In silico study of hyperthermia treatment of liver cancer using core-shell CoFe2O4@MnFe2O4 magnetic nanoparticles

[Display omitted] •The core-shell MNPs are used in the hyperthermia of liver cancer in in-silico study.•The hyperthermia processes based on FEM analysis are simulated using COMSOL Multiphysics.•The temperature and concentration-dependent heat sources are studied versus constant heat source.•The CoFe...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetism and magnetic materials Vol. 498; p. 166143
Main Authors Suleman, Muhammad, Riaz, Samia
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.03.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0304-8853
1873-4766
DOI10.1016/j.jmmm.2019.166143

Cover

Loading…
Abstract [Display omitted] •The core-shell MNPs are used in the hyperthermia of liver cancer in in-silico study.•The hyperthermia processes based on FEM analysis are simulated using COMSOL Multiphysics.•The temperature and concentration-dependent heat sources are studied versus constant heat source.•The CoFe2O4@MnFe2O4 MNPs are superior to the other core-shell MNPs for heat generation. Exchange coupling between a magnetically soft shell and magnetically hardcore can boost the properties of magnetic nanoparticles (MNPs) to maximize their power loss. These MNPs possess large specific loss powers than conventionally used iron oxide MNPs and application of these MNPs in hyperthermia of cancer may result in a better treatment option. In this paper, we have conducted an in-silico study to treat liver cancer using these core-shell MNPs. All the hyperthermia processes are based on the FEM model analysis of infusion of nanofluid flow, diffusion of nanofluid, heat transfer in liver tissue, and tumor thermal damage subject to initial and boundary conditions. All these processes are simulated using COMSOL Multiphysics to predict the pressure, velocity, concentration, temperature distribution, and the fraction of tumor damage during the treatment. The expressions for temperature and concentration-dependent heat sources are derived and compared with a constant heat source. The simulation results show that the concentration-dependent heat source produced a higher temperature as compared to the remaining two heat sources. Through simulations, we have succeeded to effectively treat liver cancer with maximum tumor damage and minimum collateral damage. The validity of our simulation curves of temperature versus time and temperature versus x-coordinate with pre-existing studies are excellent. Our simulations also revealed that the core-shell MNPs used in our study is superior to the other identical core-shell MNPs for better heat generation. Certainly, this research will aid cancer treatment protocols in the clinical setting.
AbstractList [Display omitted] •The core-shell MNPs are used in the hyperthermia of liver cancer in in-silico study.•The hyperthermia processes based on FEM analysis are simulated using COMSOL Multiphysics.•The temperature and concentration-dependent heat sources are studied versus constant heat source.•The CoFe2O4@MnFe2O4 MNPs are superior to the other core-shell MNPs for heat generation. Exchange coupling between a magnetically soft shell and magnetically hardcore can boost the properties of magnetic nanoparticles (MNPs) to maximize their power loss. These MNPs possess large specific loss powers than conventionally used iron oxide MNPs and application of these MNPs in hyperthermia of cancer may result in a better treatment option. In this paper, we have conducted an in-silico study to treat liver cancer using these core-shell MNPs. All the hyperthermia processes are based on the FEM model analysis of infusion of nanofluid flow, diffusion of nanofluid, heat transfer in liver tissue, and tumor thermal damage subject to initial and boundary conditions. All these processes are simulated using COMSOL Multiphysics to predict the pressure, velocity, concentration, temperature distribution, and the fraction of tumor damage during the treatment. The expressions for temperature and concentration-dependent heat sources are derived and compared with a constant heat source. The simulation results show that the concentration-dependent heat source produced a higher temperature as compared to the remaining two heat sources. Through simulations, we have succeeded to effectively treat liver cancer with maximum tumor damage and minimum collateral damage. The validity of our simulation curves of temperature versus time and temperature versus x-coordinate with pre-existing studies are excellent. Our simulations also revealed that the core-shell MNPs used in our study is superior to the other identical core-shell MNPs for better heat generation. Certainly, this research will aid cancer treatment protocols in the clinical setting.
Exchange coupling between a magnetically soft shell and magnetically hardcore can boost the properties of magnetic nanoparticles (MNPs) to maximize their power loss. These MNPs possess large specific loss powers than conventionally used iron oxide MNPs and application of these MNPs in hyperthermia of cancer may result in a better treatment option. In this paper, we have conducted an in-silico study to treat liver cancer using these core-shell MNPs. All the hyperthermia processes are based on the FEM model analysis of infusion of nanofluid flow, diffusion of nanofluid, heat transfer in liver tissue, and tumor thermal damage subject to initial and boundary conditions. All these processes are simulated using COMSOL Multiphysics to predict the pressure, velocity, concentration, temperature distribution, and the fraction of tumor damage during the treatment. The expressions for temperature and concentration-dependent heat sources are derived and compared with a constant heat source. The simulation results show that the concentration-dependent heat source produced a higher temperature as compared to the remaining two heat sources. Through simulations, we have succeeded to effectively treat liver cancer with maximum tumor damage and minimum collateral damage. The validity of our simulation curves of temperature versus time and temperature versus x-coordinate with pre-existing studies are excellent. Our simulations also revealed that the core-shell MNPs used in our study is superior to the other identical core-shell MNPs for better heat generation. Certainly, this research will aid cancer treatment protocols in the clinical setting.
ArticleNumber 166143
Author Suleman, Muhammad
Riaz, Samia
Author_xml – sequence: 1
  givenname: Muhammad
  surname: Suleman
  fullname: Suleman, Muhammad
  email: muh_sul@yahoo.com
  organization: Department of Mathematics, University of Engineering and Technology, Lahore 54890, Pakistan
– sequence: 2
  givenname: Samia
  surname: Riaz
  fullname: Riaz, Samia
  organization: Department of Mathematics, University of Engineering and Technology, Lahore 54890, Pakistan
BookMark eNp9kE1LAzEQhoMoWD_-gKeA562ZzTabgAelWBWUXvQc0uyszbKb1CQV-u_dWk8ePL0DM88M85yRYx88EnIFbAoMxE037YZhmJYM1BSEgIofkQnImhdVLcQxmTDOqkLKGT8lZyl1jDGopJiQz2dPk-udDTTlbbOjoaXr3QZjXmMcnKE5oskD-rzv9O4LI7XG2zG2yfkPakPEIq2x7-k8LLBcVnev_ifpYD48ZmepNz5sTBzLHtMFOWlNn_DyN8_J--Lhbf5UvCwfn-f3L4XlpcyFMiBkrRSzkkM5E6Kqm0bYlkHbrpq2BgW1alowRgijsEYEaVnFxUpIxQzwc3J92LuJ4XOLKesubKMfT-qSz7iAmZLVOCUPUzaGlCK22rpssgs-R-N6DUzvBetO7wXrvWB9EDyi5R90E91g4u5_6PYA4fj6l8Ook3U4-mxcRJt1E9x_-DeFkZbi
CitedBy_id crossref_primary_10_1016_j_powtec_2023_118720
crossref_primary_10_1007_s10971_024_06520_8
crossref_primary_10_3390_magnetochemistry9030068
crossref_primary_10_1016_j_matpr_2022_02_147
crossref_primary_10_1016_j_nanoso_2023_101053
crossref_primary_10_1016_j_jmmm_2022_169393
crossref_primary_10_1016_j_ijthermalsci_2023_108405
crossref_primary_10_2139_ssrn_4005782
crossref_primary_10_1016_j_jmmm_2020_167245
crossref_primary_10_1016_j_ultrasmedbio_2020_11_023
crossref_primary_10_1039_D4NA00604F
crossref_primary_10_1016_j_jmmm_2021_168730
crossref_primary_10_1016_j_tsep_2023_101756
crossref_primary_10_1115_1_4051293
crossref_primary_10_3390_nano13061130
crossref_primary_10_1002_adts_202300234
crossref_primary_10_1016_j_jddst_2021_103048
crossref_primary_10_1016_j_csite_2021_101105
crossref_primary_10_1016_j_phrs_2024_107333
crossref_primary_10_1142_S0218339023500055
crossref_primary_10_1007_s10948_021_05989_6
crossref_primary_10_1140_epjp_s13360_020_00724_x
crossref_primary_10_1155_2022_4805490
crossref_primary_10_2139_ssrn_4191510
crossref_primary_10_1016_j_ceramint_2022_06_178
crossref_primary_10_3390_nano11061560
crossref_primary_10_1016_j_jmmm_2024_171868
crossref_primary_10_1038_s41598_021_84620_z
crossref_primary_10_1016_j_jddst_2021_102542
crossref_primary_10_1007_s10973_022_11338_z
crossref_primary_10_1007_s00339_023_06825_5
crossref_primary_10_1016_j_ceramint_2023_12_130
crossref_primary_10_1016_j_jddst_2024_105838
crossref_primary_10_1177_08853282241244707
crossref_primary_10_1016_j_jmmm_2021_168169
crossref_primary_10_1016_j_ijthermalsci_2022_107887
crossref_primary_10_1116_6_0003814
crossref_primary_10_1016_j_icheatmasstransfer_2022_106295
crossref_primary_10_1016_j_mseb_2021_115325
crossref_primary_10_1016_j_jtherbio_2020_102644
crossref_primary_10_1088_2053_1591_ac8cd0
crossref_primary_10_1155_2021_2990326
crossref_primary_10_1016_j_heliyon_2023_e16601
crossref_primary_10_3390_cancers14235729
crossref_primary_10_1016_j_compbiomed_2023_107271
crossref_primary_10_1016_j_csite_2023_103876
crossref_primary_10_2147_IJN_S444319
Cites_doi 10.1148/radiology.187.2.8475270
10.1016/j.bbadis.2004.11.020
10.1155/2016/6309231
10.1152/jappl.1948.1.2.93
10.1080/02656730410001726956
10.1016/S0960-7404(99)00007-9
10.1021/nn901884d
10.1016/S0304-8853(02)00706-0
10.1016/j.icheatmasstransfer.2008.11.006
10.1109/TNB.2005.859549
10.3109/02656736.2010.519370
10.1080/02656730110108785
10.1080/02656730801907937
10.1080/0265673031000090701
10.1186/s12938-017-0327-x
10.1016/j.jmmm.2005.02.028
10.1115/1.4024904
10.1080/02656730902803118
10.1038/nnano.2011.95
10.2741/2686
10.1016/j.jmmm.2005.02.026
10.1016/0002-9610(64)90041-8
10.1080/02656730500158360
10.1016/j.nantod.2018.02.010
10.1021/acs.chemmater.7b04841
10.1063/1.3077211
10.1109/TMAG.2009.2012769
10.1097/00000658-199308000-00005
10.1016/j.jtherbio.2016.06.025
10.3109/02656736.2013.836757
10.1002/bjs.1800780711
10.1097/00000658-195710000-00007
10.1080/02656730802713565
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Mar 15, 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Mar 15, 2020
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.jmmm.2019.166143
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-4766
ExternalDocumentID 10_1016_j_jmmm_2019_166143
S030488531932921X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABFNM
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M24
M38
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29K
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
EJD
FGOYB
G-2
HMV
HZ~
NDZJH
R2-
RIG
SEW
SMS
SPG
SSH
WUQ
XXG
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c328t-9a1687990c831256647dd6cf01ffbdf719179df1aa66a9e7ee18c0436b6890a13
IEDL.DBID .~1
ISSN 0304-8853
IngestDate Mon Jul 14 07:40:19 EDT 2025
Thu Apr 24 23:06:23 EDT 2025
Tue Jul 01 01:56:06 EDT 2025
Fri Feb 23 02:50:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Finite element modeling
Bioheat transfer model
Tumor treatment
Core-shell MNPs
Hyperthermia
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-9a1687990c831256647dd6cf01ffbdf719179df1aa66a9e7ee18c0436b6890a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2353615984
PQPubID 2045450
ParticipantIDs proquest_journals_2353615984
crossref_citationtrail_10_1016_j_jmmm_2019_166143
crossref_primary_10_1016_j_jmmm_2019_166143
elsevier_sciencedirect_doi_10_1016_j_jmmm_2019_166143
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-15
PublicationDateYYYYMMDD 2020-03-15
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of magnetism and magnetic materials
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Johannsen (b0045) 2005; 21
Rosensweig (b0155) 2002; 252
Pearce (b0075) 2013; 4
Doci (b0015) 1991; 78
Wang, Gu, Yang (b0170) 2005; 293
Lin, Liu (b0040) 2009; 36
Gilchrist (b0050) 1957; 146
Bismuth (b0020) 1993; 218
LeBrun, Ma, Zhu (b0090) 2016; 62
Lee (b0130) 2011; 6
Bagaria, Johnson (b0175) 2005; 21
Candeo, Dughiero (b0080) 2009; 45
Atsarkin (b0105) 2009; 25
Adhikary, Banerjee (b0135) 2016; 2016
Christophi (b0025) 1998; 7
Golneshan, Lahonian (b0100) 2011; 27
Salloum (b0140) 2008; 24
Pennes (b0160) 1948; 1
Lazaro (b0060) 2005; 1740
Javidi (b0085) 2014; 4
Eagle, Wadsworth, Wnorowski (b0145) 2015
Ng, Kumar (b0150) 2017; 16
Moroz, Jones, Gray (b0065) 2002; 18
Huang, Rege, Heys (b0110) 2010; 4
Goldstein (b0035) 2003; 19
Fagnoni (b0030) 2008; 13
LeBrun (b0165) 2013; 29
Sawyer (b0070) 2009; 105
Feng (b0125) 2018; 30
Pestana (b0010) 1964; 108
Lv, Deng, Liu (b0095) 2005; 4
Salloum, Ma, Zhu (b0115) 2009; 25
Amin (b0005) 1993; 187
Gai (b0120) 2018; 19
Hilger, Hergt, Kaiser (b0055) 2005; 293
Doci (10.1016/j.jmmm.2019.166143_b0015) 1991; 78
Gilchrist (10.1016/j.jmmm.2019.166143_b0050) 1957; 146
Eagle (10.1016/j.jmmm.2019.166143_b0145) 2015
Rosensweig (10.1016/j.jmmm.2019.166143_b0155) 2002; 252
Atsarkin (10.1016/j.jmmm.2019.166143_b0105) 2009; 25
Ng (10.1016/j.jmmm.2019.166143_b0150) 2017; 16
Bagaria (10.1016/j.jmmm.2019.166143_b0175) 2005; 21
Christophi (10.1016/j.jmmm.2019.166143_b0025) 1998; 7
LeBrun (10.1016/j.jmmm.2019.166143_b0165) 2013; 29
Fagnoni (10.1016/j.jmmm.2019.166143_b0030) 2008; 13
Lazaro (10.1016/j.jmmm.2019.166143_b0060) 2005; 1740
Hilger (10.1016/j.jmmm.2019.166143_b0055) 2005; 293
Johannsen (10.1016/j.jmmm.2019.166143_b0045) 2005; 21
Huang (10.1016/j.jmmm.2019.166143_b0110) 2010; 4
Pearce (10.1016/j.jmmm.2019.166143_b0075) 2013; 4
Feng (10.1016/j.jmmm.2019.166143_b0125) 2018; 30
Adhikary (10.1016/j.jmmm.2019.166143_b0135) 2016; 2016
Lin (10.1016/j.jmmm.2019.166143_b0040) 2009; 36
Lee (10.1016/j.jmmm.2019.166143_b0130) 2011; 6
Wang (10.1016/j.jmmm.2019.166143_b0170) 2005; 293
Pestana (10.1016/j.jmmm.2019.166143_b0010) 1964; 108
Moroz (10.1016/j.jmmm.2019.166143_b0065) 2002; 18
Salloum (10.1016/j.jmmm.2019.166143_b0140) 2008; 24
Bismuth (10.1016/j.jmmm.2019.166143_b0020) 1993; 218
Goldstein (10.1016/j.jmmm.2019.166143_b0035) 2003; 19
Javidi (10.1016/j.jmmm.2019.166143_b0085) 2014; 4
Pennes (10.1016/j.jmmm.2019.166143_b0160) 1948; 1
Sawyer (10.1016/j.jmmm.2019.166143_b0070) 2009; 105
Candeo (10.1016/j.jmmm.2019.166143_b0080) 2009; 45
Salloum (10.1016/j.jmmm.2019.166143_b0115) 2009; 25
LeBrun (10.1016/j.jmmm.2019.166143_b0090) 2016; 62
Lv (10.1016/j.jmmm.2019.166143_b0095) 2005; 4
Amin (10.1016/j.jmmm.2019.166143_b0005) 1993; 187
Golneshan (10.1016/j.jmmm.2019.166143_b0100) 2011; 27
Gai (10.1016/j.jmmm.2019.166143_b0120) 2018; 19
References_xml – volume: 19
  start-page: 146
  year: 2018
  end-page: 187
  ident: b0120
  article-title: Recent advances in functional nanomaterials for light–triggered cancer therapy
  publication-title: Nano Today
– volume: 62
  start-page: 129
  year: 2016
  end-page: 137
  ident: b0090
  article-title: MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment
  publication-title: J. Therm. Biol
– volume: 4
  start-page: 2892
  year: 2010
  end-page: 2900
  ident: b0110
  article-title: Spatiotemporal temperature distribution and cancer cell death in response to extracellular hyperthermia induced by gold nanorods
  publication-title: ACS Nano
– volume: 21
  start-page: 637
  year: 2005
  end-page: 647
  ident: b0045
  article-title: Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique
  publication-title: Int. J. Hyperth.
– volume: 1
  start-page: 93
  year: 1948
  end-page: 122
  ident: b0160
  article-title: Analysis of tissue and arterial blood temperatures in the resting human forearm
  publication-title: J. Appl. Physiol.
– volume: 45
  start-page: 1658
  year: 2009
  end-page: 1661
  ident: b0080
  article-title: Numerical FEM models for the planning of magnetic induction hyperthermia treatments with nanoparticles
  publication-title: IEEE Trans. Magn.
– volume: 16
  start-page: 36
  year: 2017
  ident: b0150
  article-title: Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review
  publication-title: Biomed. Eng. Online
– volume: 6
  start-page: 418
  year: 2011
  ident: b0130
  article-title: Exchange-coupled magnetic nanoparticles for efficient heat induction
  publication-title: Nat. Nanotechnol.
– volume: 2016
  year: 2016
  ident: b0135
  article-title: A thermofluid analysis of the magnetic nanoparticles enhanced heating effects in tissues embedded with large blood vessel during magnetic fluid hyperthermia
  publication-title: J. Nanoparticles
– volume: 4
  start-page: 151
  year: 2014
  ident: b0085
  article-title: Evaluation of the effects of injection velocity and different gel concentrations on nanoparticles in hyperthermia therapy
  publication-title: J. Biomed. Phys. Eng.
– volume: 7
  start-page: 83
  year: 1998
  end-page: 90
  ident: b0025
  article-title: The treatment of malignancy by hyperthermia
  publication-title: Surg. Oncol.
– volume: 293
  start-page: 334
  year: 2005
  end-page: 340
  ident: b0170
  article-title: The heating effect of magnetic fluids in an alternating magnetic field
  publication-title: J. Magn. Magn. Mater.
– volume: 146
  start-page: 596
  year: 1957
  ident: b0050
  article-title: Selective inductive heating of lymph nodes
  publication-title: Ann. Surg.
– volume: 25
  start-page: 240
  year: 2009
  end-page: 247
  ident: b0105
  article-title: Solution to the bioheat equation for hyperthermia with La 1–x Ag y MnO3-δ nanoparticles: The effect of temperature autostabilization
  publication-title: Int. J. Hyperth.
– volume: 1740
  start-page: 434
  year: 2005
  end-page: 445
  ident: b0060
  article-title: Magnetic characterisation of rat muscle tissues after subcutaneous iron dextran injection
  publication-title: Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease
– volume: 252
  start-page: 370
  year: 2002
  end-page: 374
  ident: b0155
  article-title: Heating magnetic fluid with alternating magnetic field
  publication-title: J. Magn. Magn. Mater.
– volume: 18
  start-page: 267
  year: 2002
  end-page: 284
  ident: b0065
  article-title: Magnetically mediated hyperthermia: current status and future directions
  publication-title: Int. J. Hyperth.
– volume: 13
  start-page: 369
  year: 2008
  end-page: 381
  ident: b0030
  article-title: Combination of radiofrequency ablation and immunotherapy
  publication-title: Front. Biosci.
– volume: 108
  start-page: 826
  year: 1964
  end-page: 829
  ident: b0010
  article-title: The natural history of carcinoma of the colon and rectum
  publication-title: Am. J. Surgery
– volume: 187
  start-page: 339
  year: 1993
  end-page: 347
  ident: b0005
  article-title: Hepatic metastases: interstitial laser photocoagulation with real-time US monitoring and dynamic CT evaluation of treatment
  publication-title: Radiology
– volume: 4
  year: 2013
  ident: b0075
  article-title: Magnetic heating of nanoparticles: the importance of particle clustering to achieve therapeutic temperatures
  publication-title: J. Nanotechnol. Eng. Med.
– volume: 293
  start-page: 314
  year: 2005
  end-page: 319
  ident: b0055
  article-title: Towards breast cancer treatment by magnetic heating
  publication-title: J. Magn. Magn. Mater.
– volume: 30
  start-page: 526
  year: 2018
  end-page: 539
  ident: b0125
  article-title: Controllable generation of free radicals from multifunctional heat-responsive Nanoplatform for targeted Cancer therapy
  publication-title: Chem. Mater.
– volume: 36
  start-page: 241
  year: 2009
  end-page: 244
  ident: b0040
  article-title: Estimation for the heating effect of magnetic nanoparticles in perfused tissues
  publication-title: Int. Commun. Heat Mass Transfer
– year: 2015
  ident: b0145
  article-title: Modeling an injection profile of nanoparticles to optimize tumor treatment time with
  publication-title: Magnetic Hyperthermia
– volume: 218
  start-page: 145
  year: 1993
  ident: b0020
  article-title: Liver resection versus transplantation for hepatocellular carcinoma in cirrhotic patients
  publication-title: Ann. Surg.
– volume: 21
  start-page: 57
  year: 2005
  end-page: 75
  ident: b0175
  article-title: Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment
  publication-title: Int. J. Hyperth.
– volume: 105
  start-page: 07B320
  year: 2009
  ident: b0070
  article-title: Modeling of temperature profile during magnetic thermotherapy for cancer treatment
  publication-title: J. Appl. Phys.
– volume: 78
  start-page: 797
  year: 1991
  end-page: 801
  ident: b0015
  article-title: One hundred patients with hepatic metastases from colorectal cancer treated by resection: analysis of prognostic determinants
  publication-title: Br. J. Surg.
– volume: 29
  start-page: 730
  year: 2013
  end-page: 738
  ident: b0165
  article-title: MicroCT image-generated tumour geometry and SAR distribution for tumour temperature elevation simulations in magnetic nanoparticle hyperthermia
  publication-title: Int. J. Hyperth.
– volume: 4
  start-page: 284
  year: 2005
  end-page: 294
  ident: b0095
  article-title: 3-D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field
  publication-title: IEEE Trans. Nanobiosci.
– volume: 27
  start-page: 266
  year: 2011
  end-page: 274
  ident: b0100
  article-title: The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method
  publication-title: Int. J. Hyperth.
– volume: 24
  start-page: 337
  year: 2008
  end-page: 345
  ident: b0140
  article-title: Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel
  publication-title: Int. J. Hyperth.
– volume: 19
  start-page: 373
  year: 2003
  end-page: 384
  ident: b0035
  article-title: Summary, conclusions and recommendations: adverse temperature levels in the human body
  publication-title: Int. J. Hyperth.
– volume: 25
  start-page: 309
  year: 2009
  end-page: 321
  ident: b0115
  article-title: Enhancement in treatment planning for magnetic nanoparticle hyperthermia: optimization of the heat absorption pattern
  publication-title: Int. J. Hyperth.
– volume: 187
  start-page: 339
  issue: 2
  year: 1993
  ident: 10.1016/j.jmmm.2019.166143_b0005
  article-title: Hepatic metastases: interstitial laser photocoagulation with real-time US monitoring and dynamic CT evaluation of treatment
  publication-title: Radiology
  doi: 10.1148/radiology.187.2.8475270
– volume: 1740
  start-page: 434
  issue: 3
  year: 2005
  ident: 10.1016/j.jmmm.2019.166143_b0060
  article-title: Magnetic characterisation of rat muscle tissues after subcutaneous iron dextran injection
  publication-title: Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease
  doi: 10.1016/j.bbadis.2004.11.020
– volume: 2016
  year: 2016
  ident: 10.1016/j.jmmm.2019.166143_b0135
  article-title: A thermofluid analysis of the magnetic nanoparticles enhanced heating effects in tissues embedded with large blood vessel during magnetic fluid hyperthermia
  publication-title: J. Nanoparticles
  doi: 10.1155/2016/6309231
– year: 2015
  ident: 10.1016/j.jmmm.2019.166143_b0145
  article-title: Modeling an injection profile of nanoparticles to optimize tumor treatment time with
  publication-title: Magnetic Hyperthermia
– volume: 1
  start-page: 93
  issue: 2
  year: 1948
  ident: 10.1016/j.jmmm.2019.166143_b0160
  article-title: Analysis of tissue and arterial blood temperatures in the resting human forearm
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1948.1.2.93
– volume: 21
  start-page: 57
  issue: 1
  year: 2005
  ident: 10.1016/j.jmmm.2019.166143_b0175
  article-title: Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment
  publication-title: Int. J. Hyperth.
  doi: 10.1080/02656730410001726956
– volume: 7
  start-page: 83
  issue: 1–2
  year: 1998
  ident: 10.1016/j.jmmm.2019.166143_b0025
  article-title: The treatment of malignancy by hyperthermia
  publication-title: Surg. Oncol.
  doi: 10.1016/S0960-7404(99)00007-9
– volume: 4
  start-page: 2892
  issue: 5
  year: 2010
  ident: 10.1016/j.jmmm.2019.166143_b0110
  article-title: Spatiotemporal temperature distribution and cancer cell death in response to extracellular hyperthermia induced by gold nanorods
  publication-title: ACS Nano
  doi: 10.1021/nn901884d
– volume: 252
  start-page: 370
  year: 2002
  ident: 10.1016/j.jmmm.2019.166143_b0155
  article-title: Heating magnetic fluid with alternating magnetic field
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(02)00706-0
– volume: 36
  start-page: 241
  issue: 3
  year: 2009
  ident: 10.1016/j.jmmm.2019.166143_b0040
  article-title: Estimation for the heating effect of magnetic nanoparticles in perfused tissues
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2008.11.006
– volume: 4
  start-page: 284
  issue: 4
  year: 2005
  ident: 10.1016/j.jmmm.2019.166143_b0095
  article-title: 3-D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field
  publication-title: IEEE Trans. Nanobiosci.
  doi: 10.1109/TNB.2005.859549
– volume: 27
  start-page: 266
  issue: 3
  year: 2011
  ident: 10.1016/j.jmmm.2019.166143_b0100
  article-title: The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656736.2010.519370
– volume: 18
  start-page: 267
  issue: 4
  year: 2002
  ident: 10.1016/j.jmmm.2019.166143_b0065
  article-title: Magnetically mediated hyperthermia: current status and future directions
  publication-title: Int. J. Hyperth.
  doi: 10.1080/02656730110108785
– volume: 24
  start-page: 337
  issue: 4
  year: 2008
  ident: 10.1016/j.jmmm.2019.166143_b0140
  article-title: Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel
  publication-title: Int. J. Hyperth.
  doi: 10.1080/02656730801907937
– volume: 19
  start-page: 373
  issue: 3
  year: 2003
  ident: 10.1016/j.jmmm.2019.166143_b0035
  article-title: Summary, conclusions and recommendations: adverse temperature levels in the human body
  publication-title: Int. J. Hyperth.
  doi: 10.1080/0265673031000090701
– volume: 16
  start-page: 36
  issue: 1
  year: 2017
  ident: 10.1016/j.jmmm.2019.166143_b0150
  article-title: Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-017-0327-x
– volume: 293
  start-page: 334
  issue: 1
  year: 2005
  ident: 10.1016/j.jmmm.2019.166143_b0170
  article-title: The heating effect of magnetic fluids in an alternating magnetic field
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2005.02.028
– volume: 4
  issue: 1
  year: 2013
  ident: 10.1016/j.jmmm.2019.166143_b0075
  article-title: Magnetic heating of nanoparticles: the importance of particle clustering to achieve therapeutic temperatures
  publication-title: J. Nanotechnol. Eng. Med.
  doi: 10.1115/1.4024904
– volume: 25
  start-page: 309
  issue: 4
  year: 2009
  ident: 10.1016/j.jmmm.2019.166143_b0115
  article-title: Enhancement in treatment planning for magnetic nanoparticle hyperthermia: optimization of the heat absorption pattern
  publication-title: Int. J. Hyperth.
  doi: 10.1080/02656730902803118
– volume: 4
  start-page: 151
  issue: 4
  year: 2014
  ident: 10.1016/j.jmmm.2019.166143_b0085
  article-title: Evaluation of the effects of injection velocity and different gel concentrations on nanoparticles in hyperthermia therapy
  publication-title: J. Biomed. Phys. Eng.
– volume: 6
  start-page: 418
  issue: 7
  year: 2011
  ident: 10.1016/j.jmmm.2019.166143_b0130
  article-title: Exchange-coupled magnetic nanoparticles for efficient heat induction
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.95
– volume: 13
  start-page: 369
  issue: 2
  year: 2008
  ident: 10.1016/j.jmmm.2019.166143_b0030
  article-title: Combination of radiofrequency ablation and immunotherapy
  publication-title: Front. Biosci.
  doi: 10.2741/2686
– volume: 293
  start-page: 314
  issue: 1
  year: 2005
  ident: 10.1016/j.jmmm.2019.166143_b0055
  article-title: Towards breast cancer treatment by magnetic heating
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2005.02.026
– volume: 108
  start-page: 826
  issue: 6
  year: 1964
  ident: 10.1016/j.jmmm.2019.166143_b0010
  article-title: The natural history of carcinoma of the colon and rectum
  publication-title: Am. J. Surgery
  doi: 10.1016/0002-9610(64)90041-8
– volume: 21
  start-page: 637
  issue: 7
  year: 2005
  ident: 10.1016/j.jmmm.2019.166143_b0045
  article-title: Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique
  publication-title: Int. J. Hyperth.
  doi: 10.1080/02656730500158360
– volume: 19
  start-page: 146
  year: 2018
  ident: 10.1016/j.jmmm.2019.166143_b0120
  article-title: Recent advances in functional nanomaterials for light–triggered cancer therapy
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2018.02.010
– volume: 30
  start-page: 526
  issue: 2
  year: 2018
  ident: 10.1016/j.jmmm.2019.166143_b0125
  article-title: Controllable generation of free radicals from multifunctional heat-responsive Nanoplatform for targeted Cancer therapy
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b04841
– volume: 105
  start-page: 07B320
  issue: 7
  year: 2009
  ident: 10.1016/j.jmmm.2019.166143_b0070
  article-title: Modeling of temperature profile during magnetic thermotherapy for cancer treatment
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3077211
– volume: 45
  start-page: 1658
  issue: 3
  year: 2009
  ident: 10.1016/j.jmmm.2019.166143_b0080
  article-title: Numerical FEM models for the planning of magnetic induction hyperthermia treatments with nanoparticles
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2009.2012769
– volume: 218
  start-page: 145
  issue: 2
  year: 1993
  ident: 10.1016/j.jmmm.2019.166143_b0020
  article-title: Liver resection versus transplantation for hepatocellular carcinoma in cirrhotic patients
  publication-title: Ann. Surg.
  doi: 10.1097/00000658-199308000-00005
– volume: 62
  start-page: 129
  year: 2016
  ident: 10.1016/j.jmmm.2019.166143_b0090
  article-title: MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment
  publication-title: J. Therm. Biol
  doi: 10.1016/j.jtherbio.2016.06.025
– volume: 29
  start-page: 730
  issue: 8
  year: 2013
  ident: 10.1016/j.jmmm.2019.166143_b0165
  article-title: MicroCT image-generated tumour geometry and SAR distribution for tumour temperature elevation simulations in magnetic nanoparticle hyperthermia
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656736.2013.836757
– volume: 78
  start-page: 797
  issue: 7
  year: 1991
  ident: 10.1016/j.jmmm.2019.166143_b0015
  article-title: One hundred patients with hepatic metastases from colorectal cancer treated by resection: analysis of prognostic determinants
  publication-title: Br. J. Surg.
  doi: 10.1002/bjs.1800780711
– volume: 146
  start-page: 596
  issue: 4
  year: 1957
  ident: 10.1016/j.jmmm.2019.166143_b0050
  article-title: Selective inductive heating of lymph nodes
  publication-title: Ann. Surg.
  doi: 10.1097/00000658-195710000-00007
– volume: 25
  start-page: 240
  issue: 3
  year: 2009
  ident: 10.1016/j.jmmm.2019.166143_b0105
  article-title: Solution to the bioheat equation for hyperthermia with La 1–x Ag y MnO3-δ nanoparticles: The effect of temperature autostabilization
  publication-title: Int. J. Hyperth.
  doi: 10.1080/02656730802713565
SSID ssj0001486
ssib019626450
Score 2.5193334
Snippet [Display omitted] •The core-shell MNPs are used in the hyperthermia of liver cancer in in-silico study.•The hyperthermia processes based on FEM analysis are...
Exchange coupling between a magnetically soft shell and magnetically hardcore can boost the properties of magnetic nanoparticles (MNPs) to maximize their power...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 166143
SubjectTerms Bioheat transfer model
Boundary conditions
Cobalt ferrites
Computational fluid dynamics
Computer simulation
Core-shell MNPs
Damage
Fever
Finite element method
Finite element modeling
Fluid flow
Heat
Heat exchange
Heat generation
Heat sources
Hyperthermia
Iron oxides
Liver
Liver cancer
Magnetic properties
Nanofluids
Nanoparticles
Power loss
Stress concentration
Temperature dependence
Temperature distribution
Tumor treatment
Tumors
Title In silico study of hyperthermia treatment of liver cancer using core-shell CoFe2O4@MnFe2O4 magnetic nanoparticles
URI https://dx.doi.org/10.1016/j.jmmm.2019.166143
https://www.proquest.com/docview/2353615984
Volume 498
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DEXwRP_Fz5ME3qVvaNE3elOGYivNBB3sLaZrMydrNbb76t5trU0XBPfhUaJNS7q53v-N-d0HonENxzmRp4GIBlBkjGqSCiEBTnkKhjdoYGoUf-qw3oHfDeNhAnboXBmiV3vdXPr301v5Oy0uzNRuPW09Q1OMcbCgKRUiG0MFOE6D1XX580zwc3K_qlW0awGrfOFNxvF7zHLrRibgkEKeiv4LTLzddxp7uNtryoBFfV9-1gxqm2EUbJXlTL_bQ222BF-OJ0ykup8XiqcUvLr-cA7jLxwp_scnhyQSYGFiDtucYaO8jDKMsgwVQQnFn2jXhI716KMorztWogD5HXKjC5deeRrePBt2b504v8EcpBDoK-TIQijCeuMijeeQgDWM0yTKmbZtYm2Y2gaxNZJYoxZgSJjGGcA3T6VPGRVuR6ACtFdPCHCJsTMqscNJqq5BqzYW1DiXA0BwmRGL0ESK1DKX2c8bhuIuJrAllrxLkLkHuspL7Ebr42jOrpmysXB3XqpE_bEW6MLBy32mtR-n_1IUMozhyqE5wevzP156gzRCScCD5xadobTl_N2cOqSzTZmmKTbR-fXvf638Cy0bmmw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED5BEWIv0zY2DdYxP-xtCq0Tx7HfVlWrWqDlAZD6ZjmODUVtCm35__gSp9KQ4IGnSEkcRXfO3Xe6774A_BbYnLNFHvlcgG3GhEW5pDIyTOTYaGMuxUHh8YQPb9jZNJ3uQL-ZhUFaZYj9dUyvonU40wnW7DzMZp0rbOoJgXsoiWVMp7uwh-pUrAV7vdH5cLINyB7x1y3LLotwQZidqWle94sFDqRTeUoxVSWv5acXkbpKP4NP8DHgRtKrX-0z7NjyC-xX_E2zPoTHUUnWs7l3K6kEY8nSkTtfYq4Q3y1mmmwJ5XhljmQMYtDhK4LM91uCapbRGlmhpL8c2PiS_R2X1ZEs9G2Jo46k1KUvsQOT7ivcDP5d94dR-JtCZJJYbCKpKReZTz5GJB7VcM6youDGdalzeeEyLNxk4ajWnGtpM2upMChQn3Mhu5om36BVLkv7HYi1OXfSW6urY2aMkM55oIC6OVzKzJojoI0NlQlS4_jHi7lqOGX3Cu2u0O6qtvsR_NmueaiFNt68O21co_7bLspngjfXtRs_qvCxrlWcpIkHdlKw43c-9hccDK_HF-piNDn_AR9irMmR85e2obVZPdmfHrhs8pOwMZ8BuujpTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+silico+study+of+hyperthermia+treatment+of+liver+cancer+using+core-shell+CoFe2O4%40MnFe2O4+magnetic+nanoparticles&rft.jtitle=Journal+of+magnetism+and+magnetic+materials&rft.au=Suleman%2C+Muhammad&rft.au=Riaz%2C+Samia&rft.date=2020-03-15&rft.pub=Elsevier+BV&rft.issn=0304-8853&rft.eissn=1873-4766&rft.volume=498&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jmmm.2019.166143&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-8853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-8853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-8853&client=summon