Catalytic upgrading of heavy oil using NiCo/γ-Al2O3 catalyst: Effect of initial atmosphere and water-gas shift reaction
[Display omitted] •The reactor gaseous media affects the upgrading process.•Water-gas shift reaction plays a significant role in the upgrading.•The choice of by-product may influence the selection of gaseous media.•Hydrogen media was shown to promote gases, while Nitrogen encourages coke. Ni-Co/γ-al...
Saved in:
Published in | Fuel (Guildford) Vol. 235; pp. 736 - 743 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.01.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The reactor gaseous media affects the upgrading process.•Water-gas shift reaction plays a significant role in the upgrading.•The choice of by-product may influence the selection of gaseous media.•Hydrogen media was shown to promote gases, while Nitrogen encourages coke.
Ni-Co/γ-alumina catalyst was prepared and tested in upgrading of heavy crude oil. The parameter studied was the type of the pressurising gas and especially its effect on the water-gas shift reaction on the upgrading. The preliminary results suggested that a combination of the cracking reaction and the original water-in-oil which triggered a low temperature water-gas shift reaction generated hydrogen in-situ for the hydrogenation reaction. To further explore this, four major experimental runs were conducted; amongst which two were without catalysts and reactor inner liner in hydrogen and nitrogen environments, two were catalytically driven with and without a liner. The experimental conditions were 380 °C, 32 bar and residence time of 2 h with a catalyst/oil ratio of 0.01. The results show that API gravity, Hydrogen/Carbon ratio and light oil yields were slightly higher for the reaction in nitrogen atmosphere without liner as compared to hydrogen with liner– 15.8°, 0.138, and 40.2 g respectively for the latter with 18.2°, 0.177, and 45 g for the former. The catalytic reaction in hydrogen environment however; produced no coke as against the 0.2 wt% coke recorded with nitrogen. Meanwhile, the reduction in sulphur content and viscosity of the nitrogen experiment were higher compared to that of hydrogen. |
---|---|
AbstractList | Ni-Co/γ-alumina catalyst was prepared and tested in upgrading of heavy crude oil. The parameter studied was the type of the pressurising gas and especially its effect on the water-gas shift reaction on the upgrading. The preliminary results suggested that a combination of the cracking reaction and the original water-in-oil which triggered a low temperature water-gas shift reaction generated hydrogen in-situ for the hydrogenation reaction. To further explore this, four major experimental runs were conducted; amongst which two were without catalysts and reactor inner liner in hydrogen and nitrogen environments, two were catalytically driven with and without a liner. The experimental conditions were 380 °C, 32 bar and residence time of 2 h with a catalyst/oil ratio of 0.01. The results show that API gravity, Hydrogen/Carbon ratio and light oil yields were slightly higher for the reaction in nitrogen atmosphere without liner as compared to hydrogen with liner– 15.8°, 0.138, and 40.2 g respectively for the latter with 18.2°, 0.177, and 45 g for the former. The catalytic reaction in hydrogen environment however; produced no coke as against the 0.2 wt% coke recorded with nitrogen. Meanwhile, the reduction in sulphur content and viscosity of the nitrogen experiment were higher compared to that of hydrogen. [Display omitted] •The reactor gaseous media affects the upgrading process.•Water-gas shift reaction plays a significant role in the upgrading.•The choice of by-product may influence the selection of gaseous media.•Hydrogen media was shown to promote gases, while Nitrogen encourages coke. Ni-Co/γ-alumina catalyst was prepared and tested in upgrading of heavy crude oil. The parameter studied was the type of the pressurising gas and especially its effect on the water-gas shift reaction on the upgrading. The preliminary results suggested that a combination of the cracking reaction and the original water-in-oil which triggered a low temperature water-gas shift reaction generated hydrogen in-situ for the hydrogenation reaction. To further explore this, four major experimental runs were conducted; amongst which two were without catalysts and reactor inner liner in hydrogen and nitrogen environments, two were catalytically driven with and without a liner. The experimental conditions were 380 °C, 32 bar and residence time of 2 h with a catalyst/oil ratio of 0.01. The results show that API gravity, Hydrogen/Carbon ratio and light oil yields were slightly higher for the reaction in nitrogen atmosphere without liner as compared to hydrogen with liner– 15.8°, 0.138, and 40.2 g respectively for the latter with 18.2°, 0.177, and 45 g for the former. The catalytic reaction in hydrogen environment however; produced no coke as against the 0.2 wt% coke recorded with nitrogen. Meanwhile, the reduction in sulphur content and viscosity of the nitrogen experiment were higher compared to that of hydrogen. |
Author | Avbenake, Onoriode P. Jibril, Baba Y. Al-Hajri, Rashid S. |
Author_xml | – sequence: 1 givenname: Onoriode P. surname: Avbenake fullname: Avbenake, Onoriode P. email: paulavbenake@gmail.com organization: Chemical and Petroleum Engineering Department, Bayero University, Kano, Nigeria – sequence: 2 givenname: Rashid S. surname: Al-Hajri fullname: Al-Hajri, Rashid S. organization: Petroleum and Chemical Engineering Department, Sultan Qaboos University, PO Box 33, PC, 123, Muscat, Oman – sequence: 3 givenname: Baba Y. surname: Jibril fullname: Jibril, Baba Y. organization: Chemical Engineering Department, Ahmadu Bello University, Zaria, Nigeria |
BookMark | eNp9kNtKAzEQhoNUsB5ewKuA11tz2N3sijeleIJib_Q6pMmkTdluapJV-1y-h8_krvVaGBgY_m9m-E7RqPUtIHRJyYQSWl5vJraDZsIIrSakL5EfoTGtBM8ELfgIjUmfyhgv6Qk6jXFDCBFVkY_R50wl1eyT07jbrYIyrl1hb_Ea1Psee9fgLg6jZzfz199f2bRhC471LxTTDb6zFnQaCNe65FSDVdr6uFtDAKxagz9UgpCtVMRx7WzCAZROzrfn6NiqJsLFXz9Dr_d3L7PHbL54eJpN55nmrEpZrevKGF0aQ6mgObeqXBbaltQaJipgpjJQKlobkjMoFK-pJiUjObBlnSvG-Rm6OuzdBf_WQUxy47vQ9iclo5wIwRkp-hQ7pHTwMQawchfcVoW9pEQOhuVGDoblYFiSvkTeQ7cHCPr_3x0EGbWDVoNxoZcijXf_4T-LaYeh |
CitedBy_id | crossref_primary_10_1016_j_fuel_2024_132089 crossref_primary_10_1021_acs_energyfuels_3c04879 crossref_primary_10_1016_j_fuel_2024_131042 crossref_primary_10_1002_jctb_7483 crossref_primary_10_1016_j_petsci_2023_08_005 crossref_primary_10_1016_j_fuel_2023_128585 crossref_primary_10_1080_10916466_2020_1779743 crossref_primary_10_1016_j_ijhydene_2020_11_077 crossref_primary_10_1016_j_mcat_2022_112714 crossref_primary_10_3390_pr9010127 crossref_primary_10_1016_j_joei_2020_04_018 crossref_primary_10_1016_j_ijhydene_2019_08_223 crossref_primary_10_1016_j_ijhydene_2022_05_216 crossref_primary_10_1016_j_jiec_2020_09_028 crossref_primary_10_1016_j_seppur_2022_122802 |
Cites_doi | 10.1016/j.cattod.2013.05.016 10.1021/ef010300h 10.1016/j.fuel.2013.11.048 10.1021/ie4022557 10.1016/j.seppur.2010.08.005 10.1016/j.cej.2015.01.101 10.1021/ef400623f 10.1016/0021-9517(81)90263-3 10.1016/j.fuel.2012.02.022 10.1021/ef990207h 10.1021/ef9701854 10.1016/S0021-9797(03)00641-6 10.1205/cherd.04192 10.1016/0378-3820(92)90076-3 10.1016/j.fuel.2012.10.027 10.1016/j.cattod.2014.09.021 10.1016/j.apenergy.2014.07.069 10.1016/j.fuel.2014.03.050 10.1016/0016-2361(90)90192-S 10.1021/ef970188g 10.1021/ef2018385 10.1016/0016-2361(84)90425-3 10.1016/0920-4105(89)90046-6 10.1016/S0165-2370(98)00108-9 10.1021/ef950127n 10.1016/j.cattod.2005.08.025 10.1205/cherd06159 10.1016/S1872-5813(07)60016-4 10.1021/i260009a010 10.1021/ie970751i 10.1021/ef000009m 10.1021/ef960025c 10.5188/ijsmer.7.273 10.1002/ceat.201300729 10.1016/j.fuel.2011.06.067 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Jan 1, 2019 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Jan 1, 2019 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
DOI | 10.1016/j.fuel.2018.08.074 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7153 |
EndPage | 743 |
ExternalDocumentID | 10_1016_j_fuel_2018_08_074 S001623611831439X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ WH7 ZMT ~02 ~G- 29H 8WZ A6W AAQXK AAXKI AAYXX ABDEX ABEFU ABTAH ABXDB ACNNM ADMUD AFFNX AFJKZ AI. AKRWK ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SCB SEW VH1 WUQ XPP ZY4 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
ID | FETCH-LOGICAL-c328t-9c98ddc6dd117143fa6b5cf61fd278e2d8de6a19d042e5a391c06204e2b94a233 |
IEDL.DBID | AIKHN |
ISSN | 0016-2361 |
IngestDate | Thu Oct 10 15:17:19 EDT 2024 Thu Sep 26 18:55:24 EDT 2024 Fri Feb 23 02:46:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Heavy oil upgrading Hydrocracking NiCo/γ-Al2O3 catalysts Gas media Water-gas shift reaction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-9c98ddc6dd117143fa6b5cf61fd278e2d8de6a19d042e5a391c06204e2b94a233 |
PQID | 2130773205 |
PQPubID | 2045474 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2130773205 crossref_primary_10_1016_j_fuel_2018_08_074 elsevier_sciencedirect_doi_10_1016_j_fuel_2018_08_074 |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 2019-01-00 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Fuel (Guildford) |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Ancheyta, Rana, Furimsky (b0065) 2005; 109 Fan TG, Wang JX, Buckley JS. Evaluating crude oils by SARA analysis, SPE 75228. Ross, Blessing, Nguyen, Hum (b0055) 1984; 63 Ahmad, Zhang, Jobson (b0095) 2010 Hashemi, Nassar, Pereira-Almao (b0140) 2014; 133 Coonradt, Garwood (b0090) 1964; 3 Heck, Rankel, DiGuiseppi (b0070) 1992; 30 Castaneda, Munoz, Ancheyta (b0005) 2014; 220–222 Hart, Greaves, Wood (b0015) 2015; 282 Adschiri, Shibata, Sato, Watanabe, Arai (b0120) 1998; 37 Zhong, Li, Xing, Xu (b0170) 2011; 76 Ancheyta, Centeno, Trejo, Marroquin, Garcia, Tenorio (b0130) 2002; 16 Seki, Kumata (b0185) 2000; 14 Leontaritis, Mansoori (b0135) 1989; 2 Parkhomchuk, Lysikov, Okunev, Parunin, Semeikina, Ayupov (b0155) 2013; 52 Ayala, Hernandez-Lopez, Perezgasga, Vazquez-Duhalt (b0040) 2012; 92 Ortiz-Moreno, Ramirez, Sanchez-Minero, Cuevas, Ancheyta (b0085) 2014; 130 Xia, Greaves (b0115) 2006; 84 Grenoble, Estadt, Ollis (b0025) 1981; 67 Chao, Chen, Liu, Zhang, Li (b0145) 2012; 26 Kennepohl, Sanford (b0150) 1996; 10 Shirokoff, Siddiqui, Ali (b0165) 1997; 11 Rudzinski, Aminabhavi, Sassman, Watkins (b0045) 2000; 14 Wei, Jian-hua, Jian-hua (b0020) 2007; 35 Mirzaei, Rezaei, Meshkani (b0030) 2014; 37 Mohanty, Kunzru, Saraf (b0080) 1990; 69 Adschiri, Okazaki (b0125) 1999; 7 Castaneda, Munoz, Ancheyta (b0075) 2012; 100 Puron, Pinilla, Cesar Berrueco, de la Fuente, Millan (b0175) 2013; 27 El harfi K, Mokhlisse A, Chanaa Ben M. Effect of water vapor on the pyrolysis of the Moroccan (Tarfaya) oil shale. J Anal Appl Pyrolysis 1999; 48:65–76. Sawarkar, Pandit, Joshi (b0180) 2007; 85 Spiecker, Gawrys, Kilpatrick (b0060) 2003; 267 Sanchez-Minero, Ancheyta, Silva-Oliver, Flores-Valle (b0100) 2013; 110 Hart, Leeke, Greaves, Wood (b0035) 2014; 119 Calemma, Rausa, D’Antona, Montanari (b0160) 1998; 12 Purón, Pinilla, Suelves, Millan (b0010) 2015; 249 Siewe, Flora (b0110) 1998; 12 Wei (10.1016/j.fuel.2018.08.074_b0020) 2007; 35 Sanchez-Minero (10.1016/j.fuel.2018.08.074_b0100) 2013; 110 Mohanty (10.1016/j.fuel.2018.08.074_b0080) 1990; 69 Mirzaei (10.1016/j.fuel.2018.08.074_b0030) 2014; 37 10.1016/j.fuel.2018.08.074_b0050 Adschiri (10.1016/j.fuel.2018.08.074_b0120) 1998; 37 Castaneda (10.1016/j.fuel.2018.08.074_b0005) 2014; 220–222 Puron (10.1016/j.fuel.2018.08.074_b0175) 2013; 27 Kennepohl (10.1016/j.fuel.2018.08.074_b0150) 1996; 10 Hart (10.1016/j.fuel.2018.08.074_b0015) 2015; 282 Sawarkar (10.1016/j.fuel.2018.08.074_b0180) 2007; 85 Siewe (10.1016/j.fuel.2018.08.074_b0110) 1998; 12 Leontaritis (10.1016/j.fuel.2018.08.074_b0135) 1989; 2 Ayala (10.1016/j.fuel.2018.08.074_b0040) 2012; 92 Ortiz-Moreno (10.1016/j.fuel.2018.08.074_b0085) 2014; 130 Heck (10.1016/j.fuel.2018.08.074_b0070) 1992; 30 Ahmad (10.1016/j.fuel.2018.08.074_b0095) 2010 10.1016/j.fuel.2018.08.074_b0105 Seki (10.1016/j.fuel.2018.08.074_b0185) 2000; 14 Chao (10.1016/j.fuel.2018.08.074_b0145) 2012; 26 Calemma (10.1016/j.fuel.2018.08.074_b0160) 1998; 12 Zhong (10.1016/j.fuel.2018.08.074_b0170) 2011; 76 Purón (10.1016/j.fuel.2018.08.074_b0010) 2015; 249 Hashemi (10.1016/j.fuel.2018.08.074_b0140) 2014; 133 Rudzinski (10.1016/j.fuel.2018.08.074_b0045) 2000; 14 Parkhomchuk (10.1016/j.fuel.2018.08.074_b0155) 2013; 52 Coonradt (10.1016/j.fuel.2018.08.074_b0090) 1964; 3 Shirokoff (10.1016/j.fuel.2018.08.074_b0165) 1997; 11 Ancheyta (10.1016/j.fuel.2018.08.074_b0130) 2002; 16 Hart (10.1016/j.fuel.2018.08.074_b0035) 2014; 119 Grenoble (10.1016/j.fuel.2018.08.074_b0025) 1981; 67 Ross (10.1016/j.fuel.2018.08.074_b0055) 1984; 63 Adschiri (10.1016/j.fuel.2018.08.074_b0125) 1999; 7 Ancheyta (10.1016/j.fuel.2018.08.074_b0065) 2005; 109 Castaneda (10.1016/j.fuel.2018.08.074_b0075) 2012; 100 Spiecker (10.1016/j.fuel.2018.08.074_b0060) 2003; 267 Xia (10.1016/j.fuel.2018.08.074_b0115) 2006; 84 |
References_xml | – volume: 2 start-page: 1 year: 1989 end-page: 12 ident: b0135 article-title: Fast crude oil heavy component characterization using combination of ASTM, HPLC and GPC methods publication-title: J Petrol Sci Eng. contributor: fullname: Mansoori – volume: 14 start-page: 980 year: 2000 end-page: 985 ident: b0185 article-title: Structural change of petroleum asphaltenes and resins by hydrodemetallization publication-title: Energy Fuels contributor: fullname: Kumata – volume: 35 start-page: 176 year: 2007 end-page: 180 ident: b0020 article-title: Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis publication-title: J Fuel Chem Technol. contributor: fullname: Jian-hua – volume: 220–222 start-page: 248 year: 2014 end-page: 273 ident: b0005 article-title: Current situation of emerging technologies for upgrading of heavy oils publication-title: Catal Today contributor: fullname: Ancheyta – volume: 69 start-page: 1467 year: 1990 end-page: 1473 ident: b0080 article-title: Hydrocracking: a review publication-title: Fuel contributor: fullname: Saraf – volume: 52 start-page: 17117 year: 2013 end-page: 17125 ident: b0155 article-title: Meso/Macroporous CoMo Alumina pellets for hydrotreating of heavy oil publication-title: Ind. Eng. Chem. Res. contributor: fullname: Ayupov – volume: 37 start-page: 973 year: 2014 end-page: 978 ident: b0030 article-title: Coprecipitated Ni-Co Bimetallic Nanocatalysts for Methane dry reforming publication-title: Chem Eng Technol. contributor: fullname: Meshkani – volume: 130 start-page: 263 year: 2014 end-page: 272 ident: b0085 article-title: Hydrocracking of Maya crude oil in a slurry-phase batch reactor. II. Effect of catalyst load publication-title: Fuel contributor: fullname: Ancheyta – volume: 100 start-page: 110 year: 2012 end-page: 127 ident: b0075 article-title: Combined process schemes for upgrading of heavy petroleum publication-title: Fuel contributor: fullname: Ancheyta – volume: 110 start-page: 318 year: 2013 end-page: 321 ident: b0100 article-title: Predicting SARA composition of crude oil by means of NMR publication-title: Fuel contributor: fullname: Flores-Valle – volume: 249 start-page: 79 year: 2015 end-page: 85 ident: b0010 article-title: Acid treated carbon nanofibers as catalytic support for heavy oil hydroprocessing publication-title: Catal Today contributor: fullname: Millan – volume: 267 start-page: 178 year: 2003 end-page: 193 ident: b0060 article-title: Aggregation and solubility behaviour of asphaltenes and their subfractions publication-title: J Colloid Interface Sci contributor: fullname: Kilpatrick – volume: 11 start-page: 561 year: 1997 end-page: 565 ident: b0165 article-title: Characterization of the Structure of Saudi Crude Asphaltenes by X-ray Diffraction publication-title: Energy Fuels contributor: fullname: Ali – volume: 282 start-page: 213 year: 2015 end-page: 223 ident: b0015 article-title: A comparative study of fixed-bed and dispersed catalytic upgrading of heavy crude oil using CAPRI publication-title: Chem Eng J. contributor: fullname: Wood – volume: 14 start-page: 839 year: 2000 end-page: 844 ident: b0045 article-title: Isolation and Characterization of the Saturate and Aromatic Fractions of a Maya Crude Oil publication-title: Energy Fuels contributor: fullname: Watkins – volume: 16 start-page: 1121 year: 2002 end-page: 1127 ident: b0130 article-title: Extraction and characterization of asphaltenes from different crude oils and solvents publication-title: Energy Fuels contributor: fullname: Tenorio – volume: 30 start-page: 69 year: 1992 end-page: 81 ident: b0070 article-title: Conversion of petroleum residue from Maya crude: effects of H-donors, hydrogen pressure and catalyst publication-title: Fuel Process Technol contributor: fullname: DiGuiseppi – volume: 133 start-page: 374 year: 2014 end-page: 387 ident: b0140 article-title: Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and Challenges publication-title: Appl Energy contributor: fullname: Pereira-Almao – volume: 76 start-page: 223 year: 2011 end-page: 230 ident: b0170 article-title: Crossflow filtration of nanosized catalysts suspension using ceramic membranes publication-title: Sep Purif Technol. contributor: fullname: Xu – year: 2010 ident: b0095 article-title: Molecular components-based representation of petroleum fractions publication-title: Chem Eng Res Des. contributor: fullname: Jobson – volume: 26 start-page: 1152 year: 2012 end-page: 1159 ident: b0145 article-title: Laboratory experiments and field test for a difunctional catalyst for catalytic aquathermolysis of heavy oil publication-title: Energy Fuels contributor: fullname: Li – volume: 7 start-page: 273 year: 1999 end-page: 281 ident: b0125 article-title: Makoto Mochiduki, Shutaro Kurosawa, Kunio Arai. Hydrogenation through partial oxidation of hydrocarbons in supercritical water publication-title: Int. J. Soc. Mat. Eng. Resour. contributor: fullname: Okazaki – volume: 67 start-page: 90 year: 1981 end-page: 102 ident: b0025 article-title: The Chemistry and Catalysis of the Water Gas Shift Reaction: 1. The Kinetics over Supported Metal Catalysts publication-title: J Catal. contributor: fullname: Ollis – volume: 85 start-page: 481 year: 2007 end-page: 491 ident: b0180 article-title: Studies in coking of Arabian mix vacuum residue publication-title: Trans IChemE Part A Chem Eng Res Design contributor: fullname: Joshi – volume: 27 start-page: 3952 year: 2013 end-page: 3960 ident: b0175 article-title: Hydrocracking of Maya Vacuum Residue with NiMo catalysts supported on mesoporous alumina and silica-alumina publication-title: Energy Fuels contributor: fullname: Millan – volume: 12 start-page: 598 year: 1998 end-page: 606 ident: b0110 article-title: Hydrodesulfurization of Cold Lake Diesel Fraction Using Dispersed Catalysts: Influence of Hydroprocessing Medium and Sources of H publication-title: Energy Fuels contributor: fullname: Flora – volume: 37 start-page: 2634 year: 1998 end-page: 2638 ident: b0120 article-title: Catalytic Hydrodesulfurization of Dibenzothiophene through Partial Oxidation and a Water-Gas Shift Reaction in Supercritical Water publication-title: Ind Eng Chem Res. contributor: fullname: Arai – volume: 10 start-page: 229 year: 1996 end-page: 234 ident: b0150 article-title: Conversion of Athabasca bitumen with dispersedand supported Mo-based catalysts as a function of dispersed catalyst concentration publication-title: Energy Fuels contributor: fullname: Sanford – volume: 92 start-page: 245 year: 2012 end-page: 249 ident: b0040 article-title: Reduced coke formation and aromaticity due to chloroperoxidase-catalyzed transformation of asphaltenes from Maya crude oil publication-title: Fuel contributor: fullname: Vazquez-Duhalt – volume: 12 start-page: 422 year: 1998 end-page: 428 ident: b0160 article-title: Characterization of Asphaltenes Molecular Structure publication-title: Energy Fuels contributor: fullname: Montanari – volume: 63 start-page: 1206 year: 1984 end-page: 1210 ident: b0055 article-title: Conversion of bituminous coal in CO/H publication-title: Fuel contributor: fullname: Hum – volume: 84 start-page: 856 year: 2006 end-page: 864 ident: b0115 article-title: In situ upgrading of Athabasca tar sand bitumen using THAI publication-title: Chem Eng Res Des. contributor: fullname: Greaves – volume: 119 start-page: 226 year: 2014 end-page: 235 ident: b0035 article-title: Downhole heavy crude oil upgrading by CAPRI: Effect of hydrogen and methane gases upon upgrading and coke formation publication-title: Fuel contributor: fullname: Wood – volume: 109 start-page: 3 year: 2005 end-page: 15 ident: b0065 article-title: Hydroprocessing of heavy petroleum feeds: tutorial publication-title: Catal Today contributor: fullname: Furimsky – volume: 3 start-page: 38 year: 1964 end-page: 45 ident: b0090 article-title: Mechanism of hydrocracking publication-title: I&EC Process Design Dev. contributor: fullname: Garwood – volume: 220–222 start-page: 248 year: 2014 ident: 10.1016/j.fuel.2018.08.074_b0005 article-title: Current situation of emerging technologies for upgrading of heavy oils publication-title: Catal Today doi: 10.1016/j.cattod.2013.05.016 contributor: fullname: Castaneda – volume: 16 start-page: 1121 year: 2002 ident: 10.1016/j.fuel.2018.08.074_b0130 article-title: Extraction and characterization of asphaltenes from different crude oils and solvents publication-title: Energy Fuels doi: 10.1021/ef010300h contributor: fullname: Ancheyta – volume: 119 start-page: 226 year: 2014 ident: 10.1016/j.fuel.2018.08.074_b0035 article-title: Downhole heavy crude oil upgrading by CAPRI: Effect of hydrogen and methane gases upon upgrading and coke formation publication-title: Fuel doi: 10.1016/j.fuel.2013.11.048 contributor: fullname: Hart – volume: 52 start-page: 17117 year: 2013 ident: 10.1016/j.fuel.2018.08.074_b0155 article-title: Meso/Macroporous CoMo Alumina pellets for hydrotreating of heavy oil publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie4022557 contributor: fullname: Parkhomchuk – volume: 76 start-page: 223 year: 2011 ident: 10.1016/j.fuel.2018.08.074_b0170 article-title: Crossflow filtration of nanosized catalysts suspension using ceramic membranes publication-title: Sep Purif Technol. doi: 10.1016/j.seppur.2010.08.005 contributor: fullname: Zhong – year: 2010 ident: 10.1016/j.fuel.2018.08.074_b0095 article-title: Molecular components-based representation of petroleum fractions publication-title: Chem Eng Res Des. contributor: fullname: Ahmad – volume: 282 start-page: 213 year: 2015 ident: 10.1016/j.fuel.2018.08.074_b0015 article-title: A comparative study of fixed-bed and dispersed catalytic upgrading of heavy crude oil using CAPRI publication-title: Chem Eng J. doi: 10.1016/j.cej.2015.01.101 contributor: fullname: Hart – volume: 27 start-page: 3952 year: 2013 ident: 10.1016/j.fuel.2018.08.074_b0175 article-title: Hydrocracking of Maya Vacuum Residue with NiMo catalysts supported on mesoporous alumina and silica-alumina publication-title: Energy Fuels doi: 10.1021/ef400623f contributor: fullname: Puron – volume: 67 start-page: 90 year: 1981 ident: 10.1016/j.fuel.2018.08.074_b0025 article-title: The Chemistry and Catalysis of the Water Gas Shift Reaction: 1. The Kinetics over Supported Metal Catalysts publication-title: J Catal. doi: 10.1016/0021-9517(81)90263-3 contributor: fullname: Grenoble – volume: 100 start-page: 110 year: 2012 ident: 10.1016/j.fuel.2018.08.074_b0075 article-title: Combined process schemes for upgrading of heavy petroleum publication-title: Fuel doi: 10.1016/j.fuel.2012.02.022 contributor: fullname: Castaneda – volume: 14 start-page: 839 year: 2000 ident: 10.1016/j.fuel.2018.08.074_b0045 article-title: Isolation and Characterization of the Saturate and Aromatic Fractions of a Maya Crude Oil publication-title: Energy Fuels doi: 10.1021/ef990207h contributor: fullname: Rudzinski – volume: 12 start-page: 422 year: 1998 ident: 10.1016/j.fuel.2018.08.074_b0160 article-title: Characterization of Asphaltenes Molecular Structure publication-title: Energy Fuels doi: 10.1021/ef9701854 contributor: fullname: Calemma – volume: 267 start-page: 178 year: 2003 ident: 10.1016/j.fuel.2018.08.074_b0060 article-title: Aggregation and solubility behaviour of asphaltenes and their subfractions publication-title: J Colloid Interface Sci doi: 10.1016/S0021-9797(03)00641-6 contributor: fullname: Spiecker – volume: 84 start-page: 856 issue: A9 year: 2006 ident: 10.1016/j.fuel.2018.08.074_b0115 article-title: In situ upgrading of Athabasca tar sand bitumen using THAI publication-title: Chem Eng Res Des. doi: 10.1205/cherd.04192 contributor: fullname: Xia – volume: 30 start-page: 69 year: 1992 ident: 10.1016/j.fuel.2018.08.074_b0070 article-title: Conversion of petroleum residue from Maya crude: effects of H-donors, hydrogen pressure and catalyst publication-title: Fuel Process Technol doi: 10.1016/0378-3820(92)90076-3 contributor: fullname: Heck – volume: 110 start-page: 318 year: 2013 ident: 10.1016/j.fuel.2018.08.074_b0100 article-title: Predicting SARA composition of crude oil by means of NMR publication-title: Fuel doi: 10.1016/j.fuel.2012.10.027 contributor: fullname: Sanchez-Minero – ident: 10.1016/j.fuel.2018.08.074_b0105 – volume: 249 start-page: 79 year: 2015 ident: 10.1016/j.fuel.2018.08.074_b0010 article-title: Acid treated carbon nanofibers as catalytic support for heavy oil hydroprocessing publication-title: Catal Today doi: 10.1016/j.cattod.2014.09.021 contributor: fullname: Purón – volume: 133 start-page: 374 year: 2014 ident: 10.1016/j.fuel.2018.08.074_b0140 article-title: Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and Challenges publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.07.069 contributor: fullname: Hashemi – volume: 130 start-page: 263 year: 2014 ident: 10.1016/j.fuel.2018.08.074_b0085 article-title: Hydrocracking of Maya crude oil in a slurry-phase batch reactor. II. Effect of catalyst load publication-title: Fuel doi: 10.1016/j.fuel.2014.03.050 contributor: fullname: Ortiz-Moreno – volume: 69 start-page: 1467 year: 1990 ident: 10.1016/j.fuel.2018.08.074_b0080 article-title: Hydrocracking: a review publication-title: Fuel doi: 10.1016/0016-2361(90)90192-S contributor: fullname: Mohanty – volume: 12 start-page: 598 year: 1998 ident: 10.1016/j.fuel.2018.08.074_b0110 article-title: Hydrodesulfurization of Cold Lake Diesel Fraction Using Dispersed Catalysts: Influence of Hydroprocessing Medium and Sources of H2 publication-title: Energy Fuels doi: 10.1021/ef970188g contributor: fullname: Siewe – volume: 26 start-page: 1152 year: 2012 ident: 10.1016/j.fuel.2018.08.074_b0145 article-title: Laboratory experiments and field test for a difunctional catalyst for catalytic aquathermolysis of heavy oil publication-title: Energy Fuels doi: 10.1021/ef2018385 contributor: fullname: Chao – volume: 63 start-page: 1206 year: 1984 ident: 10.1016/j.fuel.2018.08.074_b0055 article-title: Conversion of bituminous coal in CO/H2O systems: 2. pH dependence publication-title: Fuel doi: 10.1016/0016-2361(84)90425-3 contributor: fullname: Ross – volume: 2 start-page: 1 year: 1989 ident: 10.1016/j.fuel.2018.08.074_b0135 article-title: Fast crude oil heavy component characterization using combination of ASTM, HPLC and GPC methods publication-title: J Petrol Sci Eng. doi: 10.1016/0920-4105(89)90046-6 contributor: fullname: Leontaritis – ident: 10.1016/j.fuel.2018.08.074_b0050 doi: 10.1016/S0165-2370(98)00108-9 – volume: 10 start-page: 229 year: 1996 ident: 10.1016/j.fuel.2018.08.074_b0150 article-title: Conversion of Athabasca bitumen with dispersedand supported Mo-based catalysts as a function of dispersed catalyst concentration publication-title: Energy Fuels doi: 10.1021/ef950127n contributor: fullname: Kennepohl – volume: 109 start-page: 3 year: 2005 ident: 10.1016/j.fuel.2018.08.074_b0065 article-title: Hydroprocessing of heavy petroleum feeds: tutorial publication-title: Catal Today doi: 10.1016/j.cattod.2005.08.025 contributor: fullname: Ancheyta – volume: 85 start-page: 481 issue: A4 year: 2007 ident: 10.1016/j.fuel.2018.08.074_b0180 article-title: Studies in coking of Arabian mix vacuum residue publication-title: Trans IChemE Part A Chem Eng Res Design doi: 10.1205/cherd06159 contributor: fullname: Sawarkar – volume: 35 start-page: 176 issue: 2 year: 2007 ident: 10.1016/j.fuel.2018.08.074_b0020 article-title: Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis publication-title: J Fuel Chem Technol. doi: 10.1016/S1872-5813(07)60016-4 contributor: fullname: Wei – volume: 3 start-page: 38 issue: 1 year: 1964 ident: 10.1016/j.fuel.2018.08.074_b0090 article-title: Mechanism of hydrocracking publication-title: I&EC Process Design Dev. doi: 10.1021/i260009a010 contributor: fullname: Coonradt – volume: 37 start-page: 2634 year: 1998 ident: 10.1016/j.fuel.2018.08.074_b0120 article-title: Catalytic Hydrodesulfurization of Dibenzothiophene through Partial Oxidation and a Water-Gas Shift Reaction in Supercritical Water publication-title: Ind Eng Chem Res. doi: 10.1021/ie970751i contributor: fullname: Adschiri – volume: 14 start-page: 980 year: 2000 ident: 10.1016/j.fuel.2018.08.074_b0185 article-title: Structural change of petroleum asphaltenes and resins by hydrodemetallization publication-title: Energy Fuels doi: 10.1021/ef000009m contributor: fullname: Seki – volume: 11 start-page: 561 year: 1997 ident: 10.1016/j.fuel.2018.08.074_b0165 article-title: Characterization of the Structure of Saudi Crude Asphaltenes by X-ray Diffraction publication-title: Energy Fuels doi: 10.1021/ef960025c contributor: fullname: Shirokoff – volume: 7 start-page: 273 issue: 2 year: 1999 ident: 10.1016/j.fuel.2018.08.074_b0125 article-title: Makoto Mochiduki, Shutaro Kurosawa, Kunio Arai. Hydrogenation through partial oxidation of hydrocarbons in supercritical water publication-title: Int. J. Soc. Mat. Eng. Resour. doi: 10.5188/ijsmer.7.273 contributor: fullname: Adschiri – volume: 37 start-page: 973 year: 2014 ident: 10.1016/j.fuel.2018.08.074_b0030 article-title: Coprecipitated Ni-Co Bimetallic Nanocatalysts for Methane dry reforming publication-title: Chem Eng Technol. doi: 10.1002/ceat.201300729 contributor: fullname: Mirzaei – volume: 92 start-page: 245 year: 2012 ident: 10.1016/j.fuel.2018.08.074_b0040 article-title: Reduced coke formation and aromaticity due to chloroperoxidase-catalyzed transformation of asphaltenes from Maya crude oil publication-title: Fuel doi: 10.1016/j.fuel.2011.06.067 contributor: fullname: Ayala |
SSID | ssj0007854 |
Score | 2.3960614 |
Snippet | [Display omitted]
•The reactor gaseous media affects the upgrading process.•Water-gas shift reaction plays a significant role in the upgrading.•The choice of... Ni-Co/γ-alumina catalyst was prepared and tested in upgrading of heavy crude oil. The parameter studied was the type of the pressurising gas and especially its... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 736 |
SubjectTerms | Aluminum oxide Atmosphere Catalysis Catalysts Catalytic cracking Coke Crude oil Gas media Gravity Heavy oil upgrading Heavy petroleum Hydrocracking Hydrogen Hydrogen storage Low temperature NiCo/γ-Al2O3 catalysts Nitrogen Shift reaction Sulfur Transitional aluminas Upgrading Viscosity Water-gas shift reaction |
Title | Catalytic upgrading of heavy oil using NiCo/γ-Al2O3 catalyst: Effect of initial atmosphere and water-gas shift reaction |
URI | https://dx.doi.org/10.1016/j.fuel.2018.08.074 https://www.proquest.com/docview/2130773205 |
Volume | 235 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB1BubAHBCyrZWGRD9xW3jZ2YsfcqgpUQCqXRerNcmOnmxXbVE0K9MKf4n_wmxjnYwVIy4FjIjuJJuM3k8mbZ4DjBLM2x4WgVsqEhpIZatCXqAm5tDLBgOAqguxIDK_Di3E0XoNB2wvjaZUN9teYXqF1c6bbWLM7zzLf4xsILx2CTolBX43XYQPDEYs7sNE_vxyO_gGyjKNajDkQ1E9oemdqmle6dP4PRBBXSp4y_F98eoPUVfg524atJm8k_frRdmDNzXbh0ws1wc9wP_ClmBUOIMv5dFGR40meEoTb2xXJsxviSe5TMsoGeffpkfZv2BUnVf1mVZQnpBYy9jMyzyjCu5nyb1543QFHzMySO8xLF3RqClL8ztKSYL5ZdUXswfXZ6a_BkDYbK9CEs7ikKlGxtYmwNqj2P0-NmERJKoLUMhk7ZmPrhAmUxRXtIsNVkPS8br1jExUaxvkX6MzymfsKBKOb5fgN6GTkQoUAYRVjBgc51VNcmX340ZpTz2v9DN0Sy_5ob3ztja_9Xpgy3Ieotbh-5QUaAf7deYft69HNGiw0w_AsJWe96NsHL3sAm3ik6orLIXTKxdJ9xxyknBzB-s-H4KjxtGetEts_ |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYDsABsYodH7ghq42d2DG3qgKVrVxA6s1yY6cEQVM1KdDv4j_4JsZZECDBgWtiJ9Fk_GYyefOM0FEEWZtlnBMjRER8QTXR4EtE-0wYEUFAsAVBtss7d_5FL-jNoHbdC-NolRX2l5heoHV1pFFZszFKEtfj63EnHQJOCUFf9mbRPGQDElbnfOv8stP9BGQRBqUYs8eJm1D1zpQ0r3hi3R8ILyyUPIX_W3z6gdRF-DlbQctV3ohb5aOtohk7XENLX9QE19Fr25VipjAAT0aDcUGOx2mMAW6fpzhNHrEjuQ9wN2mnjfc30nqkNwwX9Ztplp_gUsjYzUgcowjupvOnNHO6AxbrocEvkJeOyUBnOLtP4hxDvll0RWygu7PT23aHVBsrkIjRMCcykqExETfGK_Y_jzXvB1HMvdhQEVpqQmO59qSBFW0DzaQXNZ1uvaV96WvK2CaaG6ZDu4UwRDfD4BvQisD6EgDCSEo1DLKyKZnU2-i4NqcalfoZqiaWPShnfOWMr9xemMLfRkFtcfXNCxQA_J_z9urXo6o1mCkK4VkIRpvBzj8ve4gWOrfXV-rqvHu5ixbhjCyrL3toLh9P7D7kI3n_oPK3D_2m3TM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalytic+upgrading+of+heavy+oil+using+NiCo%2F%CE%B3-Al2O3+catalyst%3A+Effect+of+initial+atmosphere+and+water-gas+shift+reaction&rft.jtitle=Fuel+%28Guildford%29&rft.au=Avbenake%2C+Onoriode+P.&rft.au=Al-Hajri%2C+Rashid+S.&rft.au=Jibril%2C+Baba+Y.&rft.date=2019-01-01&rft.issn=0016-2361&rft.volume=235&rft.spage=736&rft.epage=743&rft_id=info:doi/10.1016%2Fj.fuel.2018.08.074&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2018_08_074 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |