In silico study of hyperthermia treatment of liver cancer using core-shell CoFe2O4@MnFe2O4 magnetic nanoparticles
[Display omitted] •The core-shell MNPs are used in the hyperthermia of liver cancer in in-silico study.•The hyperthermia processes based on FEM analysis are simulated using COMSOL Multiphysics.•The temperature and concentration-dependent heat sources are studied versus constant heat source.•The CoFe...
Saved in:
Published in | Journal of magnetism and magnetic materials Vol. 498; p. 166143 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.03.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0304-8853 1873-4766 |
DOI | 10.1016/j.jmmm.2019.166143 |
Cover
Loading…
Abstract | [Display omitted]
•The core-shell MNPs are used in the hyperthermia of liver cancer in in-silico study.•The hyperthermia processes based on FEM analysis are simulated using COMSOL Multiphysics.•The temperature and concentration-dependent heat sources are studied versus constant heat source.•The CoFe2O4@MnFe2O4 MNPs are superior to the other core-shell MNPs for heat generation.
Exchange coupling between a magnetically soft shell and magnetically hardcore can boost the properties of magnetic nanoparticles (MNPs) to maximize their power loss. These MNPs possess large specific loss powers than conventionally used iron oxide MNPs and application of these MNPs in hyperthermia of cancer may result in a better treatment option. In this paper, we have conducted an in-silico study to treat liver cancer using these core-shell MNPs. All the hyperthermia processes are based on the FEM model analysis of infusion of nanofluid flow, diffusion of nanofluid, heat transfer in liver tissue, and tumor thermal damage subject to initial and boundary conditions. All these processes are simulated using COMSOL Multiphysics to predict the pressure, velocity, concentration, temperature distribution, and the fraction of tumor damage during the treatment. The expressions for temperature and concentration-dependent heat sources are derived and compared with a constant heat source. The simulation results show that the concentration-dependent heat source produced a higher temperature as compared to the remaining two heat sources. Through simulations, we have succeeded to effectively treat liver cancer with maximum tumor damage and minimum collateral damage. The validity of our simulation curves of temperature versus time and temperature versus x-coordinate with pre-existing studies are excellent. Our simulations also revealed that the core-shell MNPs used in our study is superior to the other identical core-shell MNPs for better heat generation. Certainly, this research will aid cancer treatment protocols in the clinical setting. |
---|---|
AbstractList | [Display omitted]
•The core-shell MNPs are used in the hyperthermia of liver cancer in in-silico study.•The hyperthermia processes based on FEM analysis are simulated using COMSOL Multiphysics.•The temperature and concentration-dependent heat sources are studied versus constant heat source.•The CoFe2O4@MnFe2O4 MNPs are superior to the other core-shell MNPs for heat generation.
Exchange coupling between a magnetically soft shell and magnetically hardcore can boost the properties of magnetic nanoparticles (MNPs) to maximize their power loss. These MNPs possess large specific loss powers than conventionally used iron oxide MNPs and application of these MNPs in hyperthermia of cancer may result in a better treatment option. In this paper, we have conducted an in-silico study to treat liver cancer using these core-shell MNPs. All the hyperthermia processes are based on the FEM model analysis of infusion of nanofluid flow, diffusion of nanofluid, heat transfer in liver tissue, and tumor thermal damage subject to initial and boundary conditions. All these processes are simulated using COMSOL Multiphysics to predict the pressure, velocity, concentration, temperature distribution, and the fraction of tumor damage during the treatment. The expressions for temperature and concentration-dependent heat sources are derived and compared with a constant heat source. The simulation results show that the concentration-dependent heat source produced a higher temperature as compared to the remaining two heat sources. Through simulations, we have succeeded to effectively treat liver cancer with maximum tumor damage and minimum collateral damage. The validity of our simulation curves of temperature versus time and temperature versus x-coordinate with pre-existing studies are excellent. Our simulations also revealed that the core-shell MNPs used in our study is superior to the other identical core-shell MNPs for better heat generation. Certainly, this research will aid cancer treatment protocols in the clinical setting. Exchange coupling between a magnetically soft shell and magnetically hardcore can boost the properties of magnetic nanoparticles (MNPs) to maximize their power loss. These MNPs possess large specific loss powers than conventionally used iron oxide MNPs and application of these MNPs in hyperthermia of cancer may result in a better treatment option. In this paper, we have conducted an in-silico study to treat liver cancer using these core-shell MNPs. All the hyperthermia processes are based on the FEM model analysis of infusion of nanofluid flow, diffusion of nanofluid, heat transfer in liver tissue, and tumor thermal damage subject to initial and boundary conditions. All these processes are simulated using COMSOL Multiphysics to predict the pressure, velocity, concentration, temperature distribution, and the fraction of tumor damage during the treatment. The expressions for temperature and concentration-dependent heat sources are derived and compared with a constant heat source. The simulation results show that the concentration-dependent heat source produced a higher temperature as compared to the remaining two heat sources. Through simulations, we have succeeded to effectively treat liver cancer with maximum tumor damage and minimum collateral damage. The validity of our simulation curves of temperature versus time and temperature versus x-coordinate with pre-existing studies are excellent. Our simulations also revealed that the core-shell MNPs used in our study is superior to the other identical core-shell MNPs for better heat generation. Certainly, this research will aid cancer treatment protocols in the clinical setting. |
ArticleNumber | 166143 |
Author | Suleman, Muhammad Riaz, Samia |
Author_xml | – sequence: 1 givenname: Muhammad surname: Suleman fullname: Suleman, Muhammad email: muh_sul@yahoo.com organization: Department of Mathematics, University of Engineering and Technology, Lahore 54890, Pakistan – sequence: 2 givenname: Samia surname: Riaz fullname: Riaz, Samia organization: Department of Mathematics, University of Engineering and Technology, Lahore 54890, Pakistan |
BookMark | eNp9kE1LAzEQhoMoWD_-gKeA562ZzTabgAelWBWUXvQc0uyszbKb1CQV-u_dWk8ePL0DM88M85yRYx88EnIFbAoMxE037YZhmJYM1BSEgIofkQnImhdVLcQxmTDOqkLKGT8lZyl1jDGopJiQz2dPk-udDTTlbbOjoaXr3QZjXmMcnKE5oskD-rzv9O4LI7XG2zG2yfkPakPEIq2x7-k8LLBcVnev_ifpYD48ZmepNz5sTBzLHtMFOWlNn_DyN8_J--Lhbf5UvCwfn-f3L4XlpcyFMiBkrRSzkkM5E6Kqm0bYlkHbrpq2BgW1alowRgijsEYEaVnFxUpIxQzwc3J92LuJ4XOLKesubKMfT-qSz7iAmZLVOCUPUzaGlCK22rpssgs-R-N6DUzvBetO7wXrvWB9EDyi5R90E91g4u5_6PYA4fj6l8Ook3U4-mxcRJt1E9x_-DeFkZbi |
CitedBy_id | crossref_primary_10_1016_j_powtec_2023_118720 crossref_primary_10_1007_s10971_024_06520_8 crossref_primary_10_3390_magnetochemistry9030068 crossref_primary_10_1016_j_matpr_2022_02_147 crossref_primary_10_1016_j_nanoso_2023_101053 crossref_primary_10_1016_j_jmmm_2022_169393 crossref_primary_10_1016_j_ijthermalsci_2023_108405 crossref_primary_10_2139_ssrn_4005782 crossref_primary_10_1016_j_jmmm_2020_167245 crossref_primary_10_1016_j_ultrasmedbio_2020_11_023 crossref_primary_10_1039_D4NA00604F crossref_primary_10_1016_j_jmmm_2021_168730 crossref_primary_10_1016_j_tsep_2023_101756 crossref_primary_10_1115_1_4051293 crossref_primary_10_3390_nano13061130 crossref_primary_10_1002_adts_202300234 crossref_primary_10_1016_j_jddst_2021_103048 crossref_primary_10_1016_j_csite_2021_101105 crossref_primary_10_1016_j_phrs_2024_107333 crossref_primary_10_1142_S0218339023500055 crossref_primary_10_1007_s10948_021_05989_6 crossref_primary_10_1140_epjp_s13360_020_00724_x crossref_primary_10_1155_2022_4805490 crossref_primary_10_2139_ssrn_4191510 crossref_primary_10_1016_j_ceramint_2022_06_178 crossref_primary_10_3390_nano11061560 crossref_primary_10_1016_j_jmmm_2024_171868 crossref_primary_10_1038_s41598_021_84620_z crossref_primary_10_1016_j_jddst_2021_102542 crossref_primary_10_1007_s10973_022_11338_z crossref_primary_10_1007_s00339_023_06825_5 crossref_primary_10_1016_j_ceramint_2023_12_130 crossref_primary_10_1016_j_jddst_2024_105838 crossref_primary_10_1177_08853282241244707 crossref_primary_10_1016_j_jmmm_2021_168169 crossref_primary_10_1016_j_ijthermalsci_2022_107887 crossref_primary_10_1116_6_0003814 crossref_primary_10_1016_j_icheatmasstransfer_2022_106295 crossref_primary_10_1016_j_mseb_2021_115325 crossref_primary_10_1016_j_jtherbio_2020_102644 crossref_primary_10_1088_2053_1591_ac8cd0 crossref_primary_10_1155_2021_2990326 crossref_primary_10_1016_j_heliyon_2023_e16601 crossref_primary_10_3390_cancers14235729 crossref_primary_10_1016_j_compbiomed_2023_107271 crossref_primary_10_1016_j_csite_2023_103876 crossref_primary_10_2147_IJN_S444319 |
Cites_doi | 10.1148/radiology.187.2.8475270 10.1016/j.bbadis.2004.11.020 10.1155/2016/6309231 10.1152/jappl.1948.1.2.93 10.1080/02656730410001726956 10.1016/S0960-7404(99)00007-9 10.1021/nn901884d 10.1016/S0304-8853(02)00706-0 10.1016/j.icheatmasstransfer.2008.11.006 10.1109/TNB.2005.859549 10.3109/02656736.2010.519370 10.1080/02656730110108785 10.1080/02656730801907937 10.1080/0265673031000090701 10.1186/s12938-017-0327-x 10.1016/j.jmmm.2005.02.028 10.1115/1.4024904 10.1080/02656730902803118 10.1038/nnano.2011.95 10.2741/2686 10.1016/j.jmmm.2005.02.026 10.1016/0002-9610(64)90041-8 10.1080/02656730500158360 10.1016/j.nantod.2018.02.010 10.1021/acs.chemmater.7b04841 10.1063/1.3077211 10.1109/TMAG.2009.2012769 10.1097/00000658-199308000-00005 10.1016/j.jtherbio.2016.06.025 10.3109/02656736.2013.836757 10.1002/bjs.1800780711 10.1097/00000658-195710000-00007 10.1080/02656730802713565 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Mar 15, 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Mar 15, 2020 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.jmmm.2019.166143 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-4766 |
ExternalDocumentID | 10_1016_j_jmmm_2019_166143 S030488531932921X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABFNM ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M24 M38 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SPD SSQ SSZ T5K XPP ZMT ~02 ~G- 29K 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FGOYB G-2 HMV HZ~ NDZJH R2- RIG SEW SMS SPG SSH WUQ XXG 7SR 7U5 8BQ 8FD EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c328t-9a1687990c831256647dd6cf01ffbdf719179df1aa66a9e7ee18c0436b6890a13 |
IEDL.DBID | .~1 |
ISSN | 0304-8853 |
IngestDate | Mon Jul 14 07:40:19 EDT 2025 Thu Apr 24 23:06:23 EDT 2025 Tue Jul 01 01:56:06 EDT 2025 Fri Feb 23 02:50:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Finite element modeling Bioheat transfer model Tumor treatment Core-shell MNPs Hyperthermia |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-9a1687990c831256647dd6cf01ffbdf719179df1aa66a9e7ee18c0436b6890a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2353615984 |
PQPubID | 2045450 |
ParticipantIDs | proquest_journals_2353615984 crossref_citationtrail_10_1016_j_jmmm_2019_166143 crossref_primary_10_1016_j_jmmm_2019_166143 elsevier_sciencedirect_doi_10_1016_j_jmmm_2019_166143 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-15 |
PublicationDateYYYYMMDD | 2020-03-15 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of magnetism and magnetic materials |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Johannsen (b0045) 2005; 21 Rosensweig (b0155) 2002; 252 Pearce (b0075) 2013; 4 Doci (b0015) 1991; 78 Wang, Gu, Yang (b0170) 2005; 293 Lin, Liu (b0040) 2009; 36 Gilchrist (b0050) 1957; 146 Bismuth (b0020) 1993; 218 LeBrun, Ma, Zhu (b0090) 2016; 62 Lee (b0130) 2011; 6 Bagaria, Johnson (b0175) 2005; 21 Candeo, Dughiero (b0080) 2009; 45 Atsarkin (b0105) 2009; 25 Adhikary, Banerjee (b0135) 2016; 2016 Christophi (b0025) 1998; 7 Golneshan, Lahonian (b0100) 2011; 27 Salloum (b0140) 2008; 24 Pennes (b0160) 1948; 1 Lazaro (b0060) 2005; 1740 Javidi (b0085) 2014; 4 Eagle, Wadsworth, Wnorowski (b0145) 2015 Ng, Kumar (b0150) 2017; 16 Moroz, Jones, Gray (b0065) 2002; 18 Huang, Rege, Heys (b0110) 2010; 4 Goldstein (b0035) 2003; 19 Fagnoni (b0030) 2008; 13 LeBrun (b0165) 2013; 29 Sawyer (b0070) 2009; 105 Feng (b0125) 2018; 30 Pestana (b0010) 1964; 108 Lv, Deng, Liu (b0095) 2005; 4 Salloum, Ma, Zhu (b0115) 2009; 25 Amin (b0005) 1993; 187 Gai (b0120) 2018; 19 Hilger, Hergt, Kaiser (b0055) 2005; 293 Doci (10.1016/j.jmmm.2019.166143_b0015) 1991; 78 Gilchrist (10.1016/j.jmmm.2019.166143_b0050) 1957; 146 Eagle (10.1016/j.jmmm.2019.166143_b0145) 2015 Rosensweig (10.1016/j.jmmm.2019.166143_b0155) 2002; 252 Atsarkin (10.1016/j.jmmm.2019.166143_b0105) 2009; 25 Ng (10.1016/j.jmmm.2019.166143_b0150) 2017; 16 Bagaria (10.1016/j.jmmm.2019.166143_b0175) 2005; 21 Christophi (10.1016/j.jmmm.2019.166143_b0025) 1998; 7 LeBrun (10.1016/j.jmmm.2019.166143_b0165) 2013; 29 Fagnoni (10.1016/j.jmmm.2019.166143_b0030) 2008; 13 Lazaro (10.1016/j.jmmm.2019.166143_b0060) 2005; 1740 Hilger (10.1016/j.jmmm.2019.166143_b0055) 2005; 293 Johannsen (10.1016/j.jmmm.2019.166143_b0045) 2005; 21 Huang (10.1016/j.jmmm.2019.166143_b0110) 2010; 4 Pearce (10.1016/j.jmmm.2019.166143_b0075) 2013; 4 Feng (10.1016/j.jmmm.2019.166143_b0125) 2018; 30 Adhikary (10.1016/j.jmmm.2019.166143_b0135) 2016; 2016 Lin (10.1016/j.jmmm.2019.166143_b0040) 2009; 36 Lee (10.1016/j.jmmm.2019.166143_b0130) 2011; 6 Wang (10.1016/j.jmmm.2019.166143_b0170) 2005; 293 Pestana (10.1016/j.jmmm.2019.166143_b0010) 1964; 108 Moroz (10.1016/j.jmmm.2019.166143_b0065) 2002; 18 Salloum (10.1016/j.jmmm.2019.166143_b0140) 2008; 24 Bismuth (10.1016/j.jmmm.2019.166143_b0020) 1993; 218 Goldstein (10.1016/j.jmmm.2019.166143_b0035) 2003; 19 Javidi (10.1016/j.jmmm.2019.166143_b0085) 2014; 4 Pennes (10.1016/j.jmmm.2019.166143_b0160) 1948; 1 Sawyer (10.1016/j.jmmm.2019.166143_b0070) 2009; 105 Candeo (10.1016/j.jmmm.2019.166143_b0080) 2009; 45 Salloum (10.1016/j.jmmm.2019.166143_b0115) 2009; 25 LeBrun (10.1016/j.jmmm.2019.166143_b0090) 2016; 62 Lv (10.1016/j.jmmm.2019.166143_b0095) 2005; 4 Amin (10.1016/j.jmmm.2019.166143_b0005) 1993; 187 Golneshan (10.1016/j.jmmm.2019.166143_b0100) 2011; 27 Gai (10.1016/j.jmmm.2019.166143_b0120) 2018; 19 |
References_xml | – volume: 19 start-page: 146 year: 2018 end-page: 187 ident: b0120 article-title: Recent advances in functional nanomaterials for light–triggered cancer therapy publication-title: Nano Today – volume: 62 start-page: 129 year: 2016 end-page: 137 ident: b0090 article-title: MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment publication-title: J. Therm. Biol – volume: 4 start-page: 2892 year: 2010 end-page: 2900 ident: b0110 article-title: Spatiotemporal temperature distribution and cancer cell death in response to extracellular hyperthermia induced by gold nanorods publication-title: ACS Nano – volume: 21 start-page: 637 year: 2005 end-page: 647 ident: b0045 article-title: Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique publication-title: Int. J. Hyperth. – volume: 1 start-page: 93 year: 1948 end-page: 122 ident: b0160 article-title: Analysis of tissue and arterial blood temperatures in the resting human forearm publication-title: J. Appl. Physiol. – volume: 45 start-page: 1658 year: 2009 end-page: 1661 ident: b0080 article-title: Numerical FEM models for the planning of magnetic induction hyperthermia treatments with nanoparticles publication-title: IEEE Trans. Magn. – volume: 16 start-page: 36 year: 2017 ident: b0150 article-title: Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review publication-title: Biomed. Eng. Online – volume: 6 start-page: 418 year: 2011 ident: b0130 article-title: Exchange-coupled magnetic nanoparticles for efficient heat induction publication-title: Nat. Nanotechnol. – volume: 2016 year: 2016 ident: b0135 article-title: A thermofluid analysis of the magnetic nanoparticles enhanced heating effects in tissues embedded with large blood vessel during magnetic fluid hyperthermia publication-title: J. Nanoparticles – volume: 4 start-page: 151 year: 2014 ident: b0085 article-title: Evaluation of the effects of injection velocity and different gel concentrations on nanoparticles in hyperthermia therapy publication-title: J. Biomed. Phys. Eng. – volume: 7 start-page: 83 year: 1998 end-page: 90 ident: b0025 article-title: The treatment of malignancy by hyperthermia publication-title: Surg. Oncol. – volume: 293 start-page: 334 year: 2005 end-page: 340 ident: b0170 article-title: The heating effect of magnetic fluids in an alternating magnetic field publication-title: J. Magn. Magn. Mater. – volume: 146 start-page: 596 year: 1957 ident: b0050 article-title: Selective inductive heating of lymph nodes publication-title: Ann. Surg. – volume: 25 start-page: 240 year: 2009 end-page: 247 ident: b0105 article-title: Solution to the bioheat equation for hyperthermia with La 1–x Ag y MnO3-δ nanoparticles: The effect of temperature autostabilization publication-title: Int. J. Hyperth. – volume: 1740 start-page: 434 year: 2005 end-page: 445 ident: b0060 article-title: Magnetic characterisation of rat muscle tissues after subcutaneous iron dextran injection publication-title: Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease – volume: 252 start-page: 370 year: 2002 end-page: 374 ident: b0155 article-title: Heating magnetic fluid with alternating magnetic field publication-title: J. Magn. Magn. Mater. – volume: 18 start-page: 267 year: 2002 end-page: 284 ident: b0065 article-title: Magnetically mediated hyperthermia: current status and future directions publication-title: Int. J. Hyperth. – volume: 13 start-page: 369 year: 2008 end-page: 381 ident: b0030 article-title: Combination of radiofrequency ablation and immunotherapy publication-title: Front. Biosci. – volume: 108 start-page: 826 year: 1964 end-page: 829 ident: b0010 article-title: The natural history of carcinoma of the colon and rectum publication-title: Am. J. Surgery – volume: 187 start-page: 339 year: 1993 end-page: 347 ident: b0005 article-title: Hepatic metastases: interstitial laser photocoagulation with real-time US monitoring and dynamic CT evaluation of treatment publication-title: Radiology – volume: 4 year: 2013 ident: b0075 article-title: Magnetic heating of nanoparticles: the importance of particle clustering to achieve therapeutic temperatures publication-title: J. Nanotechnol. Eng. Med. – volume: 293 start-page: 314 year: 2005 end-page: 319 ident: b0055 article-title: Towards breast cancer treatment by magnetic heating publication-title: J. Magn. Magn. Mater. – volume: 30 start-page: 526 year: 2018 end-page: 539 ident: b0125 article-title: Controllable generation of free radicals from multifunctional heat-responsive Nanoplatform for targeted Cancer therapy publication-title: Chem. Mater. – volume: 36 start-page: 241 year: 2009 end-page: 244 ident: b0040 article-title: Estimation for the heating effect of magnetic nanoparticles in perfused tissues publication-title: Int. Commun. Heat Mass Transfer – year: 2015 ident: b0145 article-title: Modeling an injection profile of nanoparticles to optimize tumor treatment time with publication-title: Magnetic Hyperthermia – volume: 218 start-page: 145 year: 1993 ident: b0020 article-title: Liver resection versus transplantation for hepatocellular carcinoma in cirrhotic patients publication-title: Ann. Surg. – volume: 21 start-page: 57 year: 2005 end-page: 75 ident: b0175 article-title: Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment publication-title: Int. J. Hyperth. – volume: 105 start-page: 07B320 year: 2009 ident: b0070 article-title: Modeling of temperature profile during magnetic thermotherapy for cancer treatment publication-title: J. Appl. Phys. – volume: 78 start-page: 797 year: 1991 end-page: 801 ident: b0015 article-title: One hundred patients with hepatic metastases from colorectal cancer treated by resection: analysis of prognostic determinants publication-title: Br. J. Surg. – volume: 29 start-page: 730 year: 2013 end-page: 738 ident: b0165 article-title: MicroCT image-generated tumour geometry and SAR distribution for tumour temperature elevation simulations in magnetic nanoparticle hyperthermia publication-title: Int. J. Hyperth. – volume: 4 start-page: 284 year: 2005 end-page: 294 ident: b0095 article-title: 3-D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field publication-title: IEEE Trans. Nanobiosci. – volume: 27 start-page: 266 year: 2011 end-page: 274 ident: b0100 article-title: The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method publication-title: Int. J. Hyperth. – volume: 24 start-page: 337 year: 2008 end-page: 345 ident: b0140 article-title: Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel publication-title: Int. J. Hyperth. – volume: 19 start-page: 373 year: 2003 end-page: 384 ident: b0035 article-title: Summary, conclusions and recommendations: adverse temperature levels in the human body publication-title: Int. J. Hyperth. – volume: 25 start-page: 309 year: 2009 end-page: 321 ident: b0115 article-title: Enhancement in treatment planning for magnetic nanoparticle hyperthermia: optimization of the heat absorption pattern publication-title: Int. J. Hyperth. – volume: 187 start-page: 339 issue: 2 year: 1993 ident: 10.1016/j.jmmm.2019.166143_b0005 article-title: Hepatic metastases: interstitial laser photocoagulation with real-time US monitoring and dynamic CT evaluation of treatment publication-title: Radiology doi: 10.1148/radiology.187.2.8475270 – volume: 1740 start-page: 434 issue: 3 year: 2005 ident: 10.1016/j.jmmm.2019.166143_b0060 article-title: Magnetic characterisation of rat muscle tissues after subcutaneous iron dextran injection publication-title: Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease doi: 10.1016/j.bbadis.2004.11.020 – volume: 2016 year: 2016 ident: 10.1016/j.jmmm.2019.166143_b0135 article-title: A thermofluid analysis of the magnetic nanoparticles enhanced heating effects in tissues embedded with large blood vessel during magnetic fluid hyperthermia publication-title: J. Nanoparticles doi: 10.1155/2016/6309231 – year: 2015 ident: 10.1016/j.jmmm.2019.166143_b0145 article-title: Modeling an injection profile of nanoparticles to optimize tumor treatment time with publication-title: Magnetic Hyperthermia – volume: 1 start-page: 93 issue: 2 year: 1948 ident: 10.1016/j.jmmm.2019.166143_b0160 article-title: Analysis of tissue and arterial blood temperatures in the resting human forearm publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1948.1.2.93 – volume: 21 start-page: 57 issue: 1 year: 2005 ident: 10.1016/j.jmmm.2019.166143_b0175 article-title: Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment publication-title: Int. J. Hyperth. doi: 10.1080/02656730410001726956 – volume: 7 start-page: 83 issue: 1–2 year: 1998 ident: 10.1016/j.jmmm.2019.166143_b0025 article-title: The treatment of malignancy by hyperthermia publication-title: Surg. Oncol. doi: 10.1016/S0960-7404(99)00007-9 – volume: 4 start-page: 2892 issue: 5 year: 2010 ident: 10.1016/j.jmmm.2019.166143_b0110 article-title: Spatiotemporal temperature distribution and cancer cell death in response to extracellular hyperthermia induced by gold nanorods publication-title: ACS Nano doi: 10.1021/nn901884d – volume: 252 start-page: 370 year: 2002 ident: 10.1016/j.jmmm.2019.166143_b0155 article-title: Heating magnetic fluid with alternating magnetic field publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(02)00706-0 – volume: 36 start-page: 241 issue: 3 year: 2009 ident: 10.1016/j.jmmm.2019.166143_b0040 article-title: Estimation for the heating effect of magnetic nanoparticles in perfused tissues publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2008.11.006 – volume: 4 start-page: 284 issue: 4 year: 2005 ident: 10.1016/j.jmmm.2019.166143_b0095 article-title: 3-D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field publication-title: IEEE Trans. Nanobiosci. doi: 10.1109/TNB.2005.859549 – volume: 27 start-page: 266 issue: 3 year: 2011 ident: 10.1016/j.jmmm.2019.166143_b0100 article-title: The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method publication-title: Int. J. Hyperth. doi: 10.3109/02656736.2010.519370 – volume: 18 start-page: 267 issue: 4 year: 2002 ident: 10.1016/j.jmmm.2019.166143_b0065 article-title: Magnetically mediated hyperthermia: current status and future directions publication-title: Int. J. Hyperth. doi: 10.1080/02656730110108785 – volume: 24 start-page: 337 issue: 4 year: 2008 ident: 10.1016/j.jmmm.2019.166143_b0140 article-title: Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: experimental study in agarose gel publication-title: Int. J. Hyperth. doi: 10.1080/02656730801907937 – volume: 19 start-page: 373 issue: 3 year: 2003 ident: 10.1016/j.jmmm.2019.166143_b0035 article-title: Summary, conclusions and recommendations: adverse temperature levels in the human body publication-title: Int. J. Hyperth. doi: 10.1080/0265673031000090701 – volume: 16 start-page: 36 issue: 1 year: 2017 ident: 10.1016/j.jmmm.2019.166143_b0150 article-title: Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review publication-title: Biomed. Eng. Online doi: 10.1186/s12938-017-0327-x – volume: 293 start-page: 334 issue: 1 year: 2005 ident: 10.1016/j.jmmm.2019.166143_b0170 article-title: The heating effect of magnetic fluids in an alternating magnetic field publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2005.02.028 – volume: 4 issue: 1 year: 2013 ident: 10.1016/j.jmmm.2019.166143_b0075 article-title: Magnetic heating of nanoparticles: the importance of particle clustering to achieve therapeutic temperatures publication-title: J. Nanotechnol. Eng. Med. doi: 10.1115/1.4024904 – volume: 25 start-page: 309 issue: 4 year: 2009 ident: 10.1016/j.jmmm.2019.166143_b0115 article-title: Enhancement in treatment planning for magnetic nanoparticle hyperthermia: optimization of the heat absorption pattern publication-title: Int. J. Hyperth. doi: 10.1080/02656730902803118 – volume: 4 start-page: 151 issue: 4 year: 2014 ident: 10.1016/j.jmmm.2019.166143_b0085 article-title: Evaluation of the effects of injection velocity and different gel concentrations on nanoparticles in hyperthermia therapy publication-title: J. Biomed. Phys. Eng. – volume: 6 start-page: 418 issue: 7 year: 2011 ident: 10.1016/j.jmmm.2019.166143_b0130 article-title: Exchange-coupled magnetic nanoparticles for efficient heat induction publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.95 – volume: 13 start-page: 369 issue: 2 year: 2008 ident: 10.1016/j.jmmm.2019.166143_b0030 article-title: Combination of radiofrequency ablation and immunotherapy publication-title: Front. Biosci. doi: 10.2741/2686 – volume: 293 start-page: 314 issue: 1 year: 2005 ident: 10.1016/j.jmmm.2019.166143_b0055 article-title: Towards breast cancer treatment by magnetic heating publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2005.02.026 – volume: 108 start-page: 826 issue: 6 year: 1964 ident: 10.1016/j.jmmm.2019.166143_b0010 article-title: The natural history of carcinoma of the colon and rectum publication-title: Am. J. Surgery doi: 10.1016/0002-9610(64)90041-8 – volume: 21 start-page: 637 issue: 7 year: 2005 ident: 10.1016/j.jmmm.2019.166143_b0045 article-title: Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique publication-title: Int. J. Hyperth. doi: 10.1080/02656730500158360 – volume: 19 start-page: 146 year: 2018 ident: 10.1016/j.jmmm.2019.166143_b0120 article-title: Recent advances in functional nanomaterials for light–triggered cancer therapy publication-title: Nano Today doi: 10.1016/j.nantod.2018.02.010 – volume: 30 start-page: 526 issue: 2 year: 2018 ident: 10.1016/j.jmmm.2019.166143_b0125 article-title: Controllable generation of free radicals from multifunctional heat-responsive Nanoplatform for targeted Cancer therapy publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b04841 – volume: 105 start-page: 07B320 issue: 7 year: 2009 ident: 10.1016/j.jmmm.2019.166143_b0070 article-title: Modeling of temperature profile during magnetic thermotherapy for cancer treatment publication-title: J. Appl. Phys. doi: 10.1063/1.3077211 – volume: 45 start-page: 1658 issue: 3 year: 2009 ident: 10.1016/j.jmmm.2019.166143_b0080 article-title: Numerical FEM models for the planning of magnetic induction hyperthermia treatments with nanoparticles publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2009.2012769 – volume: 218 start-page: 145 issue: 2 year: 1993 ident: 10.1016/j.jmmm.2019.166143_b0020 article-title: Liver resection versus transplantation for hepatocellular carcinoma in cirrhotic patients publication-title: Ann. Surg. doi: 10.1097/00000658-199308000-00005 – volume: 62 start-page: 129 year: 2016 ident: 10.1016/j.jmmm.2019.166143_b0090 article-title: MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment publication-title: J. Therm. Biol doi: 10.1016/j.jtherbio.2016.06.025 – volume: 29 start-page: 730 issue: 8 year: 2013 ident: 10.1016/j.jmmm.2019.166143_b0165 article-title: MicroCT image-generated tumour geometry and SAR distribution for tumour temperature elevation simulations in magnetic nanoparticle hyperthermia publication-title: Int. J. Hyperth. doi: 10.3109/02656736.2013.836757 – volume: 78 start-page: 797 issue: 7 year: 1991 ident: 10.1016/j.jmmm.2019.166143_b0015 article-title: One hundred patients with hepatic metastases from colorectal cancer treated by resection: analysis of prognostic determinants publication-title: Br. J. Surg. doi: 10.1002/bjs.1800780711 – volume: 146 start-page: 596 issue: 4 year: 1957 ident: 10.1016/j.jmmm.2019.166143_b0050 article-title: Selective inductive heating of lymph nodes publication-title: Ann. Surg. doi: 10.1097/00000658-195710000-00007 – volume: 25 start-page: 240 issue: 3 year: 2009 ident: 10.1016/j.jmmm.2019.166143_b0105 article-title: Solution to the bioheat equation for hyperthermia with La 1–x Ag y MnO3-δ nanoparticles: The effect of temperature autostabilization publication-title: Int. J. Hyperth. doi: 10.1080/02656730802713565 |
SSID | ssj0001486 ssib019626450 |
Score | 2.5193334 |
Snippet | [Display omitted]
•The core-shell MNPs are used in the hyperthermia of liver cancer in in-silico study.•The hyperthermia processes based on FEM analysis are... Exchange coupling between a magnetically soft shell and magnetically hardcore can boost the properties of magnetic nanoparticles (MNPs) to maximize their power... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 166143 |
SubjectTerms | Bioheat transfer model Boundary conditions Cobalt ferrites Computational fluid dynamics Computer simulation Core-shell MNPs Damage Fever Finite element method Finite element modeling Fluid flow Heat Heat exchange Heat generation Heat sources Hyperthermia Iron oxides Liver Liver cancer Magnetic properties Nanofluids Nanoparticles Power loss Stress concentration Temperature dependence Temperature distribution Tumor treatment Tumors |
Title | In silico study of hyperthermia treatment of liver cancer using core-shell CoFe2O4@MnFe2O4 magnetic nanoparticles |
URI | https://dx.doi.org/10.1016/j.jmmm.2019.166143 https://www.proquest.com/docview/2353615984 |
Volume | 498 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DEXwRP_Fz5ME3qVvaNE3elOGYivNBB3sLaZrMydrNbb76t5trU0XBPfhUaJNS7q53v-N-d0HonENxzmRp4GIBlBkjGqSCiEBTnkKhjdoYGoUf-qw3oHfDeNhAnboXBmiV3vdXPr301v5Oy0uzNRuPW09Q1OMcbCgKRUiG0MFOE6D1XX580zwc3K_qlW0awGrfOFNxvF7zHLrRibgkEKeiv4LTLzddxp7uNtryoBFfV9-1gxqm2EUbJXlTL_bQ222BF-OJ0ykup8XiqcUvLr-cA7jLxwp_scnhyQSYGFiDtucYaO8jDKMsgwVQQnFn2jXhI716KMorztWogD5HXKjC5deeRrePBt2b504v8EcpBDoK-TIQijCeuMijeeQgDWM0yTKmbZtYm2Y2gaxNZJYoxZgSJjGGcA3T6VPGRVuR6ACtFdPCHCJsTMqscNJqq5BqzYW1DiXA0BwmRGL0ESK1DKX2c8bhuIuJrAllrxLkLkHuspL7Ebr42jOrpmysXB3XqpE_bEW6MLBy32mtR-n_1IUMozhyqE5wevzP156gzRCScCD5xadobTl_N2cOqSzTZmmKTbR-fXvf638Cy0bmmw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED5BEWIv0zY2DdYxP-xtCq0Tx7HfVlWrWqDlAZD6ZjmODUVtCm35__gSp9KQ4IGnSEkcRXfO3Xe6774A_BbYnLNFHvlcgG3GhEW5pDIyTOTYaGMuxUHh8YQPb9jZNJ3uQL-ZhUFaZYj9dUyvonU40wnW7DzMZp0rbOoJgXsoiWVMp7uwh-pUrAV7vdH5cLINyB7x1y3LLotwQZidqWle94sFDqRTeUoxVSWv5acXkbpKP4NP8DHgRtKrX-0z7NjyC-xX_E2zPoTHUUnWs7l3K6kEY8nSkTtfYq4Q3y1mmmwJ5XhljmQMYtDhK4LM91uCapbRGlmhpL8c2PiS_R2X1ZEs9G2Jo46k1KUvsQOT7ivcDP5d94dR-JtCZJJYbCKpKReZTz5GJB7VcM6youDGdalzeeEyLNxk4ajWnGtpM2upMChQn3Mhu5om36BVLkv7HYi1OXfSW6urY2aMkM55oIC6OVzKzJojoI0NlQlS4_jHi7lqOGX3Cu2u0O6qtvsR_NmueaiFNt68O21co_7bLspngjfXtRs_qvCxrlWcpIkHdlKw43c-9hccDK_HF-piNDn_AR9irMmR85e2obVZPdmfHrhs8pOwMZ8BuujpTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+silico+study+of+hyperthermia+treatment+of+liver+cancer+using+core-shell+CoFe2O4%40MnFe2O4+magnetic+nanoparticles&rft.jtitle=Journal+of+magnetism+and+magnetic+materials&rft.au=Suleman%2C+Muhammad&rft.au=Riaz%2C+Samia&rft.date=2020-03-15&rft.pub=Elsevier+BV&rft.issn=0304-8853&rft.eissn=1873-4766&rft.volume=498&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jmmm.2019.166143&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-8853&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-8853&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-8853&client=summon |