang (oe-18-19-19876-R7) 2006; 14
Song (oe-18-19-19876-R9) 2007; 15
Yan (oe-18-19-19876-R25) 2008; 16
Tian (oe-18-19-19876-R3) 2008; 27
Gibson (oe-18-19-19876-R4) 2005; 50
Schulz (oe-18-19-19876-R17) 2005; 5859
Ntziachristos (oe-18-19-19876-R6) 2002; 8
Klose (oe-18-19-19876-R15) 2010; 37
Zhang (oe-18-19-19876-R20) 2008; 16
Lv (oe-18-19-19876-R11) 2006; 14
Meyer (oe-18-19-19876-R21) 2007; 46
Chen (oe-18-19-19876-R18) 2009; 17
Schulz (oe-18-19-19876-R19) 2003; 28
Arridge (oe-18-19-19876-R5) 1999; 15
Alexandrakis (oe-18-19-19876-R30) 2005; 50
Weissleder (oe-18-19-19876-R1) 2003; 9
Dehghani (oe-18-19-19876-R13) 2006; 31
Beattie (oe-18-19-19876-R29) 2009; 14
Ripoll (oe-18-19-19876-R16) 2003; 91
Han (oe-18-19-19876-R28) 2009; 17
Joshi (oe-18-19-19876-R8) 2004; 12
Li (oe-18-19-19876-R27) 2004; 11
References_xml – volume: 5859
  start-page: 58590Z
  year: 2005
  ident: oe-18-19-19876-R17
  publication-title: Proc. SPIE
  doi: 10.1117/12.632855
– volume: 91
  start-page: 103901
  year: 2003
  ident: oe-18-19-19876-R16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.103901
– volume: 17
  start-page: 14481
  year: 2009
  ident: oe-18-19-19876-R28
  publication-title: Opt. Express
  doi: 10.1364/OE.17.014481
– volume: 16
  start-page: 1481
  year: 2008
  ident: oe-18-19-19876-R20
  publication-title: Opt. Express
  doi: 10.1364/OE.16.001481
– volume: 8
  start-page: 757
  year: 2002
  ident: oe-18-19-19876-R6
  publication-title: Nat. Med.
  doi: 10.1038/nm729
– volume: 17
  start-page: 16266
  year: 2009
  ident: oe-18-19-19876-R18
  publication-title: Opt. Express
  doi: 10.1364/OE.17.016266
– volume: 11
  start-page: 1029
  year: 2004
  ident: oe-18-19-19876-R27
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2004.05.021
– volume: 14
  start-page: 024045
  year: 2009
  ident: oe-18-19-19876-R29
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3120495
– volume: 50
  start-page: R1
  year: 2005
  ident: oe-18-19-19876-R4
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/50/4/R01
– volume: 1
  start-page: 612
  year: 1984
  ident: oe-18-19-19876-R23
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.1.000612
– volume: 50
  start-page: 4225
  year: 2005
  ident: oe-18-19-19876-R30
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/50/17/021
– volume: 9
  start-page: 123
  year: 2003
  ident: oe-18-19-19876-R1
  publication-title: Nat. Med.
  doi: 10.1038/nm0103-123
– volume: 16
  start-page: 225
  year: 2008
  ident: oe-18-19-19876-R25
  publication-title: J. XRay Sci. Technol.
– volume: 12
  start-page: 5402
  year: 2004
  ident: oe-18-19-19876-R8
  publication-title: Opt. Express
  doi: 10.1364/OPEX.12.005402
– volume: 14
  start-page: 8211
  year: 2006
  ident: oe-18-19-19876-R11
  publication-title: Opt. Express
  doi: 10.1364/OE.14.008211
– volume: 41
  start-page: 767
  year: 1996
  ident: oe-18-19-19876-R22
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/41/4/012
– volume: 27
  start-page: 48
  year: 2008
  ident: oe-18-19-19876-R3
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/MEMB.2008.923962
– volume: 35
  start-page: 4863
  year: 2008
  ident: oe-18-19-19876-R14
  publication-title: Med. Phys.
  doi: 10.1118/1.2982138
– volume: 15
  start-page: R41
  year: 1999
  ident: oe-18-19-19876-R5
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/15/2/022
– volume: 14
  start-page: 7801
  year: 2006
  ident: oe-18-19-19876-R7
  publication-title: Opt. Express
  doi: 10.1364/OE.14.007801
– volume: 28
  start-page: 1701
  year: 2003
  ident: oe-18-19-19876-R19
  publication-title: Opt. Lett.
  doi: 10.1364/OL.28.001701
– volume: 48
  start-page: 195
  year: 2002
  ident: oe-18-19-19876-R24
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1016324132583
– volume: 23
  start-page: 313
  year: 2005
  ident: oe-18-19-19876-R2
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1074
– volume: 16
  start-page: 15640
  year: 2008
  ident: oe-18-19-19876-R12
  publication-title: Opt. Express
  doi: 10.1364/OE.16.015640
– volume: 37
  start-page: 329
  year: 2010
  ident: oe-18-19-19876-R15
  publication-title: Med. Phys.
  doi: 10.1118/1.3273034
– volume: 13
  start-page: 6756
  year: 2005
  ident: oe-18-19-19876-R10
  publication-title: Opt. Express
  doi: 10.1364/OPEX.13.006756
– volume: 15
  start-page: 18300
  year: 2007
  ident: oe-18-19-19876-R9
  publication-title: Opt. Express
  doi: 10.1364/OE.15.018300
– volume: 31
  start-page: 365
  year: 2006
  ident: oe-18-19-19876-R13
  publication-title: Opt. Lett.
  doi: 10.1364/OL.31.000365
– volume: 46
  start-page: 3617
  year: 2007
  ident: oe-18-19-19876-R21
  publication-title: Appl. Opt.
  doi: 10.1364/AO.46.003617
– volume: 6434
  start-page: 64342E
  year: 2007
  ident: oe-18-19-19876-R26
  publication-title: Proc. SPIE
  doi: 10.1117/12.697860
SSID ssj0014797
Score 2.249458
Snippet Optical tomography can demonstrate accurate three-dimensional (3D) imaging that recovers the 3D spatial distribution and concentration of the luminescent...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 19876
SubjectTerms Algorithms
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Light
Photography - methods
Photometry - methods
Scattering, Radiation
Title 3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images
URI https://www.ncbi.nlm.nih.gov/pubmed/20940879
https://www.proquest.com/docview/758133090
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBdbx2CXse-124oO28k4cyxZto5jdimjbS4J-GYkWd4CaRyaGMoO-9v7JDmqs6bsA4IJ4lk2ej-e3_dD6CNlcVwnKgnHOolCykUacsJESGCxTjhRKTEFzucX7HRGv5VJeTvuyFaXbORI_dxbV_I_XIU14Kupkv0HzvpNYQH-A3_hChyG61_xmOSBNWh9E1ij-i2MuR00i-7aRF_8QCsTFRBXcm7L7IN1d9XYZCxbXhLnLrEwXP1oN66H9VwF80uQNeuh9jpZ2abO-nrlEzdsZoATXWWnF3OfzyOsD7Y00aPfCfOubUT_xbTOcEcpzCSv70M3hImg89BVkfaSE-xEMEb7r6fes3ZH3BpY8YHwNP4PtlesE0aBF5NiNM5GkSfb7Z59MalOZmdn1bQopw_RozhNbdj-_Ffho0o0dcN2tq_VF0LA7p-He--qKPfYHVb_mD5DT3vDAX9xKHiOHujlC_TYJvCq9UtUkxzvYgG3DbZYwAYLeIgFDD-PBbzFAjZYwHGO72IBOyy8QrOTYvr1NOwnaISKxNkm5DWo-6zWNUhlDpodZbqR0rQYJCJikitJM1KLSHKtTbazAgWVKxZTAQKmVhF5jQ6W7VK_RThJzXhPsCYimdFMEU4TwiVYDyxKGzCDD1GwPbRK9e3lzZSTRWVjpoxWk6IaZ5U74kP0yVOvXFuVe-jw9vwrkHsmmCWWuu3WFdi5Y0IiDg9-4_jiN4pNT8gs5Ud_vvkdenIL5vfoAFikP4CWuZHH1jtzbAF0Awj5fq0
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+reconstruction+of+light+flux+distribution+on+arbitrary+surfaces+from+2D+multi-photographic+images&rft.jtitle=Optics+express&rft.au=Chen%2C+Xueli&rft.au=Gao%2C+Xinbo&rft.au=Chen%2C+Duofang&rft.au=Ma%2C+Xiaopeng&rft.date=2010-09-13&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=18&rft.issue=19&rft.spage=19876&rft_id=info:doi/10.1364%2FOE.18.019876&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon