Catalytic upgrading of heavy oil using NiCo/γ-Al2O3 catalyst: Effect of initial atmosphere and water-gas shift reaction

[Display omitted] •The reactor gaseous media affects the upgrading process.•Water-gas shift reaction plays a significant role in the upgrading.•The choice of by-product may influence the selection of gaseous media.•Hydrogen media was shown to promote gases, while Nitrogen encourages coke. Ni-Co/γ-al...

Full description

Saved in:
Bibliographic Details
Published inFuel (Guildford) Vol. 235; pp. 736 - 743
Main Authors Avbenake, Onoriode P., Al-Hajri, Rashid S., Jibril, Baba Y.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.01.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The reactor gaseous media affects the upgrading process.•Water-gas shift reaction plays a significant role in the upgrading.•The choice of by-product may influence the selection of gaseous media.•Hydrogen media was shown to promote gases, while Nitrogen encourages coke. Ni-Co/γ-alumina catalyst was prepared and tested in upgrading of heavy crude oil. The parameter studied was the type of the pressurising gas and especially its effect on the water-gas shift reaction on the upgrading. The preliminary results suggested that a combination of the cracking reaction and the original water-in-oil which triggered a low temperature water-gas shift reaction generated hydrogen in-situ for the hydrogenation reaction. To further explore this, four major experimental runs were conducted; amongst which two were without catalysts and reactor inner liner in hydrogen and nitrogen environments, two were catalytically driven with and without a liner. The experimental conditions were 380 °C, 32 bar and residence time of 2 h with a catalyst/oil ratio of 0.01. The results show that API gravity, Hydrogen/Carbon ratio and light oil yields were slightly higher for the reaction in nitrogen atmosphere without liner as compared to hydrogen with liner– 15.8°, 0.138, and 40.2 g respectively for the latter with 18.2°, 0.177, and 45 g for the former. The catalytic reaction in hydrogen environment however; produced no coke as against the 0.2 wt% coke recorded with nitrogen. Meanwhile, the reduction in sulphur content and viscosity of the nitrogen experiment were higher compared to that of hydrogen.
AbstractList Ni-Co/γ-alumina catalyst was prepared and tested in upgrading of heavy crude oil. The parameter studied was the type of the pressurising gas and especially its effect on the water-gas shift reaction on the upgrading. The preliminary results suggested that a combination of the cracking reaction and the original water-in-oil which triggered a low temperature water-gas shift reaction generated hydrogen in-situ for the hydrogenation reaction. To further explore this, four major experimental runs were conducted; amongst which two were without catalysts and reactor inner liner in hydrogen and nitrogen environments, two were catalytically driven with and without a liner. The experimental conditions were 380 °C, 32 bar and residence time of 2 h with a catalyst/oil ratio of 0.01. The results show that API gravity, Hydrogen/Carbon ratio and light oil yields were slightly higher for the reaction in nitrogen atmosphere without liner as compared to hydrogen with liner– 15.8°, 0.138, and 40.2 g respectively for the latter with 18.2°, 0.177, and 45 g for the former. The catalytic reaction in hydrogen environment however; produced no coke as against the 0.2 wt% coke recorded with nitrogen. Meanwhile, the reduction in sulphur content and viscosity of the nitrogen experiment were higher compared to that of hydrogen.
[Display omitted] •The reactor gaseous media affects the upgrading process.•Water-gas shift reaction plays a significant role in the upgrading.•The choice of by-product may influence the selection of gaseous media.•Hydrogen media was shown to promote gases, while Nitrogen encourages coke. Ni-Co/γ-alumina catalyst was prepared and tested in upgrading of heavy crude oil. The parameter studied was the type of the pressurising gas and especially its effect on the water-gas shift reaction on the upgrading. The preliminary results suggested that a combination of the cracking reaction and the original water-in-oil which triggered a low temperature water-gas shift reaction generated hydrogen in-situ for the hydrogenation reaction. To further explore this, four major experimental runs were conducted; amongst which two were without catalysts and reactor inner liner in hydrogen and nitrogen environments, two were catalytically driven with and without a liner. The experimental conditions were 380 °C, 32 bar and residence time of 2 h with a catalyst/oil ratio of 0.01. The results show that API gravity, Hydrogen/Carbon ratio and light oil yields were slightly higher for the reaction in nitrogen atmosphere without liner as compared to hydrogen with liner– 15.8°, 0.138, and 40.2 g respectively for the latter with 18.2°, 0.177, and 45 g for the former. The catalytic reaction in hydrogen environment however; produced no coke as against the 0.2 wt% coke recorded with nitrogen. Meanwhile, the reduction in sulphur content and viscosity of the nitrogen experiment were higher compared to that of hydrogen.
Author Avbenake, Onoriode P.
Jibril, Baba Y.
Al-Hajri, Rashid S.
Author_xml – sequence: 1
  givenname: Onoriode P.
  surname: Avbenake
  fullname: Avbenake, Onoriode P.
  email: paulavbenake@gmail.com
  organization: Chemical and Petroleum Engineering Department, Bayero University, Kano, Nigeria
– sequence: 2
  givenname: Rashid S.
  surname: Al-Hajri
  fullname: Al-Hajri, Rashid S.
  organization: Petroleum and Chemical Engineering Department, Sultan Qaboos University, PO Box 33, PC, 123, Muscat, Oman
– sequence: 3
  givenname: Baba Y.
  surname: Jibril
  fullname: Jibril, Baba Y.
  organization: Chemical Engineering Department, Ahmadu Bello University, Zaria, Nigeria
BookMark eNp9kNtKAzEQhoNUsB5ewKuA11tz2N3sijeleIJib_Q6pMmkTdluapJV-1y-h8_krvVaGBgY_m9m-E7RqPUtIHRJyYQSWl5vJraDZsIIrSakL5EfoTGtBM8ELfgIjUmfyhgv6Qk6jXFDCBFVkY_R50wl1eyT07jbrYIyrl1hb_Ea1Psee9fgLg6jZzfz199f2bRhC471LxTTDb6zFnQaCNe65FSDVdr6uFtDAKxagz9UgpCtVMRx7WzCAZROzrfn6NiqJsLFXz9Dr_d3L7PHbL54eJpN55nmrEpZrevKGF0aQ6mgObeqXBbaltQaJipgpjJQKlobkjMoFK-pJiUjObBlnSvG-Rm6OuzdBf_WQUxy47vQ9iclo5wIwRkp-hQ7pHTwMQawchfcVoW9pEQOhuVGDoblYFiSvkTeQ7cHCPr_3x0EGbWDVoNxoZcijXf_4T-LaYeh
CitedBy_id crossref_primary_10_1016_j_fuel_2024_132089
crossref_primary_10_1021_acs_energyfuels_3c04879
crossref_primary_10_1016_j_fuel_2024_131042
crossref_primary_10_1002_jctb_7483
crossref_primary_10_1016_j_petsci_2023_08_005
crossref_primary_10_1016_j_fuel_2023_128585
crossref_primary_10_1080_10916466_2020_1779743
crossref_primary_10_1016_j_ijhydene_2020_11_077
crossref_primary_10_1016_j_mcat_2022_112714
crossref_primary_10_3390_pr9010127
crossref_primary_10_1016_j_joei_2020_04_018
crossref_primary_10_1016_j_ijhydene_2019_08_223
crossref_primary_10_1016_j_ijhydene_2022_05_216
crossref_primary_10_1016_j_jiec_2020_09_028
crossref_primary_10_1016_j_seppur_2022_122802
Cites_doi 10.1016/j.cattod.2013.05.016
10.1021/ef010300h
10.1016/j.fuel.2013.11.048
10.1021/ie4022557
10.1016/j.seppur.2010.08.005
10.1016/j.cej.2015.01.101
10.1021/ef400623f
10.1016/0021-9517(81)90263-3
10.1016/j.fuel.2012.02.022
10.1021/ef990207h
10.1021/ef9701854
10.1016/S0021-9797(03)00641-6
10.1205/cherd.04192
10.1016/0378-3820(92)90076-3
10.1016/j.fuel.2012.10.027
10.1016/j.cattod.2014.09.021
10.1016/j.apenergy.2014.07.069
10.1016/j.fuel.2014.03.050
10.1016/0016-2361(90)90192-S
10.1021/ef970188g
10.1021/ef2018385
10.1016/0016-2361(84)90425-3
10.1016/0920-4105(89)90046-6
10.1016/S0165-2370(98)00108-9
10.1021/ef950127n
10.1016/j.cattod.2005.08.025
10.1205/cherd06159
10.1016/S1872-5813(07)60016-4
10.1021/i260009a010
10.1021/ie970751i
10.1021/ef000009m
10.1021/ef960025c
10.5188/ijsmer.7.273
10.1002/ceat.201300729
10.1016/j.fuel.2011.06.067
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Jan 1, 2019
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 1, 2019
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1016/j.fuel.2018.08.074
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7153
EndPage 743
ExternalDocumentID 10_1016_j_fuel_2018_08_074
S001623611831439X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
A6W
AAQXK
AAXKI
AAYXX
ABDEX
ABEFU
ABTAH
ABXDB
ACNNM
ADMUD
AFFNX
AFJKZ
AI.
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
SEW
VH1
WUQ
XPP
ZY4
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c328t-9c98ddc6dd117143fa6b5cf61fd278e2d8de6a19d042e5a391c06204e2b94a233
IEDL.DBID AIKHN
ISSN 0016-2361
IngestDate Thu Oct 10 15:17:19 EDT 2024
Thu Sep 26 18:55:24 EDT 2024
Fri Feb 23 02:46:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heavy oil upgrading
Hydrocracking
NiCo/γ-Al2O3 catalysts
Gas media
Water-gas shift reaction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-9c98ddc6dd117143fa6b5cf61fd278e2d8de6a19d042e5a391c06204e2b94a233
PQID 2130773205
PQPubID 2045474
PageCount 8
ParticipantIDs proquest_journals_2130773205
crossref_primary_10_1016_j_fuel_2018_08_074
elsevier_sciencedirect_doi_10_1016_j_fuel_2018_08_074
PublicationCentury 2000
PublicationDate 2019-01-01
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Fuel (Guildford)
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Ancheyta, Rana, Furimsky (b0065) 2005; 109
Fan TG, Wang JX, Buckley JS. Evaluating crude oils by SARA analysis, SPE 75228.
Ross, Blessing, Nguyen, Hum (b0055) 1984; 63
Ahmad, Zhang, Jobson (b0095) 2010
Hashemi, Nassar, Pereira-Almao (b0140) 2014; 133
Coonradt, Garwood (b0090) 1964; 3
Heck, Rankel, DiGuiseppi (b0070) 1992; 30
Castaneda, Munoz, Ancheyta (b0005) 2014; 220–222
Hart, Greaves, Wood (b0015) 2015; 282
Adschiri, Shibata, Sato, Watanabe, Arai (b0120) 1998; 37
Zhong, Li, Xing, Xu (b0170) 2011; 76
Ancheyta, Centeno, Trejo, Marroquin, Garcia, Tenorio (b0130) 2002; 16
Seki, Kumata (b0185) 2000; 14
Leontaritis, Mansoori (b0135) 1989; 2
Parkhomchuk, Lysikov, Okunev, Parunin, Semeikina, Ayupov (b0155) 2013; 52
Ayala, Hernandez-Lopez, Perezgasga, Vazquez-Duhalt (b0040) 2012; 92
Ortiz-Moreno, Ramirez, Sanchez-Minero, Cuevas, Ancheyta (b0085) 2014; 130
Xia, Greaves (b0115) 2006; 84
Grenoble, Estadt, Ollis (b0025) 1981; 67
Chao, Chen, Liu, Zhang, Li (b0145) 2012; 26
Kennepohl, Sanford (b0150) 1996; 10
Shirokoff, Siddiqui, Ali (b0165) 1997; 11
Rudzinski, Aminabhavi, Sassman, Watkins (b0045) 2000; 14
Wei, Jian-hua, Jian-hua (b0020) 2007; 35
Mirzaei, Rezaei, Meshkani (b0030) 2014; 37
Mohanty, Kunzru, Saraf (b0080) 1990; 69
Adschiri, Okazaki (b0125) 1999; 7
Castaneda, Munoz, Ancheyta (b0075) 2012; 100
Puron, Pinilla, Cesar Berrueco, de la Fuente, Millan (b0175) 2013; 27
El harfi K, Mokhlisse A, Chanaa Ben M. Effect of water vapor on the pyrolysis of the Moroccan (Tarfaya) oil shale. J Anal Appl Pyrolysis 1999; 48:65–76.
Sawarkar, Pandit, Joshi (b0180) 2007; 85
Spiecker, Gawrys, Kilpatrick (b0060) 2003; 267
Sanchez-Minero, Ancheyta, Silva-Oliver, Flores-Valle (b0100) 2013; 110
Hart, Leeke, Greaves, Wood (b0035) 2014; 119
Calemma, Rausa, D’Antona, Montanari (b0160) 1998; 12
Purón, Pinilla, Suelves, Millan (b0010) 2015; 249
Siewe, Flora (b0110) 1998; 12
Wei (10.1016/j.fuel.2018.08.074_b0020) 2007; 35
Sanchez-Minero (10.1016/j.fuel.2018.08.074_b0100) 2013; 110
Mohanty (10.1016/j.fuel.2018.08.074_b0080) 1990; 69
Mirzaei (10.1016/j.fuel.2018.08.074_b0030) 2014; 37
10.1016/j.fuel.2018.08.074_b0050
Adschiri (10.1016/j.fuel.2018.08.074_b0120) 1998; 37
Castaneda (10.1016/j.fuel.2018.08.074_b0005) 2014; 220–222
Puron (10.1016/j.fuel.2018.08.074_b0175) 2013; 27
Kennepohl (10.1016/j.fuel.2018.08.074_b0150) 1996; 10
Hart (10.1016/j.fuel.2018.08.074_b0015) 2015; 282
Sawarkar (10.1016/j.fuel.2018.08.074_b0180) 2007; 85
Siewe (10.1016/j.fuel.2018.08.074_b0110) 1998; 12
Leontaritis (10.1016/j.fuel.2018.08.074_b0135) 1989; 2
Ayala (10.1016/j.fuel.2018.08.074_b0040) 2012; 92
Ortiz-Moreno (10.1016/j.fuel.2018.08.074_b0085) 2014; 130
Heck (10.1016/j.fuel.2018.08.074_b0070) 1992; 30
Ahmad (10.1016/j.fuel.2018.08.074_b0095) 2010
10.1016/j.fuel.2018.08.074_b0105
Seki (10.1016/j.fuel.2018.08.074_b0185) 2000; 14
Chao (10.1016/j.fuel.2018.08.074_b0145) 2012; 26
Calemma (10.1016/j.fuel.2018.08.074_b0160) 1998; 12
Zhong (10.1016/j.fuel.2018.08.074_b0170) 2011; 76
Purón (10.1016/j.fuel.2018.08.074_b0010) 2015; 249
Hashemi (10.1016/j.fuel.2018.08.074_b0140) 2014; 133
Rudzinski (10.1016/j.fuel.2018.08.074_b0045) 2000; 14
Parkhomchuk (10.1016/j.fuel.2018.08.074_b0155) 2013; 52
Coonradt (10.1016/j.fuel.2018.08.074_b0090) 1964; 3
Shirokoff (10.1016/j.fuel.2018.08.074_b0165) 1997; 11
Ancheyta (10.1016/j.fuel.2018.08.074_b0130) 2002; 16
Hart (10.1016/j.fuel.2018.08.074_b0035) 2014; 119
Grenoble (10.1016/j.fuel.2018.08.074_b0025) 1981; 67
Ross (10.1016/j.fuel.2018.08.074_b0055) 1984; 63
Adschiri (10.1016/j.fuel.2018.08.074_b0125) 1999; 7
Ancheyta (10.1016/j.fuel.2018.08.074_b0065) 2005; 109
Castaneda (10.1016/j.fuel.2018.08.074_b0075) 2012; 100
Spiecker (10.1016/j.fuel.2018.08.074_b0060) 2003; 267
Xia (10.1016/j.fuel.2018.08.074_b0115) 2006; 84
References_xml – volume: 2
  start-page: 1
  year: 1989
  end-page: 12
  ident: b0135
  article-title: Fast crude oil heavy component characterization using combination of ASTM, HPLC and GPC methods
  publication-title: J Petrol Sci Eng.
  contributor:
    fullname: Mansoori
– volume: 14
  start-page: 980
  year: 2000
  end-page: 985
  ident: b0185
  article-title: Structural change of petroleum asphaltenes and resins by hydrodemetallization
  publication-title: Energy Fuels
  contributor:
    fullname: Kumata
– volume: 35
  start-page: 176
  year: 2007
  end-page: 180
  ident: b0020
  article-title: Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis
  publication-title: J Fuel Chem Technol.
  contributor:
    fullname: Jian-hua
– volume: 220–222
  start-page: 248
  year: 2014
  end-page: 273
  ident: b0005
  article-title: Current situation of emerging technologies for upgrading of heavy oils
  publication-title: Catal Today
  contributor:
    fullname: Ancheyta
– volume: 69
  start-page: 1467
  year: 1990
  end-page: 1473
  ident: b0080
  article-title: Hydrocracking: a review
  publication-title: Fuel
  contributor:
    fullname: Saraf
– volume: 52
  start-page: 17117
  year: 2013
  end-page: 17125
  ident: b0155
  article-title: Meso/Macroporous CoMo Alumina pellets for hydrotreating of heavy oil
  publication-title: Ind. Eng. Chem. Res.
  contributor:
    fullname: Ayupov
– volume: 37
  start-page: 973
  year: 2014
  end-page: 978
  ident: b0030
  article-title: Coprecipitated Ni-Co Bimetallic Nanocatalysts for Methane dry reforming
  publication-title: Chem Eng Technol.
  contributor:
    fullname: Meshkani
– volume: 130
  start-page: 263
  year: 2014
  end-page: 272
  ident: b0085
  article-title: Hydrocracking of Maya crude oil in a slurry-phase batch reactor. II. Effect of catalyst load
  publication-title: Fuel
  contributor:
    fullname: Ancheyta
– volume: 100
  start-page: 110
  year: 2012
  end-page: 127
  ident: b0075
  article-title: Combined process schemes for upgrading of heavy petroleum
  publication-title: Fuel
  contributor:
    fullname: Ancheyta
– volume: 110
  start-page: 318
  year: 2013
  end-page: 321
  ident: b0100
  article-title: Predicting SARA composition of crude oil by means of NMR
  publication-title: Fuel
  contributor:
    fullname: Flores-Valle
– volume: 249
  start-page: 79
  year: 2015
  end-page: 85
  ident: b0010
  article-title: Acid treated carbon nanofibers as catalytic support for heavy oil hydroprocessing
  publication-title: Catal Today
  contributor:
    fullname: Millan
– volume: 267
  start-page: 178
  year: 2003
  end-page: 193
  ident: b0060
  article-title: Aggregation and solubility behaviour of asphaltenes and their subfractions
  publication-title: J Colloid Interface Sci
  contributor:
    fullname: Kilpatrick
– volume: 11
  start-page: 561
  year: 1997
  end-page: 565
  ident: b0165
  article-title: Characterization of the Structure of Saudi Crude Asphaltenes by X-ray Diffraction
  publication-title: Energy Fuels
  contributor:
    fullname: Ali
– volume: 282
  start-page: 213
  year: 2015
  end-page: 223
  ident: b0015
  article-title: A comparative study of fixed-bed and dispersed catalytic upgrading of heavy crude oil using CAPRI
  publication-title: Chem Eng J.
  contributor:
    fullname: Wood
– volume: 14
  start-page: 839
  year: 2000
  end-page: 844
  ident: b0045
  article-title: Isolation and Characterization of the Saturate and Aromatic Fractions of a Maya Crude Oil
  publication-title: Energy Fuels
  contributor:
    fullname: Watkins
– volume: 16
  start-page: 1121
  year: 2002
  end-page: 1127
  ident: b0130
  article-title: Extraction and characterization of asphaltenes from different crude oils and solvents
  publication-title: Energy Fuels
  contributor:
    fullname: Tenorio
– volume: 30
  start-page: 69
  year: 1992
  end-page: 81
  ident: b0070
  article-title: Conversion of petroleum residue from Maya crude: effects of H-donors, hydrogen pressure and catalyst
  publication-title: Fuel Process Technol
  contributor:
    fullname: DiGuiseppi
– volume: 133
  start-page: 374
  year: 2014
  end-page: 387
  ident: b0140
  article-title: Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and Challenges
  publication-title: Appl Energy
  contributor:
    fullname: Pereira-Almao
– volume: 76
  start-page: 223
  year: 2011
  end-page: 230
  ident: b0170
  article-title: Crossflow filtration of nanosized catalysts suspension using ceramic membranes
  publication-title: Sep Purif Technol.
  contributor:
    fullname: Xu
– year: 2010
  ident: b0095
  article-title: Molecular components-based representation of petroleum fractions
  publication-title: Chem Eng Res Des.
  contributor:
    fullname: Jobson
– volume: 26
  start-page: 1152
  year: 2012
  end-page: 1159
  ident: b0145
  article-title: Laboratory experiments and field test for a difunctional catalyst for catalytic aquathermolysis of heavy oil
  publication-title: Energy Fuels
  contributor:
    fullname: Li
– volume: 7
  start-page: 273
  year: 1999
  end-page: 281
  ident: b0125
  article-title: Makoto Mochiduki, Shutaro Kurosawa, Kunio Arai. Hydrogenation through partial oxidation of hydrocarbons in supercritical water
  publication-title: Int. J. Soc. Mat. Eng. Resour.
  contributor:
    fullname: Okazaki
– volume: 67
  start-page: 90
  year: 1981
  end-page: 102
  ident: b0025
  article-title: The Chemistry and Catalysis of the Water Gas Shift Reaction: 1. The Kinetics over Supported Metal Catalysts
  publication-title: J Catal.
  contributor:
    fullname: Ollis
– volume: 85
  start-page: 481
  year: 2007
  end-page: 491
  ident: b0180
  article-title: Studies in coking of Arabian mix vacuum residue
  publication-title: Trans IChemE Part A Chem Eng Res Design
  contributor:
    fullname: Joshi
– volume: 27
  start-page: 3952
  year: 2013
  end-page: 3960
  ident: b0175
  article-title: Hydrocracking of Maya Vacuum Residue with NiMo catalysts supported on mesoporous alumina and silica-alumina
  publication-title: Energy Fuels
  contributor:
    fullname: Millan
– volume: 12
  start-page: 598
  year: 1998
  end-page: 606
  ident: b0110
  article-title: Hydrodesulfurization of Cold Lake Diesel Fraction Using Dispersed Catalysts: Influence of Hydroprocessing Medium and Sources of H
  publication-title: Energy Fuels
  contributor:
    fullname: Flora
– volume: 37
  start-page: 2634
  year: 1998
  end-page: 2638
  ident: b0120
  article-title: Catalytic Hydrodesulfurization of Dibenzothiophene through Partial Oxidation and a Water-Gas Shift Reaction in Supercritical Water
  publication-title: Ind Eng Chem Res.
  contributor:
    fullname: Arai
– volume: 10
  start-page: 229
  year: 1996
  end-page: 234
  ident: b0150
  article-title: Conversion of Athabasca bitumen with dispersedand supported Mo-based catalysts as a function of dispersed catalyst concentration
  publication-title: Energy Fuels
  contributor:
    fullname: Sanford
– volume: 92
  start-page: 245
  year: 2012
  end-page: 249
  ident: b0040
  article-title: Reduced coke formation and aromaticity due to chloroperoxidase-catalyzed transformation of asphaltenes from Maya crude oil
  publication-title: Fuel
  contributor:
    fullname: Vazquez-Duhalt
– volume: 12
  start-page: 422
  year: 1998
  end-page: 428
  ident: b0160
  article-title: Characterization of Asphaltenes Molecular Structure
  publication-title: Energy Fuels
  contributor:
    fullname: Montanari
– volume: 63
  start-page: 1206
  year: 1984
  end-page: 1210
  ident: b0055
  article-title: Conversion of bituminous coal in CO/H
  publication-title: Fuel
  contributor:
    fullname: Hum
– volume: 84
  start-page: 856
  year: 2006
  end-page: 864
  ident: b0115
  article-title: In situ upgrading of Athabasca tar sand bitumen using THAI
  publication-title: Chem Eng Res Des.
  contributor:
    fullname: Greaves
– volume: 119
  start-page: 226
  year: 2014
  end-page: 235
  ident: b0035
  article-title: Downhole heavy crude oil upgrading by CAPRI: Effect of hydrogen and methane gases upon upgrading and coke formation
  publication-title: Fuel
  contributor:
    fullname: Wood
– volume: 109
  start-page: 3
  year: 2005
  end-page: 15
  ident: b0065
  article-title: Hydroprocessing of heavy petroleum feeds: tutorial
  publication-title: Catal Today
  contributor:
    fullname: Furimsky
– volume: 3
  start-page: 38
  year: 1964
  end-page: 45
  ident: b0090
  article-title: Mechanism of hydrocracking
  publication-title: I&EC Process Design Dev.
  contributor:
    fullname: Garwood
– volume: 220–222
  start-page: 248
  year: 2014
  ident: 10.1016/j.fuel.2018.08.074_b0005
  article-title: Current situation of emerging technologies for upgrading of heavy oils
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2013.05.016
  contributor:
    fullname: Castaneda
– volume: 16
  start-page: 1121
  year: 2002
  ident: 10.1016/j.fuel.2018.08.074_b0130
  article-title: Extraction and characterization of asphaltenes from different crude oils and solvents
  publication-title: Energy Fuels
  doi: 10.1021/ef010300h
  contributor:
    fullname: Ancheyta
– volume: 119
  start-page: 226
  year: 2014
  ident: 10.1016/j.fuel.2018.08.074_b0035
  article-title: Downhole heavy crude oil upgrading by CAPRI: Effect of hydrogen and methane gases upon upgrading and coke formation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.11.048
  contributor:
    fullname: Hart
– volume: 52
  start-page: 17117
  year: 2013
  ident: 10.1016/j.fuel.2018.08.074_b0155
  article-title: Meso/Macroporous CoMo Alumina pellets for hydrotreating of heavy oil
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie4022557
  contributor:
    fullname: Parkhomchuk
– volume: 76
  start-page: 223
  year: 2011
  ident: 10.1016/j.fuel.2018.08.074_b0170
  article-title: Crossflow filtration of nanosized catalysts suspension using ceramic membranes
  publication-title: Sep Purif Technol.
  doi: 10.1016/j.seppur.2010.08.005
  contributor:
    fullname: Zhong
– year: 2010
  ident: 10.1016/j.fuel.2018.08.074_b0095
  article-title: Molecular components-based representation of petroleum fractions
  publication-title: Chem Eng Res Des.
  contributor:
    fullname: Ahmad
– volume: 282
  start-page: 213
  year: 2015
  ident: 10.1016/j.fuel.2018.08.074_b0015
  article-title: A comparative study of fixed-bed and dispersed catalytic upgrading of heavy crude oil using CAPRI
  publication-title: Chem Eng J.
  doi: 10.1016/j.cej.2015.01.101
  contributor:
    fullname: Hart
– volume: 27
  start-page: 3952
  year: 2013
  ident: 10.1016/j.fuel.2018.08.074_b0175
  article-title: Hydrocracking of Maya Vacuum Residue with NiMo catalysts supported on mesoporous alumina and silica-alumina
  publication-title: Energy Fuels
  doi: 10.1021/ef400623f
  contributor:
    fullname: Puron
– volume: 67
  start-page: 90
  year: 1981
  ident: 10.1016/j.fuel.2018.08.074_b0025
  article-title: The Chemistry and Catalysis of the Water Gas Shift Reaction: 1. The Kinetics over Supported Metal Catalysts
  publication-title: J Catal.
  doi: 10.1016/0021-9517(81)90263-3
  contributor:
    fullname: Grenoble
– volume: 100
  start-page: 110
  year: 2012
  ident: 10.1016/j.fuel.2018.08.074_b0075
  article-title: Combined process schemes for upgrading of heavy petroleum
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.02.022
  contributor:
    fullname: Castaneda
– volume: 14
  start-page: 839
  year: 2000
  ident: 10.1016/j.fuel.2018.08.074_b0045
  article-title: Isolation and Characterization of the Saturate and Aromatic Fractions of a Maya Crude Oil
  publication-title: Energy Fuels
  doi: 10.1021/ef990207h
  contributor:
    fullname: Rudzinski
– volume: 12
  start-page: 422
  year: 1998
  ident: 10.1016/j.fuel.2018.08.074_b0160
  article-title: Characterization of Asphaltenes Molecular Structure
  publication-title: Energy Fuels
  doi: 10.1021/ef9701854
  contributor:
    fullname: Calemma
– volume: 267
  start-page: 178
  year: 2003
  ident: 10.1016/j.fuel.2018.08.074_b0060
  article-title: Aggregation and solubility behaviour of asphaltenes and their subfractions
  publication-title: J Colloid Interface Sci
  doi: 10.1016/S0021-9797(03)00641-6
  contributor:
    fullname: Spiecker
– volume: 84
  start-page: 856
  issue: A9
  year: 2006
  ident: 10.1016/j.fuel.2018.08.074_b0115
  article-title: In situ upgrading of Athabasca tar sand bitumen using THAI
  publication-title: Chem Eng Res Des.
  doi: 10.1205/cherd.04192
  contributor:
    fullname: Xia
– volume: 30
  start-page: 69
  year: 1992
  ident: 10.1016/j.fuel.2018.08.074_b0070
  article-title: Conversion of petroleum residue from Maya crude: effects of H-donors, hydrogen pressure and catalyst
  publication-title: Fuel Process Technol
  doi: 10.1016/0378-3820(92)90076-3
  contributor:
    fullname: Heck
– volume: 110
  start-page: 318
  year: 2013
  ident: 10.1016/j.fuel.2018.08.074_b0100
  article-title: Predicting SARA composition of crude oil by means of NMR
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.10.027
  contributor:
    fullname: Sanchez-Minero
– ident: 10.1016/j.fuel.2018.08.074_b0105
– volume: 249
  start-page: 79
  year: 2015
  ident: 10.1016/j.fuel.2018.08.074_b0010
  article-title: Acid treated carbon nanofibers as catalytic support for heavy oil hydroprocessing
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2014.09.021
  contributor:
    fullname: Purón
– volume: 133
  start-page: 374
  year: 2014
  ident: 10.1016/j.fuel.2018.08.074_b0140
  article-title: Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and Challenges
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.07.069
  contributor:
    fullname: Hashemi
– volume: 130
  start-page: 263
  year: 2014
  ident: 10.1016/j.fuel.2018.08.074_b0085
  article-title: Hydrocracking of Maya crude oil in a slurry-phase batch reactor. II. Effect of catalyst load
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.03.050
  contributor:
    fullname: Ortiz-Moreno
– volume: 69
  start-page: 1467
  year: 1990
  ident: 10.1016/j.fuel.2018.08.074_b0080
  article-title: Hydrocracking: a review
  publication-title: Fuel
  doi: 10.1016/0016-2361(90)90192-S
  contributor:
    fullname: Mohanty
– volume: 12
  start-page: 598
  year: 1998
  ident: 10.1016/j.fuel.2018.08.074_b0110
  article-title: Hydrodesulfurization of Cold Lake Diesel Fraction Using Dispersed Catalysts: Influence of Hydroprocessing Medium and Sources of H2
  publication-title: Energy Fuels
  doi: 10.1021/ef970188g
  contributor:
    fullname: Siewe
– volume: 26
  start-page: 1152
  year: 2012
  ident: 10.1016/j.fuel.2018.08.074_b0145
  article-title: Laboratory experiments and field test for a difunctional catalyst for catalytic aquathermolysis of heavy oil
  publication-title: Energy Fuels
  doi: 10.1021/ef2018385
  contributor:
    fullname: Chao
– volume: 63
  start-page: 1206
  year: 1984
  ident: 10.1016/j.fuel.2018.08.074_b0055
  article-title: Conversion of bituminous coal in CO/H2O systems: 2. pH dependence
  publication-title: Fuel
  doi: 10.1016/0016-2361(84)90425-3
  contributor:
    fullname: Ross
– volume: 2
  start-page: 1
  year: 1989
  ident: 10.1016/j.fuel.2018.08.074_b0135
  article-title: Fast crude oil heavy component characterization using combination of ASTM, HPLC and GPC methods
  publication-title: J Petrol Sci Eng.
  doi: 10.1016/0920-4105(89)90046-6
  contributor:
    fullname: Leontaritis
– ident: 10.1016/j.fuel.2018.08.074_b0050
  doi: 10.1016/S0165-2370(98)00108-9
– volume: 10
  start-page: 229
  year: 1996
  ident: 10.1016/j.fuel.2018.08.074_b0150
  article-title: Conversion of Athabasca bitumen with dispersedand supported Mo-based catalysts as a function of dispersed catalyst concentration
  publication-title: Energy Fuels
  doi: 10.1021/ef950127n
  contributor:
    fullname: Kennepohl
– volume: 109
  start-page: 3
  year: 2005
  ident: 10.1016/j.fuel.2018.08.074_b0065
  article-title: Hydroprocessing of heavy petroleum feeds: tutorial
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2005.08.025
  contributor:
    fullname: Ancheyta
– volume: 85
  start-page: 481
  issue: A4
  year: 2007
  ident: 10.1016/j.fuel.2018.08.074_b0180
  article-title: Studies in coking of Arabian mix vacuum residue
  publication-title: Trans IChemE Part A Chem Eng Res Design
  doi: 10.1205/cherd06159
  contributor:
    fullname: Sawarkar
– volume: 35
  start-page: 176
  issue: 2
  year: 2007
  ident: 10.1016/j.fuel.2018.08.074_b0020
  article-title: Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis
  publication-title: J Fuel Chem Technol.
  doi: 10.1016/S1872-5813(07)60016-4
  contributor:
    fullname: Wei
– volume: 3
  start-page: 38
  issue: 1
  year: 1964
  ident: 10.1016/j.fuel.2018.08.074_b0090
  article-title: Mechanism of hydrocracking
  publication-title: I&EC Process Design Dev.
  doi: 10.1021/i260009a010
  contributor:
    fullname: Coonradt
– volume: 37
  start-page: 2634
  year: 1998
  ident: 10.1016/j.fuel.2018.08.074_b0120
  article-title: Catalytic Hydrodesulfurization of Dibenzothiophene through Partial Oxidation and a Water-Gas Shift Reaction in Supercritical Water
  publication-title: Ind Eng Chem Res.
  doi: 10.1021/ie970751i
  contributor:
    fullname: Adschiri
– volume: 14
  start-page: 980
  year: 2000
  ident: 10.1016/j.fuel.2018.08.074_b0185
  article-title: Structural change of petroleum asphaltenes and resins by hydrodemetallization
  publication-title: Energy Fuels
  doi: 10.1021/ef000009m
  contributor:
    fullname: Seki
– volume: 11
  start-page: 561
  year: 1997
  ident: 10.1016/j.fuel.2018.08.074_b0165
  article-title: Characterization of the Structure of Saudi Crude Asphaltenes by X-ray Diffraction
  publication-title: Energy Fuels
  doi: 10.1021/ef960025c
  contributor:
    fullname: Shirokoff
– volume: 7
  start-page: 273
  issue: 2
  year: 1999
  ident: 10.1016/j.fuel.2018.08.074_b0125
  article-title: Makoto Mochiduki, Shutaro Kurosawa, Kunio Arai. Hydrogenation through partial oxidation of hydrocarbons in supercritical water
  publication-title: Int. J. Soc. Mat. Eng. Resour.
  doi: 10.5188/ijsmer.7.273
  contributor:
    fullname: Adschiri
– volume: 37
  start-page: 973
  year: 2014
  ident: 10.1016/j.fuel.2018.08.074_b0030
  article-title: Coprecipitated Ni-Co Bimetallic Nanocatalysts for Methane dry reforming
  publication-title: Chem Eng Technol.
  doi: 10.1002/ceat.201300729
  contributor:
    fullname: Mirzaei
– volume: 92
  start-page: 245
  year: 2012
  ident: 10.1016/j.fuel.2018.08.074_b0040
  article-title: Reduced coke formation and aromaticity due to chloroperoxidase-catalyzed transformation of asphaltenes from Maya crude oil
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.06.067
  contributor:
    fullname: Ayala
SSID ssj0007854
Score 2.3960614
Snippet [Display omitted] •The reactor gaseous media affects the upgrading process.•Water-gas shift reaction plays a significant role in the upgrading.•The choice of...
Ni-Co/γ-alumina catalyst was prepared and tested in upgrading of heavy crude oil. The parameter studied was the type of the pressurising gas and especially its...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 736
SubjectTerms Aluminum oxide
Atmosphere
Catalysis
Catalysts
Catalytic cracking
Coke
Crude oil
Gas media
Gravity
Heavy oil upgrading
Heavy petroleum
Hydrocracking
Hydrogen
Hydrogen storage
Low temperature
NiCo/γ-Al2O3 catalysts
Nitrogen
Shift reaction
Sulfur
Transitional aluminas
Upgrading
Viscosity
Water-gas shift reaction
Title Catalytic upgrading of heavy oil using NiCo/γ-Al2O3 catalyst: Effect of initial atmosphere and water-gas shift reaction
URI https://dx.doi.org/10.1016/j.fuel.2018.08.074
https://www.proquest.com/docview/2130773205
Volume 235
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT-MwEB1BubAHBCyrZWGRD9xW3jZ2YsfcqgpUQCqXRerNcmOnmxXbVE0K9MKf4n_wmxjnYwVIy4FjIjuJJuM3k8mbZ4DjBLM2x4WgVsqEhpIZatCXqAm5tDLBgOAqguxIDK_Di3E0XoNB2wvjaZUN9teYXqF1c6bbWLM7zzLf4xsILx2CTolBX43XYQPDEYs7sNE_vxyO_gGyjKNajDkQ1E9oemdqmle6dP4PRBBXSp4y_F98eoPUVfg524atJm8k_frRdmDNzXbh0ws1wc9wP_ClmBUOIMv5dFGR40meEoTb2xXJsxviSe5TMsoGeffpkfZv2BUnVf1mVZQnpBYy9jMyzyjCu5nyb1543QFHzMySO8xLF3RqClL8ztKSYL5ZdUXswfXZ6a_BkDYbK9CEs7ikKlGxtYmwNqj2P0-NmERJKoLUMhk7ZmPrhAmUxRXtIsNVkPS8br1jExUaxvkX6MzymfsKBKOb5fgN6GTkQoUAYRVjBgc51VNcmX340ZpTz2v9DN0Sy_5ob3ztja_9Xpgy3Ieotbh-5QUaAf7deYft69HNGiw0w_AsJWe96NsHL3sAm3ik6orLIXTKxdJ9xxyknBzB-s-H4KjxtGetEts_
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYDsABsYodH7ghq42d2DG3qgKVrVxA6s1yY6cEQVM1KdDv4j_4JsZZECDBgWtiJ9Fk_GYyefOM0FEEWZtlnBMjRER8QTXR4EtE-0wYEUFAsAVBtss7d_5FL-jNoHbdC-NolRX2l5heoHV1pFFZszFKEtfj63EnHQJOCUFf9mbRPGQDElbnfOv8stP9BGQRBqUYs8eJm1D1zpQ0r3hi3R8ILyyUPIX_W3z6gdRF-DlbQctV3ohb5aOtohk7XENLX9QE19Fr25VipjAAT0aDcUGOx2mMAW6fpzhNHrEjuQ9wN2mnjfc30nqkNwwX9Ztplp_gUsjYzUgcowjupvOnNHO6AxbrocEvkJeOyUBnOLtP4hxDvll0RWygu7PT23aHVBsrkIjRMCcykqExETfGK_Y_jzXvB1HMvdhQEVpqQmO59qSBFW0DzaQXNZ1uvaV96WvK2CaaG6ZDu4UwRDfD4BvQisD6EgDCSEo1DLKyKZnU2-i4NqcalfoZqiaWPShnfOWMr9xemMLfRkFtcfXNCxQA_J_z9urXo6o1mCkK4VkIRpvBzj8ve4gWOrfXV-rqvHu5ixbhjCyrL3toLh9P7D7kI3n_oPK3D_2m3TM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalytic+upgrading+of+heavy+oil+using+NiCo%2F%CE%B3-Al2O3+catalyst%3A+Effect+of+initial+atmosphere+and+water-gas+shift+reaction&rft.jtitle=Fuel+%28Guildford%29&rft.au=Avbenake%2C+Onoriode+P.&rft.au=Al-Hajri%2C+Rashid+S.&rft.au=Jibril%2C+Baba+Y.&rft.date=2019-01-01&rft.issn=0016-2361&rft.volume=235&rft.spage=736&rft.epage=743&rft_id=info:doi/10.1016%2Fj.fuel.2018.08.074&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2018_08_074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon